
Performance of Scientific Processing in Networks of
Workstations: Matrix Multiplication Example

Fernando G. Tinetti

Centro de Técnicas Analógico-Digitales (CeTAD)1

Laboratorio de Investigación y Desarrollo en Informática (LIDI)2

fernando@ada.info.unlp.edu.ar

Abstract
Parallel computing on networks of workstations are intensively used in some application
areas such as linear algebra operations. Topics such as processing as well as communication
hardware heterogeneity are considered solved by the use of parallel processing libraries, but
experimentation about performance under these circumstances seems to be necessary. Also,
installed networks of workstations are specially attractive due to its extremely low cost for
parallel processing as well as its great availability given the number of installed local area
networks. The performance of such networks of workstations is fully analyzed by means of a
simple application: matrix multiplication. A parallel algorithm is proposed for matrix
multiplication derived from two main sources: a) previous proposed algorithms for this task
in traditional parallel computers, and b) the bus based interconnection network of
workstations. This parallel algorithm is analyzed experimentally in terms of workstations
workload and data communication, two main factors in overall parallel computing
performance.

Keywords: performance, cluster parallel computing, scientific processing.

1. Introduction

The growing processing power of standard workstations‚ along with the relatively easy
way in which they can be available for parallel processing, have both contributed to their
increasing use in computation intensive application areas. Usually, computation intensive
areas have been referred to as scientific processing; one of them being linear algebra, where a
great effort has been made to optimize solution methods for serial as well as for parallel
computing [1] [3].

Since the appearance of software libraries for parallel environments such as PVM
(Parallel Virtual Machine) [7] and implementations of MPI (Message Passing Interface) [10],
the distributed processing power of networks of workstations has been available for parallel
processing as well. Also, a strong emphasis has been made on the heterogeneous computing
facility provided by these libraries over networks of workstations. However, there is a lack of

1 Facultad de Ingeniería, Universidad Nacional de La Plata
2 Facultad de Informática, Universidad Nacional de La Plata

published results on the performance obtained on this kind of parallel (more specifically
distributed) processing architectures.

From the whole area of linear algebra applications, the most challenging (in terms of
performance) operations to be solved are the so called Level 3 BLAS (Basic Linear Algebra
Subprograms). In Level 3 BLAS, all of the processing can be expressed (and solved) in terms
of matrix-matrix operations. Even more specifically, the most studied operation has been
matrix multiplication, which is in fact a benchmark in this application area.

2. Characterization of Heterogeneous Computing

There are a number of distinguishing factors that characterize the heterogeneous
computing hardware of a network of workstations such as processor, clock cycle, memory
hierarchy, main memory size, etc. All of these factors affect the relative processing power of
each workstation.

It is expected that intercommunication times between workstations are almost the
same, given that the usual interconnection topology in a network of workstations is a 10 Mb
or 100 Mb Ethernet bus. The network dynamically varying workload along with the different
kinds of communication subsystems of workstations hardware make communication times not
as similar as expected. The communication pattern of a parallel (distributed) computing may
be affected by this kind of communication heterogeneity. Communication times are harder to
characterize when more than a local area network of workstations is used. In this case, the
communication times between two workstations are dependent on the physical location (i. e.,
LAN) where each of them resides.

Workstations heterogeneity usually implies software heterogeneity, basically at the
operating system and development tools levels. Software heterogeneity also produces different
ways in which the overheads (e.g. system calls) affect processing performance. Thus, the
relative processing power is affected not only by the underlying hardware, but also by the
software running along with the computing processes of the application. Development tools
heterogeneity usually introduces some problems in the software development phase, but the
influence on computing performance is not significant for scientific applications.

3. Parallel Scientific Applications on Heterogeneous Hardware

Parallel applications in general, and parallel scientific applications in particular, face
some specific problems when the underlying computing hardware is heterogeneous in order to
obtain a near optimal performance. Processing workload and communication workload are
two of the most important factors affecting performance.

Traditionally, parallel applications have had homogeneous hardware target machines
(i.e., the same processors and a similar message communication time). Thus, algorithms have
been designed assuming homogeneous hardware, and when used on heterogeneous hardware
their performance is far from optimal. However, it should be pointed out that these traditional
algorithms on heterogeneous hardware solve the same applications from the numerical point
of view. This is one of the reasons for claiming the goodness of making heterogeneous

hardware work as a parallel machine: it can solve the same problems as the traditional (and
more expensive) parallel computers with minor adaptations of the algorithms.

