
Challenges of Refactoring C Programs
Alejandra Garrido

University of Illinois at Urbana-Champaign
1304 W. Springfield Av.

Urbana, IL 61801
1-217-333-5219

garrido@cs.uiuc.edu

Ralph Johnson
University of Illinois at Urbana-Champaign

1304 W. Springfield Av.
Urbana, IL 61801
1-217-244-0093

johnson@cs.uiuc.edu

ABSTRACT
Refactoring has become a well -known technique for transforming
code in a way that preserves behavior. Refactorings may be
applied manuall y, although manual code manipulation is error
prone and cumbersome, so maintainers need tools to make
automatic refactorings. There is currently extensive literature on
refactoring object-oriented programs and some very good tools
for refactoring Smalltalk and Java code. Although there is more
code written in C or C++ than in any other language, refactoring
tools for C with full support for preprocessor directives have not
yet appeared.

The C programming language, especiall y the preprocessor
directives that coexist with it, compli cates refactorings in
different ways as directives are not legal C code and may violate
otherwise correct refactorings.

Refactoring C poses two major research challenges. On the one
hand, as preprocessor directives may violate correctness, new
precondition and execution rules must be defined for existing
refactorings to preserve behavior. On the other hand, the
automated execution of refactorings requires speciali zed program
analysis tools to represent and manipulate preprocessor
directives. After studying the area we have found some results to
overcome these challenges and make a correct tool for the C
language attainable.

This paper first discusses the diff iculties in refactoring C code
with preprocessor directives. It then defines preconditions and
execution rules to maintain correctness of refactoring in the
presence of macros and conditional directives. Moreover, new
refactorings are proposed for macro definiti ons and conditionals.
Lastly, the paper suggests enhancements to program analysis and
program representation tools to correctly manipulate
preprocessor directives.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques –

program editors; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement – restructuring; D.3.2
[Programming Languages]: Language Classifications – C;
D.3.3 [Programming Languages]: Language Constructs and
Features; D.3.4 [Programming Languages]: Processors –
parsing, preprocessor.

General Terms
Design, Languages.

Keywords
Refactoring. C programming. Preprocessor directives.

1. INTRODUCTION
Software systems must adapt to changing environments.
Requirements are transformed or new ones are eli cited.
Designers are challenged to create and maintain highly reusable
components that accommodate to evolving requirements. Code is
often rewritten to reflect new functionalit y or new designs.

Unless changes are carefull y incorporated, code that is constantly
modified is in danger of becoming unmaintainable and buggy.
The reasons that degrade the code are having different people
working on the same code, adding changes fast but without
elegance and without any documentation. Many systems still
reach the point where they better be thrown away and rewritten
from scratch upon a single change in requirements. In conclusion,
companies are wasting money, time and resources and cannot
keep up with good timing and qualit y. It is imperative that before
incorporating changes in functionalit y, the code is reshaped and
reorganized in ways that would make it more open to changes,
easier to read and easier to maintain, in short, become more
reusable.

Refactoring is about code evolution [14]. It allows improving the
design of the code, making it more reusable and flexible to
subsequent semantic changes. Moreover, refactoring is a
disciplined process so that changes do not affect program
behavior and consequently, tests are not violated. We consider
that a refactoring does not affect or preserves program behavior
when the versions of the program before and after refactoring are
semanticall y equivalent. That is, the mapping of input to output
values remains the same [14]. A typical example of a refactoring
is the renaming of a variable. A complex example of refactoring
is the appli cation of a design pattern [13].

Our research group at the University of Illi nois at Urbana-
Champaign has been researching on refactoring for a long time
([14], [4], [16], [15], [7]). Willi am Opdyke was the first to coin
the term "refactoring" in his PhD thesis [14]. Turning research
into practice, Don Roberts and John Brant built the first
successful refactoring tool for the Smalltalk language [16].

Research on refactoring has spread, and well -known refactoring
techniques have been catalogued as step-by-step recipes to help
maintainers with a manual process [5]. However, most of the
literature about refactoring is concentrated in object-oriented
languages li ke Smalltalk or Java and transformations in the
inheritance hierarchy ([5], [13], [18]).

Our goal is to build a refactoring tool for a non object-oriented
language li ke C. A language li ke C call s for a different set of
refactorings meaningful to its imperative, pointer & struct based
nature and that considers its preprocessor directives. In an earlier
work [7], we have proposed a catalog of refactorings for the C
language that were implemented in a prototype tool. However,
that catalog does not include refactorings for preprocessor
directives. Those refactorings are the aim of our current research
as presented in this paper.

