
Analyzing Multiple Configurations of a C Program

Alejandra Garrido and Ralph Johnson
University of Illinois at Urbana-Champaign
garrido@cs.uiuc.edu, johnson@cs.uiuc.edu

Abstract

Preprocessor conditionals are heavily used in C pro-
grams since they allow the source code to be configured
for different platforms or capabilities. However, preproces-
sor conditionals, as well as other preprocessor directives,
are not part of the C language. They need to be evaluated
and removed, and so a single configuration selected, before
parsing can take place. Most analysis and program under-
standing tools run on this preprocessed version of the code
so their results are based on a single configuration.

This paper describes the approach of CRefactory, a
refactoring tool for C programs. A refactoring tool cannot
consider only a single configuration: changing the code for
one configuration may break the rest of the code. CRefac-
tory analyses the program for all possible configurations
simultaneously. CRefactory also preserves preprocessor di-
rectives and integrates them in the internal representations.
The paper also presents metrics from two case studies to
show that CRefactory’s program representation is practi-
cal.

1. Introduction

The C preprocessor (Cpp) adds many useful features to
the C language, such as the ability to configure a program
for different platforms by way of preprocessor conditionals.
A configuration can be defined as the initial value of macros
(a.k.a. configuration variables) that Cpp receives as input to
preprocess a program. With this, a configuration determines
which single branch of each preprocessor conditional will
be present in the output of Cpp. Others consider this output
of Cpp, the preprocessed code, to be a configuration. The
definitions are isomorphic but we generally refer to the first.

Most projects written in C are highly configurable. For
example, Flex [4] has less than 20K lines of code among 21
files, but has 5 configuration variables that make up a space
of 25 possible configurations. The Linux kernel (version
2.6.7) has about 1,672 configuration variables with binary
value. The number of possible configurations is huge.

The virtue of Cpp conditionals is lost once a program
is preprocessed. Since the syntax of Cpp directives is dif-
ferent than the syntax of the C language, they need to be
evaluated and removed before further processing [14]. This
is satisfactory when the goal is to compile the program to
be able to execute it: Cpp directives need to be removed
and the program needs to be targeted to a single platform.
But when the goal is to analyze or understand a program,
selecting a single configuration loses information.

Although the problem has been recognized and partially
approached, it has remained unsolved. The section on Re-
lated Work describes these approaches, from which the one
in DMS [9] is the best approximation to handle multiple
configurations.

The problem cannot be ignored for a refactoring tool.
Refactoring tools have become popular for object-oriented
languages like Smalltalk [16] and Java [2, 5]. They let
programmers interactively and incrementally improve the
structure of large programs without introducing errors. We
are building a refactoring tool for C: CRefactory, and a ma-
jor obstacle has been dealing with Cpp [12]. If refactorings
are applied on the preprocessed version of a program, it may
not be possible to recover the un-preprocessed version with
Cpp directives and macro calls. Moreover, changing the
code once it has been targeted to a specific configuration
isolates that code from all the rest: if the changed code is
merged back, the source code for other configurations may
not compile anymore or the behavior may be altered.

Therefore, it is not acceptable to have the refactoring tool
work on a single configuration of a program, nor to lose
any Cpp directives. A refactoring tool must ensure pro-
gram behavior is preserved for all possible configurations.
CRefactory solves the problem: it preserves Cpp directives
and represents the program for all possible configurations
simultaneously.

Our previous paper ([13]) gives an overview of the kind
of problems we had to face to be able to handle conditional
directives. This paper extends our previous paper with de-
tails of our solution and results of its applicability. Sec-
tion 2 shows how we integrate Cpp conditionals in the C
grammar and in the program representations that CRefac-
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tory creates. It also provides a short description of how
CRefactory handles other Cpp directives: #define (used
to define macros) and #include (for file inclusion) in re-
lation to conditionals. Detailed discussion of these two di-
rectives will appear elsewhere. Section 3 describes the in-
ternal transformation CRefactory performs on Cpp condi-
tionals so they can be parsed, and how it later pretty prints
the abstract syntax tree so the transformation on condition-
als remains transparent. Section 4 shows how the program
representations are finally used during refactoring. Section
5 shows measurements of CRefactory’s program represen-
tation on two case studies: rm [1] and Flex [4]. Section
6 lists related work and Section 7 presents conclusions and
future work.