Processing workload seems to be easily solved in the field of parallel scientific
computing given that most of the programs fit the SPMD (Single Program Multiple Data)
model. The key idea is based on sequential relative processing power amongst workstations. If
a workstationwsi is twice as fast aswsj, then it should receive twice the workload ofwsj,
which most of the times implies twice the data to process. Even if this seems to be reasonable,
it has to be experimentally justified for the optimized numerical algorithms where, for
example, memory hierarchy is strongly used to achieve near peak processor performance.
When computing processes have to share the workstation with communication processes, the
sequential relative processing power could change, and it could be necessary to define the
parallel relative processing power.

Communication workload is particularly changed in networks of workstations. First,
because Ethernet bus is the most common LAN architecture to which workstations are
connected. Traditional scientific parallel algorithms are based mostly on static meshes or
dynamic networks where physical communication is solved point to point without any
interference from other communicating processors. Second, the heterogeneity given by more
than one interconnected LAN (e.g. by means of routers for Internet traffic) has not been
studied from the scientific processing performance point of view.

4. Areas for Experimentation

In order to establish an incremental research project, it is necessary to define a number
of experimentation areas to make the effect of heterogeneous networks of workstations on the
performance scientific applications clear:
p Selection of a specific application. Matrix multiply has been selected for its many

representative characteristics of the scientific processing area [14].
p Analysis of the performance of traditional parallel algorithms without taking heterogeneity

into account, or only taking into account balanced processing workload based on sequential
relative processing power [12].

p Optimizations of scientific code for maximum sequential performance [2] [14].
p Relationship between sequential and parallel relative processing power.
p Impact of bus interconnection network topology on the parallelization of scientific

algorithms.
p Impact of the interconnection network topology (including more than one LAN) on

scientific processing performance.

5. Parallel Matrix Multiplication Algorithms

Many parallel algorithms have been designed, implemented, and tested on different
parallel computers for matrix multiplication [15]. For simplicity, the algorithms are usually
described in terms of C = A×B, where the three matrices A, B, and C are dense and square of
order n.

The so called “direct implementation”, in which every processor computes a portion of

the resulting matrix C having (or receiving) the necessary portions of matrices A and B is used
mainly for introductory and teaching purposes, and it is hardly ever used in practice.

Divide-and-conquer and recursive algorithms are considered specially suited for
multiprocessor parallel computers. In fact, matrix multiplication is inherently good for shared
memory multiprocessors because there is not data dependence. Matrices A and B are accessed
only for reading to calculate every element of matrix C, and no element of matrix C has any
relation (from the processing point of view) with any other element of the same matrix C.
Unfortunately, networks of workstations used for parallel computing are not shared memory
architectures, and implementations of divide-and-conquer and recursive algorithms are far
from optimal in networks of workstations. The main reason for the loss of performance is
found in the need of a shared (uniform) memory view of a distributed and loosely coupled
memory architecture.

One of the most innovative algorithms for sequential matrix multiplication is due to
Strassen [11] and its parallelization is straightforward on shared memory parallel computers.
Again, the architecture of a network of workstations is not well suited (form the performance
point of view) for this algorithm and its “immediate” ways of parallelization. Also, the
Strassen method is defined in terms of different (for matrix multiplication) arithmetic
operations such as subtraction, and then special care has to be taken for computer numeric
rounding errors.

It is possible that most of the reported parallel algorithms used in practice are based on
parallel multicomputers where the processors are arranged (and interconnected) in a two
dimensional mesh o torus [9]. They may be roughly classified as “broadcast and shift
algorithms” initially presented in [8] and “align and shift algorithms”, initially presented in
[4]. Both kinds of algorithms are described in terms of a PxP square processor grid where
each processor holds a large consecutive block of data.

Many algorithms have been proposed as rearrangements and/or modifications from
those two initial ones ([4] [8]). The underlying concept of blocking factor became intensively
and successfully used from two different but related standpoints: load balance and processor
local performance. It can be proved that distributing relatively small blocks of matrices the job
to be done on each processor is almost the same. Furthermore, the blocking factor is essential
in achieving the best performance on each processor given the current memory hierarchies,
where cache memories have to be taken into account with special care.