Although catalogs of refactorings are helpful, manual code
manipulation is error prone and cumbersome. A program of more
than ten thousand lines of code may even turn manual
manipulation impossible. Therefore, maintainers need tools to
make automatic refactorings. Many people now think that
refactoring tools are going to make a big impact in the software
engineering process [6]. The model for refactoring tools is the
Refactoring Browser [16]. It is integrated in the Smalltalk
development environment and allows for powerful and fast
refactorings that guarantee to preserve behavior. As Martin
Fowler says in [6], not many people use Smalltalk, but "the
Refactoring Browser makes one thing very clear. Tool support for
refactoring is both possible and valuable." Tools for refactoring
Java code are also improving. Good examples are jFactor 6 and
IDEA [9].

We found two transformation tools that handle C and provide
some level of preprocessor awareness. The tool Xrefactory from
Xref-Tech [19] provides a limited support for preprocessor
conditionals by allowing users to specify multiple pre-processing
passings through source code [Marian Vittek, personal
communication]. However, some refactorings are still based on a
single preprocessor pass, so they cannot guarantee correctness.
The reengineering toolkit DMS from Semantic Designs [2]
supports the representation of macro definiti ons and macro call s,
but not of conditional directives [Ira Baxter, personal
communication].

Consequently, there are still no refactoring tools for C that
handle preprocessor directives completely and correctly. We
believe that full support for refactoring in the presence of
preprocessor directives is extremely important. As analyzed in
[3], the preprocessor is heavil y used in C programs, as it provides
many advantages that the article categorizes. Stroustrup also
recognizes "Occasionall y, even the most extreme uses of Cpp are
useful, but its faciliti es are so unstructured and intrusive that
they are a constant problem to programmers, maintainers, people
porting code, and tool builders" [17].

There are many diff iculties in refactoring C. One is pointer
manipulation, which is not the focus of our research. The other is
the presence of preprocessor directives, as they are not legal C
code, they change scope and definiti on of program elements, and
allow for special manipulations that may violate otherwise
correct refactorings. We call correct refactorings those that
preserve program behavior.

Refactoring C and preprocessor directives poses two major
research challenges. On the one hand, since directives may
violate correctness in refactoring, new precondition and
execution rules must be defined for existing refactorings to
preserve behavior. Moreover, new refactorings can be proposed
for preprocessor directives. On the other hand, the automated
execution of refactorings requires speciali zed program analysis
tools so that preprocessor directives can be incorporated in
program representations and be transformed.

This paper describes what we believe is the first serious attempt
to refactoring C with preprocessor directives. The next section
explains the problems posed by preprocessor directives in
refactoring. Then, the special cases for refactoring macros and
conditional compilation directives are presented, characterizing
the problems and our solutions. Then, modifications to program
analysis tools and program representations are proposed for the
implementation of C refactoring tools.

2. WHY REFACTORING C IS DIFFICULT.
PREPROCESSOR DIRECTIVES.
A typical C fil e uses not only terminals defined in the C grammar
but also constructs called preprocessor directives. Preprocessor
directives allow for fil e inclusion, macro definiti on and
conditional compilation [11]. File inclusion allows having
separate compilation units. Macros are defined with an arbitrary
replacement text (usuall y not a complete or legal C expression),
may have parameters and may use special operators, and gets
substituted at every occurrence of the macro name. Conditional
compilation provides a way to include code selectively depending
on the value of conditions evaluated during compilation.

These directives use special commands and a rudimentary syntax
that is understood and evaluated by a preprocessor. The C
preprocessor takes as input a C fil e with directives and outputs
pure C code, where directives have been stripped out and
substituted accordingly. Therefore, parsing C does not involve
dealing with preprocessor directives.

A refactoring tool for C can be constructed to perform
transformations on preprocessed C code (that is, code without
preprocessor directives). If this is the case, rules for behavior
preservation of transformations are similar to those defined for
other languages (e.g., the rules for renaming a variable in any
language include modifying the variable name exclusively in its
scope and namespace). Moreover, parsing and abstract syntax
tree construction, the basic program analysis functions that a
refactoring tool must perform, are standard and transformations
deal only with the rules of the C language. This is the approach
traditionall y taken for C and C++ visuali zation and analysis tools
(Star Diagram [8], Visuali zation of class diagrams [18]).

Tools that work on preprocessed C code have many
disadvantages. The refactorings allowed are very restricted;
otherwise, directives can be irrecoverable or may no longer
apply. If directives are irrecoverable, the code may become
unmaintainable. The tool may be very inconvenient for code
visuali zation, as the code would look different than the source
code. Therefore, the code will l ack all the benefits of using
preprocessor directives (as separate program units, reuse of
macro definiti ons, use of #define constants instead of hard-coded
values, etc.). Furthermore, such a tool cannot be integrated in a
development environment where users may edit, debug, or
perform refactorings interchangeably. Roberts and Brant claim
that when they integrated the Refactoring Browser directly into
the Smalltalk browser (the editor), the tool became useful [16].

