Challenges of Refactoring C Programs

Alejandra Garrido
University of lllinois at Urbana-Champaign
1304 W. Springfield Av.

Urbana, IL 61801
1-217-333-5219

garrido@cs.uiuc.edu

ABSTRACT

Refactoring has become awell -known technique for transforming
code in a way that preserves behavior. Refactorings may be
applied manually, although manual code manipulation is error
prone and cumbersome, so maintainers need tods to make
automatic refactorings. There is currently extensive literature on
refactoring doject-oriented programs and some very god tods
for refactoring Smalltalk and Java code. Although there is more
code written in C or C++ than in any other language, refactoring
tods for C with full support for preprocessor directives have not

yet appeaed.

The C progamming language, especialy the preprocessor
directives that coexist with it, complicates refactorings in
different ways as directives are not legal C code and may violate
otherwise correct refactorings.

Refactoring C poses two major reseach challenges. On the one
hand, as preprocessor directives may violate correctness new
precondition and execution rules must be defined for existing
refactorings to preserve behavior. On the other hand, the
automated execution of refactorings requires ecialized program
analysis tods to represent and manipulate preprocesor
directives. After studying the aeawe have found some results to
overcome these challenges and make a correct tod for the C
language dtainable.

This paper first discusses the difficulties in refactoring C code
with preprocessor directives. It then defines preconditions and
execution rules to maintain correctness of refactoring in the
presence of macros and conditional directives. Moreover, new
refactorings are proposed for macro definiti ons and conditi onals.
Lastly, the paper suggests enhancements to program analysis and
progam representation tods to correctly manipuate
preprocessor directives.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tods and Techniques —

Ralph Johnson
University of lllinois at Urbana-Champaign
1304 W. Springfield Av.
Urbana, IL 61801
1-217-244-0093

johnson@cs.uiuc.edu

program editors; D.2.7 [Software Engineering]: Distribution,
Maintenance, and Enhancement - restructuring; D.3.2
[Programming Languages]: Language Classfications — C;
D.3.3 [Programming Languages]: Language Constructs and
Fedures, D.3.4 [Programming Languages|: Processors —
parsing, preprocessor.

General Terms
Design, Languages.

Keywords
Refactoring. C programming. Preprocessor directives.

1. INTRODUCTION

Software systems must adapt to changing environments.
Requirements are transformed or new ones are dicited.
Designers are challenged to creae and maintain highly reusable
components that accommodate to evolving requirements. Code is
often rewritten to reflect new functionality or new designs.

Unlesschanges are carefull y incorporated, code that is constantly
modified is in danger of becoming unmaintainable and buggy.
The reasons that degrade the code ae having different people
working on the same code, adding changes fast but without
elegance and without any documentation. Many systems dill
reach the point where they better be thrown away and rewritten
from scratch upon a single change in requirements. In conclusion,
companies are wasting money, time and resources and cannot
kegp upwith goad timing and quality. It is imperative that before
incorporating changes in functionality, the code is reshaped and
reorganized in ways that would make it more open to changes,
easier to read and easier to maintain, in short, become more
reusable.

Refactoring is about code evolution [14]. It all ows improving the
design of the code, making it more reusable and flexible to
subsequent semantic changes. Moreover, refactoring is a
disciplined process ® that changes do not affect program
behavior and consequently, tests are not violated. We consider
that a refactoring does not affect or preserves program behavior
when the versions of the program before and after refactoring are
semantically equivalent. That is, the mapping o inpu to autput
values remains the same [14]. A typical example of a refactoring
is the renaming o a variable. A complex example of refactoring
isthe gplication of a design pattern [13].

Our reseach group at the University of Illinois at Urbana
Champaign has been reseaching an refactoring for a long time
([14], [4], [1€], [15], [7])- Willi am Opdyke was the first to coin
the term "refactoring” in his PhD thesis [14]. Turning reseach
into practice, Don Roberts and John Brant built the first
successul refactoring tod for the Smalltalk language [16].

Reseach on refactoring has read, and well-known refactoring
techniques have been catalogued as gep-by-step recipes to help
maintainers with a manual process [5]. However, most of the
literature eout refactoring is concentrated in object-oriented
languages like Smalltalk or Java and transformations in the
inheritance hierarchy ([5], [13], [18]).

Our gadl is to build a refactoring tod for a non object-oriented
language like C. A language like C calls for a different set of
refactorings meaningful to its imperative, pointer & struct based
nature and that considers its preprocessor directives. In an ealier
work [7], we have proposed a catalog d refactorings for the C
language that were implemented in a prototype tod. However,
that catalog does not include refactorings for preprocessor
directives. Those refactorings are the am of our current research
as presented in this paper.