2. Including multiple configurations in a pro-
gram’s representation

CRefactory preserves all possible configurations of a
program. It does not use Cpp and does not remove any
Cpp directives. However, some processing is needed be-
fore parsing takes place, to tokenize the source code [18]
and gather information about Cpp directives. We call this
step pseudo-preprocessing [13]. CRefactory has a pseudo-
preprocessor called P-Cpp that outputs a tokenized version
of the input source code plus some representations of Cpp
directives described in Section 3.

The C grammar used by CRefactory allows Cpp direc-
tives at the level of five syntactic constructs, which are listed
in Table 1. Although #define and #include direc-
tives may potentially break these constructs, we have not
found any examples in any of our test cases (open-source
packages like the Linux Kernel, the GNU library, q-mail,
Flex, make). However, conditional directives often break
these constructs. As explained below, CRefactory does not
restrict the position of conditional directives but internally
manipulates them to comply with the grammar. P-Cpp also
expands macro calls so that the program can be parsed [12].
For both, conditional directive manipulation and macro ex-
pansion, P-Cpp tags the tokens accordingly so the changes
can be reversed by the pretty-printer.

Table 1. Syntactic constructs allowed in be-
tween Cpp directives

Statement
Declaration
Structure field
Enumerator value
Array initializer value

CRefactory builds two main data structures to represent
C programs: the symbol table and the abstract syntax tree
(AST) [13]. Both data structures integrate Cpp directives
with C entities (variables, functions, etc.). For example, the
symbol table includes entries for macro definitions. More-
over, the symbol table allows a symbol to have different
definitions that depend on the configuration, even allowing
a symbol to have both a macro definition and a definition as
a variable or some other C entity. The AST represents Cpp
directives as nodes and macro calls as node labels. This rep-
resentation allows programs to be analyzed and transformed
while preserving the un-preprocessed source code.

Cpp directives also cause problems during refactoring
[12, 13]. Therefore, refactoring preconditions in CRefac-
tory check for instances of Cpp directives invalidating the
refactoring. Transformations are applied by manipulating
the AST. Finally, the AST is pretty-printed by reversing the
internal manipulations that P-Cpp does on the source code
(moving conditionals and expanding macro calls), so the
source code appears just as the developer wrote it except
for the refactorings he applied. Exact pretty-printing is hard
to achieve but makes a refactoring tool much more usable.

2.1. Conditional directives

Conditional compilation directives define separate code
branches, which are included or excluded from the final
compilation unit depending on the value of conditions eval-
uated by Cpp [14]. Figure 1 shows a piece of code ex-
tracted from Make-3.80 which contains some conditional
directives.

#ifndef alloca
#if __STDC__
typedef void *pointer;
#else
typedef char *pointer;
#endif

Figure 1. Example of conditional directives

A conditional directive is one of the following: #if,
#ifdef, #ifndef, #elif, #else or #endif. The
#if, #ifdef and #ifndef directives start a Cpp con-
ditional construct, creating its first branch. The #elif
and #else directives create additional branches on the Cpp
conditional and the #endif ends the construct. The #if
and #elif tokens are followed by a constant expression
in terms of macro definitions. The lines “#ifdef id” and
“#ifndef id” are abbreviations of “#if defined id”
and “#if !(defined id)” respectively. The source text
inside a branch may include other Cpp directives. Conse-
quently, Cpp conditionals can also be nested.
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We can say that every token in the source code is guarded
by a condition that depends on the conditional directives
that surround it. P-Cpp associates tokens and symbol table
entries with the condition that guards them. For example,
the condition associated with the token void in the third
line of Figure 1 is (¬defined(alloca)∧ STDC ), which
in CRefactory’s representation translates to:

AndCondition(
NotCondition(DefinedCondition(alloca)),
Condition( STDC ))

Figure 2 shows the entry for symbol pointer in the
symbol table (the conditions have been abbreviated).

pointer

Type: typedef void *

Type: typedef char *

Guarding condition :
And (Not (Defined(alloca)),
         __STDC__)

Guarding condition :
And (Not (Defined(alloca)),
         Not (__STDC__))

Figure 2. Enhanced symbol table

One way to represent all possible configurations of a pro-
gram is to compute all possible combinations of configura-
tion variables, parse the program in multiple passes, one for
each combination, and create a different AST for each com-
bination. We could apply this solution with Flex but we
cannot possibly apply it for the more than 2.5M possible
configurations of the Linux kernel. In the average case, this
solution would be complex and expensive, and it would also
produce a large amount of duplication in the ASTs. Our ap-
proach, instead, is to parse the program in a single pass and
produce a single AST that includes all possible configura-
tions [13]. This solution creates a compact representation
and we think it can handle programs as large as the Linux
kernel (although we have not tested the whole kernel at this
time, only parts).

