
P a r a l l e l R e c o g n i t i o n a n d C l a s s i f i c a t i o n o f O b j e c t s

C.A. Rodrigo Felice1, C.A. Fernando Ruscitt i1, Lic. Marcelo Naiouf2, Eng. Armando De Giusti3

Laboratorio de Investigación y Desarrollo en Informática4
Departamento de Informática - Facultad de Ciencias Exactas

Universidad Nacional de La Plata

Ab s t r a c t

The development of parallel algorithms for an automatic recognition and classification of
objects from an industrial line (either production or packaging) is presented. This kind of
problem introduces a temporal restriction on images processing, a parallel resolution being
therefore required.

We have chosen simple objects (fruits, eggs, etc.), which are classified according to
characteristics such as shape, color, size, defects (stains, loss of color), etc. By means of this
classification, objects can be sent, for example, to different sectors of the line.

Algorithms parallelization on a heterogeneous computers network with a PVM (Parallel
Virtual Machine) support is studied in this paper.

Finally, some quantitative results obtained from the application of the algorithm on a
representative sample of real images are presented.

1 Computer Sciences Graduate. Department of Computer Sciences, Faculty of Exact Sciences,
UNLP.
2 Full-time Co-Chair Professor. LIDI. Department of Computer Sciences, Faculty of Exact
Sciences, UNLP. E-mail: mnaiouf@info.unlp.edu.ar
3 Principal Researcher of the CONICET. Full-time Chair Professor. Department of Computer
Sciences, Faculty of Exact Sciences, UNLP. E-mail: degiusti@info.unlp.edu.ar
4 Calle 50 y 115 - 1er piso - (1900) La Plata - Buenos Aires
 Tel/Fax: +54 21 227707
 E-mail: lidi@info.unlp.edu.ar

1. Introduction

There is an increasing interest on handling and decision-making processes automation,
which have so far been almost exclusively relied on human expertise. A very wide range of
these activities is based on visual perceptions of the world surrounding us; therefore images
acquisition and processing are a necessary requirement for automation, and there is a close
relation to the study area Computer Vision [Har92] [Jai95].

When classification processes are not automated they are carried out by means of different
methods:

- Mechanical: used only when the objects are geometrically regular. Also, these
methods may not be very accurate, and they only allow size-based differentiation.

- Electronic: oriented to color detection, and application-specific. They use photocells
which send information to programmable logical controllers, which in turn process them.

- Manual: trained staff carries out the classification in a visual way, therefore human
limitations influence the results: they are not accurate, they are training-dependent, and
subject to personal criteria. In addition to this, routine tasks are difficult to be kept
constant during long periods of time, and efficiency is reduced with time. In order to solve
this, staff has to be changed at short periods of time, costs being thus incremented.

Computer vision systems attempt to imitate the human visual process in order to automate
highly difficult tasks as regards accuracy and time, or highly routinary ones. It is currently
widely used, since the technological advance in the area results in the automation of
processes so far performed using some of the previously mentioned methods.

The purpose of a computer vision system is the creation of a model of the real world from
images: to recover useful information about a scene from its 2D projections. There are
techniques developed in other areas which are used to recover information from images.
Some of these techniques are Images Processing (generally at the early stages of a computer
vision system, where it is used to improve specific information and eliminate noise) [Gon92]
[Bax94] [Hus91] [Jai89], Computer Graphics (where images are generated from geometric
primitives), Pattern Recognition (which classifies symbolic and numerical data) [Sch92], etc.

A particular kind of problems of interest is the process of recognition and classification of
objects coming from an industrial line (production or packaging) [Law92]. The incorporation of
computers to this kind of problem tends to increase both quantity and quality of the obtained
products and at the same time it reduces expenses. These systems carry out simple tasks
such as the processing of images obtained under controlled lighting conditions and from a
fixed point of view. In addition to this they must operate in real time, which means that
specialized hardware and solid algorithms must be used in order to reduce the possibility of
failures, and they must be flexible so that they can be speedily adapted to changes in the
production process and to inspection requirements [Lev90]. This temporal restriction naturally
leads to a parallel resolution of the problem in order to properly fulfill the requirements.

For this study, a transporting belt over which objects are transported was taken as the
classification model. Somewhere in the run there is a video camera taking images of the
objects which are in turn received by a computer. From these images, the application classifies
the object and makes decisions, which eventually are translated into signals which send the
object to different sectors according to its characteristics (quality, color, size, etc.), or discard it.

The decision-making process always requires that the objective be known: decisions must
be made at each stage of a vision system. Emphasis is made on automatic operation
maximization of each stage, and systems need use (implicit and explicit) knowledge to do this.
System efficacy and efficiency are usually governed by the employee’s knowledge quality.

A computational solution would not present the problems of the mechanical, electronic or
manual methods; since it allows the analysis of a wide range of characteristics, is easily
adaptable to different types of objects and does not have human biologic limitations. However,
the existing object-recognition applications have performance limitations restricting their

application to very specific cases where answering time is not determining, or to research
projects where there are specialized computers with a great computational speed available.

In an attempt to overcome these limitations, this study has as its main objective the
development of parallel recognition and classification algorithms, which will allow to obtain
results in acceptable times using a heterogeneous processors network.

2. Computer vision

Computer vision develops basic algorithms and theories by means of which useful
information about the world can be automatically extracted and analyzed from images. For a
better understanding of the problems and goals constituting the purpose of images processing,
it is necessary to comprehend the complexity of our own human vision system.