Although catalogs of refactorings are helpful, manual code
manipulation is error prone and cumbersome. A program of more
than ten thousand lines of code may even turn manual
manipulation imposdgble. Therefore, maintainers need tods to
make aitomatic refactorings. Many people now think that
refactoring tods are gaing to make abig impact in the software
engineeing process [6]. The model for refactoring tods is the
Refactoring Browser [16]. It is integrated in the Smalltalk
development environment and allows for powerful and fast
refactorings that guarantee to preserve behavior. As Martin
Fowler says in [6], not many people use Smalltalk, but "the
Refactoring Browser makes one thing very clea. Tod support for
refactoring is both possble and valuable." Tods for refactoring
Java code ae dso improving. Good examples are jFactor 6 and
IDEA [9].

We found two transformation tods that handle C and povide
some level of preprocessor awareness The tod Xrefactory from
Xref-Tech [19] provides a limited support for preprocessor
conditionals by all owing users to specify multiple pre-processng
passngs through source code [Marian Vittek, persona
communication]. However, some refactorings are still based on a
single preprocesor pass so they cannot guarantee correctness
The reengineging todkit DMS from Semantic Designs [2]
supports the representation of macro definiti ons and macro call s,
but not of condtional directives [Ira Baxter, persona
communication].

Consequently, there ae still no refactoring tods for C that
handle preprocessor directives completely and correctly. We
believe that full support for refactoring in the presence of
preprocessor directives is extremely important. As analyzed in
[3], the preprocessor is heavily used in C programs, as it provides
many advantages that the aticle categarizes. Stroustrup also
recogni zes "Occasionall y, even the most extreme uses of Cpp are
useful, but its faciliti es are so unstructured and intrusive that
they are aconstant problem to programmers, maintainers, people
porting code, and tod buil ders" [17].

There ae many difficulties in refactoring C. One is pointer
manipulation, which is not the focus of our reseacch. The other is
the presence of preprocessor directives, as they are not legal C
code, they change scope and definition of program elements, and
allow for speciad manipulations that may violate otherwise
correct refactorings. We call correct refactorings those that
preserve program behavior.

Refactoring C and peprocessor directives poses two major
reseach challenges. On the one hand, since directives may
violate correctness in refactoring, new precondtion and
execution rules must be defined for existing refactorings to
preserve behavior. Moreover, new refactorings can be proposed
for preprocessor directives. On the other hand, the aitomated
execution of refactorings requires ecialized program analysis
tods © that preprocessor directives can be incorporated in
program representations and be transformed.

This paper describes what we believe is the first serious attempt
to refactoring C with preprocessor directives. The next section
explains the problems posed by preprocessor directives in
refactoring. Then, the special cases for refactoring macros and
conditional compilation drectives are presented, characterizing
the problems and our solutions. Then, modifications to program
analysis tods and pogram representations are proposed for the
implementation of C refactoring tods.

2. WHY REFACTORING C ISDIFFICULT.

PREPROCESSOR DIRECTIVES.

A typical C file uses not only terminals defined in the C grammar
but also constructs called preprocessor directives. Preprocessor
directives allow for file inclusion, macro definition and
conditional compilation [11]. File inclusion alows having
separate compil ation urits. Macros are defined with an arbitrary
replacement text (usually not a complete or legal C expresson),
may have parameters and may use special operators, and gets
substituted at every occurrence of the macro name. Conditi onal
compil ation provides a way to include code selectively depending
on the value of conditi ons evaluated during compil ation.

These directives use special commands and a rudimentary syntax
that is understood and evaluated by a preprocessor. The C
preprocessor takes as inpu a C file with drectives and outputs
pure C code, where directives have been stripped out and
substituted acoordingly. Therefore, parsing C does not involve
deding with preprocessor directives.

A refactoring tod for C can be constructed to perform
transformations on preprocessed C code (that is, code without
preprocessor directives). If this is the case, rules for behavior
preservation of transformations are similar to those defined for
other languages (e.g., the rules for renaming a variable in any
language include modifying the variable name exclusively in its
scope and remespace). Moreover, parsing and abstract syntax
tree construction, the basic program analysis functions that a
refactoring tod must perform, are standard and transformations
ded only with the rules of the C language. This is the gproach
traditi onall y taken for C and C++ visuali zation and analysis tod's
(Star Diagram [8], Visuali zation of classdiagrams [18]).

