
Reasoning About Static and Dynamic Properties in Alloy:
A Purely Relational Approach

Marcelo F. Frias∗
Department of Computer Science

School of Sciences
Universidad de Buenos Aires

Argentina
and

CONICET
mfrias@dc.uba.ar

Carlos G. López Pombo
Department of Computer Science

School of Sciences
Universidad de Buenos Aires

Argentina
clpombo@dc.uba.ar

Gabriel A. Baum
LIFIA - School of Informatics

Universidad Nacional de La Plata
Argentina

and
CONICET

gbaum@sol.info.unlp.edu.ar

Nazareno M. Aguirre
Department of Computer Science

FCEFQyN
Universidad Nacional de Rı́o Cuarto

Argentina
aguirre@dc.exa.unrc.edu.ar

Thomas S. E. Maibaum
Department of Computer Science

King’s College London
United Kingdom

tom@dcs.kcl.ac.uk

ABSTRACT
We study a number of restrictions associated with the first-
order relational specification language Alloy . The main short-
comings we address are:

• the lack of a complete calculus for deduction in Alloy’s
underlying formalism, the so called relational logic,

• the inappropriateness of the Alloy language for de-
scribing (and analysing) properties regarding execu-
tion traces.

The first of these points was not regarded as an important
issue during the genesis of Alloy , and therefore has not been
taken into account in the design of the relational logic. The
second point is a consequence of the static nature of Alloy
specifications, and has been partly solved by the developers
of Alloy ; however, their proposed solution requires a com-
plicated and unstructured characterisation of executions.

∗Research partially funded by Antorchas foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

We propose to overcome the first problem by translating
the relational logic to the equational calculus of the fork al-
gebras. Fork algebras provide a (purely relational) formalism
close to Alloy, that possesses a complete equational deduc-
tive calculus. Regarding the second problem, we propose to
extend Alloy by adding actions. These actions, unlike Alloy
functions, do modify the state. Much the same as programs
in dynamic logic, actions can be sequentially composed and
iterated, allowing to state properties of execution traces at
an appropriate level of abstraction. Since automatic analy-
sis is one of Alloy’s main features, and this paper aims to
provide a deductive calculus for Alloy,

• we show that the extension hereby proposed does not
sacrifice the possibility of using SAT solving techniques
for automated analysis,

• we show how to extend the calculus for the relational
logic to a calculus to which the extension of Alloy with
actions can be translated. This provides a complete
calculus for reasoning about the extension of Alloy.

1. INTRODUCTION
The specification of software systems is an activity con-

sidered worthwhile in most modern development processes.
Some specification languages are informal, meaning that the
notations on which they are based are not precisely defined.
Informal specification languages are usually referred to as
modeling languages, since specifications allow us to build
abstract models of the intended systems. Due to the lack of

a precise semantics, informal specifications must usually be
complemented with natural language annotations or some
other mechanisms, in order not to fall into ambiguous un-
derstandings of what is being modeled. However, informal
specifications are still useful as a means for communication
between developers, documentation and even for perform-
ing some (restricted) kinds of analysis. The UML [5] is an
example of a widely used informal specification language,
whose specifications (based on a variety of languages) are
centered on notions from object orientation.

Formal approaches to software specification, on the other
hand, are those based on well defined notations, founded
on solid (usually mathematical) grounds. Formal specifica-
tion languages are better suited for analysis, due to their
precise semantics, but they are usually more complex, and
require familiarity and experience with the manipulation of
mathematical definitions. So, their acceptance by software
engineers greatly depends on their simplicity and usability.

There exists a wide range of formal specification languages,
based on a variety of logics and other formalisms. A subset
of these languages, in which we are interested, are the so
called model oriented formal specification languages. Their
approach to specification consists of describing systems by
building mathematical models of them. Traditionally, model
oriented specification languages describe a system by defin-
ing its state space, and its operations as state transforma-
tions. Some examples of model oriented formal specification
languages are B [1], VDM [25], Z [38] and Alloy [24].

Formal semantics is not necessarily enough for making
specifications analysable: effective analysis mechanisms must
be defined. Furthermore, it is generally accepted that, due
to the difficulties associated with the use of formal meth-
ods, appropriate (software) tool support for the analysis is
a must. We are particularly interested in Alloy , a language
designed with (fully automated) analysability of specifica-
tions as a priority, and which has recently gained increasing
attention. Alloy has its roots in the Z formal specification
language, and its few constructs and simple semantics are
the result of putting together some valuable features of Z
and some constructs that are normally found in informal no-
tations. This is done while avoiding incorporation of other
features that would increase Alloy ’s complexity more than
necessary.

Alloy is defined on top of what is called relational logic
(RL), a logic with a clear semantics based on relations. This
logic provides a powerful yet simple formalism for interpret-
ing Alloy modeling constructs. The simplicity of both the
relational logic and the language as a whole makes Alloy
suitable for automatic analysis. The main analysis tech-
nique associated with Alloy is essentially a counterexam-
ple extraction mechanism, based on SAT solving. Basically,
given a system specification and a statement about it, a
counterexample of this statement (under the assumptions of
the system description) is exhaustively searched for. Since
first-order logic is not decidable (and the relational logic is a
proper extension of first-order logic), SAT solving cannot be
used in general to guarantee the consistency of (or, equiva-
lently, the absence of counterexamples for) a theory; then,
the exhaustive search for counterexamples has to be per-
formed up to certain bound k in the number of elements in
the universe of the interpretations. Thus, this analysis pro-
cedure can be regarded as a validation mechanism, rather
than a verification procedure. Its usefulness for validation is

justified by the interesting idea that, in practice, if a state-
ment is not true, it often exists a counterexample of it of
small size:

“First-order logic is undecidable, so our analysis
cannot be a decision procedure: if no model is
found, the formula may still have a model in a
larger scope. Nevertheless, the analysis is useful,
since many formulas that have models have small
ones.” (cf. [19, p. 1])

The above described analysis has been implemented by
the Alloy Analyzer [23], a tool that incorporates state-of-
the-art SAT solvers in order to search for counterexamples
of specifications. Alloy and its tool support have been used
with some success to model and analyse a number of prob-
lems of different domains, such as, for instance, the sim-
plification of a model of the query interface mechanism of
Microsoft’s COM [22].

1.1 Contributions of this Paper
The contributions of this paper are twofold. First, notice

that deduction was not regarded as an important issue dur-
ing the genesis of Alloy , and therefore has not been taken
into account in the design of the relational logic. In order
to overcome this difficulty, we introduce the fork relational
logic (FRL), as the equational theory of fork algebras [14] ex-
tended with reflexive-transitive closure. The interpretation
of Alloy ’s underlying relational logic within FRL allows us to
define a purely relational and complete equational calculus
for reasoning about Alloy specifications. Moreover, we will
show that translating Alloy specifications into FRL, instead
of doing so into the relational logic, does not compromise
the analysability of specifications. In fact, resorting to FRL
enables us to analyse strictly more properties than with the
Alloy Analyzer under the standard Alloy semantics [23].

Second, we notice that Alloy is inappropriate as a lan-
guage for the description and analysis of properties regard-
ing execution traces of systems. This is due to the static na-
ture of Alloy specifications (a deficiency shared with other
model oriented specification languages), and although has
been partly solved by the developers of Alloy , their proposed
solution requires a complicated and unstructured character-
isation of executions. In order to address this problem, we
propose extending Alloy with actions, and enhancing FRL’s
expressiveness with dynamic logic features. Functions in
Alloy , as schemes for operations in Z, serve the purpose of
defining state changes, by relating variables corresponding
to the state prior to the operation’s execution with variables
corresponding to the state resulting from the execution of
the operation. A number of conventions, such as the fact
that primed variables correspond to post-execution state,
are central to the correct interpretation of function defini-
tions. We believe that actions (as will be defined in this
paper), unlike functions, are better qualified for describing
state change, especially for the purpose of expressing prop-
erties regarding executions.

We will argue that, as a result, the newly defined dynamic
Alloy (DynAlloy) is better suited (at least when compared to
[24, Section 2.6]) for modeling execution of operations, and
reasoning about execution traces. Even a SAT solving based
analysis, similar to that defined for standard Alloy , can be
provided in order to validate properties regarding execution
traces.

Since one of the intended contributions of this paper is
providing a complete calculus for Alloy, it is worthwhile ask-
ing whether the deductive calculus for the relational logic
presented in this paper can be extended to DynAlloy. We
show that extending FRL to a dynamic logic over fork alge-
bras (denoted by FDL), we again obtain a purely relational
and complete proof calculus; this enables us to perform de-
ductive reasoning also about properties of executions speci-
fied in DynAlloy.

An interesting side effect of adopting FRL (and its ex-
tension FDL) as our foundation is that there is no need for
second-order quantifiers in the composition of Alloy func-
tions (see for instance [20, Section 2.4.4]). Also, the avail-
ability of encodings for the semantics of FRL and its exten-
sion FDL into higher-order logic allows us to verify Alloy
specifications (even those involving actions and executions)
using a higher-order logic theorem prover, such as PVS [34].

The relationships among the formalisms involved in our
approach are depicted in Fig. 1.

DynAlloy FDL

RL FRL

Alloy

-
is interpreted

-
is interpreted

6
is extended

6

is extended

Figure 1: Relationships among the formalisms.

1.2 Related Work
As we mentioned before, deduction was not considered an

important issue when Alloy was created; instead, the design
of the language was centered on the idea of providing effi-
cient automated analysis of specifications via SAT solving.
In the case of Alloy , SAT solving based analysis provides
a validation mechanism for specification. Theorem proving,
on the other hand, would provide a mechanism for the ver-
ification of properties.

To the best of our knowledge, since the beginnings of
Alloy , not much work has been done regarding the use of
theorem proving in the analysis of Alloy specifications. We
are aware of the work of Arkoudas et al. [3] on their tool
Prioni, presented some time after the first submission of this
paper at RelMiCS’031. Prioni uses a semi automatic the-
orem prover called Athena [2] in order to prove properties
regarding Alloy specifications. Arkoudas et al.’s character-
isation of Alloy allows one to reason about specifications,
using (semi automatic) theorem proving. However, the pro-
posed characterisation does not capture well some features

1Note that our approach is previous to Arkoudas et al.’s:
[3] includes a reference to a the preliminary version of this
paper [16].

of Alloy and its relational logic, such as, for instance, the
uniform treatment for scalars and singletons. Quoting the
authors,

“Recall that all values in Alloy are relations. In
particular, Alloy blurs the type distinction be-
tween scalars and singletons. In our Athena for-
malization, however, this distinction is explicitly
present and can be onerous for the Alloy user.”
(cf. [3, p. 6])

Prioni has also a number of further shortcomings, such as
the, in our opinion, awkward representations of Alloy ’s com-
position operation ‘·’ and of ordered pairs [3, p. 4]. This tool,
however, manages to integrate the use of theorem proving
with the SAT solving based analysis of the Alloy Analyzer,
cleverly assisting theorem proving with SAT solving and vice
versa. The mechanisms used to combine SAT solving and
theorem proving are independent of the theorem prover used
and the axiomatic characterisation of Alloy . Thus, they
could also be employed to combine the Alloy Analyzer with
other approaches to reasoning about Alloy specifications,
such as, for instance, the one presented in this paper.