The problem with conditional directives is that they usu-
ally break statements and other C constructs as shown in
Figure 3. We can also think of it as the branches created by
a Cpp conditional being incomplete, i.e., they do not contain
complete syntactical units. DMS solves this problem by re-
stricting conditional directives to appear at certain places in
the grammar, and manually modifying the code that does
not comply [9]. This solution is simpler but not scalable to
large, open-source projects.

CRefactory does not restrict the places where conditional
directives may appear, but automatically and transparently

#ifdef VMS
      if (dep->changed && strchr (name, ':') != 0)
#else
      if (dep->changed && *name == '/')
#endif
     {
            freerule (rule, lastrule);
            …
     }

Figure 3. Incomplete conditional branches

transforms them, turning each branch of a Cpp conditional
into a complete syntactical unit, so it complies with the
grammar. This transformation is explained in detail in Sec-
tion 3.

A macro can have different definitions in different con-
figurations [13]. Moreover, a symbol can be a macro in one
configuration and a C entity in another. When P-Cpp finds a
call to a macro with multiple definitions (and therefore with
more than one possible expansion), or a symbol that can
be either a macro call or a reference to a C entity, P-Cpp
expands it to a preprocessor conditional with one branch
for each possible macro expansion or C symbol. This pre-
processor conditional introduced by P-Cpp may break the
statement or declaration that contains it. Therefore, those
conditionals introduced by P-Cpp will also need to be com-
pleted for parsing to work, and they turn out to be the hard-
est to complete. The reason is that there can be more than
one macro call in the same statement and the preproces-
sor conditionals in the macro expansions need to be com-
bined. For example, in the case of 3 macro calls in the same
statement, each macro with 2 possible definitions, the 3 pre-
processor conditionals in the macro expansions need to be
combined to create 8 conditional branches. In our testing so
far we have not seen more than 3 macro calls that expand to
a Cpp conditional in the same statement. Section 5 shows
the growth of our case studies after the completion of Cpp
conditionals.

In the case of file inclusion, when a given file is in-
cluded more than once in a compilation unit, Cpp prepro-
cesses it again every time, since different conditional direc-
tive branches may be selected in subsequent inclusions if
macro definitions changed. This is because Cpp selects a
single branch of each Cpp conditional. Conversely, P-Cpp
processes all branches of a conditional in a single pass. As
a result, P-Cpp does not need to process a file more than
once, but it can reuse the previously generated representa-
tion. The only exception to this is when an included file
uses macros defined previously in the compilation unit, and
those macro definitions changed since the previous time the
file was included. Although we can handle this situation,
we have never encountered it in our testing.
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3. Completing preprocessor conditionals

Preprocessor conditionals are completed in two passes
through the source code. In the first pass, P-Cpp tokenizes
the input and recognizes incomplete Cpp conditionals, cre-
ating descriptors that contain information on how to com-
plete them. In the second pass, incomplete conditionals are
completed by moving and copying tokens as stated by the
descriptors created in the first pass. After this second pass,
all Cpp conditionals are complete syntactical units, i.e., they
can be integrated in the C grammar and the source code can
now be parsed.

3.1. First pass of P-Cpp

A Cpp conditional is considered complete when its
branches enclose a whole syntactic construct, or a whole
list of them, from the constructs that appeared in Table 1.

P-Cpp needs to be able to recognize the beginning and
end of each of the syntactic constructs in Table 1 to rec-
ognize if a conditional is incomplete. In the first pass of P-
Cpp, while it tokenizes the input, it keeps track of the tokens
that mark the beginning or the end of any of the constructs
in the table, by maintaining a state stack (as a pushdown au-
tomata). The following description names the states used to
represent each construct.

Simple statement or declaration While scanning a sim-
ple statement or declaration, the top of the state stack
is In-construct. The appearance of a ‘;’ marks the end
of the construct and so P-Cpp replaces In-construct
by End-of-construct at the top of the stack. To pre-
vent confusing the use of ‘;’ inside the expressions
of a for statement (where conditional directives are
not allowed), the state In-for is at the top of the state
stack while scanning the expressions of a for state-
ment. This state ignores ‘;’ characters.

Composite statement When state In-construct is at the
top of the state stack, the appearance of a ‘{’ makes
P-Cpp push state In-composite-statement. Inside a
composite statement, the states In-construct or End-
of-construct will be pushed on top of the state stack to
represent inner statements or declarations.