Even though visual perception, objects recognition, and the analysis of the collected
information seems to be an instantaneous process for the human being, who does it in a
“natural” way, our visual system is not yet fully understood. It involves physical sensors which
get the light reflected by the object (creating the original image), filters which clean the image
(perfecting it), sensors which get and analyze the particular details of the image, so that, after
its recognition and classification, decisions can be made according to the gathered
information. In these terms, the complexity of the apparently simple process of seeing, which
includes a numerous amount of subprocesses, all of them carried out in a very short time, can
be appreciated.

The purpose and logical structure of a computerized vision system is essentially the same
as a human one. From an image caught by a sensor, all the necessary analyses and
processes are carried out in order to recognize the image and the objects forming it. There are
several considerations to be made when designing a vision system: What kind of information is
to be extracted from the image? Which is the structure of this information in the image? Which
“a priori” knowledge is needed to extract this information? Which kinds of computational
processes are required? Which are the required structures for data representation and
knowledge?

In the required processing there are four main aspects:
- Pre-processing of the image data
- Detection of objects characteristics
- Transformation of iconic data into symbolic data
- Scene interpretation

Each of these tasks requires different data representations, as well as different
computational requirements. Thus the following question arises: Which architecture is needed
to carry out the operations?

Many architectures have pipeline-developed computers, which provides a limited
operations concurrence at a good data transference rate (throughput). Others present a
connected mesh of processors because their images mapping is efficient, or they increase the
mesh architecture with trees or pyramids because they provide the operations hierarchy which
is thought to involve the biologic vision system. Some architectures are developed with more
general parallel computers based on shared memory or connected hypercubes.

The problems presented in a vision system occur because the observation units are not
analysis units. The unit of an observed digital image is the pixel, which presents value and
position properties, but the fact that both position and value of a pixel are known does not give
information about an object recognition, its shape, orientation, length of any distance in the
object, its defects degree, or information about the pixels which form the object under study.

Objects recogn ition

The process allowing to classify the objects of an image is called computational inspection
and recognition, and it involves a variety of stages which successively transform iconic data in
order to recognize information. Objects detection in real time, with only the processed
information from the image available, is a difficult task, since recognition and classification
capacities depend on numerous factors. Among them we can mention: similarity between
objects from the analyzed set and those to be detected, different possible angles used for
objects visualization, type of sensors involved, amount of distortion and noise, algorithms and
processes used, architecture of the used computers, real time specific restrictions,
confidentiality levels required to make the final decision

 An “ideal” objects recognition system may suppose that the set of objects is observed by a
perfect sensor, with no noise or distortion transmission. A more realistic approach would
consider a different situation. The image is created by a mathematical process applied to the
sensed objects, and is then cleaned or restored in order to classify the features which will be
needed for future processes. Segmentation divides it into mutually exclusive pieces to facilitate
the recognition process. Useful data are selected, and relevant aspects given by the sensors
are registered (altitude, speed, etc.) in order to carry out the classification process. Segmented
objects are checked against a pre-determined class in order to know whether the objects being
looked for are present or not, the detection step being thus completed.

 The more widely known recognition methodologies generally include the following stages:

 1. Image formation: it is the digital representation of the data captured by the sensor. It
includes sampling determination and gray levels quantization, which define the image
resolution.

 2. Conditioning: the original image is enhanced and restored in order to obtain a “better”
one, “better” meaning whatever the observer considers as quality in an image. Contrast
enhancement, smoothing and sharpening techniques can be used. Restoration consists of
the reconstruction of a degraded image, with an “a priori” knowledge of the cause of the
degradation (movement, focus, noise, etc.).

 3. Events labeling: it is based on the model defining the informational pattern with an
events arrangement structure (or regions), where each event is a connected set of pixels.
Labeling determines to which class of event each pixel belongs, labeling pixels belonging to
the same event with identical labels. Examples of labeling are thresholding (with high or low
pixel values), borders detection, corners search, etc.

 4. Events grouping: it identifies the events by means of a simultaneous collection or
identification of very connected pixel sets belonging to the same type of event. It may be
defined as an operation of connected components (if labels are symbolic), a segmentation
operation (if labels are in gray levels), or a borders linking (if labels are border steps). After
this stage, the entities of interest are no longer pixels but sets of pixels.

 5. Properties extraction: it assigns new properties to the set of entities generated by the
grouping stage. Some of them are center, area, orientation and moments. It can also
determine relations between pixel groups, as for example if they touch each other, if they
are closed, if one group is inside another, and so on.

 6. Matching: the image events or regions are identified and measured by means of the
previous processes, but in order to assign a meaning to them it is necessary to carry out a
conceptual organization which allows to identify a specific set as an imagined instance of
some previously known object. The matching process determines the interpretation of some
related event sets, by associating these events with some object. Simple figures will
correspond to primitive events, and measure properties from a primitive event will frequently
be suitable for the figure recognition. Complex figures will correspond to sets of primitive
events. In this case, a properties vector of each observed event and the relation between
them will be used.

 Except for image formation, the rest of the stages can be applied several times at different
processing levels.

 The management of non-restricted environments is one of the current difficulties, since the
existing recognition and computer vision algorithms are specialized and only perform some of
the necessary transformation steps.