It is very interesting how the broadcast based algorithms have been successively and
successfully adapted to the point-to-point interconnection of two dimensional torus. A very
long list of publications is available about this subject (e.g. [5] [13] [6]), and all of them aim
to obtain the best performance for the whole algorithm by implementing broadcast over the
point-to-point communication links of distributed memory parallel computers.

Given the increasing utilization of networks of workstations for parallel computing it
seems to be necessary to analyze if the already defined parallel algorithms fit (from the
performance point of view) these “new” parallel architectures. If not, some rearrangement
should be proposed just as it has been made for the two dimensional mesh based parallel
computers.

The initial step should be to analyze the network of workstations (NOW) architecture

and identify if the parallel algorithms are able to obtain the best performance. Interconnection
(LAN) architecture and processing power heterogeneity are tightly related to the performance
to be obtained in a NOW used for parallel processing. In fact, a relatively deeper analysis
shows that LAN architectures as well as processing heterogeneity strongly contribute to
performance degradation.

Shared memory based parallel algorithms should be discarded because they are not
suitable for implementation on a loosely coupled parallel architecture such as a NOW. Mesh
based class of parallel algorithms are the following to be analyzed. Initially, the installed
networks of workstations do not seem to be related with meshes, because of their
interconnection network usually based on a single bus (10/100 Mb Ethernet). This leads to
eliminate at least shift based parallel algorithms. The basic idea of broadcast message should
be used because it has a direct relationship with the bus interconnection. Unfortunately, as it
has been explained, the initial “broadcast and shift algorithms” have evolved to “shift and
shift algorithms”. The point-to-point communications should be minimal in parallel programs
executed on networks of workstations because they imply a bottleneck on a single and shared
communication medium as the LAN bus.

The parallel algorithm proposed for installed networks of workstations has two main
characteristics:
1. Based only on broadcasting data.
2. Easy workload distribution for heterogeneous processing power.

6. Parallel Matrix Multiplication on NOW

The description of the proposed parallel algorithm to compute C = A×B will be made
taking into account:
p A, B, and C are n×n matrices,
p P workstations, ws1, ..., wsP,
p pwi is the normalized relative processing power of workstation wsi, ∀ i = 1...P, where

normalized implies pw1 + ... + pwP = 1,
p wsi contains rAi = n×pwi rows of matrix A, and
p wsi contains cBi = n/P columns of matrix B.

It is relatively straightforward to compute the normalized relative processing power
having the performance in Mflop/s of each workstation wsi, mfsi:

pwi ,
mfsi

{
i,1

P

mfsi
(1)

The number of rows of matrix A assigned to each workstation (rAi) is proportional to
the workstation relative processing power, e.g.: ifn = 3000,P = 2, andpw1 = 2/3, andpw2 =
1/3, then 2000 rows of matrix A will be assigned tows1 and 1000 rows of matrix A will be
assigned tows2, reflecting thatws1 is faster thanws2. This data distribution is not uniform
when the workstations have different processing power. Due to rounding errors for the
operation rAi = n×pwi (0 < pwi < 1 ∀ i = 1, ...,P) it is possible that dr = rA1 + ... + rAP < n.

The remaining rows can be uniformly distributed among workstations ws1, ..., ws(n-dr) one row
for each workstation. Given that the usual case isP << n, this reassignment of rows can be
considered non relevant from the point of view of proportional (according to workstations
relative processing power) data distribution.

Matrix B is equally distributed among workstations, as the usual case in (homogeneous
parallel computers) bibliography. The matrix B data distribution is made by columns and
uniformly (each workstation has the same amount of data) because of the proposed algorithm
and its way of computing matrix C.

Workstation wsi computes a portion of matrix C, C(i), proportional to its relative
processing power, where

CrAi3n
�i �

,ArAi3n3B

where only a submatrix o B is held locally (cBi columns). Let A(i) (ArAi×n) and B(i) (Bn×cBi
) the

local portions of matrices A and B assigned to wsi respectively, the algorithm in pseudocode
for this workstation (wsi) is shown in Fig. 1. As it could be expected, it has two main
characteristics:
1. Follows the SPMD (Single Program - Multiple Data) parallel computing model. It is the

most common model of parallel programs for numerical - linear algebra computing.
2. Follows the message passing parallel programming model. Networks of workstations are

between the most loosely coupled parallel machines, and message passing programming is
the best suited for this kind of distributed memory parallel computers.