The deduction system we propose is based on purely re-
lational (i.e., only the sort of relations is present) calculi for
FRL and FDL, which are complete with respect to the se-
mantics of the corresponding logics. These logics allow for a
uniform treatment of scalars and singletons, and thanks to
their expressiveness, the characterisation of the constructs of
Alloy and RL is straightforward. We believe that ‘minimal
mathematics [for the end user]’, which comes from adopting
well understood concepts such as sets and relations and is
one of the motivations of Alloy , is not lost by using these
logics to enhance Alloy .

There is a wide range of (semi-)automatic techniques for
software verification and validation. A particularly success-
ful branch is that of model checking [7]. By model checking
we mean the well known approach of representing a (finite
state) program as a model in a certain (often modal) logic,
and then checking whether that model satisfies or not a log-
ical property. There exist various approaches to efficient
model checking, such as the automata-theoretic [40], the se-
mantic [8] and the symbolic ones [29].

Alloy , as well as our approach to deduction, is not di-
rectly related to model checking, since the subject of veri-
fication (or validation) is not, in principle, a transition sys-
tem (i.e., the representation of the possible execution traces
of a program); instead, Alloy ’s target is in the description
and analysis of structural properties of systems [21]. Nev-
ertheless, model checking techniques might be useful for the
verification of properties regarding traces of executions of
Alloy specifications. In fact, as demonstrated in [24], there
exists an interest in describing and analysing the possible
behaviors of systems specified in Alloy ; furthermore, as we
said, it is one of our aims to contribute to a better charac-
terisation of these behaviors. The description of executions
proposed in [24], by introducing system traces, clock ticks,
etc, as part of the model of the system, obscures the differ-
ences between what is the description of the system itself and
what is part of the machinery necessary for “talking about
executions”. We believe that this unstructured merge of
the system description and the characterisation of behaviors
would complicate the possibility of applying model checking
techniques to verify properties of executions. Our approach,

on the other hand, clearly separates the two different levels
of specification, leaving the description of executions to the
upper layer dynamic logic. Model checking would then be
more easily applicable.

We restrict ourselves to the study of a well organised and
simple characterisation of executions of Alloy specifications.
The exact difficulties related to the use of model checking
techniques for the analysis of properties regarding execu-
tions of Alloy specifications are beyond the scope of this
paper.

1.3 Structure of the Paper
The remainder of this paper is organised as follows. In

Section 2, we present a description of the syntax and seman-
tics of the current version of standard Alloy , as presented in
[24]. In Section 3, we present the main features of Alloy and
some of its shortcomings; we also discuss some, in our opin-
ion, desirable improvements to the language. In Section 4,
we introduce the fork relational logic FRL, and present a se-
mantics preserving mapping from RL to FRL that allows for
deduction of RL properties in FRL. In Section 5 we extend
Alloy to DynAlloy by adding features from dynamic logic,
and show how properties of executions can be represented
in DynAlloy. We also show how to analyze DynAlloy using
the Alloy Analyzer. In Section 6 we present a complete de-
ductive calculus for DynAlloy. In Section 7 we present an
extension of the theorem prover PVS in order to verify FDL
specifications. Finally, in Section 8 we present our conclu-
sions and proposals for further work.

2. THE ALLOY SPECIFICATION LANGUAGE
In this section, we introduce the reader to the Alloy spec-

ification language, by means of an example extracted from
[24]. This example serves as a means for illustrating the
standard features of the language and their associated se-
mantics, and will also help us demonstrate the shortcomings
we wish to overcome.

Suppose we want to specify a systems involving memories
with cache. We might recognise that, in order to specify
memories, datatypes for data and addresses are especially
necessary. We can then start by indicating the existence
of disjoint sets (of atoms) for data and addresses, which in
Alloy are specified using signatures:

sig Addr { } sig Data { }

These are basic signatures. We do not assume any special
properties regarding the structures of data and addresses.

With data and addresses already defined, we can now
specify what constitutes a memory. A possible way of defin-
ing memories is by saying that a memory consists of set of
addresses, and a (total) mapping from these addresses to
data values:

sig Memory {
addrs: set Addr
map: addrs ->! Data

}

The symbol “!” in the above definition indicates that “map”
is functional and total (for each element a of addrs, there
exists exactly one element d in Data such that map(a) = d).

Alloy allows for the definition of signatures as subsets of
the set denoted by other “parent” signature. This is done
via what is called signature extension. For the example, one

could define other (perhaps more complex) kinds of memo-
ries as extensions of the Memory signature:

sig MainMemory extends Memory {}

sig Cache extends Memory {
dirty: set addrs

}

With these definitions, MainMemory and Cache are special
kinds of memories. In caches, a subset of addrs is recognised
as dirty.

A system might now be defined to be composed of a main
memory and a cache:

sig System {
cache: Cache
main: MainMemory

}

As the previous definitions show, signatures are used to
define data domains and their structure. The attributes
of a signature denote relations. For instance, the “addrs”
attribute in signature Memory represents a binary relation,
from memory atoms to sets of atoms from Addr. Given a set
m (not necessarily a singleton) of Memory atoms, m.addrs
denotes the relational image of m under the relation denoted
by addrs. This leads to a relational view of the dot notation,
which is simple and elegant, and preserves the intuitive nav-
igational reading of dot, as in object orientation. Signature
extension, as we mentioned before, is interpreted as inclu-
sion of the set of atoms of the extending signature into the
set of atoms of the extended signature.

In Fig. 2, we present the grammar and semantics of Alloy ’s
relational logic. An important difference with respect to the
previous version of Alloy , as presented in [21], is that expres-
sions now range over relations of arbitrary rank, instead of
being restricted to binary relations. Composition of binary
relations is well understood; but for relations of higher rank,
the following definition for the composition of relations has
to be considered:

R ;S = {〈a1, . . . , ai−1, b2, . . . , bj〉 :

∃b (〈a1, . . . , ai−1, b〉 ∈ R ∧ 〈b, b2, . . . , bj〉 ∈ S)} .

Operations for transitive closure and transposition are
only defined for binary relations. Thus, function X in Fig. 2
is partial.

2.1 Operations in a Model
So far, we have just shown how the structure of data do-

mains can be specified in Alloy . Of course, one would like
to be able to define operations over the defined domains.
Following the style of Z specifications, operations in Alloy
can be defined as expressions, relating states from the state
space described by the signature definitions. Primed vari-
ables are used to denote the resulting values, although this
is just a convention, not reflected in the semantics.

In order to illustrate the definition of operations in Alloy ,
consider, for instance, an operation that specifies the writing
of a value to an address in a memory:

fun Write(m, m’: Memory, d: Data, a: Addr) {
m’.map = m.map ++ (a -> d)

}

problem ::= decl∗form
decl ::= var : typexpr
typexpr ::=
type
| type → type
| type ⇒ typexpr

form ::=
expr in expr (subset)
|!form (neg)
| form && form (conj)
| form || form (disj)
| all v : type/form (univ)
| some v : type/form (exist)

expr ::=
expr + expr (union)
| expr & expr (intersection)
| expr− expr (difference)
|∼ expr (transpose)
| expr.expr (navigation)
| +expr (transitive closure)
| {v : t/form} (set former)
| V ar

V ar ::=
var (variable)
| V ar[var] (application)

M : form → env → Boolean
X : expr → env → value
env = (var + type) → value
value = (atom× · · · × atom)+

(atom → value)

M [a in b]e = X[a]e ⊆ X[b]e
M [!F]e = ¬M [F]e
M [F&&G]e = M [F]e ∧M [G]e
M [F || G]e = M [F]e ∨M [G]e
M [all v : t/F] =∧

{M [F](e⊕ v7→{ x })/x ∈ e(t)}
M [some v : t/F] =∨

{M [F](e⊕ v7→{ x })/x ∈ e(t)}

X[a + b]e = X[a]e ∪X[b]e
X[a&b]e = X[a]e ∩X[b]e
X[a− b]e = X[a]e \X[b]e
X[∼ a]e = { 〈x, y〉 : 〈y, x〉 ∈ X[a]e }
X[a.b]e = X[a]e ;X[b]e
X[+a]e = the smallest r such that

r ;r ⊆ r and X[a]e ⊆ r
X[{v : t/F}]e =
{x ∈ e(t)/M [F](e⊕ v7→{ x })}

X[v]e = e(v)
X[a[v]]e = {〈y1, . . . , yn〉/
∃x. 〈x, y1, . . . , yn〉 ∈ e(a) ∧ 〈x〉 ∈ e(v)}

Figure 2: Grammar and semantics of Alloy

The intended meaning of this definition can be easily un-
derstood, having in mind that m’ is meant to denote the
memory (or memory state) resulting of the application of
function Write, a -> d denotes the ordered pair 〈a, d〉, and
++ denotes relational overriding, defined by2

R++S =

{ 〈a1, . . . , an〉 : 〈a1, . . . , an〉 ∈ R ∧ a1 /∈ dom (S) } ∪ S .

We have already seen a number of constructs available
in Alloy , such as the dot notation and signature exten-
sion, that resemble object oriented definitions. Operations,
however, represented by functions in Alloy , are not “at-
tached” to signature definitions, as in traditional object-
oriented approaches. Instead, functions describe operations
of the whole set of signatures, i.e. the model. So, there is
no notion similar to that of class, as a mechanism for en-
capsulating data (attributes) and behavior (operations or
methods).

In order to illustrate a couple of further points, consider
the following more complex function definition:

fun SysWrite(s, s’: System, d: Data, a: Addr) {
Write(s.cache, s’.cache, d, a)
s’.cache.dirty = s.cache.dirty + a
s’.main = s.main

}

There are two important issues exhibited in this function
definition. First, function SysWrite is defined in terms of
the more primitive Write. Second, the use of Write takes
advantage of the hierarchy defined by signature extension:
note that function Write was defined for memories, and in
SysWrite it is being “applied” to cache memories.