3. Problem description and sequential solution

Initially, egg-transporting belts were taken as a model of industrial processes, since the
regular characteristics of these objects facilitates the classification process. Then more
complex cases, such as fruits, bottles, ceramics, etc., were considered. The application
classifies the objects and makes decisions which may be translated as signals, which send the
objects to different sectors of the production line according to their characteristics, or discard
them. For the classification process, different characteristics are considered, such as area,
color, maximum diameter, perimeter, centroid, and the presence of defects on the surface
(stains, sectors with loss of color, etc.).

As already mentioned, the goal is the automation of objects classification by using
distributed algorithms in heterogeneous computers networks. For this purpose, the sequential
resolution of the problem is first described, and then its parallelization is considered.

In order to focus on the development of distributed recognition algorithms, bidimensional
true color images of the objects were used, their acquisition by means of a video camera being
left for a future extension. In order to obtain the images used, hen eggs were photographed on
a dark background with natural light. These photographs were then scanned using a Genius
9000 scanner with a resolution of 300 dpi.

When the first tests were run using this set of photographs, it was observed that natural
light caused reflections and shadows on the surface of the objects, thus preventing a precise
determination of their color. On these basis, a second set of photographs was taken, using
artificial light from different angles: this set of photographs was significantly better. Fruit
(lemons, oranges, and tomatoes) and ceramics (mosaics and tiles) samples were also
obtained. Finally, scanned images were stored as JPEG files to reduce storage space. The
implemented algorithms will now be described.

3.1. Threshold

Threshold (a labeling operation on a gray-leveled or colored image) was the first algorithm
implemented, and it was used to differentiate the background of the image from the objects in
it. It distinguishes between pixels with a high gray or color value from pixels with a low gray or
color value. It is one of the most widely used methods to extract a shape or a particular feature
of interest from an image. The threshold binary operator produces a black and white image.

It is very important for this operation that the threshold value be properly determined,
otherwise the following stages may fail. There are various methods to automatically choose the
ideal threshold value, one of them is based on the image histogram. To find a value which will
separate in an optimal way the dark background from the shiny object (or vice versa), it would
be desirable to know dark and shiny pixels distribution. Thus, the separating value could be
determined as the value where the probability of assigning the wrong label to a background
pixel is equal to the probability of assigning the wrong label to an object pixel. The difficulty
here lies in the fact that the independent distribution of dark and shiny pixels is generally not
known at the beginning of the process.

The algorithm simply runs over each pixel of the image and replaces it by the value 255
(white) when its value is higher than the pre-established threshold value (VDT), or by the value
0 (black) when it is not. It should be noted that the algorithm is VDT dependent. According to
the results obtained with the first processed images, the ideal VDT was noticed to depend on

lighting and background conditions; therefore, the same value is good for sets obtained under
similar conditions. If the VDT is wrongly determined, the algorithm may fall into errors such as
taking background pixels as object pixels or as separate objects (when the VDT is lower than
the ideal one), or taking object pixels as background ones.

3.2. Conn ected compon ents labeling. First version

The algorithm consists on the labeling of the connected components of a binary image,
followed by measurements over the regions found. Connected components labeling algorithms
group together all pixels belonging to the same region and assign an only label to them (it is a
grouping operation). The region is a more complex unit than the pixel, and presents a larger
set of properties (shape, position, gray level statistics, etc.), so for each region an n-tuple of
those properties can be built. One way of distinguishing defective objects or objects with
different characteristics is to distinguish the different regions according to their properties.

The speed and storage cost of the algorithm executing this labeling operation is extremely
important, and there are different variants to carry out this stage. Usually one row of the image
is processed at a time, and new labels are assigned to the first level of each component, with
attempts to extend the label of the pixel to its neighbors to the right and downwards.

An algorithm, proposed by Haralick, does not use an auxiliary storage to produce the
labeled image. It consists of an initialization step plus a top-down labels-propagation
sequence, followed by a bottom-up propagation, until there are no changes in the labels.

A different possibility is the “cyclic algorithm”, based on the connected components classic
algorithm for graphs described by Rosenfeld and Pfaltz. It only goes through the images twice,
but it requires a large global table to store equivalencies. The first run carries out labels
propagation. When the situation arises that two different labels can be propagated to the same
pixel, the smallest one is propagated, and each equivalence found is added to the table. Each
entry of the equivalence table is an ordinate pair (label, equivalent label).

After the first run, the “equivalence classes” are found by means of the transitive closing of
the table equivalencies set. Each equivalence class is assigned to an only label, usually the
lower (or the older) of the class. The second run assigns to each pixel the equivalence class
label corresponding to the label assigned to the pixel during the first run. The main drawback
this approach presents is that the larger the images, the larger the global equivalencies table,
so for large images with many regions the table turns out to be too large.

The initial idea was to process the image based on the threshold, but these results were
not enough because the image generally presents imperfections (usually produced by lighting
effects) which were considered as objects. On the other hand, the implementation of a labeling
algorithm would allow to classify several objects from one image, as well as to process control
marks in order to, for example, determine objects size in a standard measurement unit.

The labeling operator also generates a table of regions showing the amount of pixels
belonging to each of the regions. By analyzing this table we can obtain information to
determine which is the biggest object in the image (the interest object), which are the very
small objects representing noise or imperfections, and which are the objects of the pre-
established size which in this case are control marks.

