
Model Checking the Behavior of Frameworks Extended
with Other Frameworks

Federico Balaguer
University of Illinois Urbana Champaign

201 North Goodwin Ave.
Urbana, IL - USA

balaguer@uiuc.edu

ABSTRACT
Frameworks are important in software development. There
are problematic aspects of framework development. When
frameworks are extended with functionality implemented by
other frameworks, developers face a difficult task solving
static and (specially) dynamic mismatches. The dynamic
aspect is less visible to developers thus it is usually the cause
of failure, specially in frameworks using multi threading pro-
gramming.

This paper shows how to verify the soundness of frame-
work compositions at dynamic level using using temporal
logic and tools provided by Full Maude.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—model checking

General Terms
Design, Verification

Keywords
Object-Oriented, Frameworks, Rewriting Logic, Temporal
Logic

1. INTRODUCTION
Frameworks have become popular in the object-oriented

community [9]. SourceForge has at least 600 projects in
which the deliverable is a framework [1]. However, framework-
based development is not a mature discipline [6]. Traditional
software-engineering techniques do not handle frameworks
very well because frameworks are different from traditional
object-oriented architectures. Frameworks have two main
characteristics. First, frameworks are incomplete designs
[12]. Users of the framework have to complete the design of
the framework with their own code. Second, the framework

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

defines a flow-of-control that is independent from the flow of
control of the programs where the framework is instantiated.

When a framework needs to be extended with new func-
tionality, developers can choose between implementing the
new functionality from scratch or using an existing frame-
work on the required domain. In theory, the later is more
attractive because it is reusing the knowledge of the domain
provided by the extending framework. In reality, developers
have to solve different kind of mismatches at the architec-
ture level [5] or the API level [8]. Moreover, after solving
these mismatches the extended framework could have two
problems. First, previous instantiations of the framework
are no longer valid. Second, the behavior is incorrect [4].

We claim that there is a systematic approach to extend-
ing frameworks that allows developers to understand and
to evaluate the composition as another software engineering
artifact [4]. This approach takes in consideration how each
framework is instantiated, extended, and how is configured
at run-time [3]. A new version of the framework is defined
as the instantiation of the framework supplying the behav-
ior and the extension of the framework that needs the new
functionality. The flow of control of the extended framework
is defined as the composition of the flow of controls of the
extending and extended framework.

This paper presents the results of using Full Maude on
describing and composing two object-oriented frameworks.
We used Maude’s LTL checker [10] for asserting desirable
properties of two frameworks and also for checking that their
composition is sound.

2. OBJECT-ORIENTED FRAMEWORK AS
REWRITE THEORIES

A rewrite theory is a triplet R = (Σ, E, R), with (Σ, E)
an equational theory, and R a set of labeled rewrites rules
that are applied modulo the equations E [14]. Maude and
Full Maude provide modules that allow the user to create
object-oriented specifications [7]. In Full Maude, object-
oriented modules implicitly include the declaration of sorts:
Oid (object identifiers), Cid (class identifiers), Object (in-
stances of classes) and Msg (sent messages). Instances and
messages created by one specification form a CONFIGURA-
TION, it is sometimes called ”soup”.

A framework can be defined with a rewrite theory Rf as
a triple, Rf = (Σ, E, R) as for any rewrite theory. The
distinction is that neither E nor R are complete. There are
either missing equations in E or missing rewrite rules on R.
Developers customize the framework in two different ways.

122

One way, they add missing equations or rewrite rules (white-
box). Another way, they create an initial configuration with
objects conforming to a given API (black-box) [13].

Two frameworks were developed [2] with the object-oriented
extension of Full-Maude [7]. One framework (Channels)
allows developers to create channels that a collection of
Senders use to broadcast data to receivers. The other frame-
work allows to create Pipe&Filter architectures. For each
framework we had defined a number of temporal logic asser-
tions that help us distinguish between good and bad behav-
ing instantiations. For example, we wanted to specify that
a Sender in the Channel framework is always able to send
all its data:

eq(<A:Sender | buff:nil> C) |= sendAll = true .

...

eq fairToSender = <>[] sendAll .

Note that this allows us to still define faulty channels that
lost data. For the Pipe&Filter framework we wanted to
specify that data push in the front-end of the Pipe produces
an output in the back-end:

eq(<A:OutPipe | ready:false>) |= dataOut = true .