Tods that work on preprocessed C code have many
disadvantages. The refactorings allowed are very restricted;
otherwise, directives can be irrecoverable or may no longer
apply. If directives are irrecoverable, the code may become
unmaintainable. The tod may be very inconvenient for code
visuali zation, as the code would look different than the source
code. Therefore, the code will lack all the benefits of using
preprocessor directives (as separate program units, reuse of
macro definitions, use of #define constants instead of hard-coded
values, etc.). Furthermore, such a tod cannot be integrated in a
development environment where users may edit, debug, or
perform refactorings interchangeably. Roberts and Brant claim
that when they integrated the Refactoring Browser directly into
the Smalltalk browser (the dditor), the tod became useful [16].

A more powerful and uwseful refactoring tod would alow C
programmers to transform C files from their original code, i.e.,
the code they wrote with preprocessor directives. This imposes
new requirements on the refactoring tod:

- users dould be ale to transform C code that has
interleaving preprocesor directives; e.g., renaming a
variable in some code with macro cals;

- users sould be ale to transform preprocessor directives;
e.g., adding a parameter to a macro definiti on;

- the presence of directives ould not affect the correctness
of refactorings.

Incorporating the aility to hande preprocessor directives in a
refactoring tod is sgnificantly difficult. An exception is file
inclusion. As include directives change the scope of program
elements declared global to a file, refactoring with #nclude
directives means broadening the scope of refactoring acoordingly.
The preprocessor directives that present a red challenge ae
macro definiti ons and conditi onal compil ation.

Macros can be defined and undfined, their bodies may reference
global program elements and they may refer indirectly to dobal
elements by using a special concatenation operator. With this,
macros may easily violate the correctness of refactoring. For
example in Figure 1, if the variable "errstatus” of "functionl" is
renamed bu the body of macro "ERR" is not modified, the call to
"ERR" in "function1" will cause an error of undefined variable.
On the contrary, if the macro body is modified renaming
"errstatus’, the call to "ERR" in the function "main" will cause
the aror of undefined variable.

Conditional directives have dternative branches that are
mutually exclusive. If during a refactoring a single branch is
considered, other branches may become obsolete and erroneous.
If al branches are considered, each program element may have
multi ple definitions, like avariable with multi ple types.

These isaues and some more that we discuss below call for a
careful definition of the precondition and execution rules of each
refactoring. Following the same gproach as in [14], we discuss
the preconditions under which a refactoring preserves behavior
and we ague how the proposed execution of the refactoring does
not alter that behavior. Although aformal prodf of the validity of
the proposed rules is out of the scope of this paper, the rationale
behind each ruleis carefull y described and exemplified.

#defineERR errstatus=1

intf unctionl(){
int errstatus;

i f(bottom<0)
ERR

}
intm ain(){
int errstatus;
i f(functionl()= =1)
ERR;
}

Figure 1. Error in arenamerefactoring

A major challenge in the construction of a C refactoring tod that
deds with preprocessor directives lies in processng the code
before refactoring: the standard C scanner, parser and
abstract syntax treebuil der no longer apply. The reason is that if
code is not first preprocessed, it does not respond to the C
grammar. In the Section "Enhanced program analysis processand
program representations’ we propose modifications to program
analysis and its output data.

The next two sections discuss the circumstances in which we
found macros and conditi onal directives to violate correctnessin
refactoring. They also present new preconditions and execution
rulesto reinstate and guaranteecorrectness

3. REFACTORING OF MACROS

3.1 Macro Definitions

A macro definition has the form that appeas in Figure 2. It calls
for a simple macro substitution: subsequent occurrences of the
token name will be replaced with the replacement_text [11]. The
replacement text is arbitrary. The name may also include
arguments and so each ocaurrence of the formal parameter in the
replacement text is replaced by the corresponding actua
parameter.

#def i ne nane replacenment _t ext

Figure 2. A macro definition

Macro definitions do not tend to change much since they usually
are general utiliti es, short pieces of code and highly reusable
from their conception. Nevertheless some refactorings that may
apply to macro definitions include macro renaming, macro
parameter renaming, macro parameter addition or removal (see
Table 1).

The preconditions and execution rules for refactorings on macro
definiti ons are simil ar to those that apply for function definiti ons.
For example, in parameter renaming, the preconditions dill

include checking that the new name does not clash with the name
of another program element in the scope. The execution involves
renaming the parameter in its sope, but leave unmodified any
other program element with the same name but a different usage
(in Figure 3 below, if the parameter to rename is "X", the
reference in "st.x" should not be renamed, since that "X" is a
structure field).