As explained in [24], an operation that flushes lines from a
cache to the corresponding memory is necessary in order to
have a realistic model of memories with cache, since usually

2Given a n-ary relation R, dom (R) denotes the set
{ a1 : ∃a2, . . . , an such that 〈a1, a2, . . . , an〉 ∈ R }.

caches are smaller than main memories. A (nondetermin-
istic) operation that flushes information from the cache to
main memory can be specified in the following way:

fun Flush(s, s’: System) {
some x: set s.cache.addrs {

s’.cache.map = s.cache.map - { x->Data }
s’.cache.dirty = s.cache.dirty - x
s’.main.map = s.main.map ++
{a: x, d: Data | d = s.cache.map[a]}

}
}

In the third line of the above definition of function Flush,
x->Data denotes all the ordered pairs whose domains fall
into the set x, and that range over the domain Data. Func-
tion Flush will be used in Section 4.1.5to illustrate one of
the main problems that we try to solve.

Functions can also be used to represent special states. For
instance, we can characterise the states in which the cache
lines not marked as dirty are consistent with main memory:

fun DirtyInv(s: System) {
all a : !s.cache.dirty |

s.cache.map[a] = s.main.map[a] }
(1)

In this context, the symbol “!” denotes negation, indicating
in the above formula that “a” ranges over atoms that are
non dirty addresses.

2.2 Properties of a Model
As the reader might expect, a model can be enhanced

by adding properties (axioms) to it. These properties are
written as logical formulas, much in the style of the Object
Constraint Language [31]. Properties or constraints in Alloy
are defined as facts. To give an idea of how constraints or
properties are specified, we reproduce some here. It might
be necessary to say that the sets of main memories and cache
memories are disjoint:

fact {no (MainMemory & Cache)}
In the above expression, “no x” indicates that x has no
elements, and & denotes intersection. Another important
constraint inherent to the presented model is that, in ev-
ery system, the addresses of its cache are a subset of the
addresses of its main memory:

fact {all s: System | s.cache.addrs in s.main.addrs}
More complex facts can be expressed by using the quite

considerable expressive power of the relational logic.

2.3 Assertions
Assertions are the intended properties of a given model.

Consider, for instance, the following simple Alloy assertion,
regarding the presented example:

assert {
all s: System | DirtyInv(s) && no s.cache.dirty

=> s.cache.map in s.main.map
}

This assertion states that, if “DirtyInv” holds in system “s”
and there are no dirty addresses in the cache, then the cache
agrees in all its addresses with the main memory.

Assertions are used to check specifications. Using the Al-
loy analyzer, it is possible to validate assertions, by searching
for possible counterexamples for them, under the constraints
imposed in the specification of the system.

3. FEATURES AND DEFICIENCIES OF AL-
LOY

In this section, we summarise what are, to our under-
standing, the main features and deficiencies of the Alloy
language.

Alloy is a formal specification language which has, as any
other formal specification language, a formal syntax and se-
mantics. Contrary to the approach of most model oriented
formal specification languages, such as Z [38], VDM [25] or
B [1], Alloy ’s semantics is strongly based on the use of re-
lations. A main distinguishing characteristic of Alloy , that
we mentioned before in this paper, is that it has been de-
signed with the goal of making specifications automatically
analysable. This restriction forced the developers of Alloy
to keep the language simple, not including even simple data
types such as integers, floats, rationals or lists.

Alloy has evolved significantly since its origins. Although
the language is rather simple, it is surprisingly expressive,
especially useful for the description of the structure of sys-
tems and their properties. Some of the important features
of Alloy ’s current version, as described in [21], are the fol-
lowing:

• Fulfilling the goal of an analysable language made Alloy
a simple language, with a clear and elegant semantics
based on relations.

• Regardless of its simplicity, Alloy supports some con-
structs which resemble common idioms of object mod-
eling. Perhaps this feature is one of the main reason
why Alloy reaches a broader audience than that of
some other formal specification languages. Also thanks
to this characteristic of the language, Alloy can be re-
garded as a suitable alternative for the Object Con-
straint Language (OCL) [31]. The well defined and
concise syntax of Alloy is much easier to understand
than the, in our opinion, rather cumbersome OCL
grammar presented in [31]. A similar argument ap-
plies when comparing Alloy and OCL with respect to
their semantics. OCL’s attempt to describe the various
constructs of object modeling led to a cumbersome, in-
complete, and perhaps even inconsistent semantics [4].

• The syntax of Alloy , which includes both a textual and
a graphical notations, is based on a small underlying
formalism, RL, with few constructs. The relational
semantics of RL allows one to refer with the same sim-
plicity to relations, sets and individual atoms.

Alloy also has some, to our understanding, important defi-
ciencies. As we have explained, we are interested in address-
ing two main drawbacks of Alloy ; these are the following:

• Alloy was designed with the goal of making specifica-
tions automatically analysable by means of SAT solv-
ing based techniques. Theorem proving was not then
considered a critical issue in the design of the language
and its underlying foundations.

Fully automatic techniques have limitations. In the
case of Alloy , SAT solving based analysis allows one
to validate a property of a specification, but we can-
not use the analysis for proper verification. There is
some evidence of the fact that (semi automated) de-
duction can be used successfully, especially in combi-
nation with fully automatic analysis. The Stanford

Temporal Prover (STeP) [28], for instance, is a good
example of a tool combining, with great success, fully
automatic verification (in this case, model checking)
with semi automated deduction.

Providing Alloy with theorem proving is not a particu-
larly complicated task. As we mentioned, Arkoudas et
al. [3] have even implemented a tool for theorem prov-
ing in Alloy . However, their calculus resorts to the set-
theoretical definition of Alloy’s operators, thus loosing
the purely relational flavor of Alloy. Actually, it is not
clear whether a complete, purely relational calculus for
Alloy even exists. Completeness is an advantageous
feature, because it expresses the fact that one has all
the deductive power one might need; in other words,
all the statements (expressible in the logic) which are
consequences of the axioms of a specification are prov-
able, if one counts on a complete proof system for the
logic.

Despite the fact that a complete proof calculus for
RL has not yet been found, we present in Section 6
a complete deductive system for FRL, a logic extend-
ing Alloy ’s foundational formalism RL.

• Whereas Alloy makes a great choice for describing
structural properties of systems, the language is, in
our opinion, inappropriate for the description of prop-
erties regarding behaviors of systems. This is due to
a particularity of Alloy , inherited from Z: specifica-
tions are descriptions of the static aspects of systems,
such as structural invariants and the like, but one has
no direct way of expressing facts regarding execution
traces.

In [24], Jackson et al. present a methodology for check-
ing properties of executions in Alloy . The method pre-
sented in [24] consists of the representation, together
with the static description of a system, of its execution
traces. It involves incorporating into the model of a
system elements such as a sort for its finite traces, op-
erations for clock ticks, first and last points in a trace,
etc. In this context, checking if a given assertion is
invariant under the execution of some operations is re-
duced to checking for the validity of the assertion in the
last element of every finite trace. Since the model of
execution traces is incorporated as part of the system
description, SAT solving based analysis is still appli-
cable.

Although this approach is sound, we believe it is not
the best way of tackling Alloy ’s limitations with re-
spect to the description of behaviors. This is because
of, essentially, two reasons: first, when a software engi-
neer writes an assertion, validating the assertion should
not demand additional modeling efforts; second, in or-
der to keep an appropriate separation of concerns in
the modeling activity, the static and dynamic parts of
system description should be clearly identifiable.

Our proposal in order to overcome this problem is pre-
sented in Section 5. It consists of extending Alloy to a
more expressive specification language, called dynamic
Alloy (DynAlloy), which separates the static and dy-
namic aspects of a specification in a simple and better
organised manner. DynAlloy supports the description
of assertions regarding executions. DynAlloy can then

be interpreted over a dynamic logic extending FRL.
A SAT solving based analysis, similar to that defined
for standard Alloy , can be provided in order to vali-
date properties regarding execution traces in DynAlloy.
Also, the dynamic logic over FRL admits a complete
proof system. Therefore, we are also able to do theo-
rem proving regarding properties of executions.

• In the definition of some necessary elements of a sys-
tem specification, such as sequencing of operations, or
even specifications as the one for function Flush (see
Section 2.1), one may require higher-order formulas.
Quoting Alloy ’s developers:

“Sequencing of operations presents more of a
language design challenge than a tractability
problem. Following Z, one could take the
formula op1;op2 to be short for

some s : state/op1(pre, s) and op2(s, post)

but this calls for a second-order quantifier.”
(cf. [21, Section 6.2])

A partial solution to this problem was proposed in
[24], consisting of a treatment for operation compo-
sition via the use of signatures. However, higher-order
quantifiers are still used within specifications. For in-
stance, the definition of function Flush uses a higher-
order quantifier over unary relations (sets).

Our approach, combining the fork-algebraic logic and
its dynamic logic extension, has as a side effect the
elimination of the need for higher-order quantification.

4. A COMPLETE EQUATIONAL CALCU-
LUS FOR ALLOY, BASED ON FORK AL-
GEBRAS

In most papers the semantics of Alloy’s relational logic is
defined in terms of binary relations. The current semantics
[24] is given in terms of relations of arbitrary finite arity.
The formalism FRL that we will present goes back to binary
relations. This was our choice for the following three main
reasons:

1. Alloys relational logic operations such as transposition
or transitive closure are only defined on binary rela-
tions.

2. There exists a complete calculus for reasoning about
binary relations with certain operations (to be pre-
sented next).

3. It is possible (and we will show how) to deal with re-
lations of rank higher than 2 within the framework of
binary relations we will use.

4.1 Closure Fork Algebras
Fork algebras [14] are described through few equational

axioms. The intended models of these axioms are structures
called proper fork algebras, in which the domain is a set of
binary relations (on some base set, let us say B), closed
under the following operations for sets:

• union of two binary relations, denoted by ∪,

• intersection of two binary relations, denoted by ∩,

• complement of a binary relation, denoted, for a binary
relation r, by r,

• the empty binary relation, which does not relate any
pair of objects, and is denoted by ∅,

• the universal binary relation, namely, B×B, that will
be denoted by 1.

Besides the previous operations for sets, the domain has to
be closed under the following operations for binary relations:

• the identity relation (on B), denoted by Id.

• transposition of a binary relation. This operation swaps
elements in the pairs of a binary relation. Given a bi-
nary relation r, its transposition is denoted by r̆,

• composition of two binary relations, which, for binary
relations r and s is denoted by r ;s.