The first implementation performed two runs for each horizontal line of the image. During
the first run, from left to right, it labeled pixels according to its upper and previous neighbors;
and during the second run, from right to left, it solved the equivalencies generated in this line
taking into account only the pixel to the right. This algorithm worked very well with circular or
polygonal objects, but not so well with horseshoe-shaped regions with their opening oriented
towards their upper part, since the equivalencies detected in one line did not propagate
towards the upper ones.

3.3. Conn ected compon ents labeling. Second version

In order to solve the problems presented by the first version, a new implementation was
developed to carry out a first run over the image, line by line and in only one direction. The
equivalencies presented are stored in a table generated during the first run. Then a second
run is done in the same direction as the first one (even though this is not important) during
which, for each pixel, its label is changed by the one corresponding to its label in the
equivalencies table (if it had one).

The problem of this algorithm is the maintenance of the equivalencies table, since as
equivalencies are added to the table a graph determining the equivalencies of each label is
generated. In order to know these equivalencies, a transitive closure of this graph is
necessary, which is not a trivial task, and depending on the shape of the image the algorithm
performance could be decreased. Nevertheless, it presents a proper functioning for any
geometric shape.

3.4. Average color calculation

After the identification of the pixels forming the object to classify (which is the larger region
resulting from the labeling process) the average color is determined simply by adding up the
colors of these pixels and dividing the result by the amount of pixels. To obtain a satisfactory
result the object must predominantly be of a uniform color. In addition to this, the image must
have been acquired under lighting conditions not altering the characteristics of the object.

3.5. Stains identification

One of the objectives of the application is to determine the existence of defects on the
object to be classified. To do this, an algorithm able to detect these defects or stains on the
main object identified by the labeling process was developed. This algorithm works in a way
similar to the threshold process, but to modify the value of each pixel by black or white, not
one but two values are used: if the pixel value is within the determined range, 0 is assigned
(black), since this is the object; otherwise 255 is assigned (white) because this would be a
stain. The two values mentioned are determined according to the object average color and to a
parameter showing the so-considered normal variation in color.

When analyzing the results obtained with this algorithm, it was noticed that if the image
presented shade variations due to lighting differences on the surface of the object, very
illuminated or very dark areas were considered as stains. To overcome this, another algorithm
assuming that the predominant color of the object presents different intensities was
implemented. Thus, in order to determine if a pixel is a defect of the object or not, its color
must be similar to the average color, and a linear variation in the three components (red, green
and blue) is allowed. In this case, even though the color is not the same, it is considered to be
normal (not belonging to a defect of the object). The following calculation is done:

1° - Normalization of the RGB components of the average color:
Componenti Normalized = Componenti Average * 100 / 255 ∀i ∈ {red, green, blue}

2° - For each pixel of the object, calculate:
Componenti Difference = (Pixel Componenti * 100 / 255) - Normalized Componenti

3° - In the ideal case, the three Difference values would be equivalent for object color
pixels, and different for defect pixels. Since this is not always the case, a tolerance
limit is used for variation between these Difference values.

The result is a binary image with the stains found on the object in white. On this image a
labeling process is carried out in order to calculate the amount of defects and their size.

3.6. Borders detection
By analyzing the border or perimeter of the object relevant information can be determined,

such as shape, diameters, etc. This is the reason why this facility was considered as an useful
feature for the application.

A pixel of a given region is considered to belong to its border if some neighboring pixel
(using connectivity 4) does not belong to the region. As pixels are found, their coordinates are
stored on a list in order to process them later in a quicker way. The algorithm finds both outer
and inner borders - in case the region has holes, which must be taken into account when using
the coordinates of these pixels for moments calculation.

3.7. Centroid or center of mass determination

One of the first order moments of a region is its centroid or center of mass. In the case of
circles or squares, it coincides with the geometrical center. The importance of this value lies in
the fact that, along with the border, it may help to determine interesting features of the objects,
as well as in the fact that, if there were marks on the image to facilitate the calculation of
distances, these distances are measured from the center of the marks, therefore the center
has to be determined. The calculation is as follows:

Centroid of R = Cx y = Sum (x, y) / Area (R)
 ∀(x,y) ∈ R

3.8. First order moments calculation

There are two first order moments which are suitable to identify the general shape of an
object. They are:

Average distance from the center to the perimeter:

µr = (1/K) * S (| (x,y) - Cxy |), ∀ (x,y) ∈ perimeter, and K the amount of pixels.

Standard deviation of µr:

sr
2 = (1/K) * S (| (x,y) - Cxy | - µr)

2

4. Parallel languages and algorithms

Factors affecting the performance of an algorithm in a particular architecture depend on the
parallelism degree and on scheduling overchead and task synchronization. For a task-level
parallelism, the greater the parallelism, the higher the synchronization and scheduling cost,
which leads to the non-obtention of a linear increase in speed when increasing the amount of
processors. The selection of an algorithm for the resolution of a particular problem is strongly
influenced by hardware architecture and available software tools [Cof92] [Hee91] [Hwa93]
[Lei92] [Mor94].

In order to choose the parallelism model to be used (data, task, or systolic parallelism), it
should be taken into account that not every kind of parallelism will be suitable to solve a
specific problem in an efficient way. More often than not, algorithms are developed without any
references to a particular architecture, and they use more than one parallelism model, which
makes them difficult to implement.

The paradigm of data parallelism is explicitly synchronized and mapped according to the
SIMD programming model. Even though this is an optimal model, for example, for low level
images processing, the way in which high level reasoning tasks are to be implemented or
represented is not obvious. Task-level parallelism requires the algorithm to be partitioned in
sub-tasks, and these, along with data, to be distributed among processors; therefore the
system should be configured to allow communication and synchronization among processors.
For the systolic model, the algorithm is temporarily partitioned and each stage computes a
partial result which is then passed on to the following stage.

