
18th IEEE International Conference on Automated Software Engineering (ASE 2003). Montreal, Canada. 2003.

Refactoring C with Conditional Compilation

Alejandra Garrido and Ralph Johnson
University of Illinois at Urbana-Champaign

[garrido, johnson]@cs.uiuc.edu

Abstract

Refactoring, an important technique for increasing
flexibility of the source code, can be applied with much
ease and efficiency by using automated tools. There is
currently a lack of refactoring tools for C with full
support for preprocessor directives because directives
complicate refactorings in many ways.

This paper describes refactoring of C programs in the
presence of conditional compilation directives and how
we propose to support them in a refactoring tool.

1. Introduction

Refactoring has become a well-known technique for
transforming code while preserving behavior [6], [4].
However, research on refactoring has not been much
related to procedural languages like C, even when there
are many legacy systems written in C for which a
refactoring tool would be extremely beneficial. One of the
main problems that C poses for refactoring is the
presence of preprocessor directives.

C programs depend on a preprocessor that provides
file inclusion, macro definition and conditional
compilation [5]. The C preprocessor (also known as
“cpp”) takes as input a C file with directives and outputs
pure C code, where directives have been stripped out and
substituted accordingly. Therefore, cpp directives are not
part of the C grammar.

Analysis tools for C generally ignore the preprocessor.
They apply their analysis to the output of the
preprocessor, which, in the case of refactoring tools, is
inappropriate. Programmers expect the results of a
refactoring tool to still contain preprocessor directives.
Therefore, refactoring tools cannot ignore the
preprocessor. However, preprocessor directives are hard
to handle for two main reasons: it is difficult to carry
information of directives from the source code to abstract
program representations and it is difficult to guarantee
correctness in the transformations.

This paper concentrates on conditional compilation
directives. Conditional directives allow defining separate
code branches, which are included or excluded from the

final compilation unit depending on the value of
conditions evaluated by the preprocessor. If the code is
preprocessed under a particular set of conditions,
applying refactoring on the resulting code will probably
leave the rest of the source code in an inconsistent state.
This makes conditional directives complicated to analyze
and poses an array of problems, which are presented in
this paper, together with our solution.

Part of our solution is defining program
representations that allow for incompatible conditional
branches to be analyzed at the same time. These program
representations conform our program model. Another
part of the solution is to define new preconditions and
execution rules for existing refactorings. We are
implementing this solution in a refactoring tool called
CRefactory and our goal is to test its feasibility and
usability by refactoring the Linux kernel.

2. Enhanced program model with conditional
compilation directives

A refactoring tool for C that supports conditional
compilation directives must have a program model able
to represent multiple configurations and analyze them
together for refactoring. This is the only way that
refactoring can guarantee behavior preservation. An
example where refactoring a single configuration does
not preserve behavior appears in the code taken from the
Linux kernel shown in Figure 1. If this code is
preprocessed assuming BUI LDI NG_PTY_C is defined,
renaming variable uni x_98_max_pt ys will cause a bug
in the other branch, because the variable is defined in
both branches.

On the other hand, there may be some conditional
directive branches that are not meant to be parsed or may
be not applicable, i.e., their conditions should be
considered always false. Examples are “#if 0” or “#ifdef
__cplusplus” . We let the user be responsible for
providing a list of conditions that should be considered
always false. Then, conditional directives are analyzed
considering that, except for those listed by the user, all
other conditions are true.

18th IEEE International Conference on Automated Software Engineering (ASE 2003). Montreal, Canada. 2003.

#i f def BUI LDI NG_PTY_C
 voi d (* devpt s_upcal l _new) (i nt , kdev_t) = NULL;
 voi d (* devpt s_upcal l _ki l l) (i nt) = NULL;
 unsi gned i nt uni x98_max_pt ys =

 NR_PTYS * UNI X98_NR_MAJORS;
#el se
 ext er n voi d (* devpt s_upcal l _ki l l) (i nt) ;
 ext er n unsi gned i nt uni x98_max_pt ys;
#endi f

Figure 1. An example of conditional directive

In addition to preserving behavior, a usable
refactoring tool must be fast. Behavior preservation
requires at least parsing and abstract syntax tree
construction. The abstract syntax tree (AST) of a
program contains sufficient information to implement
powerful and fast refactorings, as demonstrated by the
Refactoring Browser [7] and it does not require much
time to build.

In the same spirit as the Refactoring Browser, our tool
uses the AST of a program not only to perform analysis
of the code but also to transform it. That is, refactorings
are executed by first checking their preconditions and
then manipulating the nodes in the abstract syntax tree to
match the refactoring’s result tree. Since our refactorings
work on the ASTs, the trees must include information
about conditional directives so we can refactor them and
pretty print them. This section describes a novel
approach to include conditional directives in the AST
and other program representations of our model.