A more powerful and useful refactoring tool would allow C
programmers to transform C fil es from their original code, i.e.,
the code they wrote with preprocessor directives. This imposes
new requirements on the refactoring tool:

- users should be able to transform C code that has
interleaving preprocessor directives; e.g., renaming a
variable in some code with macro call s;

- users should be able to transform preprocessor directives;
e.g., adding a parameter to a macro definiti on;

- the presence of directives should not affect the correctness
of refactorings.

Incorporating the abilit y to handle preprocessor directives in a
refactoring tool is significantly diff icult. An exception is fil e
inclusion. As include directives change the scope of program
elements declared global to a fil e, refactoring with #include
directives means broadening the scope of refactoring accordingly.
The preprocessor directives that present a real challenge are
macro definiti ons and conditional compilation.

Macros can be defined and undefined, their bodies may reference
global program elements and they may refer indirectly to global
elements by using a special concatenation operator. With this,
macros may easil y violate the correctness of refactoring. For
example in Figure 1, if the variable "errstatus" of "function1" is
renamed but the body of macro "ERR" is not modified, the call to
"ERR" in "function1" will cause an error of undefined variable.
On the contrary, if the macro body is modified renaming
"errstatus", the call to "ERR" in the function "main" will cause
the error of undefined variable.

Conditional directives have alternative branches that are
mutuall y exclusive. If during a refactoring a single branch is
considered, other branches may become obsolete and erroneous.
If all branches are considered, each program element may have
multiple definiti ons, li ke a variable with multiple types.

These issues and some more that we discuss below call for a
careful definiti on of the precondition and execution rules of each
refactoring. Following the same approach as in [14], we discuss
the preconditions under which a refactoring preserves behavior
and we argue how the proposed execution of the refactoring does
not alter that behavior. Although a formal proof of the validity of
the proposed rules is out of the scope of this paper, the rationale
behind each rule is carefull y described and exempli fied.

#def i ne E RR er r st at us = 1

i nt f unct i on1() {
 i nt er r st at us;
 . . .
 i f (bot t om < 0)

ERR;
 . . .
}

i nt m ai n() {
 i nt er r st at us;
 . . .
 i f (f unct i on1() = = 1)

ERR;
 . . .
}

Figure 1. Error in a rename refactoring

A major challenge in the construction of a C refactoring tool that
deals with preprocessor directives li es in processing the code
before refactoring: the standard C scanner, parser and
abstract syntax tree builder no longer apply. The reason is that if
code is not first preprocessed, it does not respond to the C
grammar. In the Section "Enhanced program analysis process and
program representations" we propose modifications to program
analysis and its output data.

The next two sections discuss the circumstances in which we
found macros and conditional directives to violate correctness in
refactoring. They also present new preconditions and execution
rules to reinstate and guarantee correctness.

3. REFACTORING OF MACROS
3.1 Macro Definitions
A macro definiti on has the form that appears in Figure 2. It call s
for a simple macro substitution: subsequent occurrences of the
token name will be replaced with the replacement_text [11]. The
replacement text is arbitrary. The name may also include
arguments and so each occurrence of the formal parameter in the
replacement text is replaced by the corresponding actual
parameter.

#def i ne name replacement_text

Figure 2. A macro definition

Macro definiti ons do not tend to change much since they usuall y
are general utiliti es, short pieces of code and highly reusable
from their conception. Nevertheless, some refactorings that may
apply to macro definiti ons include macro renaming, macro
parameter renaming, macro parameter addition or removal (see
Table 1).

The preconditions and execution rules for refactorings on macro
definiti ons are similar to those that apply for function definiti ons.
For example, in parameter renaming, the preconditions still

include checking that the new name does not clash with the name
of another program element in the scope. The execution involves
renaming the parameter in its scope, but leave unmodified any
other program element with the same name but a different usage
(in Figure 3 below, if the parameter to rename is "x", the
reference in "st.x" should not be renamed, since that "x" is a
structure field).

#def i ne M1(x, st) x = st .x

Figure 3. A macro with different uses of the name "x"

There is a difference, however, from refactoring functions, with
the definiti on of the scope. As macros can be undefined through
#undef directives, the scope is restricted to the code from the
#define up to the #undef. This has the consequence that
subsequent definiti ons of the same macro are not transformed. A
different approach would be to transform all definiti ons of the
macro with the same name. In either case, the tool must make its
transformation procedure very clear to the user.