For a language to be parallel, it should support some of the parallelism and communication
concepts. Parallelism can be at a processes level (Ada), at an objects level (Emeral), at a
sentences level (Occam) [CSA90] [Hoa85], at an expressions level (functional languages), or
at a clauses level (Parlog). Communication may be either point-to-point or broadcast.

Parallel Virtual Machine (PVM)

It is a set formed by software tools and libraries which emulate in a flexible way a
framework for general-purpose heterogeneous concurrent computations on interconnected
computers with different architectures [PVM96]. The main objective of PVM is to allow parallel
computations to be run on a set of computers. The PVM basic principles are:

- User-configured computers pool (it may even be modified during running time by
adding or removing computers)

- Transparent access to hardware (however, facilities of specific computers may be
exploited by placing certain tasks in the more suitable computers).

- Process-based computing. The processing unit is the task, and multiple tasks can be
run in an only processor.

- Explicit message-passing model. Tasks cooperate by sending and receiving explicit
messages from one to the other.

- Heterogeneity support (in terms of computers, networks and applications).
- Multiprocessors support. It uses native facilities for messages passing in

multiprocessors to take advantage of their specific hardware.

The computational model is based on the notion that one application consists of several
tasks, and that each of them is responsible for a part of the work. It supports task and data
parallelism (even mixed). Depending on the function, tasks can be run in parallel and they may
need synchronization and data exchange by means of messages.

The PVM system supports C, C++ and Fortran languages. These languages have been
chosen on the grounds that most applications are written using C or Fortran and that new
applications are based on object-oriented methodologies and languages. User library interface
for C and C++ is implemented as functions. The programming general paradigm of an
application using PVM is the following: the user writes one or more sequential programs in the
supported languages which contain calls to the library. Each program is considered a task
integrating the application. For the execution, the user generally starts an instance of the
“master” task from a computer included in the pool, which will in turn execute other tasks, the
result being a set of processes performing local calculations and exchanging messages with
others to solve the problem.

5. Algorithms parallelization

To carry out a parallel processing of the images, a “master/slave” model was used. The
master process is responsible of dividing processing activities among a certain number of
slave or client processes, and of coordinating their calculation. Clients are in charge of
performing the processing activities themselves.

There is parallelization at a data level: the image is partitioned in sub-images which are
sent to the clients (all of them identical) in charge of the processing activities. Some algorithms
are easily parallelized, whereas for others special care must be taken as regards master
participation in the processing of activities to coordinate clients. Each of the developed
algorithms will now be analyzed.

5.1. Threshold

It does not require any special consideration, since it only analyzes each pixel of the region
and compares it with the limit value. Therefore, the result obtained is the same independently
of the amount of clients used.

5.2. Labeling

It presents parallelization difficulties mainly due to the fact that regions may be divided in
two or more sub-images, and also to the fact that labels must be unique. In order to solve

these problems, the two runs carried out during the already described labeling process were
divided.

Each client carries out the first run on its sub-image in the same way as the conventional
algorithm does. It then sends its local labeling table to the master process. To solve the conflict
generated when a region is divided into two or more sub-images, the lines corresponding to
the image division point are sent to two clients, as the last line of one of the sub-images to one
of them and as the first line of the other sub-image to the other. Client processes send these
two special lines to the master with the labels assigned. The master concatenates the partial
labeling tables sent by the clients into a global table and simultaneously checks the lines in
common. In case there is a conflict (the clients involved labeled the pixels in that line with
different labels) it adds the corresponding equivalence to the global table.

Once this information is processed, the master sends to the clients the corresponding
portion of the labeling table, which may now have new equivalencies. The clients receive this
table and carry out the second run taking the modified table as the starting point. When the
global table is created, the problem of two different regions with the same label is also solved,
since in the global table partial labels are modified by adding a number to them in order to
obtain different labels.

The master process of this algorithm performs a part of the processing activities: it unifies
labeling tables and it solves conflicts on overlapping image lines. This may not be efficient in
cases where the amount of processors is very large (for instance, one processor per image
line), since the master would be processing too many lines, which would result in a loss of the
advantages provided by parallelism. Since this application was created to be used in a local
network with a limited number of conventional computers, this is not a problem (for instance, if
there are 5 computers and a 200-line image, the master would only process five lines, i.e., the
2.5% of the image).This in turn reduces the use of the communications network since
otherwise clients would have to communicate among them and with other process providing
unique labels.

5.3. Average value calculation

For a distributed calculation of the average color, the previously described algorithm was
used, but now each client sends its partial result to the master, which in turn calculates the
average among all clients, taking into account that this average must be weighed according to
the number of pixels considered in each process.

5.4. Borders detection

In order to determine perimeter pixels in parallel, the fact that the image is divided must be
taken into account. This means that the pixels of the region located on the first and last lines
cannot be considered to belong to the perimeter of the region because there may be
intermediate partitionings of the image.

In order to solve this inconvenient, processes need to know which portion of the image they
are processing. These portions may be either the first one (which means that the first line of
this sub-image is the limit of the complete region), an intermediate one (neither the first nor the
last lines are the limit of the complete image), or the last one (the last line is the limit of the
complete image). It should also be taken into account that the lines where the image is divided
are processed twice, and it is necessary, in case the border of the region falls there, to avoid
counting it twice.