Finally, a binary operation called fork is included, which re-
quires the base set B to be closed under an injective function
? : B ×B → B. This means that there are elements x in B
that are the result of applying the function ? to elements y
and z. Since ? is injective, x can be seen as an encoding of
the pair 〈y, z〉. The application of fork to binary relations
R and S is denoted by R∇S, and its definition is given by:

R∇S = { 〈a, b ? c〉 : 〈a, b〉 ∈ R and 〈a, c〉 ∈ S } .

Closure fork algebras are then obtained from fork algebras
by adding reflexive–transitive closure, which, for a binary
relation r, is denoted by r∗.

Once the class of proper closure fork algebras has been
presented, it is axiomatized with the following formulas and
inference rules. These give raise to the Fork Relational Logic,
that we will denote by FRL.

1. Your favorite set of equations axiomatizing Boolean
algebras. These axioms define the meaning of union,
intersection, complement, the empty set and the uni-
versal relation.

2. Formulas defining composition of binary relations, trans-
position, reflexive–transitive closure and the identity
relation:

x; (y ;z) = (x;y) ;z,
x;Id = Id;x = x,
(x;y) ∩ z = ∅ iff (z ; y̆) ∩ x = ∅ iff (x̆;z) ∩ y = ∅.

3. Formulas defining the operator ∇:

x∇y = (x; (Id∇1)) ∩ (y ; (1∇Id)) ,
(x∇y) ;(w∇z)̆ = (x;w̆) ∩ (y ; z̆) ,
(Id∇1)̆ ∇(1∇Id)̆ ≤ Id.

4. Formulas defining reflexive-transitive closure:

x∗ = Id ∪ (x;x∗) ,
x∗ ;y ;1 ≤ (y ;1) ∪

(
x∗ ;(y ;1 ∩ (x;y ;1))

)
.

The inference rules for the calculus are those for equa-
tional logic (see for instance [6, p. 94]), plus the following
equational (but infinitary) proof rule for reflexive-transitive
closure3:

` 1
, ≤ y xi ≤ y ` xi+1 ≤ y

` x∗ ≤ y

3Given i > 0, by xi we denote the relation inductively de-
fined as follows: x1 = x, and xi+1 = x;xi.

The axioms and rules given above define a class of models.
Proper closure fork algebras satisfy the axioms [13], and
therefore belong to this class. It could be the case that
there are models for the axioms that are not proper closure
fork algebras. Fortunately, as was proved in [15] (which
heavily relies on [13]), if a model is not a proper closure
fork algebra then it is isomorphic to one. Notice also that
binary relations are first-order citizens in fork algebras, and
therefore quantification over binary relations is first-order.

In Section 4.1.3we will need to handle fork terms involv-
ing variables denoting relations. Following the definition of
the semantics of Alloy, we define a mapping Y that, given an
environment in which these variables receive values, homo-
morphically allows to calculate the values of terms. We also
present a mapping that allows us to assign semantics to fork
algebraic equations. The definitions are given in Fig. 3. The
set U is the domain of a proper fork algebra, and therefore
a set of binary relations.

Y : expr→ env → U
N : expr× expr→ env → Boolean
env = (var + type)→ U.

Y [∅]e = smallest element in U
Y [1]e = largest element in U

Y [a]e = Y [a]e
Y [a ∪ b]e = Y [a]e ∪ Y [b]e
Y [a ∩ b]e = Y [a]e ∩ Y [b]e
Y [ă]e = (Y [a]e)̆
Y [Id]e = Id
Y [a;b]e = Y [a]e;Y [b]e
Y [a∇b]e = Y [a]e∇Y [b]e
Y [a∗]e = (Y [a]e)∗

Y [v]e = e(v)

N [t1, t2]e = (Y [t1]e = Y [t2]e)

Figure 3: Semantics of fork terms and equations
involving variables.

4.1.1 Representing Objects and Sets
We will represent sets by binary relations contained in the

identity relation. Thus, for an arbitrary type t and an en-
vironment env , env(t) ⊆ Id must hold. That is, for a given
type t, its meaning in an environment env is a binary rela-
tion contained in the identity binary relation. Similarly, for
an arbitrary variable v of type t, env(v) must be a relation
of the form { 〈x, x〉 }, with 〈x, x〉 ∈ env(t). This is obtained
by imposing the following conditions on env(v)4:

env(v) ⊆ env(t),
env(v);1;env(v) = env(v),
env(v) 6= ∅ .

Actually, given binary relations x and y satisfying the
properties:

y ⊆ Id, x ⊆ y, x;1;x = x, x 6= ∅, (2)

it is easy to show that x must be of the form { 〈a, a〉 } for
some object a. Thus, given an object a, by a we will also
4The proof requires relation 1 to be of the form B × B for
some nonempty set B.

denote the binary relation { 〈a, a〉 }. Since y represents a
set, by x : y we assert the fact that x is an object of type y,
which implies that x and y satisfy the formulas in (2).

4.1.2 Representing and Navigating Relations of Higher
Rank in Fork Algebras

In a proper fork algebra the relations π and ρ defined by

π = (1
,∇1)̆ , ρ = (1∇1

,
)̆

behave as projections with respect to the encoding of pairs
induced by the injective function ?. Their semantics in a
proper fork algebra A whose binary relations range over a
set B, is given by

π = { 〈a ? b, a〉 : a, b ∈ B } ,

ρ = { 〈a ? b, b〉 : a, b ∈ B } .

Given a n-ary relation R ⊆ A1×· · ·×An, we will represent
it by the binary relation

{ 〈a1, a2 ? · · · ? an〉 : 〈a1, . . . , an〉 ∈ R } .

This will be an invariant in the representation of n-ary re-
lations by binary ones.

From fork, π and ρ we can define a new binary operator
called cross (and denoted by ⊗) by

R⊗S = (π ;R) ∇ (ρ ;S) .

From a set-theoretical point of view, cross can be understood
as follows

R⊗S = { 〈a ? b, c ? d〉 : 〈a, c〉 ∈ R ∧ 〈b, d〉 ∈ S } .

Recalling signature Memory, attribute map stands in Al-
loy for a ternary relation

map ⊆ Memory × addrs×Data .

In our framework it becomes a binary relation map whose
elements are pairs of the form 〈m, a ? d〉 for m : Memory , a :
Addr and d : Data. We will in general denote the encoding
of a relation C as a binary relation, by C. Given an object (in
the relational sense — cf. 4.1.1) m : Memory, the navigation
of the relation map through m should result in a binary
relation contained in Addr×Data. Given a relational object
a : t and a binary relation R encoding a relation of rank
higher than 2, we define the navigation operation • by

a •R = π̆ ;Ran (a;R) ;ρ . (3)

Operation Ran in (3) returns the range of a relation as a
partial identity. It is defined by

Ran (x) = (x;1) ·1, .

Its semantics in terms of binary relations is given by

Ran (R) = { 〈a, a〉 : ∃b s.t. 〈b, a〉 ∈ R } .

If we denote by x R y the fact that x and y are related
via the relation R, then Fig. 4 gives a graphical explanation
of operation •.

For a binary relation R representing a relation of rank 2,
navigation is easier. Given a relational object a : t, we define

a •R = Ran (a;R) .

y ��
@@

π̆
y

?

z

Ran(x a x R
z
?
y

)
z

?

y

��
@@ ρ

z

Figure 4: Semantics of •

Going back to our example about memories, it is easy to
check that for a relational object m′ : Memory such that
m′ = { 〈m, m〉 },

m′ •map = {〈a, d〉 :

a ∈ Addr , d ∈ Data and 〈m, a ? d〉 ∈ map} .

4.1.3 Translating Alloy Formulas to Fork Algebra
Equations

In this section we will deal with the problem of translating
a RL formula to a FRL equation in a way such that validity of
the original formula in RL equivales proving the translation
in the equational calculus FRL. Regarding Fig. 1, in this
section we deal with the portion depicted in Fig. 5.

RL FRL

Alloy

-
is interpreted

Figure 5: Relationships among the formalisms.

Atomic RL formulas can be seen as equations. If we can
translate RL equations to FRL equations, we still have to
deal with Boolean connectives and quantifiers. Fortunately,
as we will show next, Boolean combinations of RL equations
can be reduced to a single RL equation, and therefore can be
easily translated to FRL. At the end of the section we will
show how to handle quantified equations.

It is well known [39, p. 26] that Boolean combinations of
relation algebraic equations can be translated into a single
equation of the form R = 1. Since Alloy terms are typed,
the translation must be modified slightly. We denote by
1 the untyped universal relation. By 1k we will denote the
universal k-ary relation. The transformation, for n-ary Alloy
terms a and b, is:

a in b ; (1n − a) + b = 1n

For a formula of the form !(a = 1n), we reason as follows:

!(a = 1n) ⇐⇒ !(1n − a = 0) .

Now, from a nonempty n-ary relation, we must generate a
universal n-ary relation. Notice that if 1n − a is nonempty,
then 11.(1n−a) is nonempty, and has arity n−1. Thus, the

term

11.(· · · .(11︸ ︷︷ ︸
n−1

.(1n − a)) · · ·)

yields a nonempty 1-ary relation. If we post compose it with
12, we obtain the universal 1-ary relation. If the resulting
relation is then composed with the (n + 1)-ary universal
relation, we obtain the desired n-ary universal relation. We
then have

!(a = 1n) ; (11.(· · · .(11︸ ︷︷ ︸
n−1

.(1n − a)) · · ·).12).1n+1 = 1n .

If we are given a formula of the form

a = 1n && b = 1m,

with n = m, then the translation is trivial:

a = 1n && b = 1m ; a&b = 1n .

If m > n, we will convert a into a m-ary relation a′ such
that a′ = 1m if and only if a = 1n. Let a′ be defined as

a.Id3.1m−n+1 .

Then,

a = 1n && b = 1m ; a′&b = 1m .

Therefore, we will assume that whenever a quantifier oc-
curs in a formula, it appears being applied to an equation
of the form t = 1n, where t is a RL term, and n ∈ IN. RL
term t may contain variables. Since variables in RL stand
for single objects, if term t contains variables x1, . . . , xm, it
will be translated to a term Tm(t) such that

〈x, y〉 ∈ t(b1, . . . , bm)

⇐⇒ 〈(b1 ? · · · ? bm) ? x, (b1 ? · · · ? bm) ? y〉 ∈ Tm(t) .