#define M1(x, st) X= st.x

Figure 3. A macro with different uses of the name " x"

There is a difference, however, from refactoring functions, with
the definition of the scope. As macros can be undefined through
#undef directives, the scope is restricted to the code from the
#define up to the #undef. This has the consequence that
subsequent definiti ons of the same macro are not transformed. A
different approach would be to transform all definitions of the
macro with the same name. In either case, the tod must make its
transformation procedure very clea to the user.

Other refactorings related to macro definitions are: the creaion
of a macro definition replacing an expresson in the code and the
removal of a macro definition. For the creaion of a macro, the
user should be ale to select the expresson from the code that is
to be turned into a macro, and the parts of the expresson that
should be parameterized. For example, suppose that in the code
of Figure 4 a user chooses to creae amacro from the statement
that appeas =lected. The user is prompted for a name, say
COND, and for the expressons to parameterize, which she
choases to be "c > 'a" and "count". The result of the refactoring
appeasin Figure 5.

while(1){
getc(c);
if c>'
el se

a' goto count;

Figure 4. Example of macro creation (beforerefactoring)

#defi ne COND(E, P) if(Ef goto(P

while(1){
getc(c);
COND(c >
el se

a',c ount);

Figure 5. Example of macro creation (after refactoring)

It isimportant to pay attention to the parentheses surroundng the
parameters in the body of the macro (i.e., "(E)" and "(P)" in
Figure 5). The asence of those parentheses may cause an error
in subsequent substitutions of the macro, and therefore behavior

would not be preserved. As a simple example from [11], suppose
the expresson from which the macro is creaed is "x * x", with
parameter "x", and there is another matching expresson "(z+1) *
(z+1)" that gets replaced by a macro call with the result of the
refactoring locking as in Figure 6. The substitution of
"SQUARE(z+1)" will obviously not yield the same result as the
origina code.

#def i ne S QUARE(A) A* A
SQUARE(x)
SQUARE(z+1)

Figure 6. Error in the absence of parentheses

In the case of macro removal, uses of the macro are replaced with
the macro's body. If the macro has parameters, this refactoring
works gmilarly to "Inline function refactoring”, in the sense that
it replaces formal parameters by actual parameter expressons in
every call.

Table 1 shows a list of refactorings that we propose for macro
definitions.

Table 1. Refactorings for macro definitions

Rename macro

Rename macro parameter

Add parameter to macro definition

Remove parameter from macro definiti on

Add macro definiti on replacing value in code

Remove macro definition

The previous discusson proposes preconditions and execution
rules for refactorings on macro definitions that can be
summarized as foll ows:

- If the refactoring involves a macro name or its
parameters, the refactoring must modify the macro
definition and all calls to it, in the code or in other
macro definiti ons (except for macro parameter rename
where call s are unaff ected).

- For the credion of macro definitions, the scope is
circumscribed to the file where the expresson is
selected plus the files that include it. All the code in
the scope, including the body of other macro
definitions, neals to be seached and matched for the
parameterized expresson. In the body of the macro,
every reference to a formal parameter must be
parenthesi zed.

- For macro removal, the scope is defined as the file
where the macro is ®lected plus al files that include
it, until an #undef for this macro, if it exists. That is,
subsequent definitions for the same macro after its
#undef are not removed.

3.2 Codethat Contains Macro Calls

When refactorings are gplied on C code @& opposed to
preprocessor directives, macro definitions are likely to change if
their body refers to gobal prog'am elements. Therefore, when
refactoring C code, the normal scope must be extended with the
body of all macros that are called in that scope. Furthermore, our
study shows that correctnesscan be jeopardized in threecases:

- if amacrois defined bu never caled in the scope of
refactoring;

- if a macro refers to a variable with dfferent
declarations, and the macro is caled from the
different contexts of the variable;

- if a macro definition uses the concatenation operator
##.

In the case of a macro defined bu never call ed, the problem can
be ducidated by the code in Figure 7. There is a macro definition
with name QUEUE that extends sveral lines. The body of the
macro refersto aglobal variable "nelems’.