Structure The keyword ‘struct’ makes P-Cpp push state
In-Struct. Inside a struct definition, the states In-
construct or End-of-construct will be pushed on top
of the state stack to mark the beginning and end of a
field declaration.

Enumerator The keyword ‘enum’ makes P-Cpp push state
In-Enum. While in this state, the scanning of an
enumerator value is represented by pushing In-Enum-
Elem or End-of-Enum-Elem on top.

Array initializer When the state In-construct is at the top
of the state stack, an ‘=’ followed by a ‘{’ mark the
beginning of an array initializer. P-Cpp pushes state
In-initializer in this case. The scanning of an initial-
izer value is represented by pushing In-Init-Value or
End-of-Init-Value on top of the state stack.

With this representation of states, a Cpp conditional is
complete if and only if its branches start and end when the
top of the state stack is End-of-construct. Conversely, if
a Cpp conditional starts while In-construct is at the top
of the stack, the Cpp conditional is set to have a bad start.
Moreover, if a Cpp conditional ends when the top of the
state stack is In-construct, the Cpp conditional has a bad
ending. The pseudo-code for the first pass of P-Cpp appears
in Figure 5 in the Appendix.

When P-Cpp encounters conditional directives in its first
pass, it constructs Cpp Conditional Descriptors from them.
These descriptors form a tree that represents the nesting of
conditionals. Moreover, they contain enough information
to fix incomplete conditionals in the second pass. Some of
the information in a Cpp Conditional Descriptor appears in
Table 2.

Table 2. Data in a Cpp Conditional Descriptor

startPosition The position where the Cpp
conditional starts in the current file

endPosition The position where it ends
badStart True if the Cpp conditionals has a

bad start
badEnding True if it has a bad ending
startPosShouldBe The position where the conditional

should start to be complete
endPosShouldBe The position where it should

end to be complete
branches A sequence of Cpp Conditional

Branch Descriptors

When P-Cpp pushes a state in the state stack, it sets the
state’s starting position to be the current source code posi-
tion. This value is used to set the field startPosShouldBe
of conditionals that start in the middle of the construct that
the top state represents.

When the end of a Cpp conditional is found in the mid-
dle of a construct, its descriptor is added to a list of con-
ditionals breaking the current construct in the state at the
top of the stack (this list is called condsWBadEnding in
the pseudo-code). Later on, when P-Cpp finds the end of
the current construct, it sets the value endPosShouldBe
of all descriptors in the list condsWBadEnding to be the
current position.
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3.2. Second pass of P-Cpp

Once the tree of Cpp Conditional Descriptors has been
created, all incomplete conditionals should be fixed by mov-
ing and copying tokens as dictated by their descriptors. Fig-
ures 6 and 7 in the Appendix have the pseudo-code for this
step.

First, if the conditional has a bad start, P-Cpp calculates
the tokens that complete the start of the conditional. Sec-
ond, P-Cpp checks if the next conditional is also incom-
plete and if it breaks the same construct as the current one
(the positions where they should start and end match). In
this case, the next conditional is completed in each branch
of the current conditional, creating this way all four combi-
nations. Following conditionals are checked recursively for
intersections with the previous ones.

If the next conditional does not break the same construct,
and if the current conditional has a bad ending, P-Cpp cal-
culates the tokens that complete the end of the conditional.
Here it is also possible that the next conditional, when being
complete, will become the child of the current one. Figure
4 shows an example where the first conditional breaks the
while statement and the second conditional breaks the as-
signment statement inside the body of the while. In this
case, the next conditional is completed inside the stream of
tokens that complete the end of the current conditional.

while (
#if _C1
   n != 0
#else
   (n – 2) != 0
#endif
) {
  n = n
#if _C2
  - 3 ;
#else
  / 2 ;
#endif
}

#if _C1
  while (n != 0)  {
# if _C2
     n = n - 3 ;
# else
     n = n / 2 ;
# endif
}
#else
  while ((n – 2) != 0) {
# if _C2
     n = n - 3 ;
# else
     n = n / 2 ;
# endif
#endif
}

Figure 4. The second conditional becomes
child of the first

After the tokens that complete the start and the end of
each incomplete conditional have been calculated, P-Cpp
actually moves and copies those tokens, while it labels
them, in each branch of the conditional. Figure 7 in the
Appendix shows the pseudo-code for how P-Cpp completes
each branch. The basic idea is that the tokens that com-
plete the start of the conditional are moved to the beginning

of the first branch and copied to the beginning of the other
branches. If the conditional has a bad ending, the tokens
that complete the end of the conditional are moved to the
end of the last branch and copied to the end of the other
branches. Tokens are labelled accordingly so this manipu-
lation can be reversed as described in the next section.