If we define relations Xi(1 ≤ i ≤ k) by

Xi =

{
ρ ;(i−1) ;π if 1 ≤ i < k,

ρ ;(i−1) if i = k ,

an input a1 ? · · · ? ak is related through term Xi to ai. No-
tice then that the term Dom (π ;Xi ∩ ρ) filters those inputs
(a1 ? · · · ? ak) ? b in which ai 6= b (i.e., the value b is bound
to be ai). The translation is defined as follows:

Tm(C) = (IdS1⊗ · · · ⊗IdSm) ⊗C,
Tm(xi) = Dom (π ;Xi ∩ ρ) ,
Tm(r+s) = Tm(r) ∪ Tm(s),
Tm(r&s) = Tm(r) ∩ Tm(s),

Tm(r − s) = Tm(r) ∩ Tm(s) ∩ ((IdS1⊗ · · · ⊗IdSm) ⊗1) ,
Tm(∼ r) = Tm(r)̆ ,
Tm(+r) = Tm(r);Tm(r)∗.

In order to define the translation for navigation r.s and
application s[v], we need to distinguish whether s is a binary
relation, or if it has greater arity. The definition is as follows:

Tm(r.s) =

{
Tm(r) • Tm(s) if s is binary,

Tm(r) • (Tm(s); ((1
,⊗π)∇(1

,⊗ρ))) otherwise.

Tm(s[v]) =

{
Tm(v) • Tm(s) if s is binary,

Tm(v) • (Tm(s); ((1
,⊗π)∇(1

,⊗ρ))) otherwise.

In case there are no quantified variables, there is no need
to carry the values on, and the translation becomes:

T0(C) = C,
T0(r+s) = T0(r) ∪ T0(s),
T0(r&s) = T0(r) ∩ T0(s),

T0(r − s) = T0(r) ∩ T0(s),
T0(∼ r) = T0(r)̆ ,
T0(+r) = T0(r);T0(r)

∗,
T0(r.s) = T0(r) • T0(s),
T0(s[r]) = T0(r) • T0(s) .

It is now easy to prove a theorem establishing the relation-
ship between RL terms and their corresponding translation.
Notice that for every environment e:

• Given a type T , e(T) is a nonempty set.

• Given a variable v, e(v) is a n-ary relation for some
n ∈ IN.

We define the environment e′ by:

• Given a type T , e′(T) = { 〈a, a〉 : a ∈ e(T) }.

• Given a variable v such that e(v) is a n-ary relation,

e′(v) =

{ 〈a, a〉 : a ∈ e(v) } if n = 1,

{〈a1, a2 ? · · · ? an〉 :

〈a1, a2, . . . , an〉 ∈ e(v)} otherwise.

For the theorem we assume that whenever the transpose
operation or the transitive closure occur in a term, they af-
fect a binary relation. Notice that this is the assumption
in [24]. We also assume that whenever the navigation op-
eration is applied, the argument on the left-hand side is a
unary relation (set). This is because our representation of
relations of arity greater than two makes defining the gen-
eralized composition more complicated than desirable. At
the same time, use of navigation in object-oriented settings
usually falls in the situation modeled by us. With the aim of
using a shorter notation, the value (according to the stan-
dard semantics) of a term t in an environment e will be
denoted by e(t) rather than by X[t]e. Similarly, the value
in FRL of a term t in an environment e′ will be denoted by
e′(t) rather than by Y [t]e′. In order to simplify notation, we
will denote by b? the element b1 ? · · · ? bm.

Theorem 4.1. For every Alloy term t such that:

1. X[t]e defines a n-ary relation,

2. there are m free variables x1, . . . , xm in t,

Y [Tm(t)]e′ =
{〈b? ? a, b? ? a〉 :

a ∈ X[t]e(b 7→ x)
}

if n = 1

{〈b? ? a1, b
? ? (a2 ? · · · ? an)〉 :

〈a1, . . . , an〉 ∈ X[t]e(b 7→ x)
}

if n > 1

Proof. The proof follows by induction on the structure
of term t. As a sample we prove it for the variables, the
remaining cases being simple applications of the semantics
of the fork algebra operators.

If v is a quantified variable (namely, xi), then e(t) is a
unary relation.

e′ (Tm(xi))

= e′ (Dom (π ;Xi ∩ ρ)) (by def. Tm)

= { 〈b? ? a, b? ? a〉 : a = bi } (by semantics)

= { 〈b? ? a, b? ? a〉 : a ∈ { bi } } (by set theory)

=
{
〈b? ? a, b? ? a〉 : a ∈

(
e(b 7→ x)

)
(xi)

}
.

(by def. e(b 7→ x))

If v is a variable distinct of x1, . . . , xm, there are two pos-
sibilities.

1. e(v) denotes a unary relation.

2. e(v) denotes a n-ary relation with n > 1.

If e(v) denotes a unary relation,

e′ (Tm(v))

= e′ ((IdS1⊗ · · · ⊗IdSm) ⊗v) (by def. Tm)

= (IdS1⊗ · · · ⊗IdSm) ⊗e′(v) (by semantics)

= (IdS1⊗ · · · ⊗IdSm) ⊗ { 〈a, a〉 : a ∈ e(v) } (by def. e′)

= { 〈b? ? a, b? ? a〉 : a ∈ e(v) } (by semantics)

=
{
〈b? ? a, b? ? a〉 : a ∈ (e(b 7→ x)))(v)

}
.

(by def. e(b 7→ x))

If e(v) denotes a n-ary relation (n > 1),

e′ (Tm(v))

= e′ ((IdS1⊗ · · · ⊗IdSm) ⊗v) (by def. Tm)

= (IdS1⊗ · · · ⊗IdSm) ⊗e′(v) (by semantics)

= (IdS1⊗ · · · ⊗IdSm) ⊗
{ 〈a1, a2 ? · · · ? an〉 : 〈a1, . . . , an〉 ∈ e(v) } (by def. e′)

= { 〈b? ? a1, b
? ? (a2 ? · · · ? an)〉 : 〈a1, . . . , an〉 ∈ e(v) }

(by semantics)

= {〈b? ? a1, b
? ? (a2 ? · · · ? an)〉 :

〈a1, . . . , an〉 ∈ (e(b 7→ x)))(v)
}

. (by def. e(b 7→ x))

In order to translate a RL formula α we will assume the
following:

• If a subformula of α is a Boolean combination of atomic
formulas, then, before translating α, β has been con-
verted to a single equation of the form R = 1n follow-
ing the procedure explained at the beginning of this
section.

• Before translating α, all the negations have been pushed
into the formula as much as possible, using simple valid
transformations such as:

¬¬β ; β,

¬(β ∨ γ) ; ¬β ∧ ¬γ,

¬(β ∧ γ) ; ¬β ∨ ¬γ,

¬(∃x : S)β ; (∀x : S)¬β,

¬(∀x : S)β ; (∃x : S)¬β,

Notice that this implies that negations will only appear
next to atomic formulas. Therefore, in virtue of the
item above, no negation appears in α at all.

In the next paragraphs we will define a mapping T ′
m (where

m is the number of variables that might occur free in the
formula being translated) that will allow us to translate RL
formulas to FRL terms. We then define function RL 7→ FRL
(mapping RL sentences to FRL equations) on a sentence α
by the condition

RL 7→ FRL(α)
def
= T ′

0(α) = 1 .

atomic: Let α be the atomic formula t = 1n (where m vari-
ables x1, . . . , xm occur free in term t). Notice that according
to Thm. 4.1, Tm(t) is a binary relation whose elements are
pairs

〈(b1 ? · · · ? bm) ? a1, (b1 ? · · · ? bm) ? (a2 ? · · · ? an)〉 .

From the set-theoretical definition of fork and the remain-
ing relational operators, it follows that5

〈(b1 ? · · · ? bm) ? a1, (b1 ? · · · ? bm) ? (a2 ? · · · ? an)〉 ∈ Tm(t)

⇐⇒
((b1 ? · · · ? bm) ? a1) ? (a2 ? · · · ? an) ∈ ran (Id ∇ Tm(t);ρ)

⇐⇒
〈((b1 ? · · · ? bm) ? a1) ? (a2 ? · · · ? an), c〉 ∈

Ran (Id ∇ Tm(t);ρ) ;1 .

Formula α states that every n-tuple belongs to the se-
mantics of t. Therefore, we must quantify universally over
all values a1, a2, . . . , an. We define (for a variable xi of sort
S) the relational term ∃xi as follows6:

∃xi = X1∇ · · · ∇Xi−1∇1S∇Xi+1∇ · · · ∇Xk .

For instance, if k = 3, we have ∃x2 = X1∇1S∇X3. This
term defines the binary relation

{ 〈a1 ? a3, a1 ? a2 ? a3〉 : a2 ∈ S } .

Notice that term ∃x2 generates all possible values for vari-
able x2. Given a term t standing for a binary relation with
one free variable, the term

∃x2 ;Ran (Id ∇ T1(t);ρ) ;1

describes the binary relation

{ 〈b1 ? a2, c〉 : (∃a1 : S) (〈b1 ? a1, b1 ? a2〉 ∈ T1(t)) } .

We define †(t) := Ran (Id ∇ Tm(t);ρ) ;1. Term ∃x2 ; † (t)
indeed quantifies variable x2 existentially over the domain
S. Profiting from the interdefinability of ∃ and ∀, the term

(Id⊗Id);∃x2 ;†(t)

allows us to quantify variable x2 universally. We will denote
such a term as ∀x2 † (t).

We then define T ′
m(t = 1n) as (∀a1) · · · (∀an) † (t).

conjunction: Let α = β&&γ. Let m be the maximum
number of variables over individuals free in either β or γ. Let
t1 := T ′

m(β), t2 := T ′
m(γ). We then define T ′

m(α) = t1 ∩ t2.

5Given a binary relation R, ran (R) denotes the set
{ b : ∃a such that 〈a, b〉 ∈ R }.
6We define relation 1S as 1;IdS , the universal binary rela-
tion whose range is restricted to sort S.

disjunction: Let α = β || γ. Let m be the maximum
number of variables over individuals free in either β or γ. Let
t1 := T ′

m(β), t2 := T ′
m(γ). We then define T ′

m(α) = t1 ∪ t2.

existential: Let α = some xi : S | β. We define T ′
m(α) =

∃xi ;T ′
m+1(β). Moving from T ′

m to T ′
m+1 is justified because

there may be a new free variable in β, namely, xi.

universal: Let α = all xi : S | β. We define T ′
m(α) =

∀xiT
′
m+1(β). Moving from T ′

m to T ′
m+1 is justified because

there may be a new free variable in β, namely, xi.
Once the translation T ′

m has been defined, the following
theorem, showing the adequacy of the translation, can be
proved by induction on the structure of RL formulas.

Theorem 4.2. For every RL sentence α, for every envi-
ronment e,

M [α]e ⇐⇒ N [RL 7→ FRL(α)]e′,

where environment e′ is defined as in Thm. 4.1.