#defi ne QUEUE(q, ch)
if(nelems<1 0)
{(g)->nelens= ch;
nel ens++;
}

— - — —

Figure 7. Macro definition with global references

Suppose that there is a function that defines "nelems” as a local
variable, and the user chooses to rename that variable. The
macro "QUEUE" refers to "nelems’ but as there is no call to
"QUEUE" in the function, the tod has no way of parsing the
body of the macro in the context of the call. Doing a string search
on the body of the macro would find a reference to "nelems’, but
it cannot discern the use of "nelems". Actualy, in the third line
the macro refers to a different "nelems' that is a field of a
structure pointed by "g". A string search cannot distinguish the
reference to "nelems” in the second line from the reference in the
third line. Therefore, there is no way of refactoring the macro. If
the macro remains unchanged and is incorporated in the future, it
will bre& the code. The problem can be compared to what
happens when some piece of code is commented out and
uncommented after refactoring: the code may bre&k in the same
way. To preserve correctness a precondition must be alded to
"renaming" refactorings to check for possble references to the
renaming element in the body of macros that are never called, if
there is any. If there is a possble reference, conservatively the
refactoring should not execute.

The second cause of errors in refactoring listed above dso
originates from global references in macros body. Figure 8
repeds the example in Figure 1 that presented the case of a
variable "errstatus’ declared locally in two different functions
and a macro "ERR" referring to that variable. In each macro call,
the macro will make reference to a different definition of
"errstatus’. Consequently, the variable cannot be renamed. A
precondition rule must be alded to "renaming" refactorings to

check if there is a macro that makes global reference to the
element to be renamed. If there is, the scope of every call to the
macro must be searched for a different definition of the dement.
If there is a different definiti on, the refactoring cannot proceed.

#defineERR errstatus=1

intf unctionl(){
int errstatus;

i f(bottom<0)

ERR;
}
intm ain(){
int errstatus;
i f(functionl()= =1)
ERR
}

Figure 8. Error in arenamerefactoring

The replacement text of macros may use two special operators: #
and ## If a parameter is preceded by #, it causes the agument to
be quoted. We did not find #to be the cause of any vidlation to
correctnessin refactoring. The second operator, ##, concatenates
the aljacent tokens. With it, a replacement text may refer
indirectly to a global program element. For example let us lodk
at the code in Figure 9.

#define CAT(X,y) X# #y

intm ain(){
int tablesize;

i f(CAT(table,s ize)<1 0){

Figure 9. Use of the concatenation oper ator

Suppose the variable "tablesize" is Elected to be renamed inside
"main". A refactoring tod would not be ale to find a direct use
or reference to the variable in its scope or any macro definitions
that are called from the scope. However, since there is a call to
the macro CAT(x, y) in the scope of the variable, and the macro
contains a concatenation operator, it is possble that the resulting
value of that call matches the variable to be renamed, asit is the
case in the example. For this reason, another precondition must
be added to renaming refactorings, as well as to refactorings for
adding a removing program elements, to first check if thereisa
call to amacro using concatenation in the scope of the dement. If
there is naot, the refactoring can proceed safely. If there is, the

refactoring may only continue if the user decides to expand
macro definiti ons and an exhaustive seach can take place.

The next section presents the isaes arising from the other
important type of preprocessor directives. conditional
compil ation.

4. REFACTORING CONDITIONAL

DIRECTIVES

Conditional directives provide away to include code selectively,
depending on the value of condtions evaluated duing
compilation [11]. Conditional directives lines are those starting
with #f, #ifdef, #ifndef and #lif, plus #else lines and #endif
lines. The text in between each conditional directive line can be
any material, including aher preprocessor directives, or it may
be empty. The standard C preprocessor evaluates the conditi ons
and eliminates the text for which conditi ons are false, along with
conditional directive lines.

There ae no refactoring tods that can ded correctly with
conditional directives. The usua approach is to preprocess
conditional directives and therefore some code is discarded, so
refactoring the end code causes transformations on partial pieces.
When combined again, the code that was discarded for
refactoring might not be valid. That makes refactorings incorrect
because they cannot guarantee to preserve behavior. For
example, if the code in Figure 10 is preprocessed and left with
the first aternative, renaming variable "nelems’ will make the
other alternative invalid when recombined.

#i f ndef _ BUFFER

#def i ne _ BUFFER

int nel ens;

cqueue*q ;
#el se

unsi gned s hort nel ens;
#endi f

Figure 10. An example of conditional directive

The &ove paragraph leads to a new rule of correctness of
refactoring in the presence of conditional directives: refactorings
should be gplied to all alternatives of a conditional.

In the same way that we propose alditiona refactorings for
macro definitions, we propose some new refactorings for
conditional directives, aslisted in Table 2.