3.3. Pretty-printing of Cpp conditionals

The pretty-printer visits the nodes in the AST and prints
the leaf nodes according to the tokens they represent and the
tokens’ labels. Figure 8 in the Appendix shows the pseudo-
code for pretty-printing a leaf node that does not come from
macro expansion.

The pretty-printer uses two queues: ifsQueue stores the
start directive of Cpp conditionals with bad start. These
start directives go later in the output, after the tokens that
have been moved forward to complete the first branch. The
other queue is the movedBackQueue, and this one is for
nodes representing tokens that have been moved backwards
to complete the end of a conditional. The nodes in the
movedBackQueue are printed after the #endif of the cur-
rent conditional. Nodes that represent copied tokens are not
printed.

4. Applying refactorings

The program representation used by CRefactory could
also be used by a program analysis or understanding tool
like Genoa [10], Columbus [11] or Visual C# IntelliSense
[6] to provide information about the multiple configurations
of a program. We use this program representation for refac-
toring. This section shows two examples that illustrate the
power of the representation to analyze the preconditions of
refactorings and apply the transformations.

4.1 Delete unreferenced variable

After a program has been changed a number of times,
some variables may become unused. However, program-
mers may resist to delete their definitions if they are unsure
the variable is used under some particular configuration.

Input values: variable V.

Preconditions: Opdyke [15] describes the precondition of
this refactoring as: referencesTo(V ) = ∅. When multi-
ple configurations of a program are considered, V can have
more than one definition. CRefactory allows deleting those
definitions of V that have no references, even when other
definitions of V are used in other configurations. In terms
of CRefactory’s analysis functions, the precondition of this
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refactoring is expressed as:

∃Di ∈ all var definitions(V ) : uses(V,Di) = ∅
The function all var definitions(V ) looks up the en-

try for V in the symbol table and returns all the definitions
of V as a variable (note that V could be defined as a macro
in some configuration, so the macro definition would not
be returned by this function). The function uses(V,Di)
returns the set of uses of definition Di of V , again di-
rectly looking it up in the symbol table. So as long as
one definition of V has no uses, the refactoring can proceed.

Mechanics: If V has more than one definition under dif-
ferent configurations, the refactoring must check which of
those definitions have no references and can be safely re-
moved. The following pseudo-code describes the mechan-
ics of this refactoring:

1. conds := { guarding condition(Di) :
Di ∈ all var definitions(V )

∧ uses(V,Di) = ∅ }
2. Search AST for nodes representing a definition or

declaration of V . Upon a match:
if (guarding condition(node) ∈ conds)

delete(node)

Step 1 creates a set conds with the conditions that guard
the definitions of V that have no uses. This result is again
directly returned by the symbol table, which attaches to
each definition the condition in which it applies.

This refactoring may leave a Cpp conditional branch
empty, if the deleted definition or declaration of V was
the only thing in the branch. We leave the decision to the
user to apply the refactoring “Delete empty branches of Cpp
conditional”, which, given a Cpp conditional, removes the
branches that are left empty.

4.2 Move variable into structure

A variable defined outside any structure is moved so that
it becomes a field of a structure. This refactoring is useful
when creating a structure out of global variables. The next
steps are to add a pointer reference to this structure and to
pass the pointer as argument to the functions, thus reducing
the use of global variables in the program.

Input values: variable V and structure declaration S.

Preconditions: the preconditions of this refactoring are di-
vided in two cases: 1. There is a single definition of V and
2. There are multiple definitions of V .

Case 1. single definition(V ) = true. In
the preconditions given below, guarding cond(DS) =

TrueCondition means that the definition DS is not inside
a Cpp conditional.

single definition(S) (1)

∧(guarding cond(DS) = guarding cond(DV ) (2)

∨ guarding cond(DS) = TrueCondition) (3)

∧ V /∈ fields(DS) (4)

∧ scope(DS) ⊇ scope(DV ) (5)

∧ (∀ui ∈ uses(V ) : ∃SV ar : refers(type(SV ar), S)

∧guarding cond(SV ar) = guarding cond(ui)

∧scope(SV ar) ⊇ scope(DV )) (6)

where DV is the single definition of V and DS is the single
definition of S.