To do this, an algorithm similar to the conventional one was developed, with the difference
that this one takes into account every one of the presented cases. This algorithm solves the
already mentioned problems and therefore allows the identification of pixels belonging to the
perimeter of the region without being duplicated and avoids taking as part of the border pixels
from the borders of inner partitions of the original image if they are not borders.

6. Implementation and development environment

In the case of the implementation, there were certain features to be taken into account,
namely that it should be clear and easily extensible, and that PVM was available to be used
with C and Fortran. This is the reason why it was developed in C++ (using PVM and on a Linux
environment), since it provides object-oriented programming possibilities [Rum91], which
facilitates the development of a clear, modular and extensible code, and, in addition to this, it
is possible from C++ to access PVM routines developed in C.

As already mentioned, the application is oriented to become a process applied in real time
on the images obtained with a video recorder, and results are sent to devices deciding the
direction of the objects according to their characteristics. However, a graphic environment had
to be used during the development in order to observe the results of the images at each
processing step in order to determine algorithms correction.

The Linux X-Windows graphic system, developed on a client-server architecture [Uma93],
allows, in a transparent way, to see data generated on any of the network computers on a
screen. Even though interface elements can be easily handled by using the API of the X-
Windows system, it is not so simple to show true color images as the ones used by the
application.

To simplify the development, a graphics processing application simple as the Gimp library
was used, its advantage being the possibility of adding plug-in processes. Therefore, it was
decided to develop the graphic application as a Gimp plug-in and thus be able to use their
functionality to show images in a transparent way. Gimp allows to open an image in different
formats (Jpeg, Tiff, Targa, Gif, etc.), to show it, and to apply a series of processes to it,
implemented in a plug-in way. These processes are configured by adding a file (.gimprc), and
Gimp allows the user to select one of the processes on the list to apply it to the loaded image.
Once the process is selected, Gimp executes it and sends the image to be processed by
means of pipes. The process is run independently from Gimp, and it may communicate with
Gimp through a simple API which allows to show new images, data input dialogs, etc.

Implementation consists of two applications: a graphic one (as already said, mainly for
system testing and development) and a batch-type one (which can be used in combination
with the acquisition stage and with the stage sending the objects to the appropriate destiny).

The graphic application is a Gimp plug-in which, when run over a previously read image,
presents a dialog box which allows to specify processing parameters. These parameters are:
amount of processes to be used, threshold value, size of the defects to be taken into account
as related to the object, difference in color of one region as compared with the average color
to consider it a defect, whether moments are to be calculated or not, and whether partial
results are to be shown (only for debugging). Then processing is done, and a dialog box with
the results appears at the end of the process: surface (amount of pixels) of the main object,
average color of the object, maximum diameter, (optional) values of the moments µr and sr

2 ,
amount of stains (defects), surface of the defects, centroid of the object, center of reference
marks (if they are any), and processing time. On the other hand, the batch application was run,
which was useful to carry out performance measurements. The process is very simple and it
allows to use the same values used for the graphic application as parameters in the command
line. Processing results are seen on the screen at the end of the process. To load Jpeg
images, a library provided with Linux distribution was used (libjpeg).

In order to abstract the main objects of the application, which are RGB images formed by
pixels and algorithms applied on these images, classes were defined. Classes were also
defined in order to encapsulate calls to PVM (instances and process communication), so that
this library could be later on changed by a similar one without modifying the rest of the code.
The encapsulating of algorithms as classes allows the addition of new algorithms in a very
simple way and following a clear scheme, in addition of which it allows to generate lists of
algorithms to be sequentially applied to an image.

Classes to abstract images and pixels. The Himage class encapsulates an RGB
image, which is a sequence of pixels, each of which has three color components.
These pixels are encapsulated in the Hpixel class. The Himage class also
encapsulates a cursor (Cursor) which allows to run over the pixels in a tidy way.

Classes to abstract algorithms. As already expressed, the algorithms used are
encapsulated in classes. In order to do this, there is a virtual class which is the
superclass of all algorithms (HimageAlgo), which defines a standard interface for all of
them. The use of cursors to run over the image facilitates in a significant way the
implementation of algorithms, since they allow to access the image internal information
independently and transparently from its format. It should also be mentioned that, since
it is possible to define several cursors at the same time on the same image, the
implementation of more complex algorithms such as labeling or borders detection is
also simplified, since, for instance, four additional cursors to run over the four
connected neighbors of the pixel being processed can be defined.

Classes to abstract master and client processes. The parallelism model chosen
was the master-client one: there is a master process which coordinates processing
activities, and several client processes which carry out processing activities. This
caused the definition of two classes to encapsulate these processes (HMaster and
HClient). The general idea of the application is that an instance of an HMaster process
is created, all necessary parameters are set (image to process, number of processes
among which the processing activities will be distributed, threshold values, etc.), and
the processing task begins by calling a particular method of the object (process()). This
method instaciates the corresponding client processes according to the parameters,
partitions the image among these processes and then coordinates their partial results
in order to obtain the final result. On the other hand, client processes, when run, create
an instance of the HClient class and begin the process by calling the process()
method. This method receives the results, processes them, and synchronically
exchanges them with the instanciating master process.