Other refactorings related to macro definiti ons are: the creation
of a macro definiti on replacing an expression in the code and the
removal of a macro definiti on. For the creation of a macro, the
user should be able to select the expression from the code that is
to be turned into a macro, and the parts of the expression that
should be parameterized. For example, suppose that in the code
of Figure 4 a user chooses to create a macro from the statement
that appears selected. The user is prompted for a name, say
COND, and for the expressions to parameterize, which she
chooses to be "c > 'a'" and "count". The result of the refactoring
appears in Figure 5.

. . .
whi l e (1) {

get c(c) ;
i f c > ' a' got o count ;
el se

. . .

Figure 4. Example of macro creation (before refactoring)

#def i ne C OND(E, P) i f (E) got o (P)
. . .
whi l e (1) {

get c(c) ;
COND(c > ' a' , c ount) ;
el se

. . .

Figure 5. Example of macro creation (after refactoring)

It is important to pay attention to the parentheses surrounding the
parameters in the body of the macro (i.e., "(E)" and "(P)" in
Figure 5). The absence of those parentheses may cause an error
in subsequent substitutions of the macro, and therefore behavior

would not be preserved. As a simple example from [11], suppose
the expression from which the macro is created is "x * x", with
parameter "x", and there is another matching expression "(z+1) *
(z+1)" that gets replaced by a macro call with the result of the
refactoring looking as in Figure 6. The substitution of
"SQUARE(z+1)" will obviously not yield the same result as the
original code.

#def i ne S QUARE(A) A * A

.. . SQUARE(x)

.. . SQUARE(z+1)

Figure 6. Error in the absence of parentheses

In the case of macro removal, uses of the macro are replaced with
the macro's body. If the macro has parameters, this refactoring
works similarly to "Inline function refactoring", in the sense that
it replaces formal parameters by actual parameter expressions in
every call .

Table 1 shows a li st of refactorings that we propose for macro
definiti ons.

Table 1. Refactorings for macro definitions

Rename macro

Rename macro parameter

Add parameter to macro definiti on

Remove parameter from macro definiti on

Add macro definiti on replacing value in code

Remove macro definiti on

The previous discussion proposes preconditions and execution
rules for refactorings on macro definiti ons that can be
summarized as follows:

- If the refactoring involves a macro name or its
parameters, the refactoring must modify the macro
definiti on and all call s to it, in the code or in other
macro definiti ons (except for macro parameter rename
where call s are unaffected).

- For the creation of macro definiti ons, the scope is
circumscribed to the fil e where the expression is
selected plus the fil es that include it. All the code in
the scope, including the body of other macro
definiti ons, needs to be searched and matched for the
parameterized expression. In the body of the macro,
every reference to a formal parameter must be
parenthesized.

- For macro removal, the scope is defined as the fil e
where the macro is selected plus all fil es that include
it, until an #undef for this macro, if it exists. That is,
subsequent definiti ons for the same macro after its
#undef are not removed.

3.2 Code that Contains Macro Calls
When refactorings are applied on C code as opposed to
preprocessor directives, macro definiti ons are li kely to change if
their body refers to global program elements. Therefore, when
refactoring C code, the normal scope must be extended with the
body of all macros that are called in that scope. Furthermore, our
study shows that correctness can be jeopardized in three cases:

- if a macro is defined but never called in the scope of
refactoring;

- if a macro refers to a variable with different
declarations, and the macro is called from the
different contexts of the variable;

- if a macro definiti on uses the concatenation operator
##.

In the case of a macro defined but never called, the problem can
be elucidated by the code in Figure 7. There is a macro definiti on
with name QUEUE that extends several li nes. The body of the
macro refers to a global variable "nelems".

#def i ne Q UEUE(q, ch) \
 i f (nel ems < 1 0) \
 { (q) - >nel ems = ch; \
 nel ems++; \
 }

Figure 7. Macro definition with global references

Suppose that there is a function that defines "nelems" as a local
variable, and the user chooses to rename that variable. The
macro "QUEUE" refers to "nelems" but as there is no call to
"QUEUE" in the function, the tool has no way of parsing the
body of the macro in the context of the call . Doing a string search
on the body of the macro would find a reference to "nelems", but
it cannot discern the use of "nelems". Actuall y, in the third li ne
the macro refers to a different "nelems" that is a field of a
structure pointed by "q". A string search cannot distinguish the
reference to "nelems" in the second line from the reference in the
third li ne. Therefore, there is no way of refactoring the macro. If
the macro remains unchanged and is incorporated in the future, it
will break the code. The problem can be compared to what
happens when some piece of code is commented out and
uncommented after refactoring: the code may break in the same
way. To preserve correctness, a precondition must be added to
"renaming" refactorings to check for possible references to the
renaming element in the body of macros that are never called, if
there is any. If there is a possible reference, conservatively the
refactoring should not execute.