The expression numbered (6) in the above equation
means that at each use of V , there is a way to refer to
an instance of S, i.e., the type of SV ar is ‘struct S’,
‘struct S *’, or similar.

Case 2. single definition(V ) = false. The refactor-
ing is allowed if:

(single definition(S)

∧ guarding condition(DS) = TrueCondition

∧ (∀DV ∈ all var definitions(V ) : (4) ∧ (5) ∧ (6)))

∨ (single definition(S) = false

∧ #(all var defs(V )) = #(all struct defs(S))

∧(∀DV ∈ all var defs(V ) : ∃DS ∈ all struct defs(S) :

guarding cond(DS) = guarding cond(DV )

∧(4) ∧ (5) ∧ (6)))

That is, either there is a single definition of S and for each
definition of V , the sub-equations numbered (4), (5) and
(6) in Case 1 hold, or there are as many definitions of V
as there are of S, and for each pair of definitions with the
same condition, the sub-equations (4), (5) and (6) hold.

Mechanics: the mechanics of Case 1 serve as a base case,
that is, when there is a single definition of V and S. Case
2 applies the mechanics of Case 1 for each appropriate
combination of variable-structure definitions.

Case 1. Given a definition of V , DV , and a definition of
S, DS :

1. ASTS := {AST in scope of DS}.
2. Search ASTS for the node NDS

representing DS .
3. Search ASTS for the node NDV

representing DV .
if ( guarding cond(DS) = guarding cond(DV ))

4. Move NDV
to the right-most leaf in NDS

.
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else if (guarding cond(DS) = TrueCondition)
5.Move NDV

to the right-most leaf in NDS
and

surround it with a Cpp conditional with only one
branch for condition guarding cond(DV ).

6. Search ASTS for uses of DV and replace each match
by a subtree representing (temp Svar).V .

Step 1 creates a set with all trees in the scope of DS . This set
may have more than one element if DS is global, because
CRefactory builds one AST for each file that composes the
program. If DS is local, CRefactory maintains indexes to
the trees so that it can directly reach the sub-tree for that
local scope.

In Step 6, temp Svar is a template that represents the
way to refer, directly or indirectly, to an instance of S, i.e.,
it may have the form ‘var’ or ‘(*ptr)’ or similar.

Case 2.

if (single definition(S))
for each DV ∈ all var definitions(V )

1. Apply Case 1 with DV and the single definition
of S.

else
for each DV ∈ all var definitions(V ) {

2. Find DS ∈ all struct defs(S) such that
guarding cond(DS) = guarding cond(DV ).

3. Apply Case 1 with DV and DS . }

5. Case studies

The previous section shows some of the analysis func-
tions that CRefactory uses to check the preconditions of
refactorings. This section provides a quantitative analysis
of the program representations built when two programs
were loaded in CRefactory: rm, the ‘remove file’ function
in GNU core utilities [1], and Flex, the lexical analyzer gen-
erator [4]. These metrics help us to show that, in practice,
conditional completion does not appear to produce an expo-
nential growth of the representation of programs.

CRefactory is implemented in VisualWorks
SmalltalkTM . The refactoring engine mimics the de-
sign of the Smalltalk Refactoring Browser [16]. To
load a program, CRefactory needs to know the source
files, include directories, read-only directories (those
that contain non-modifiable files, like standard library
headers), command line macros and false conditions.
The set of “false conditions” is used by CRefactory to
exclude some Cpp conditional branches that it should
not or cannot process. For example, the set of false
conditions includes defined(__cplusplus) and
defined(__GNUC__) because CRefactory cannot parse

C++ code and does not currently support some GCC exten-
sions [3] used in the code under defined(__GNUC__).

5.1. Results on rm

The source code for rm is contained in a single source
file: “rm.c”. When this source file was loaded in CRefac-
tory, it included 94 header files, although only 20 of them
belong to the same package and are therefore modifiable
(the others are GCC library headers). Note that this num-
ber of headers are included when considering all possible
configurations, only excluding false conditions. The results
that appear in Table 3 were obtained on the 20 files in the
rm package, i.e., they filter out GCC library headers.

Table 3. Metrics on rm

Number of Cpp conditionals 262
Number of Cpp conditionals introduced by 30
macro expansion
Number of incomplete Cpp conditionals 30
Perc. of code growth after completing 18%
conditionals
Maximum level of nesting of Cpp conditionals 3
Percentage of conditional definitions 24%

There is one header file in the package: system.h, that
alone contains 166 out of the 262 Cpp conditionals. It con-
tains many macro definitions (31% of all macro definitions
in the package). We can infer that this file is highly config-
urable and so, difficult to maintain.