Example: Let us consider the following assertion:

some s : System | s.cache.map in s.main.map . (4)

Once converted to an equation of the form R = 1, asser-
tion (4) becomes

some s : System |
(12 − s.cache.map) + s.main.map = 12 . (5)

If we apply translation T1 to the term on the left-hand
side of the equality in (5), it becomes

 IdS

⊗
1

 ∩Dom (π ;Xs ∩ ρ) •
IdS

⊗
cache

•

 IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

∪ Dom (π ;Xs ∩ ρ) •

IdS

⊗
main

•

 IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

 . (6)

Since s is the only variable, Xs = ρ0 = Id, and therefore
(6) becomes

 IdS

⊗
1

 ∩Dom (π ∩ ρ) •
IdS

⊗
cache

•

 IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

∪ Dom (π ∩ ρ) •

IdS

⊗
main

•

 IdS

⊗
map

;
Id⊗π
∇

Id⊗ρ

 . (7)

Certainly (7) is harder to read than the equation in (4).
This can probably be improved by adding appropriate syn-
tactic sugar to the language. Let us denote by E the term
in (7). Following our recipe, applying RL 7→ FRL we arrive
to the following equation

∃s ;∀x∀y (Ran (Id ∇ E ;ρ) ;1) = 1,

which can now be verified equationally in FRL.

4.1.4 AnalyzingFRL

An essential feature of Alloy is its adequacy for automatic
analysis. It is clear that the translation defined in Section
4.1.3 induces a new semantics for RL formulas in terms of
fork algebras. That is, given a RL formula α whose FRL
translation is a fork term tα, we can compute the semantics
of tα using function N (cf. Fig. 3). Thus, an immediate

question is what is the impact of this new semantics in the
analysis of Alloy specifications.

In the next paragraphs we will argue that the new seman-
tics can fully profit from the analysis procedure provided
by the Alloy Analyzer. Notice that the Alloy Analyzer is
a refutation procedure. As such, if we want to check if an
assertion α holds in a specification S, we must search for a
model of S ∪ {¬α }. If such a model exists, then we have
found a counterexample that refutes the assertion α. Of
course, since first-order logic is undecidable, this cannot be
a decision procedure. Therefore, the Alloy tool searches for
counterexamples of a bounded size, in which each set of
atoms is bounded to a finite size or “scope”.

A counterexample is an environment, and as such it pro-
vides sets for each type of atom, and values (relations) for
the constants and the variables. We will show now that
whenever a counterexample exists according to Alloy’s stan-
dard semantics, the same is true for the fork algebraic se-
mantics.

Given a specification whose types are T1, . . . , Tn, and a
counterexample assigning to each type Ti a domain Di, let
D be defined as

⋃
1≤i≤n Di.

Once D is defined, we define the set D? by
⋃

0≤i D?
i , where

D?
0 = D ,

D?
n+1 = D?

n ∪ { a ? b : a, b ∈ D?
n } .

Let us consider now the proper fork algebra A whose do-
main is P (D? ×D?), and whose forking operation is de-
fined, for binary relations R and S, by

R∇S = { 〈a, b ? c〉 : a R b ∧ a S c } .

Given a counterexample (environment) e according to the
standard semantics of Alloy, we will build a counterexample
e′ according to the fork-algebraic semantics. Notice that for
an Alloy sentence α and an environment e, Thm. 4.2 shows
that

M [α]e ⇐⇒ N [RL 7→ FRL(α)]e′,

where environment e′ is defined as in Thm. 4.1. Environ-
ment e′ is the sought counterexample.

This shows that all the work that has been done so far to-
ward the analysis of Alloy specifications can be used toward
the verification of Alloy specifications with respect to the
new semantics. The theorem proposes a method for analyz-
ing Alloy specification (according to the new semantics), as
follows:

1. Give the Alloy specification to the current Alloy ana-
lyzer.

2. Get a counterexample, if any exists within the given
scopes.

3. Build a counterexample for the new semantics from the
one provided by the tool. The new counterexample is
defined in the same way environment e′ is defined from
environment e above.

Notice that in Thm. 4.2 we assume that that the fork alge-
bra on which the environment assigns values to variables, is
proper. So the question arises of whether using non proper
fork algebras allows one to verify the same properties that
the Alloy Analyzer does. Actually, the surprising answer is
that it is possible to verify strictly more properties. That

is, there exists at least one problem for which the Alloy An-
alyzer cannot find a counterexample (no matter the scopes
chosen), but for which a small counterexample exists using
non proper fork algebras. In the next paragraphs we will dis-
cuss this briefly. A complete discussion exceeds the scope of
this paper.

The Specification: Assume as given an Alloy specification
stating that a binary relation R is a total ordering.
The Assertion: There are first and last elements for the
ordering R.

This assertion is flawed. Any infinite total ordering pro-
vides a counterexample. Unfortunately, since the Alloy An-
alyzer can only handle finite relations, and every finite total
ordering is bounded, no counterexample will be found, no
matter the scope chosen.

On the other hand, there is a finite representable relation
algebra (actually, it has 8 elements), in which there is a re-
lation that in every representation is a dense linear order
without end points. This relation provides the counterex-
ample.

4.1.5 Eliminating Higher-Order Quantification
We will show now that by giving semantics to Alloy in

terms of fork algebras, higher-order quantifiers are not nec-
essary. We begin with an example. Recalling the specifica-
tion of function Flush in Section 2.1, the specification has
the shape

some x : set t / F . (8)

This is recognized within Alloy as a higher-order formula
[20]. Let us analyze what happens in the modified semantics.
Since t is a type (set), then it stands for a subset of Id.
Similarly, subsets of t are subsets of the identity, which are
contained in t. Thus, formula (8) is an abbreviation for

∃x (x ⊆ t ∧ F) ,

which is a first-order formula when x ranges over binary
relations in a fork algebra.

Regarding the higher-order formulas that appear in the
composition of operations, discussed in Section 3, no higher-
order formulas are required in our setting. Formula

some s : state/op1(pre, s) and op2(s, post) (9)

is first-order with the modified semantics. Operations op1
and op2 can be defined as binary predicates in a first-order
language for fork algebras, and thus formula (9) is first-
order.

So far this result only shows that the newly defined seman-
tics fits better with the language than the standard one. We
are currently working on the application of the new seman-
tics in verification.

5. ADDING DYNAMIC FEATURES TO AL-
LOY

In this section we extend Alloy’s relational logic syntax
and semantics with the aim of dealing with properties of
executions of operations specified in Alloy. Recalling Fig. 1,
in this section we will deal with the portion reproduced in
Fig. 6.

The reason for this extension (called DynAlloy) is that
we want to provide a setting in which, besides functions de-
scribing sets of states, there are actions that actually change

DynAlloy

RL

Alloy

6
is extended

Figure 6: Alloy and its dynamic extension DynAlloy.

states (i.e., they describe relations between input and out-
put data). Actions are built from atomic actions using well
known constructs for sequential programming languages. We
will describe the syntax and semantics of DynAlloy in Section
5.1, but it is worth mentioning at this point that both were
strongly motivated by dynamic logic [18], and the suitability
of dynamic logic for expressing partial and total correctness
assertions. In Section 5.2 we propose a proof method for
dealing with properties of executions. In Section 5.3 we show
how to analyze properties of executions using the Alloy ana-
lyzer, by first computing the weakest liberal precondition of
actions [10]. Finally, in Section 5.4 we present a short case-
study as an example of how this method can be applied to
prove properties of executions of Alloy specifications.

5.1 Functions vs. Actions
Functions in Alloy are just parameterized formulas. Some

of the parameters are considered input parameters, and the
relationship between input and output parameters is carried
out by the convention that the second argument is the result
of the function application. Following [24], the function dom
that yields the domain of a relation is defined as

sig X {} fun dom (r : X → X, d : X){d = r.X} . (10)

Then, if α is a formula with one free variable and we want
to prove that α holds when applied to the domain of the
relation r, (10) is used as follows:

all result : X | dom(r, result)⇒ α(result) .

Notice that there is no real change in the state of the system,
since no variable actually changes its value.

Dynamic logic [18], arose in the early ’70s with the inten-
tion of faithfully reflecting state change. In the following
paragraphs we propose, motivated by its syntax, the use of
actions to model state change in Alloy.

What we would like to say about an action is how it trans-
forms the system state after its execution. We can do this
by using pre and post conditions. An assertion of the form

α
{A}
β

affirms that whenever action A is executed on a state sat-

isfying α, if it terminates, it does so in a state satisfying
β. This approach is particularly appropriate, since behav-
iors described by functions are better viewed as the result of
performing an action on an input state. Thus, a definition
of the function dom has as counterpart a definition of an
action DOM of the form

r = r0 ∧ d = d0

{DOM (r, d)}
r = r0 ∧ d = r.X .

(11)

Although it may be hard to find out what are the differ-
ences between (10) and (11) just by looking at the formulas
(i.e., both formulas seem to provide the same information),
the differences rely in the semantics, as well as the fact that
actions can be sequentially composed, iterated or nondeter-
ministically chosen, while Alloy functions cannot.

The syntax of Alloy’s formulas is the same presented in
Fig. 2, with the addition of the following clause for building
partial correctness statements (we assume that pre and post
conditions are RL formulas):

formula ::= . . . | formula {program} formula
“partial correctness”

The syntax for programs is the one defined in [18] for
the class of regular programs plus a new rule to allow the
construction of atomic actions from their pre and post con-
ditions.

program ::= 〈formula, formula〉 “atomic action”
| formula? “test”
| program + program “non-deterministic choice”
| program ;program “sequential composition”
| program∗ “iteration”

In Fig. 7 we extend the definition of function M to partial
correctness assertions and define the denotational semantics
of programs as binary relations over env . The definition of
function M on a partial correctness assertion makes clear
that we are actually choosing partial correctness semantics.
This follows from the fact we are not requesting environment
e to belong to the domain of the relation P [p]. In order to
assign semantics to atomic actions, we will assume there is a
function A assigning to each atomic action a binary relation
on the environments. We impose the following restriction
on A:

A(〈pre, post〉) ⊆
{ 〈

e, e′
〉

: M [pre]e ∧M [post]e′
}

.

There is a subtle point in the definition of the semantics of
atomic programs. We assume that actions modify certain
variables, and those variables that are not modified retain
their values. Thus, given an atomic action

x = x0

{Add1}
x = x0 + 1

adding 1 to the value of parameter x, it is clear that vari-
able x0 must retain its value. Without this assumption,
the definition we provide accepts awkward pairs of environ-
ments 〈e, e′〉 satisfying, for instance, e(x) = e(x0) = 0, and
e′(x) = 11 and e′(x0) = 10.