The second cause of errors in refactoring li sted above also
originates from global references in macros' body. Figure 8
repeats the example in Figure 1 that presented the case of a
variable "errstatus" declared locall y in two different functions
and a macro "ERR" referring to that variable. In each macro call ,
the macro will make reference to a different definiti on of
"errstatus". Consequently, the variable cannot be renamed. A
precondition rule must be added to "renaming" refactorings to

check if there is a macro that makes global reference to the
element to be renamed. If there is, the scope of every call to the
macro must be searched for a different definiti on of the element.
If there is a different definiti on, the refactoring cannot proceed.

#def i ne E RR er r st at us = 1

i nt f unct i on1() {
 i nt er r st at us;
 . . .
 i f (bot t om < 0)

ERR;
 . . .
}

i nt m ai n() {
 i nt er r st at us;
 . . .
 i f (f unct i on1() = = 1)

ERR;
 . . .
}

Figure 8. Error in a rename refactoring

The replacement text of macros may use two special operators: #
and ##. If a parameter is preceded by #, it causes the argument to
be quoted. We did not find # to be the cause of any violation to
correctness in refactoring. The second operator, ##, concatenates
the adjacent tokens. With it, a replacement text may refer
indirectly to a global program element. For example let us look
at the code in Figure 9.

#def i ne C AT(x, y) x # # y

i nt m ai n() {
 i nt t abl esi ze;

 . . .
 i f (CAT(t abl e, s i ze) < 1 0) {
 . . .

Figure 9. Use of the concatenation operator

Suppose the variable "tablesize" is selected to be renamed inside
"main". A refactoring tool would not be able to find a direct use
or reference to the variable in its scope or any macro definiti ons
that are called from the scope. However, since there is a call to
the macro CAT(x, y) in the scope of the variable, and the macro
contains a concatenation operator, it is possible that the resulting
value of that call matches the variable to be renamed, as it is the
case in the example. For this reason, another precondition must
be added to renaming refactorings, as well as to refactorings for
adding or removing program elements, to first check if there is a
call to a macro using concatenation in the scope of the element. If
there is not, the refactoring can proceed safely. If there is, the

refactoring may only continue if the user decides to expand
macro definiti ons and an exhaustive search can take place.

The next section presents the issues arising from the other
important type of preprocessor directives: conditional
compilation.

4. REFACTORING CONDITIONAL
DIRECTIVES
Conditional directives provide a way to include code selectively,
depending on the value of conditions evaluated during
compilation [11]. Conditional directives li nes are those starting
with #if, #ifdef, #ifndef and #eli f, plus #else li nes and #endif
li nes. The text in between each conditional directive li ne can be
any material, including other preprocessor directives, or it may
be empty. The standard C preprocessor evaluates the conditions
and eliminates the text for which conditions are false, along with
conditional directive li nes.

There are no refactoring tools that can deal correctly with
conditional directives. The usual approach is to preprocess
conditional directives and therefore some code is discarded, so
refactoring the end code causes transformations on partial pieces.
When combined again, the code that was discarded for
refactoring might not be valid. That makes refactorings incorrect
because they cannot guarantee to preserve behavior. For
example, if the code in Figure 10 is preprocessed and left with
the first alternative, renaming variable "nelems" will make the
other alternative invalid when recombined.

#i f ndef _ BUFFER
 #def i ne _ BUFFER
 i nt nel ems;
 cqueue * q ;
#el se
 unsi gned s hor t nel ems;
#endi f

Figure 10. An example of conditional directive

The above paragraph leads to a new rule of correctness of
refactoring in the presence of conditional directives: refactorings
should be applied to all alternatives of a conditional.

In the same way that we propose additional refactorings for
macro definiti ons, we propose some new refactorings for
conditional directives, as li sted in Table 2.

Table 2. Refactorings for conditional directives

Eliminate an alternative

Complete an statement inside a conditional branch
with the code that follows the conditional

Move common code outside the conditional

A good use of "Eliminate an alternative" originates from
refactoring legacy systems written for several platforms, some of

which are no longer used. For example, if the VAX platform is
discontinued, an alternative li ke "#ifdef _VAX" could be
removed from all conditionals. To guarantee correctness, the
scope of this refactoring should be all appli cation fil es. Figure 11
shows the rules for transforming a conditional directive when an
alternative is eliminated. The figure depicts these rules showing
how the code in the left is transformed to the code in the right
when eliminating the alternative for condition "X" with arbitrary
text "aaaaa".