Classes to abstract PVM processes. There are basically two types of processes
with different communication requirements. On the one hand, we have the master
process, which knows a set of clients with which it communicates; and on the other
hand there are client processes, which only interact with their instanciating master. In
order to model these two cases, a class called HPvmProxi was created, which
represents a remote process. The master sees each client as an instance of this class,
and client processes in turn have an only instance representing the master. This class
has the necessary methods to communicate with the remote process, and it particularly
keeps its identifier in order to send and receive messages to and from it. Since PVM
has functions to send different kinds of data (ints, longs, floats, etc.), this class has
overcharged send and receive methods with a particular implementation for each type
of data. On the other hand, a class called HPvmProcessArray, which basically
manages a proxies number to facilitate the implementation of the master, was defined.

7. Results obtained

The fact that the application was developed on a heterogeneous processors network with
limited resources must be taken into account when evaluating the obtained results. In addition
to this, since a Linux environment was used, the fact that Linux performs a particular
scheduling of processes which distributes CPU time among the application running and
management processes of own resources of the operating system must also be considered.
This distribution can be modified by altering processes priorities, in spite of which the
application does not have a 100% of the processing time.

Two Pentium (133 MHz) processors, with 32 and 48 RAM Mb, and a 80486 DX4 (100 MHz)
with 12 Mb were used for the tests. In order to carry out measurements two different network
configurations were built:

- The 32 Mb Pentium with the 80486, using 10 Mbits/sec EN-2000 compatible
network boards.

- The two Pentiums with the same type of network boards.

Successive runs of the application, changing for each of them the number of client
processes, the number of hosts, and the image to process, were carried out. In addition to this,
each case was run several times in order to minimize the memory scheduling effects of the
Linux. As the development of tests advanced, the running time of the application significantly
varied between runs with an even or odd number of client processes, when the number of
hosts of the virtual machine was even. When analyzing each test it was observed that PVM
distributed in an equitable way the processes it executed among the hosts of the virtual
machine. Thus, when the number of clients to run was odd, for example three, PVM run two
client processes in one host and one client together with the master in the other host.

This distribution of processes causes an increase of running times: the host processing the
two clients takes more time than the other host because the master process needs little
running time. In the case of three clients, as the image to be processed is equally distributed
among the three of them, the final processing time will be the time the host with two clients
needs to process two thirds of the image. As opposed to this, if the total number of clients is
four, the final processing time will be the time used by the host with two clients and the master
to process half the image, which is quite lower than that of the test with three clients.

An example of the difference in running times between runs with even and odd numbers of
processes can be seen on the following table (Note: time is always expressed in seconds):

Processes 1 2 3 4 5 6 7 8 9 10

Time 6.18 5.85 5.48 5.1 5.77 5.55 5.95 5.76 6.43 6.28

As a consequence of this analysis, it was decided to carry out tests with an even number of
processes (in addition to runs with only one client process), so that the results obtained
showed in a clear way the difference in processing time when increasing the number of clients.
(However, if the tests are run with an odd number of processes, variation in running time is
percentually similar).

The first tests consisted in running the application on a virtual machine with an only host
(on one of the Pentiums 133 with 48 Mb RAM). The resolution of the image chosen for these
tests was 264 x 384 pixels in 24 color bits. The results obtained were the following:

Processes 1 2 4 6 8 10

Time 4.36 3.695 3.47 3.71 3.865 4.33

The following series of measurements was done after adding a new host to the previous
configuration (the other Pentium), processing the same image. The results were:

Processes 1 2 4 6 8 10

Time 4.3 2.84 2.675 2.7 3.025 3.55

Figure 1 shows running times of runs carried out with one and two CPUs. The improvement
obtained considering the best times for each case was 1.29 seconds.

In order to evaluate in a better way the behavior of the application with different work loads,
the same measurements were done on a bigger image (522 x 84 pixels on 24 color bits). The
results obtained when running the application on a virtual machine with an only host were:

Processes 1 2 4 6 8 10

Time 17.9 15.94 14.01 14.84 15.13 15.66

When adding another host to the virtual machine, the following results were obtained:

Processes 1 2 4 6 8 10

Time 16.95 8.206 10.77 10.84 11.05 11.6

Figure 2 shows running times for runs carried out with one and two CPUs. The
improvement obtained, considering the best times for each case, was 1.7 seconds.

In order to study the performance of the application in heterogeneous environments, a
network was configured with the 133 MHz Pentium and the 80486. First the application was
run on a virtual machine with an only host (the 80486), the following results being obtained:

Processes 1 2 5 6 7

Time 10.41 9.95 10.03 10.23 10.38

By adding a host to the virtual machine (the 133 MHz Pentium) running times were
markedly reduced, only if when there was an odd number of client processes, the highest
number (half of the processes plus one) were run on the fastest host. The results were:

Processes 1 2 5 6 7

Time 7.12 6.65 4.7 5.82 5.76

Figure 3 shows running times of runs performed with one and two heterogeneous CPUs.
The improvement obtained considering the best times for each case is 2.11 seconds.

The following test was carried out on the same network configuration, but with a 522 x 804
pixels image in 24 bits, with a significant performance improvement expected when comparing
the run on the 80486 as an only host (case I) with another run with the Pentium 133 as a
second host (case II). The best running-times obtained were 35.9 seconds (for case I) and
15.3 seconds (for case II). The improvement obtained was around 2.37 seconds.

Figure 1.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 4 6 8 10

of Client Processes

T
im

e
(s

ec
)

1 CPU

2 CPU

Figure 2.

Figure 3.