5.2 Specifying and Proving Properties of Exe-
cutions: Motivation

Suppose we want to show that a given property P is in-
variant under sequences of applications of the operations

M [α{p}β]e = M [α]e =⇒ ∀e′ (〈e, e′〉 ∈ P [p] =⇒ M [β]e′)

P : program → P (env × env)

P [〈pre, post〉] = A(〈pre, post〉)
P [α?] = { 〈e, e′〉 : M [α]e ∧ e = e′ }
P [p1 + p2] = P [p1] ∪ P [p2]
P [p1 ;p2] = P [p1];P [p2]
P [p∗] = P [p]∗

Figure 7: Syntax and Semantics of DynAlloy.

“Flush”, and “SysWrite” from an initial state. A technique
useful for proving invariance of property P consists of prov-
ing P on the initial states, and proving for every non initial
state and every operation O ∈ {Flush, SysWrite} that

P (s) ∧O(s, s′) ⇒ P (s′) .

This proof method is sound but incomplete, since the in-
variance may be violated in non-reachable states. Of course
it would be desirable to have a proof method in which the
considered states were exactly the reachable ones. This mo-
tivated the introduction of traces in Alloy [24].

The following example, extracted from [24], shows sig-
natures for clock ticks and for traces of states. The first
exclamation mark in the definition of next means it is total
on its declared domain.

sig Tick {}

sig SystemTrace {
ticks: set Tick,
first, last: Tick,
next: (ticks - last) ! → ! (ticks - first),
state: ticks → ! System }

The following “fact” states that all ticks in a trace are
reachable from the first tick, that a property called “Init”
holds in the first state, and finally that the passage from
one state to the next is through the application of one of
the operations under consideration.

fact {
first.next∗ = ticks
Init(first.state)
all t: ticks - last |

some s = t.state, s’ = t.next.state |
Flush (s,s’)
|| some d : Data, a : Addr | SysWrite(s,s’,d,a)

}

If we now want to prove that P is invariant, it suffices to
show that P holds in the final state of every trace. Notice
that non reachable states are no longer a burden because all
the states in a trace are reachable from the states that occur
before.

Even though from a formal point of view the use of traces
is correct, from a modeling perspective it is less than ade-
quate. Traces are introduced in order to cope with the lack
of real state change of Alloy. They allow us to port the
primed variables used in single operations to sequences of
applications of operations.

The specification in DynAlloy of actions SysWrite and
Flush is done as follows:

s = s0

{SysWrite(s: System)}

some d: Data, a: Addr |
s.cache = s0.cache ++ (a→ d) ∧
s.cache.dirty = s0.cache.dirty + a ∧
s.main = s0.main

s = s0

{Flush(s: System)}

some x: set s0.cache.addrs |
s.cache.map = s0.cache.map - x→Data ∧
s.cache.dirty = s0.cache.dirty - x ∧
s.main.map = s0.main.map ++
{a: x, d: Data | d = s0.cache.map[a]}

Notice that the previous specifications are as understand-
able as the ones given in Alloy. Moreover, using partial
correctness statements on the set of regular programs gen-
erated by the set of atomic actions {SysWrite, F lush }, we
can assert the invariance of a property P under finite appli-
cations of functions SysWrite and Flush as follows:

Init(s) ∧ P (s)

{ (SysWrite(s) + Flush(s))∗ }
P (s) .

More generally, suppose now that we want to show that
a property Q is invariant under sequences of applications
of arbitrary operations O1, . . . , Ok, starting from states s
described by a formula Init . Specification of the problem in
our setting is done through the formula

Init ∧Q

{ (O1 + · · ·+ Ok)∗ } (12)

Q .

Notice that there is no need to mention traces in the spec-
ification of the previous properties. This is because finite
traces get determined by the semantics of reflexive-transitive
closure.

5.3 Analysis ofDynAlloy Specifications
As we mentioned throughout the paper, Alloy’s design

was deeply influenced by the intention of producing an au-
tomatically analyzable language. While DynAlloy is better
suited than Alloy for the specification of properties of exe-
cutions, the use of ticks and traces allows one to automati-
cally analyze properties of executions. Therefore, an almost
mandatory question is whether DynAlloy can be automati-
cally analyzed, and if so, what is the effort required to this
end. In this section we show how to analyze DynAlloy auto-
matically using the Alloy analyzer. In [19], a function

MT : formula→ booleanformulatree

allows one to transform Alloy formulas to Boolean formu-
las. These formulas are later on transformed into conjunc-
tive normal form and fed to off-the-shelf SAT-solvers. The

main rationale behind our technique is the translation of
partial correctness assertions to first-order Alloy formulas,
using weakest liberal preconditions [10].

In the next paragraphs we will define a function

wlp : program × formula → formula

that computes the weakest liberal precondition of a for-
mula according to a program. We will in general use names
x1, x2 . . . for program variables, and will use names y1, y2, . . .
for rigid variables, i.e., those auxiliary variables whose val-
ues are not affected by actions. We will denote by α|vx the
substitution of variable x by the fresh variable v in formula
α. For an atomic action 〈pre, post〉 we assume y = y1, . . . , yk

are the rigid variables, and x = x1, . . . , xn the program vari-
ables. Function wlp is then defined as follows:

wlp[〈pre, post〉 , f] = all y
(
pre =⇒ all v

(
post|vx =⇒ f |vx

))
wlp[g?, f] = g =⇒ f
wlp[p1 + p2, f] = wlp[p1, f] ∧ wlp[p2, f]
wlp[p1 ;p2, f] = wlp[p1, wlp[p2, f]]
wlp[p∗, f] =

∧∞
i=0 wlp[pi, f] .

Notice that wlp yields Alloy formulas in all cases except
for the iteration construct, where the resulting formula may
be infinitary. In order to obtain an Alloy formula, we can
impose a bound on the depth of iterations. This equivales
to fixing a maximum length for traces. A function Bwlp
(bounded weakest liberal precondition) is then defined as
wlp except for iteration, where it is defined by:

Bwlp[p∗, f] =

n∧
i=0

Bwlp[pi, f] . (13)

In (13), n is the scope set for the depth of iteration.
We now extend the definition of function MT to partial

correctness statements by the condition:

MT [α {p} β] = MT [α =⇒ Bwlp[p, β]] .

Of course this proof method is not complete, but clearly
it is not meant to be; from the very beginning we placed re-
strictions on the domains involved in the specification to be
able to turn first-order formulas into propositional formulas.
This is just another step in the same direction.

5.4 A short case-study
In this section we will develop a short case-study to show

how this proof method is used. As an instance of (12), let us
consider a system whose cache agrees with main memory in
all non-dirty addresses. A consistency criterion of the cache
with main memory is that after finitely many executions of
SysWrite or Flush, the resulting system must still satisfy
invariant DirtyInv. This property is specified in DynAlloy
by:

all s : System |
DirtyInv(s)

{(SysWrite(s) + Flush(s))∗}
DirtyInv(s) .

(14)

Notice also that if after finitely many executions of SysWrite
and Flush we flush all the dirty addresses in the cache to
main memory, the resulting cache should fully agree with
main memory. In order to specify this property we need
to specify the function that flushes all the dirty cache ad-
dresses. The specification is as follows:

s = s0

{DSFlush(s : System)}

s.cache.dirty = ∅ ∧
s.cache.map = s0.cache.map −

s0.cache.map[s0.cache.dirty] ∧
s.main.map = s0.main.map ++

s0.cache.map[s0.cache.dirty]

We specify the property establishing the agreement of the
cache with main memory as follows:

FullyAgree(s : System)

⇐⇒ s.cache.map in s.main.map .

Once “DSFlush” and “FullyAgree” have been specified,
the property is specified in DynAlloy by:

all s : System |
DirtyInv(s)

{(SysWrite(s) + Flush(s))∗ ;DSFlush(s)}
FullyAgree(s) .

(15)
Now, it only remains to apply function MT to formula

(15) and feed the Alloy analyzer with the resulting formula.

6. A COMPLETE CALCULUS FOR DYNAMIC
ALLOY

In this section we present a complete calculus for reason-
ing about properties specified in DynAlloy. Recalling Fig. 1,
in this Section we deal with the portion reproduced in Fig. 8.

DynAlloy FDL-
is interpreted

Figure 8: Relationships among the formalisms Dy-
nAlloy and FDL.

The formalism FDL (Fork Dynamic Logic) can be suc-
cinctly described as first-order dynamic logic over the equa-
tional theory of fork algebras. The reason for using dynamic
logic is that there is a close relationship between this logic
and partial correctness assertions. In Section 6.1 we present
the syntax and semantics of first-order dynamic logic. In
Section 6.2, dynamic logic is extended with fork algebras.
We then extend function RL 7→ FRL so that it also trans-
lates partial correctness assertions. Finally, in Section 6.3
we present a complete calculus for FDL.

6.1 Dynamic Logic
Dynamic logic is a formalism for reasoning about pro-

grams. From a set of atomic actions (usually assignments of
terms to variables), and using appropriate combinators, it is
possible to build complex actions. The logic then allows us
to state properties of these actions, which may hold or not in
a given structure. Actions can change (as usually programs
do), the values of variables. We will assume that each action

reads and/or modifies the value of finitely many variables.
When compared with classical first–order logic, the essential
difference is the dynamic content of dynamic logic, which is
clear in the notion of satisfiability. While satisfiability in
classical first–order logic depends on the values of variables
in one valuation (state), in dynamic logic it is necessary to
consider two valuations in order to reflect the change of val-
ues of program variables; one valuation holds the values of
variables before the action is performed, and another holds
the values of variables after the action is executed.

Along the section we will assume a fixed (but arbitrary)
finite signature Σ = 〈 s, A, F, P 〉, where s is a sort, A =
{ a1, . . . , ak } is the set of atomic action symbols, F is the
set of function symbols, and P is the set of atomic predicate
symbols. Atomic actions contain input and output formal
parameters. These parameters are later instantiated with
actual variables when actions are used in a specification.

The sets of programs and formulas on Σ are mutually
defined in Fig. 9.

action ::= a1, . . . ak (atomic actions)
| skip
| action+action (nondeterministic choice)
| action;action (sequential composition)
| action∗ (finite iteration)
| dform? (test)

expr ::= var
| f(expr1, . . . , exprk) (f ∈ F with arity k)

dform ::= p(expr1, . . . , exprn) (p ∈ P with arity n)
| !dform (negation)
| dform && dform (conjunction)
| dform || dform (disjunction)
| all v : type/dform (universal)
| some v : type/dform (existential)
| [action]dform (box)

Figure 9: Syntax of dynamic logic

As is standard in dynamic logic, states are valuations of
the program variables (the actual parameters for actions).
The environment env assigns a domain s to sort s in which
program variables take values. The set of states is denoted
by ST . For each action symbol a ∈ A, env yields a binary re-
lation on the set of states, that is, a subset of ST ×ST . The
environment maps function symbols to concrete functions,
and predicate symbols to relations of the corresponding ar-
ity. The semantics of the logic is given in Fig. 10.