From the total of 262 Cpp conditionals, 30 were intro-
duced by P-Cpp due to macro expansion (i.e., because of
calls to macros with more than one definition). All of these
Cpp conditionals and only those were incomplete. There-
fore, all Cpp conditionals present in the source code of the
rm package are complete, which speaks very well of the
readability of the source code. Moreover, 27 out of the 30
Cpp conditionals introduced by P-Cpp appear in a single
file: rm.c. Since all of these conditionals had to be com-
pleted, the tokenized representation of rm.c grew 57% af-
ter conditional completion.

The depth of nesting of Cpp conditionals is low, so the
source code is not complex in that sense. However, the per-
centage of symbol definitions that depend on configuration
variables (i.e., conditional definitions) is rather high. Con-
sidering all possible configurations simultaneously is there-
fore very important to be able to modify this code.

We found one symbol: getopt, defined as a function
under one configuration and as a macro under another con-
figuration in a different header file. Refactoring this sym-
bol or the code that uses it would be difficult without a tool
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that can spot these double definitions and check for possible
problems.

5.2. Results on Flex

The source code for Flex is contained in 13 source files.
However, 2 of them are automatically generated from gram-
mar specifications. Although loading Flex involved loading
54 files, Table 4 shows the results obtained on the 11 source
files that are not auto-generated plus the 4 headers in the
Flex package (i.e., all the modifiable files).

Table 4. Metrics on Flex

Number of Cpp conditionals 36
Number of Cpp conditionals introduced by 9
macro expansion
Number of incomplete Cpp conditionals 9
Perc. of code growth after conditional completion 1%
Maximum level of nesting of Cpp conditionals 1
Percentage of conditional definitions 2%

The table above shows that the Flex package is not too
complex in terms of Cpp conditionals. As with the previous
case, all incomplete Cpp conditionals were introduced by
P-Cpp due to macro expansion.

The files that have the most conditional directives are
flexdef.h, main.c and misc.c. File flexdef.h
has 15 Cpp conditionals, all present in the source code and
all complete. In the case of misc.c, 5 out of 7 Cpp con-
ditionals come from macro expansion. The tokenized rep-
resentation of misc.c grew 4% after conditional comple-
tion. The file that grew the most was yylex.c, with a
growth of 7%.

There is no nesting of the Cpp conditionals in the Flex
package, although the maximum level of nesting is 23 when
counting library files.

The total number of macros defined in the package is
134. There is one unreferenced variable in the package:
copyright, defined under condition ¬defined(lint).

6. Related work

Somé and Lethbridge argue that program understand-
ing tools should provide information about each configu-
ration in which an entity can be considered [17]. They pro-
pose some heuristics to detect the configurations that can be
parsed in the same pass, therefore minimizing the number
of passes needed.

The framework PCp3 [8] allows the analysis of C source
code with Cpp directives by providing “hooks” in the pre-
processor or in the parser. That is, the code is preprocessed

but the user can define callbacks in Perl scripting language,
making use of those hooks in the preprocessor. PCp3 can
provide useful information about Cpp directives. However,
the program representations that PCp3 can produce would
still be based on a single configuration and so inappropriate
for refactoring.

Tokuda and Batory propose a refactoring tool on class
diagrams of C++ programs [19]. Their tool also works on a
single configuration. Xrefactory is a refactoring tool for C
and C++. It provides some support for Cpp directives, like
allowing macro renaming [7]. Xrefactory preprocess the
source code but saves the original position of each element
in the un-preprocessed code [20].

The best approximation to handle multiple configura-
tions is the one provided by DMS [9]. DMS is able to parse
conditional directives by allowing them at certain, prede-
fined places in the grammar. With this approach, DMS can
parse 85% of un-preprocessed C files [9]. DMS performs
code restructuring like removing dead branches of Cpp con-
ditionals by running a set of predefined rewrite rules on
appropriate program representations. Our goal is instead
to support interactive code manipulation through smaller
refactorings that are selected by the user with a drop-down
menu while visualizing the code.

7. Conclusions

Integrating conditional directives during refactoring is
hard, for both the analysis of the code required before refac-
toring and the transformation functions themselves. The
same applies to other Cpp directives, like macros and file
inclusion. This is a major factor that hinders the develop-
ment of refactoring tools for C or C++ code. Our work suc-
cessfully integrates Cpp directives in the C grammar and the
program representation.