#i f def X
 aaaaa
#el se
 bbbbb
#endi f

#i f ndef X
 bbbbb
#endi f

#i f ndef X
 aaaaa
#el se
 bbbbb
#endi f

#i f def X
 bbbbb
#endi f

#i f def X
 aaaaa
#el i f Y
 bbbbb
other elif/else
#endi f

#i f Y
 bbbbb
other elif/else
#endi f

#i f ndef X
 aaaaa
#el i f Y
 bbbbb
other elif/else
#endi f

#i f Y
 bbbbb
other elif/else
#endi f

#i f X
 aaaaa
#el se
 bbbbb
#endi f

#i f ! X
 bbbbb
#endi f

#i f . . .
 bbbbb
other elif
#el se
 aaaaa
#endi f

#i f . . .
 bbbbb
other elif
#endi f

#i f . . .
 bbbbb
other elif
#el i f X
 aaaaa
other elif/else
#endi f

#i f . . .
 bbbbb
other elif
other elif/else
#endi f

Figure 11. Rules for eliminating an alternative of a
conditional

The second refactoring li sted in the table originates from the fact
that the text between conditional li nes is not necessaril y a
complete C declaration or statement or sequence of them. By a
"complete conditional directive" we mean one for which
alternatives may be parsed in sequence without producing a
parse error. That is, if the conditional directive keywords were
not present, it would parse correctly. For example, Figure 12
shows an incomplete version of a conditional to the left, and its
complete version to the right.

The "complete" version of a conditional directive looks more
readable and is more flexible to changes. This refactoring allows
completing the alternatives of a conditional so that each
alternative is a syntacticall y complete piece of C code.

Figure 12 shows another feature of conditional directives: they
allow alternative definiti ons of the same program element. In the
example, the variable "var1" is defined of a different type in each
alternative. Two new issues arise from this feature. Firstly, a
refactoring li ke "replace type of program element" makes sense
in a single alternative of the conditional, the one in which the
program element is selected. Secondly, program representation
tools must allow storing different definiti ons of a program
element, but this issue is discussed in the next section.

 #i f ndef _ C1 #i f ndef _ C1
 #def i ne _ C1 #def i ne _ C1
 i nt i nt v ar 1;
 #el se #el se
 l ong i nt l ong i nt v ar 1;
 #endi f #endi f
 var 1;

Incomplete conditional Complete conditional

Figure 12. Incomplete and complete versions of a conditional
directive

Other elements that can have alternative definiti ons are macros,
and this poses special problems. We consider alternative
definiti ons of the same macro those that share the same macro
name and the same number of parameters, although parameter
names may not match. If a macro has alternative definiti ons, the
refactorings "macro rename", "macro remove", "macro parameter
addition" and "macro parameter removal" must be applied to all
definiti ons of the macro to guarantee correctness. In the case of
"parameter rename" or "parameter removal", the parameter at
issue may be matched by position.

If alternative definiti ons of a macro exist with different number
of parameters, refactoring cannot guarantee to preserve behavior,
as the code may not work in the first place.

To motivate the third refactoring li sted in Table 2, "Move
common code outside the conditional", suppose we first refactor
completing the conditional showed to the left of Figure 12, and
then we change the type of variable "var1" in the #else branch of
the conditional to be "int". Then, both branches of the conditional
will contain the li ne "int var1;" at the end. In the same spirit as
the refactoring "Consolidate Dupli cate Conditional Fragments"

[5], the common fragment of code can be moved outside of the
conditional directive.

5. ENHANCED PROGRAM ANALYSIS
PROCESS AND PROGRAM
REPRESENTATIONS
The previous sections presented the problems that may appear
with refactoring in the presence of macros and conditional
directives and the considerations that must take place to
guarantee correctness in refactoring. These considerations, li ke
new definiti ons of the scope of refactoring, new preconditions
and execution rules, the possibilit y of having more than one type
for the same program element and even new refactorings, impose
special requirements in refactoring tools for C. Tools need
specific program analysis functions and program representations.

There are some tools that implement transformations in the code
by string search & replace functions (e.g., the Moose Refactoring
Engine for Java [12]). Although string search & replace can be
effective sometimes, it cannot guarantee to preserve behavior. As
a simple example, renaming cannot discern between different
uses of the same name. Therefore, while these tools make code
transformations, they do not perform refactorings. To guarantee
correctness, parsing and abstract syntax tree construction are the
minimum requirements.