C(i) = 0; /∗ Matrix initialization ∗/
B'(i) = B(i); /∗ To save local B(i) ∗/
For j = 1 to P
{
 C(i) = C(i) + A(i) × B'(i); /∗ Compute partial matrix ∗/
 If (j == i)
 Broadcast B(i); /∗ Broadcast local data ∗/
 Else
 Receive B'(i); /∗ Receive data broadcast from other ws ∗/
}

Figure 1: Parallel Matrix Multiplication Algorithm.

Some of the possible optimizations to be made could be:
p If there is a facility to make communications overlapped with processing, then the

broadcast could be called just before C(i) partial computing.
p If there is not enough room to have two sections of matrix B(i), which is a matrix of n×cBi

elements, computing as well as communication could be made in sections of B(i). This
implies another iteration inside the one shown in Fig. 1.

Resuming the characteristics of the proposed algorithm:
p Every data transference is a message broadcast from a given workstation to every other in

(2)

the parallel computer.
p Local computing is independent on each workstation. Local optimization, as the selection

of a blocking factor for matrix multiplication, can be made independently on each
workstation.

p The balanced workload is carried out by means of data distribution for matrices A and C
according to the workstations relative processing power. Also, the uniform distribution of
matrix B tends to equalize the memory requirements on each workstation.

7. Experimentation

The workstations used for experimentation are described in Table 1.

Name CPU / Mem Mflop/s

purmamarca Pentium II 400 MHz / 64 MB 316

cetadfomec1 Celeron 300 MHz / 32 MB 243

cetadfomec2 Celeron 300 MHz / 32 MB 243

sofia PPC604e 200 MHz / 64 MB 225

Josrap AMD K6-2 450 MHz / 62 MB 99

Table 1: Characteristics of the Workstations used in the Experiments.

Also, workstations are interconnected by an Ethernet 10 Mb/s LAN and the PVM
library [7] was used as the message passing as well as parallel computing software tool.

The (balanced) workload was verified by means of a synthetic “embarrassingly
parallel” version of the matrix multiplication. In this version, the broadcast is eliminated and
local assignment of B(i) is made instead of receiving a message. The library PVM was still
used to “spawn” the processes remotely as well as to synchronize at the end to record time
completion of the whole parallel application. The results obtained with this synthetic version
where discriminated by iteration (as if communication were made), and an example for matrix
size of n = 2000 is shown in Table 2, (all times are in seconds).

Name Assigned Rows Total Time Per It.

purmamarca 562 14.36 2.87

cetadfomec1 431 14.31 2.86

cetadfomec2 431 14.35 2.87

sofia 400 14.48 2.9

Josrap 176 14.39 2.88

Table 2: Workload Verification for the Synthetic Parallel Algorithm.

The difference between the maximum and minimum local computing times (14.48
and 14.31 respectively) is about 1% which could be highly acceptable given the relative

processing power differences: from 316 Mflop/s to 99 Mflop/s according to Table 1. The
proposed algorithm (Figure 1) was later used, and the obtained results are shown in Table 3.

Name Assigned Rows Total Time Per It.

purmamarca 562 16.22 3.24

cetadfomec1 431 16.37 3.27

cetadfomec2 431 16.18 3.24

sofia 400 16.42 3.28

Josrap 176 15.6 3.12

Table 3: Algorithm Performance.

The main conclusions taken from comparison of Table 2 and Table 3, are
p The overall computing performance is reduced by approximately 13% when there is data

communication. Communication processes have a minimum memory (cache memory, in
particular) requirement by which there is contention with computing processes, and it is
reflected on the computing performance reduction.

p The processing workload is also affected by communication processes. The difference
between the maximum and minimum local computing times (16.42 and 15.6 respectively)
is about 5%.