Although CRefactory focuses on C and Cpp, our work
applies to other languages that use Cpp, like C++, and prob-
ably to other preprocessors with similar directives, whose
syntax is independent of the syntax of the underlying lan-
guage. Moreover, analysis tools should be able to apply the
same ideas for parsing and representation of Cpp condition-
als.

Future work includes loading all the source code of the
Linux kernel, for all possible configurations, and measure
memory requirements. For this, we will need to add all
GCC extensions to the C language. Also, other refactor-
ings will be added to CRefactory. Our ultimate goal is to
reach a stable version of CRefactory that we can release to
the public.
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Appendix

This Appendix shows the pseudo-code of the conditional
completion algorithm in P-Cpp and the pretty-printing that
reverses this completion. Figure 5 has the pseudo-code for
the first pass of P-Cpp through the code. Figures 6 and 7
show the second pass of P-Cpp. Finally, Figure 8 describes
pretty-printing.

case (current token = #if, #ifdef or #ifndef) {
desc := new CppConditionalDescriptor.
desc . startPosition := current position.
if( top(stateStack) = End-of-construct)

desc . badStart := false
else {

desc . badStart := true.
desc . startPosShouldBe :=

(top(stateStack)).startPosition.
} }

case (current token = #elif or #else) {
branch := new CppConditionalBranchDescriptor.
branch . startPosition := current position.
Add branch to branches of curr. Cpp conditional.

}
case (current token = #endif) {

desc := current Cpp conditional.
desc . endPosition := current position.
if( top(stateStack) = End-of-construct)

desc . badEnding := false.
else {

desc . badEnding := true.
Add desc to

(top(stateStack)) . condsWBadEnding.
} }

case (curr. token marks beginning of construct) {
Push corresponding state into stateStack with

newState . startPosition := current position.
}
case (curr. token marks end of curr. construct) {

for each desc ∈
((top(stateStack)) . condsWBadEnding)

desc . endPosShouldBe := curr. position.
Push appr. construct ending state into stateStack

}

Figure 5. Pseudo-code for first pass of P-Cpp
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completeConditional(desc) {
if (desc . badStart)

desc . tokensCompletingStart :=
tokens from desc . startPosShouldBe to
desc . startPosition.

nextDesc := nextConditional(desc).
if (breakSameConstruct(desc, nextDesc))

for each branch ∈ desc . branches
Complete nextDesc inside branch.

else if (desc . badEnding) {
if (¬ intersect(desc, nextDesc))

desc . tokensCompletingEnd :=
tokens from desc . endPosition to
desc . endPosShouldBe.

else
Complete nextDesc inside

desc . tokensCompletingEnd.
for each branch ∈ desc . branches

completeConditionalBranch(desc, branch).
} }

Figure 6. Second pass of P-Cpp: completing
Cpp conditionals

completeConditionalBranch(desc, branchDesc) {
if (desc . badStart)

if (isFirstBranch(desc, branchDesc))
Move desc . tokensCompletingStart to

beginning of branch while labelling these
tokens as ‘moved forward’.

else
Copy desc . tokensCompletingStart to

beginning of branch while labelling these
tokens as ‘copied’.

for each childDesc ∈ children(desc, brachDesc)
completeConditional(childDesc).

if (desc . badEnding)
if (isLastBranch(desc, branchDesc))

Move desc . tokensCompletingEnd to
end of branch while labelling these
tokens as ‘moved backwards’.

else
Copy desc . tokensCompletingEnd to

end of branch while labelling these
tokens as ‘copied’. }

Figure 7. Second pass of P-Cpp: completing
Cpp conditional branches

pretty-print(node) {
case(node represents #if, #ifdef or #ifndef)

if ((assocCppConditional(node)).badStart)
queue(ifsQueue, node).

else Print node.
case (label(node) ‘not moved’ or ‘moved forward’)

Check if top(ifsQueue) should be printed.
Print node.

case (label(node) = ‘copied’)
/* do nothing */

case (node represents #elif or #else)
Print node.

case (label(node) = ‘moved backwards’)
queue(movedBackQueue, node).

case (node represents #endif) {
Print node.
Print nodes in movedBackQueue } }

Figure 8. Pseudo-code for pretty-printing

Proceedings of the 21st IEEE International Conference on Software Maintenance (ICSM’05) 

1063-6773/05 $20.00 © 2005 IEEE 