The abstract syntax tree (AST) of a program contains enough
information for many of the analysis functions required by the
transformation engine of a refactoring tool. In some cases, more
complex program representations are used, as program
dependency graphs (PDGs). In [1], the authors employ PDGs to
find uses of a variable. However, our research group believes
that PDGs or similar program representations are complex and
require considerable time to build [15]. We believe that for
refactoring tools to be useful, speed is very important. ASTs
contain suff icient information to implement powerful and fast
refactorings, as demonstrated by the Refactoring Browser [16].

As mentioned under the Section "Why refactoring C is diff icult",
the standard C scanner, parser and AST builder no longer apply
when directives are not preprocessed, as the code does not
respond to the C grammar. Extending the C grammar with the
syntax of directives is not possible. Alternatives of a conditional
directive may not be complete statements so they cannot be
represented by a non-terminal unit of the grammar. Moreover,
macro call s may appear anywhere in the code and may represent
any part of a statement or sequence of statements. From one side,
li sting all the cases where a macro call may appear would lead to
an exceptional number of grammar productions. On the other
side, it is not possible to parse a statement with a macro call
without knowing what the macro represents. As a simple
example, suppose the code in Figure 13. MACRO1 may contain
the closing curly brace, in which case the 'else' in the code is
paired with the 'if' on the first line, or the macro may contain
another 'if' statement, in which case the 'else' would be paired
with the 'if' in the macro. The parser cannot determine how to
match the 'else'.

. . .
i f (x > y) {
MACRO1
el se
MACRO2
. . .

Figure 13. Unparseable piece of code with macro calls

Consequently, a speciali zed program analysis process is required.
We propose an analysis process with changes and/or
enhancementes to the parsing components: preprocessor, scanner,
parser and AST builder. The job of the preprocessor will be
integrated with the scanner so as to leave the parser as close as
the standard C parser as possible. The grammar in the parser will
only be enhanced with directive li nes, that is, those starting with
'#' The constructed ASTs will contain all the information of
directives so refactorings do not need other complex program
representations.

We envision a preprocessor-li ke component that will analyze the
#include directives and conditional directives (without
performing substitution). Analyzing #include directives provides
an order of parsing the fil es so that a fil e is parsed after the one it
includes. Moreover, storing the dependencies generated from
#includes will allow latter on to compute the scope of
refactorings global to a fil e.

To deal with conditional directives, a possible approach would
be to perform multiple passes on the code, one for each possible
alternative. Then, a single fil e will have different ASTs. This
poses two problems: first, the combinations of nested conditional
directives can be exponential, and take a considerable amount of
time to parse. Second, the trees need to be recombined for
unparsing, and the work of combining a considerable number of
trees can be very expensive. Since we are interested in fast
refactoring tools, this is not an option.

Instead, we have found that if conditional directives are
completed as discussed in the Section "Refactoring conditional

directives", they can be incorporated in the grammar by
expressing a conditional as a li st of alternatives. In this way, a
single pass will suff ice to parse all the code. We plan on having
the preprocessor-li ke component be able to recognize incomplete
conditional directives and complete them accordingly. To
recognize an incomplete conditional, the preprocessor needs to
be able to separate C statements and recognize when a
conditional directive starts or ends at a mid-statement. For the
purpose of completing the conditional, it needs to keep track of
various pointers to the text that should be moved and where.

Contraril y to conditional directives, macros cannot be completed
since each call to a macro would provide a different ending. In
order to parse macros, we propose having the scanner work as a
filtering process so that the parser receives tokens corresponding
to the C grammar. That is, when the scanner finds a macro
identifier, instead of sending the identifier to the parser it will
send the replacement text. Then, we need to reconstruct the
original code (with macro call s) in the other end of the parser.
For that purpose, the scanner will l abel each token that comes
from a replacement text with the name of the macro that defines
it. The parser does not need to look at the label but it will pass
the information to the AST builder.

The AST builder will receive these labeled or decorated
terminals and non-terminals and construct a colored AST. In this
tree, nodes get colored depending on the type of preprocessor
directive they come from. Some examples of node types are:
"macro-definiti on", "macro-derived" (text replaced from a
macro), and "conditional". Conditional nodes represent
conditional directives and have a branch for each alternative. In
this way, we can combine all alternatives of a conditional in the
same AST. Figure 14 shows the AST resulting from parsing the
code at the right of Figure 12 (the code is repeated in Figure 14
for easier reference).