Table 2. Refactorings for conditional directives

Eliminate an alternative

Complete an statement inside a conditional branch
with the code that foll ows the conditi onal

Move common code outside the conditi onal

A god use of "Eliminate an alternative" originates from
refactoring legacy systems written for several platforms, some of

which are no longer used. For example, if the VAX platform is
discontinued, an adternative like "#ifdef _VAX" could be
removed from all conditionals. To guarantee correctness the
scope of this refactoring should be dl application files. Figure 11
shows the rules for transforming a conditional directive when an
aternative is eliminated. The figure depicts these rules sowing
how the code in the left is transformed to the code in the right
when eliminating the dternative for condition "X" with arbitrary
text "aaaa&a

#i f def X
4 laaaaa #i f ndef X
else — bbbbb
bbbbb ;
. #endi f
#endi f
#i f ndef X
aaaaa #i f def X
#el se —> bbbbb
bbbbb #endi f
#endi f
#i fdef X
aaaaa #ifY
#elify bbbbb
bbbbb C—> |other elif/else
other elif/else #endi f
#endi f
#i f ndef X
aaaaa #ifY
#elify bbbbb
bbbbb E::::D> other elif/else
other elif/else #endi f
#endi f
#if X
aaaaa #if1X
fel se ——> | bbbbb
bbbbb #endi f
#endi f
#if... :
oooop s | bibboo
other elif
#el se other elif
aaaaa #endi f
#endi f
#if... :
popoe s | bibboo
other elif
#el i fX other elif
aaaaa other elif/else
other elif/else #endi f
#endi f

Figure 11. Rulesfor eiminating an alternative of a
conditional

The second refactoring li sted in the table originates from the fact
that the text between conditional lines is not necessrily a
complete C declaration or statement or sequence of them. By a
"complete conditional directive® we mean one for which
alternatives may be parsed in sequence without producing a
parse aror. That is, if the conditional directive keywords were
not present, it would parse correctly. For example, Figure 12
shows an incomplete version of a conditiona to the left, and its
complete version to the right.

The "complete” version of a conditional directive lodks more
readable and is more flexible to changes. This refactoring al ows
completing the dternatives of a conditional so that each
alternative is a syntactically complete piece of C code.

Figure 12 shows ancother fedure of conditional directives: they
allow alternative definiti ons of the same program element. In the
example, the variable "varl" is defined of adifferent type in each
aternative. Two new isaues arise from this fedure. Firstly, a
refactoring like "replace type of program element” makes ense
in a single dternative of the conditional, the one in which the
progam element is wlected. Secondly, program representation
tods must alow storing different definitions of a program
element, but thisissue is discussed in the next section.

#i fndef _ C1 #i fndef _ C1
#define Cl1 #define Cl1
i nt intv ari;

#el se #el se
| ong int long intv arl;

#endi f #endi f

var 1;

Incompl ete conditional Complete conditional

Figure 12. Incomplete and complete versions of a conditional
directive

Other elements that can have dternative definitions are macros,
and this poses 9ecia problems. We consider aternative
definitions of the same macro those that share the same macro
name and the same number of parameters, although parameter
names may not match. If a macro has aternative definitions, the
refactorings "macro rename”, "macro remove', "macro parameter
addition" and "macro parameter removal" must be gplied to all
definitions of the macro to guarantee correctness In the case of
"parameter rename” or "parameter remova”, the parameter at
issue may be matched by position.

If alternative definitions of a macro exist with dfferent number
of parameters, refactoring cannot guaranteeto preserve behavior,
as the code may not work in the first place.

To moetivate the third refactoring listed in Table 2, "Move
common code outside the conditional", suppose we first refactor
completing the conditional showed to the left of Figure 12, and
then we change the type of variable "varl" in the #else branch of
the conditional to be "int". Then, both branches of the conditi onal
will contain the line "int varl;" at the end. In the same spirit as
the refactoring "Consolidate Duplicate Conditional Fragments"

[5], the common fragment of code can be moved outside of the
conditional directive.

5. ENHANCED PROGRAM ANALYSIS
PROCESS AND PROGRAM

REPRESENTATIONS

The previous sctions presented the problems that may appea
with refactoring in the presence of macros and conditional
directives and the considerations that must take place to
guarantee correctness in refactoring. These considerations, like
new definitions of the scope of refactoring, new preconditi ons
and execution rules, the posshility of having more than one type
for the same program element and even new refactorings, impose
specia requirements in refactoring tods for C. Tods ned
specific program analysis functions and program representations.

There ae some tods that implement transformations in the code
by string seach & replace functions (e.g., the Moase Refactoring
Engine for Java [12]). Although string seach & replace can be
eff ective sometimes, it cannot guaranteeto preserve behavior. As
a simple example, renaming cannot discern between dfferent
uses of the same name. Therefore, whil e these tods make code
transformations, they do not perform refactorings. To guarantee
correctness parsing and abstract syntax tree construction are the
minimum requirements.