The analysis on workload becomes non relevant when the communication times are
taken into consideration (Table 2 and Table 3 just show computing times). The amount of
time taken by the communication routines is between 76 and 108 seconds for this problem
size (n = 2000). Then, about 85% of the total time is spent on communication, which degrades
the overall performance at the point of making parallelism useless. The first question arising
under these circumstances is about communication performance: are these communication
times (between 76 and 108 seconds) the expected ones? Taking into account that the
interconnection hardware is able of 10 Mb/s, a whole matrix of 2000x2000 single precision
floating point numbers should take about 13 seconds which is near an order of magnitude of
the current times taken for the application.

8. Conclusions and Further Work

It seems to be clear that some overhead is incurred in using a library for parallel
computing on a network of workstations, but an overhead of an order of magnitude is clearly
non acceptable. It becomes necessary, then, to analyze the (excessively) low communication
performance achieved by the PVM library for this application. One of the first alternatives to
be investigated is the way in which the broadcast message routine is implemented.

The proposed algorithm seems to be appropriate for parallel computing on network of
workstations, but it has to be verified by experimentation to avoid the kind of biases found
and explained in the previous section about communication performance. Also, it seems to be
reasonable to make exhaustive experimentation to analyze the effectiveness of heterogeneous
parallel computing on network of workstations with commonplace communication hardware.

Other parallel computing libraries such as MPI implementations should be examined
by experimentation. Some libraries could implement more successfully the collective (e.g.
broadcast) communications routines.

9. References

[1] Anderson E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S.
Hammarling, A. McKenney, D. Sorensen, LAPACK: A Portable Linear Algebra Library for
High-Performance Computers, Proceedings of Supercomputing '90, pages 1-10, IEEE Press,
1990.

[2] Bilmes J., K. Asanoviƒ, C. Chin, J. Demmel, Optimizing matrix multiply using phipac: a
portable, high-performance, ansi c coding methodology, Proceedings of the International
Conference on Supercomputing, Vienna, Austria, July 1997, ACM SIGARC.

[3] Blackford L., J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.
Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. Whaley, ScaLAPACK Users'
Guide, SIAM, Philadelphia, 1997.

[4] Cannon L. E., A Cellular Computer to Implement the Kalman Filter Algorithm, Ph.D.
Thesis, Montana State University, Bozman, Montana, 1969.

[5] Choi J., J. J. Dongarra, D. W. Walker, PUMMA: Parallel Universal Matrix Multiplication
Algorithms on Distributed Memory Concurrent Computers, in Concurrency: Practice and
Experience, 6:543-570, 1994.

[6] Choi J., “A New Parallel Matrix Multiplication Algorithm on Distributed-Memory
Concurrent Computers”, Proceedings of the High-Performance Computing on the Information
Superhighway, IEEE, HPC-Asia '97.

[7] Dongarra J., A. Geist, R. Manchek, V. Sunderam, Integrated pvm framework supports
heterogeneous network computing, Computers in Physics, (7)2, pp. 166-175, April 1993.

[8] Fox G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on
Concurrent Processors, Vol. I, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[9] Golub G. H., C. F. Van Loan, Matrix Computation, Second Edition, The John Hopkins
University Press, Baltimore, Maryland, 1989.

[10] Message Passing Interface Forum, MPI: A Message Passing Interface standard,
International Journal of Supercomputer Applications, Volume 8 (3/4), 1994.

[11] Strassen V., Gaussian Elimination Is Not Optimal, Numerische Mathematik, Vol. 13,
1969.

[12] Tinetti F., A. Quijano, A. De Giusti, Heterogeneous Networks of Workstations and
SPMD Scientific Computing, 1999 International Conference on Parallel Processing, The
University of Aizu, Aizu-Wakamatsu, Fukushima, Japan, September 21 - 24, 1999.

[13] van de Geijn R., J. Watts, SUMMA Scalable Universal Matrix Multiplication Algorithm,
LAPACK Working Note 99, Technical Report CS-95-286, University of Tenesse, 1995.

[14] Whaley R., J. Dongarra, Automatically Tuned Linear Algebra Software, Proceedings of
the SC98 Conference, Orlando, FL, IEEE Publications, November, 1998.

[15] Wilkinson B., Allen M., Parallel Programming: Techniques and Applications Using
Networking Workstations, Prentice-Hall, Inc., 1999.