2.1. Parsing conditional compilation directives

The easiest way to have conditional directives
represented in the AST is to extend the C grammar with
them. However, conditional directives may appear
anywhere, so extending the C grammar directly would
require an enormous number of grammar productions.
DMS restricts the places where preprocessor directives
can occur so as to bind the number of productions [2], but
we want to support as much cases as possible. On the
other hand, we cannot afford to use an approximate
grammar like LCLint [3] because refactoring needs exact
information to assure correctness.

We could alternatively parse the files in multiple
passes for each possible configuration, generating
multiple ASTs for the same file. As far as we know, this
is the approach used by Xrefactory [8]. However, having
multiple ASTs for the same file requires recombining the
analysis and pretty printing performed in each tree to
perform refactorings. When the number of ASTs is large,
recombining information from them would be very
complex and expensive, two things that interactive
refactoring tools must avoid.

Instead, we have found that conditional directives can
be manipulated or transformed so that they appear at the
same level as external declarations or statements in the C
grammar. This transformation consists of completing the
branches of a conditional directive with the text that
precedes and/or follows the conditional, until each
branch is a complete syntactical unit, as exemplified in
Figure 2.

ext er n
#i f ndef _C1
 i nt
#el se
 l ong i nt
#endi f
var 1;

#i f ndef _C1
 ext er n i nt var 1;
#el se
 ext er n l ong i nt var 1;
#endi f

Incomplete conditional Complete version

Figure 2. Incomplete and complete versions of a
conditional directive

Therefore, if we complete conditional directives, we
can add conditional directive to the C grammar at the
same level of external declarations or statements. By
doing this, we can parse incompatible conditional
branches (those that could not otherwise be parsed
together, as the ones in the left of Figure 2) in a single
pass. Another advantage is that this approach generates a
single AST for a file, avoiding recombining ASTs.

The transformation to complete a conditional must
occur in the internal representation of the code in the
program model, since our ultimate goal is to show the
user exactly the same source code she wrote. We have
built a pseudo-preprocessor component (that we call P-
Cpp) that is responsible for recognizing incomplete
conditional directives and completing them.

P-Cpp outputs a stream of characters that are labeled
with their original position in the source code so the
pretty printer may later reverse the transformation on
conditionals, printing them in their original location.
Note that the output of our pseudo-preprocessor will still
contain conditional directives, as they will be parsed and
included in the AST. P-Cpp also labels characters with
the condition that guards them. When parsing takes
place on the P-Cpp output, AST nodes will inherit the
labels of the tokens they represent, which in turn inherit
the labels of their characters.

2.2. Representing program elements with multiple
definitions

Some conditions are semantically incompatible. In
other words, when considered true at the same time, they
generate conflicting definitions for the same program

18th IEEE International Conference on Automated Software Engineering (ASE 2003). Montreal, Canada. 2003.

element. Figure 3 shows an example simplified from the
Linux kernel where the function nt ohl is defined
differently depending on the condition. Standard
program representations are not prepared to allow more
than one definition of the same program element.

#i f def i ned(__KERNEL__) | | def i ned (__GLI BC__)
ext er n __u32 nt ohl (__u32) ;
#el se
ext er n unsi gned l ong i nt nt ohl (unsi gned

 l ong i nt) ;
#endi f

Figure 3. Multiple definitions of a function

When the definition of a program element depends on
the configuration, our enhanced symbol table represents
it by allowing multiple labeled branches to each of the
element’s definitions. The branches are labeled with the
condition that guards the definition. In this way we solve
the problem of semantically incompatible conditions.

Aversano, Di Penta and Baxter propose a similar
symbol table with multiple entries depending on the
configuration parameter values [1].

2.3. Handling multiple definitions of a macro

Semantically incompatible conditions also give rise to
multiple definitions of the same macro name, which
makes parsing very complicated. Figure 4 shows an
example taken from [5].

#i f SYSTEM == SYSV
#def i ne HDR “ sysv. h”

#el i f SYSTEM == BSD
#def i ne HDR “ bsd. h”

#el se
#def i ne HDR “ def aul t . h”

#endi f

#i nc l ude HDR

Figure 4. Multiple definitions of the same macro

If all conditions in Figure 4 are considered true, which
definition of the macro is used for macro expansion in
the #include of the last line? In all possible
configurations, all three files should be included.

To solve this problem, P-Cpp manipulates the code
once again and transforms it by inserting a conditional
with the statement containing the macro call, with one
branch for each definition of the macro. The example in
Figure 4 is translated as it appears in Figure 5. P-Cpp
labels the generated characters as “ fabricated” so the
pretty printer does not include them in the final code.

#i f SYSTEM == SYSV
#def i ne HDR “ sysv. h”

#el i f SYSTEM == BSD
#def i ne HDR “ bsd. h”

#el se
#def i ne HDR “ def aul t . h”

#endi f
#i f SYSTEM == SYSV

#i ncl ude “ sysv. h”
#el i f SYSTEM == BSD

#i ncl ude “ bsd. h”
#el se

#i ncl ude “ def aul t . h”
#endi f

Figure 5. Transformation to support multiple
definitions of the same macro

3. Applying Refactorings

The problem of semantically incompatible conditions call
for a careful definition of the preconditions and
mechanics of each refactoring so that behavior is still
preserved when conditional directives are present. In this
section we discuss the new preconditions of two well-
known refactorings: rename and extract function.