Besides the enhanced AST, additional components of program
representations li ke symbol tables, must allow for alternative
definiti ons of the same program element (li ke we saw in the
example of Figure 12, that a variable had two different types).

conditional_directive
 #ifndef _C1 #else

macro-definition
_C1

declaration

type-specifier
int

identifier
var1

declaration

declaration-specs

type-specifier
long

type-specifier
int

identifier
var1

#i f ndef _ C1
 #def i ne _ C1
 i nt v ar 1;
#el se
 l ong i nt v ar 1;
#endi f

Figure 14. AST with nodes representing conditional and macro directives

6. CONCLUSIONS
Refactoring has been growing in importance and it is now
recognized as a very important part of the software engineering
process. Refactoring tools are getting better but there are no tools
for refactoring C code with preprocessor directives, the reasons
being the complexity to guarantee correctness in the
transformations.

Some people use macros extensively in C and C++ programs,
while others prefer a construction li ke templates in C++. In any
case, there is a vast amount of code that uses macros and we
have to provide tools that can refactor it.

This paper scopes the problems that we found where macros and
conditional compilation directives may cause errors in
refactoring. Although the li st may not be exhaustive, our study
shows that it covers the most important cases. The paper also
provides new refactorings for preprocessor directives, new
definiti ons of scope, additional preconditions and execution rules
for existing refactorings. Moreover, special parsing components
are proposed that we believe will solve the problems with
program analysis and program representations that include
preprocessor directives.

Although we have not looked into other languages, our approach
may be appli cable to other than C, where there is a preprocessor
that works on a separate pass from the parser, and the syntax of
the preprocessor is not integrated with that of the language. It
should be noted, however, that our approach does not apply to
C++ templates. The difference is that C++ templates are part of
the C++ syntax.

7. REFERENCES
 [1] Bowdidge, R. and Griswold, W. Supporting the

Restructuring of Data Abstractions through Manipulation
of a Program Visuali zation. ACM Transactions of
Software Enginnering and Methodology 7 (2), April 1998,
109-157.

 [2] DMS Software Reengineering Toolkit.
http://www.semdesigns.com/Products/DMS/DMSToolkit.
html

 [3] Ernst, M., Badros, G. and Notkin, D. An Empirical
Analysis of C Preprocessor Use. Revision of Technical
Report UW-CSE-97-04-06. Dept. of Computer Science
and Engineering. Univ. of Washington, Seattle, 1999.

 [4] Foote, B. and Opdyke, W. Lifecycle and Refactoring
Patterns that Support Evolution and Reuse. Pattern

Languages of Program Design I, Coplien and Schmidt
eds., Addison-Wesley 1995, 239-257.

 [5] Fowler, M. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

 [6] Fowler, M. Crossing Refactoring's Rubicon.
http://www.martinfowler.com/articles/refactoringRubicon.
html

 [7] Garrido, A. Software Refactoring Applied to C
Programming Language. MS Thesis. University of Illi nois
at Urbana-Champaign, 2000.

 [8] Griswold, W., Chen, M., Bowdidge, R. and Morgenthaler,
J. Tool Support for Planning the Restructuring of Data
Abstractions in Large Systems. Proceedings of the ACM
SIGSOFT'96 Symposium on the Foundations of Software
Engineering (FSE-4). San Francisco, Oct. 1996.

 [9] Intelli J IDEA: Java IDE with refactoring support.
http://www.intellij .com/idea/

 [10] jFactor home page. http://www.instantiations.com/jfactor/

 [11] Kernighan, B. and Ritchie, D. The C Programming
Language. Prentice Hall . 1988.

 [12] Moose Refactoring Engine.
http://scgwiki.iam.unibe.ch:8080/SCG/19

 [13] Ó Cinnéide, M. Automated Appli cation of Design
Patterns: a Refactoring Approach. PhD thesis, University
of Dublin, Trinity College, 2001.

 [14] Opdyke, W. Refactoring Object-Oriented Frameworks.
PhD Thesis, University of Illi nois at Urbana-Champaign,
1992.

 [15] Roberts, D. Eliminating Analysis in Refactoring. PhD
Thesis, University of Illi nois at Urbana-Champaign, 1999.

 [16] Roberts, D., Brant, J., and Johnson, R. A Refactoring Tool
for Smalltalk. Theory and Practice of Object Systems 3(4).
1997.

 [17] Stroustrup, B. The Design and Evolution of C++.
Addison-Wesley, Reading, Massachusetts, 1994, p. 424

 [18] Tokuda, L. and Batory, D. Evolving Object-Oriented
Designs with Refactorings. In: Proceedings of Conference
on Automated Software Engineering, Florida, 1999.

 [19] Xref- Technologies - refactoring development tools.
http://xref-tech.com/xrefactory/