...

eq outReady = <>[] dataOut .

These equations are defined in modules that wrap the mod-
ules with the framework specification.

3. CHANNEL WITH PIPES&FILTERS
Imagine that we need to implement a new type of Channel

that performs a series of operations on new entered values to
the buffer. One possibility could be to write a new subclass
that does it from scratch. The other possibility is to create
a new channel that uses the Pipes&Filters framework to
implement the transformations. The advantage of reusing
the Pipes&Filters framework is that we are reusing all the
domain knowledge and infrastructure that comes with it.

The Channel framework is extended by creating a new
subclass of Channel with the required functionality. In this
case the new class (we called PipeChannel) will create a
configuration out of the Pipe & Filter frameworks. Once
the static aspect of the extension is developed, the extended
framework can be Model Checked using temporal logic pred-
icates. For example, in the new extension should be true:

[](fairToSender /\ outReady /\ ...).

It can also be tested using the Search tool that explores
all possible resulting configurations that can be found from
the original state.

4. CONCLUSIONS AND FUTURE WORK
Framework composition is still an unexplored area in soft-

ware engineering. Framework composition is usually devel-
oped based on a succession of trials without knowing how or
why things work. Using testing packages such as SUnit or
JUnit is just a more sophisticated way of doing the trials. A
better understanding of each framework design is required.
Our goal is to provide tools and techniques that ease the
development and evaluation of this kind of framework de-
velopment.

This work shows the benefit of using executable specifica-
tions for verifying the correctness of object-oriented frame-
works. It shows how even predicates defined in the abstract

and incomplete design of a framework can be successfully
applied to instantiations of frameworks.

This work also shows that it is not trivial to develop a
specification that later can be model check. Moreover, any-
one doing such specification has the pending obligation to
prove that the specification reflects the behavior of the tar-
geted system (in our case the extended frameworks). One
possible approach is to have an interpreter for the language
in which the frameworks are implemented and then use the
interpreter to load the source code of the frameworks to per-
form the validation. Although this approach is conceptually
simple, it has the problem of having to load the classes of the
library to which the framework depends on. Currently we
are developing a different approach in which flow-of-control
are abstracted out of the framework (as part of the docu-
mentation). An interpreter of the flow-of-control is built in
Maude to Model Check different properties of each frame-
work.

5. REFERENCES
[1] Sourceforge. http://sourceforge.net.

[2] F. Balaguer. Channels and pipes & filters (source
code). ”netfiles.uiuc.edu/balaguer/wwww/maude”.

[3] F. Balaguer. Design aspects for describing
frameworks. In Companion of Conference on
Object-Oriented Programming Systems, Languages and
Applications, 2001.

[4] F. Balaguer and R. Johnson. Composing frameworks
by separating concerns. In Conference on Software
Engineering and Applications (SEA’03), 2003.

[5] L. Berlin. When objects collide: Experiences with
reusing multiple class hierarchies. In Conference on
Object Oriented Programming, System, Languages and
Applications, 1990.

[6] J. Bosch, P. Molin, M. Mattson, P. Bengtsson, and
M. Fayad. Framework Problems and Experiences. In
Fayad et al. [11], 1999.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln,
N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude
2.0 Manual. SRI International, June 2003.

[8] R. A. David Garlan and J. Ockerbloom. Architectural
mismatch: Why reuse is so hard. IEEE Software, 1994.

[9] D. D’Souza and A. C. Wills. Objects, Components and
Frameworks with UML. The Catalysis Approach.
Addison-Wesley, 1999.

[10] S. Eker, J. Meseguer, and A. Sridharanarayanan. The
maude ltl model checker. In 4th International
Workshop on Rewriting Logic and its Applications
(WRLA’02), 2002.

[11] M. Fayad, D. Schimidt, and R. Johnson, editors.
Object-oriented Foundations of Framework Design. .
Willey, 1999.

[12] R. Johnson. Frameworks = components + patterns.
Communications of the ACM, 40(10):39–42, October
1997.

[13] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, June/July
1988.

[14] J. Meseguer. Software specification and verification in
rewriting logic. Technical report, Lectures at the
Marktoberdorf International Summer School,
Germany.

123