3.1. Rename refactoring

Renaming a program element is probably the best
known and used refactoring. In C, the program element
to rename can be a variable, a structure field, a function
or a user-defined type. Macros can also be renamed but
the preconditions and mechanics of macro renaming are
different and out of the scope of this paper.

The standard preconditions say that the new name N
shall not clash with any other symbol in the scope.

In the presence of conditional directives, the
precondition must be enhanced because, as we discussed
earlier, semantically inconsistent conditions bring
multiple definitions of the same program element.
Therefore, if a program element E has multiple
definitions, the refactoring must check if the changes
apply to the selected definition of E only or to more than
one. Let us call this the cardinality of the refactoring.

The above leads to the following rule for renaming in
the presence of conditional directives. Assume a user
selects to rename a definition Ds of a program element E,
where Ds is guarded by a condition Cs (this condition can
be atomic or a conjunction of conditions of nested
conditional directives). Assume there are M definitions of
E, each one guarded by a different condition in the set Γ
= { C1,…,CM} that includes Cs. The refactoring is safe

18th IEEE International Conference on Automated Software Engineering (ASE 2003). Montreal, Canada. 2003.

and may execute successfully in the presence of
conditional directives if:
1. there is a single definition of E, i.e., M = 1, OR
2. if there are multiple definitions of E and each use of

E is guarded by only one of the conditions in Γ, only
the occurrences of E guarded by Cs are renamed, OR

3. if there are multiple definitions of E and each use of
E is guarded by the disjunction of more than one
condition in Γ, all occurrences of E are renamed.

3.2. Extract function refactoring

This is a complex refactoring which is considered very
important for a refactoring tool to have. With it, a
statement list L is extracted into a new function named N
placed at a point P in the code.

The standard preconditions establish that the
statement list must be convertible to a legal function, that
the point P may hold a function definition and that the
name N should not clash with any other symbol in the
scope.

The meaning of “convertible to a legal function” must
be enhanced to account for conditional directives.
Moreover, an additional precondition is needed to check
the condition that guards the point P where the extracted
function is selected to go.

In the presence of preprocessor conditionals, a
statement list that is convertible to a legal function is one
that either has no conditional directives or contains a
whole preprocessor conditional. For example, if the
statement list L to be extracted is the piece of code in
gray in Figure 6, since the selection includes only part of
a preprocessor conditional, extracting the selection would
turn both the remaining code and the extracted code
incorrect in terms of preprocessor syntax.

i nt f 1() {
nel ems++;
#i f def _C1

q+= j ;
nel ems - = q;

#el se
nel ems * = j ;

#endi f
}

Figure 6. Incorrect selection for function
extraction

The additional precondition must check that the
condition C1 guarding the point P where the new
function goes, is the same as the condition C0 guarding
the selected code before refactoring, or that C1 is a

conjunction that includes C0. If this precondition is not
met, the code selected for extraction may, for example,
use a variable defined in C0 which is not defined in C1.

4. Conclusions

Conditional directives are extensively used in C
programs, so being able to handle them is an important
step towards realizing a C refactoring tool. This paper
presents our approach to handle conditional directives in
the refactoring tool we are developing, CRefactory.

The techniques discussed in this paper are specific to
the C preprocessor but not to the C language, so we
believe they are applicable to other languages that use the
cpp, as C++. Moreover, the program model that we
propose may be useful to other than refactoring tools, for
instance, analysis tools that may want to provide
functions and metrics on conditional directives.

In the near future we expect to finish the
implementation of CRefactory and use it extensively on
large projects such as the Linux kernel to validate its
usability and correctness.

5. References

[1] Aversano, L., Di Penta, M. and Baxter, I. Handling
Preprocessor-Conditioned Declarations. 2nd IEEE Int.
Workshop on Source Code Analysis and Manipulation
(SCAM'02). Montreal, 2002.

[2] Baxter, I. and Mehlich, M. Preprocessor Conditional
Removal by Simple Partial Evaluation. Workshop on Analysis,
Slicing, and Transformation (AST) at the Eighth Working
Conference on Reverse Engineering (WCRE'01)

[3] Evans, D. LCLint User’s Guide. MIT Laboratory for
Computer Science. Cambridge, MA, v2.2 edition, August 1996.

[4] Fowler, M. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[5] Kernighan, B. and Ritchie, D. The C Programming
Language. Prentice Hall. 1988.

[6] Opdyke, W. Refactoring Object-Oriented Frameworks. PhD
Thesis, University of Illinois at Urbana-Champaign, 1992.

[7] Roberts, D., Brant, J., and Johnson, R. A Refactoring Tool
for Smalltalk. Theory and Practice of Object Systems 3(4).
1997.

[8] Vittek, M. Refactoring Browser with Preprocessor. 7th
European Conference on Software Maintenance and
Reengineering (CSMR'2003). Benevento, Italy. March 2003.