The @stract syntax tree (AST) of a program contains enough
information for many of the analysis functions required by the
transformation engine of a refactoring tod. In some cases, more
complex program representations are used, as prog.am
dependency graphs (PDGs). In [1], the aithors employ PDGs to
find wes of a variable. However, our reseach group believes
that PDGs or similar program representations are complex and
require considerable time to build [15). We believe that for
refactoring tods to be useful, speel is very important. ASTs
contain sufficient information to implement powerful and fast
refactorings, as demonstrated by the Refactoring Browser [16].

As mentioned unckr the Section "Why refactoring C is difficult”,
the standard C scanner, parser and AST builder no longer apply
when drectives are not preprocessed, as the code does not
respond to the C grammar. Extending the C grammar with the
syntax of directives is not possble. Alternatives of a conditi onal
directive may not be complete statements © they cannot be
represented by a non-terminal unit of the grammar. Moreover,
macro calls may appea anywhere in the code and may represent
any part of a statement or sequence of statements. From one side,
listing all the cases where amacro call may appea would lea to
an exceptional number of grammar productions. On the other
side, it is not possble to parse a statement with a macro call
without knowing what the macro represents. As a simple
example, suppose the code in Figure 13. MACRO1 may contain
the closing curly brace, in which case the 'else' in the code is
paired with the 'if' on the first line, or the macro may contain
another 'if' statement, in which case the 'else’ would be paired
with the 'if' in the macro. The parser cannot determine how to
match the ‘el se'.

if(x>y){
MACROL

el se
MACRO2

Figure 13. Unpar seable piece of code with macro calls

Consequently, a specialized program analysis processis required.
We propose a1 anaysis process with changes andor
enhancementes to the parsing components. preprocessor, scanner,
parser and AST builder. The job of the preprocessor will be
integrated with the scanner so as to leave the parser as close &
the standard C parser as possble. The grammar in the parser will
only be enhanced with drective lines, that is, those starting with
‘# The constructed ASTs will contain al the information of
directives © refactorings do not need other complex program
representations.

We ewision a preprocessor-like component that will analyze the
#include directives and condtional directives (without
performing substitution). Analyzing #include directives provides
an order of parsing the files © that afileis parsed after the one it
includes. Moreover, storing the dependencies generated from
#includes will allow latter on to compute the scope of
refactorings global to afile.

To ded with conditional directives, a possble gproach would
be to perform multi ple passes on the code, one for each possble
aternative. Then, a single file will have different ASTs. This
poses two problems: first, the combinations of nested conditional
directives can be exponential, and take aconsiderable anount of
time to parse. Second, the trees need to be recombined for
unparsing, and the work of combining a considerable number of
trees can be very expensive. Since we ae interested in fast
refactoring tod's, thisis not an option.

Instead, we have found that if conditional directives are
completed as discussed in the Section "Refactoring conditi onal

directives’, they can be incorporated in the grammar by
expressng a conditional as a list of alternatives. In this way, a
single passwill suffice to parse dl the code. We plan on having
the preprocesor-li ke component be ale to recognize incomplete
conditional directives and complete them accordingly. To
recognize an incomplete conditional, the preprocessor neels to
be @le to separate C statements and recognize when a
conditional directive starts or ends at a mid-statement. For the
purpose of completing the conditional, it needs to keep track of
various pointers to the text that should be moved and where.

Contrarily to conditional directives, macros cannot be completed
since e&h call to a macro would provide adifferent ending. In
order to parse macros, we propose having the scanner work as a
filtering process ® that the parser receives tokens corresponding
to the C grammar. That is, when the scanner finds a macro
identifier, instead of sending the identifier to the parser it will
send the replacement text. Then, we neead to reconstruct the
origina code (with macro calls) in the other end of the parser.
For that purpose, the scanner will | abel each token that comes
from a replacement text with the name of the macro that defines
it. The parser does not need to lodk at the label but it will pass
the information to the AST buil der.

The AST builder will receive these labeled or decorated
terminals and ron-terminals and construct a colored AST. In this
treg nodes get colored depending an the type of preprocessor
directive they come from. Some examples of node types are:
"macro-definition”, "macro-derived" (text replaced from a
macro), and "conditional". Conditional nodes represent
conditional directives and have abranch for each alternative. In
this way, we can combine dl alternatives of a conditional in the
same AST. Figure 14 shows the AST resulting from parsing the
code & the right of Figure 12 (the code is repeaed in Figure 14
for easier reference).

Besides the enhanced AST, additional components of program
representations like symbol tables, must allow for aternative
definitions of the same program element (like we saw in the
example of Figure 12, that a variable had two different types).