8. Conclusions and future lines of work

It would be convenient to evaluate separately the tools used and the results obtained. As
regards the tools, Linux turned out to be very stable, which is translated into an efficient
hardware resources management. In addition to this, it provides facilities for networks with a
TCP/IP configuration (this characteristic is very important if we consider the orientation of the
application), it gives a version of the gnu gcc compilator for C and C++ (with highly satisfactory
services), and a good PVM implementation. In short, environment selection proved to be
suitable for an application with these characteristics (interconnection, concurrency, and
handling of very large data volumes), in addition of which it allows to exploit portability.

As regards X-Windows, there are free-ware libraries which simplify its use, it allows to run
applications, and results can be seen in different computers, which facilitates the execution of
tests. Among the negative characteristics, we can mention the following: it has a complicated
and non-friendly API, it is hard to configure in order to use high graphic applications, and
documentation is oriented to advanced users.

On the other hand, PVM makes the communication between distributed processes and the
migration from small to large configurations - since the configuration of the virtual machine is
independent of the application using it - completely transparent. Its main drawback is the fact
that it does not allow to define protocols in the Occam way to send complex data as a
structure, which results in the need for several communications, each of them with a different
type.

The language used (C++) allows to define inheritance between classes and data
encapsulation, which in turn allows to make a clear and easily extensible implementation; and
due to its low level characteristic, it also allows an optimal disposition of the available
resources, even though it requires excessive care when handling memory and the debugger

0

2

4

6

8

10

12

14

16

18

20

1 2 4 6 8 10

of Client Processes
T

im
e

(s
ec

)

1 CPU

2 CPU

0

2

4

6

8

10

12

1 2 5 6 7

o f Clie n t P roce sse s

T
im

e
(s

ec
)

1 CP U

2 CP U

provided by the version of the compiler used is non-friendly, error detection being thus
complicated.

The results obtained during the performance measurement stage suggest that the
implementation of solutions using gross-grain parallelism results in significant improvements
only when the processes involved are complex (that is, if they require a long processing time)
and there are no excessive communication needs during running time. This is due to the fact
that the cost of communications is significant in relation to processing speed, since a LAN was
used.

Even though the results obtained are highly satisfactory as regards the objectives set at the
beginning of the research, alternative lines of work can be proposed in order to obtain
improvements in certain aspects, such as:

- Implementation of a processes manager which can dynamically detect the hosts
which are faster than the virtual machine (in order to avoid an unbalanced distribution
of tasks among processors with different speeds), and assign to them a higher
processing load, which is translated into more image to process. Thus, PVM equitable
distribution of processes would be avoided, the available CPU time being thus better
exploited.

- Establishment of a way of assigning to the application processes as high an
execution priority as possible, so that Linux does not devote too much CPU time to its
internal scheduling processes.

- Use of other network configurations and communication systems (for example
optical fiber) in order to reduce data transference times between processes.

In addition to these improvements, there are aspects which were not considered, such as
the module for image acquisition from the transporting belt, its digitalization and improvement
for processing, or the final stage of the application in charge of evaluating the results obtained
(when processing a certain image) and on this basis make decisions (for example, sending the
object to its destiny according to classification results).

9. Bibliography

[Bax94] G. A. Baxes, "Digital Image Processing. Principles and Applications", John Wiley &
Sons Inc., 1994.

[Cof92] M. Coffin, "Parallel programming- A new approach", Prentice Hall, Englewood Cliffs,
1992.

[CSA90] "OCCAM", Computer System Architects, 1990.

[Gon92] R. C. González, R. E. Woods, "Digital Image Processing", Addison-Wesley Publishing
Comp., 1992.

[Har92] R. M. Haralick, L. G. Shapiro, “Computer and Robot Vision”, Addison-Wesley
Publishing Company, 1992.

[Hee91] D. W. Heermann, A. N. Burkitt, "Parallel Algorithms in Computational Science",
Springer-Verlag, 1991.

[Hoa85] C. A. R. Hoare, "Communicating Sequential Processes", Prentice-Hall, 1985.

[Hus91] Z. Hussain, "Digital Image Processing", Ellis Horwood Limited, 1991.

[Hwa93] K. Hwang, "Advanced Computer Architecture. Parallelism, Scalability,
Programmability", McGraw Hill, 1993.

[Jai89] A. Jain, "Fundamentals of Digital Image Processing", Prentice Hall Inc., 1989.

[Jai95] R. Jain, R. Kasturi, B. G. Schunck, “Machine Vision”, McGraw-Hill International Editions,
1995.

[Law92] H. Lawson, "Parallel processing in industrial real time applications", Prentice Hall
1992.

[Lei92] F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes”, Morgan Kaufmann Publishers, 1992.

[Lev90] S. Levi, A. Agrawala, "Real Time System Design", McGraw-Hill Inc, 1990.

[Mor94] H. S. Morse, “Practical Parallel Computing”, AP Professional, 1994.

[PVM96] ¨Parallel Virtual Machine¨, World Wide Web.

[Rum91] J. Rumbaugh, M. Blaha, M. Premerlani, W. Lorensen, “Object-Oriented Modeling and
Design”, Prentice Hall, Englewoods Cliff, 1991.

[Sch92] R. Schalkoff, “Pattern Recognition. Statistical, Structural and Neural Approaches”,
1992.

[Uma93] A. Umar, “Distributed Computing and Client-Server Systems”, P T R Prentice Hall,
1993