#i fndef _ C1
#define _C1
intv ari;

#el se
long intv arl;

#endi f

macr o-definition
c

conditional_directive
#ifndef _C1 #else

type-specifier identifier type-specifier type-specifier
int varl long int

declar ation-specs ldTatrliler

Figure 14. AST with nodes r epr esenting conditional and macro directives

6. CONCLUSIONS

Refactoring has been growing in importance and it is now
recognized as a very important part of the software engineaing
process Refactoring tods are getting better but there ae no tods
for refactoring C code with preprocessor directives, the reasons
being the complexity to guarantee correctness in the
transformations.

Some people use macros extensively in C and C++ programs,
whil e athers prefer a construction like templates in C++. In any
case, there is a vast amount of code that uses macros and we
have to provide tods that can refactor it.

This paper scopes the problems that we found where macros and
conditional compilation drectives may cause @rors in
refactoring. Although the list may not be exhaustive, our study
shows that it covers the most important cases. The paper also
provides new refactorings for preprocessor directives, new
definiti ons of scope, additional preconditi ons and execution rules
for existing refactorings. Moreover, special parsing components
are proposed that we believe will solve the problems with
progam analysis and pogam representations that include
preprocessor directives.

Although we have not lodked into ather languages, our approach
may be goplicable to aher than C, where there is a preprocessor
that works on a separate pass from the parser, and the syntax of
the preprocessor is not integrated with that of the language. It
should be noted, however, that our approach does not apply to
C++ templates. The difference is that C++ templates are part of
the C++ syntax.

7. REFERENCES
[1] Bowdidge, R. and Griswold, W. Supporting the
Restructuring of Data Abstractions through Manipulation
of aProgram Visuali zation. ACM Transactions of
Software Enginnering and Methodology 7 (2), April 1998
109157.

[2] DMS Sftware Reengineeing Todkit.
http://www.semdesi gns.com/Products’DM S/DM STod kit.
html

[3] Ernst, M., Badros, G. and Notkin, D. An Empirical
Analysis of C Preprocessor Use. Revision of Technical
Report UW-CSE-97-04-06. Dept. of Computer Science
and Engineaing. Univ. of Washington, Sedtle, 1999

[4] Foae, B. and Opdyke, W. Lifecycle and Refactoring
Patterns that Support Evolution and Reuse. Pattern

(5]
(6]

(8]

(9

(10
(11]

(12

(13]

(14

(19
[16]

(17

(18]

(19

Languages of Program Design |, Coplien and Schmidt
eds., Addison-Wesley 1995 239-257.

Fowler, M. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999

Fowler, M. Crossng Refactoring's Rubicon.
http://www.martinfowl er.com/arti cles/refactoringRubicon.
html

Garrido, A. Software Refactoring Appliedto C
Programming Language. MS Thesis. University of Illi nois
at Urbana-Champaign, 200Q

Griswald, W., Chen, M., Bowdidge, R. and Morgenthaler,
J. Tod Support for Planning the Restructuring of Data
Abstractions in Large Systems. Proceedings of the ACM
SIGSOFT'96 Symposium on the Foundations of Software
Engineeing (FSE-4). San Francisco, Oct. 1996

Intelli J IDEA: Java IDE with refactoring support.
http://www.intellij .com/ided

jFactor home page. http://www.instantiations.com/jfactor/

Kernighan, B. and Ritchie, D. The C Programming
Language. Prentice Hall. 1988

Moose Refactoring Engine.
http://scgwiki.iam.unibe.ch:8080SCG/19

O Cinnéide, M. Automated Appli cation of Design
Patterns: a Refactoring Approach. PhD thesis, University
of Dublin, Trinity College, 2001

Opdyke, W. Refactoring Object-Oriented Frameworks.

PhD Thesis, University of llli nois at Urbana-Champaign,
1992

Roberts, D. Eliminating Analysis in Refactoring. PhD
Thesis, University of llli nois at Urbana-Champaign, 1999

Roberts, D., Brant, J., and Johnson, R. A Refactoring Tod
for Smalltalk. Theory and Practice of Object Systems 3(4).
1997

Stroustrup, B. The Design and Evolution of C++.
Addison-Wesley, Reading, Massachusetts, 1994 p. 424

Tokuda, L. and Batory, D. Evolving Object-Oriented
Designs with Refactorings. In: Proceedings of Conference
on Automated Software Engineaing, Florida, 1999

Xref- Technologes - refactoring development todss.
http://xref-tech.com/xrefactory/