6.2 FDL: Dynamic Logic over Fork Algebras
In order to define FDL, we include in the set of function

symbols of signature Σ the set of constants { 0, 1, 1
, }, the

set of unary symbols
{ –,˘

}
, and the set of binary symbols

{ + , ·, ;,∇ }. The only predicate we will consider is equality.
Since these signatures include all operation symbols from
fork algebras, they will be called fork signatures.

Remark 1. Notice that FDL atomic formulas are equal-
ities between fork algebra terms, and thus, for atomic for-
mulas, function Q from Fig. 10 and function N from Fig. 3
agree.

We will call theories containing the identities specifying
the class of fork algebras FDL theories. By working with
FDL theories we intend to describe structures for dynamic
logic whose domains are sets of binary relations. This is
indeed the case as it is shown in the following theorem.

Q : form → ST → Boolean
P : action → P (ST × ST)
Z : expr → ST → s

Q[p(t1, . . . , tn)]µ = (Z[t1]µ, . . . , Z[tn]µ) ∈ env(p) (atomic formula)
Q[!F]µ = ¬Q[F]µ
Q[F&&G]µ = Q[F]µ ∧Q[G]µ
Q[F || G]µ = Q[F]µ ∨Q[G]µ
Q[all v : t / F]µ =

∧
{Q[F](µ⊕ v7→x)/x ∈ env(t)}

Q[some v : t / F]µ =
∨
{Q[F](µ⊕ v7→x)/x ∈ env(t)}

Q[[a]F]µ =
∧
{Q[F]ν/ 〈µ, ν〉 ∈ P (a)}

P [a] = env(a) (atomic action)
P [skip] = { 〈µ, µ〉 : µ ∈ ST }
P [a + b] = P [a] ∪ P [b]
P [a ;b] = P [a]◦P [b]
P [a∗] = (P [a])∗

P [α?] = { 〈µ, µ〉 : Q[α]µ }

Z[v]µ = µ(v)
Z[f(t1, . . . , tk)]µ = env(f)(Z[t1]µ, . . . , Z[tk]µ)

Figure 10: Semantics of dynamic logic

Theorem 6.1. Let Σ be a fork signature, and Ψ be a FDL
theory. For each model A for Ψ there exists a model B for
Ψ, isomorphic to A, in which the domain s is a set of binary
relations.

Proof. Let us consider the reduct A of the model A,
obtained by keeping A’s domain and the fork algebra opera-
tions. A is a structure of the form

〈
A, + , ·, –, 0, 1, ;, ,̆ 1

,
,∇

〉
in which the semantics of action, function and predicate
symbols is given through an environment env . Since Ψ is a
FDL theory (and therefore satisfies the axioms for fork al-
gebras), A is a fork algebra. Thus, by [13][14, Thm. 4.2], A
is isomorphic to a proper fork algebra with domain B. Let
h : A→ B be the isomorphism. In order to define the model
B we will define an environment env ′ for action, function
and predicate symbols as follows:

– Actions: 〈s, s′〉 ∈ env ′(a) ⇐⇒
〈
h−1(s), h−1(s′)

〉
∈

env(a), where for a state s, h−1(s) is the state satisfy-
ing (h−1(s))(v) = h−1(s(v)).

– Functions: [env ′(f)] (b) = h
(
[env(f)] (h−1(b))

)
.

– Predicates: b ∈ env ′(p) ⇐⇒ h−1(b) ∈ env(p).

By construction, B is isomorphic to A.

The previous theorem is essential, and its proof (which
uses [14, Thm. 4.2]), heavily relies on the use of fork alge-
bras rather than plain relation algebras [39]. A model for
a FDL theory Ψ is a structure satisfying all the formulas in
Ψ. Such a structure can, or cannot, have binary relations in
its domain. Theorem 6.1 shows that models whose domains
are not a set of binary relations are isomorphic to models in
which the domain is a set of binary relations. This allows
us to look at specifications in FDL, and interpret them as
properties predicating about binary relations.

We will end this section by presenting the extension of
function RL 7→ FRL to partial correctness assertions. The
extension, which is defined as RL 7→ FRL for the remaining
formula patterns, is denoted by DynAlloy 7→ FDL. Then,

DynAlloy 7→ FDL (α{p}β) =

RL 7→ FRL(α) =⇒ [p] RL 7→ FRL(β) .

In the following paragraphs we present a theorem describ-
ing the relationship established by the translation, between
the formalisms DynAlloy and FDL.

Lemma 6.2. Let α be a DynAlloy formula. Let e be a Dy-
nAlloy environment, and A the function that assigns meaning
to atomic actions. Then, there exists a FDL environment ê
such that

M [α]e = Q[DynAlloy 7→ FDL(α)]ê .

Proof. Let environment ê be defined by:

• for each variable v denoting a n-ary relation c, we
define ê(v) = c (the binary encoding of relation c,
cf. 4.1.2),

• for each atomic action symbol a, we define

ê(a) =
{ 〈

e′1, e
′
2

〉
: 〈e1, e2〉 ∈ A(a)

}
,

where e′1, e
′
2 are defined from e1 and e2 as in Thm. 4.1.

The proof proceeds now by induction on the structure of
formula α. For the sake of simplicity we will present the
proof for atomic formulas and partial correctness assertions.

Let α be atomic, i.e., α = t1 in t2.

M [t1 in t2]e
= {by Thm. 4.2}

N [RL 7→ FRL(t1 in t2)]e
′

= {because no actions occur in α}
N [RL 7→ FRL(t1 in t2)]ê

= {by Remark 1}
Q[RL 7→ FRL(t1 in t2)]ê

= {because α is a RL formula }
Q[DynAlloy 7→ FDL(t1 in t2)]ê .

Let α = β{p}γ.

M [β{p}γ]e
= {by def. M}

M [β]e⇒ ∀e1 (〈e, e1〉 ∈ P [p] ⇒ M [γ]e1)
= {by Thm. 4.2}

N [RL 7→ FRL(β)]e′ ⇒
∀e′1 (〈e′, e′1〉 ∈ P [p] ⇒ N [RL 7→ FRL(γ)]e′1)

= {by Remark 1}
Q[RL 7→ FRL(β)]e′ ⇒

∀e′1 (〈e′, e′1〉 ∈ P [p] ⇒ Q[RL 7→ FRL(γ)]e′1)
= {by semantics of FDL and definition of ê}

Q[RL 7→ FRL(β) ⇒ [p]RL 7→ FRL(γ)]ê
= {by definition of DynAlloy 7→ FDL}

Q[DynAlloy 7→ FDL (β{p}γ)]ê .

Lemma 6.3. Let α be a DynAlloy formula. Let ê be a
FDL environment. Then, there exist a function A assigning
meaning to actions and an environment e for DynAlloy such
that

Q[DynAlloy 7→ FDL(α)]ê = M [α]e .

Proof. Notice that FDL environments differ from Dy-
nAlloy environments in that the former assign meaning to
actions, while the latter only assign meaning to variables.

Thus, from the FDL environment ê we can project a valua-
tion e′ for the variables. Notice also that e′ assigns meaning
to binary relations, but these relations can be seen as en-
codings for higher rank relations (cf. 4.1.2). Thus, from
e′ we obtain the DynAlloy valuation e defined by: e(v) =
{ 〈a1, a2, . . . , an〉 : 〈a1, a2 ? · · · ? an〉 ∈ e′(v) }. It only rests
to define function A. Let a be an atomic action symbol. We
define

A(a) =
{
〈e1, e2〉 :

〈
e′1, e

′
2

〉
∈ e(a)

}
.

The proof now proceeds by induction on the structure of
the formula α and is left as an exercise for the reader.

Theorem 6.4. Let α be a DynAlloy formula. Then, α is
valid in DynAlloy if and only if DynAlloy 7→ FDL(α) is valid
in FDL.

Proof. We will prove both implications.
⇒)

DynAlloy 7→ FDL(α) is not valid in FDL

⇐⇒ ∃ê (¬Q[DynAlloy 7→ FDL(α)]ê) (by semantics FDL)

⇐⇒ ∃e (¬M [α](e)) (by Lemma 6.3)

⇐⇒ α is not valid in DynAlloy. (by semantics DynAlloy)

⇐)

α is not valid in DynAlloy

⇐⇒ ∃e (¬M [α](e)) (by semantics DynAlloy)

⇐⇒ ∃ê (¬Q[DynAlloy 7→ FDL(α)]ê) (by Lemma 6.2)

⇐⇒ DynAlloy 7→ FDL(α) is not valid in FDL .
(by semantics FDL)

6.3 A Complete Calculus forFDL

In this section we present a complete calculus for FDL.
Notice that due to Thm. 6.4, we can use this calculus for
reasoning about the validity of DynAlloy assertions.

The set of axioms for FDL is the set of axioms for classi-
cal first-order logic, enriched with the axioms and rules for
closure fork algebras, and the following axiom schemes for
first-order dynamic logic:

- 〈P 〉α ∧ [P]β ⇒ 〈P 〉(α ∧ β),

- 〈P 〉(α ∨ β) ⇔ 〈P 〉α ∨ 〈P 〉β,

- 〈P0 + P1〉α ⇔ 〈P0〉α ∨ 〈P1〉α,

- 〈P0; P1〉α ⇔ 〈P0〉〈P1〉α,

- 〈α?〉β ⇔ α ∧ β,

- α ∨ 〈P 〉〈P ∗〉α ⇒ 〈P ∗〉α,

- 〈P ∗〉α ⇒ α ∨ 〈P ∗〉(¬α ∧ 〈P 〉α),

- 〈x← t〉α ⇔ α[x/t],

- α ⇔ α̂; where α̂ is α in which some occurrence of
program P has been replaced by the program z ←
x; P ′; x ← z, for z not appearing in α, and P ′ is P
with all the occurrences of x replaced by z.

The inference rules are those used for classical first-order
logic plus:

- Generalization rule for the necessarily modal state-
ment:

α

[P]α

- Infinitary convergence rule:

(∀n : nat)(α⇒ [P n]β)

α⇒ [P ∗]β

A proof of the completeness of the calculus for dynamic
logic is presented in [18, Thm. 15.1.4]. Joining this theorem
with the completeness of the axiomatization of closure fork
algebras [14, Thm. 4.3], it follows that the above described
calculus is complete with respect to the semantics of FDL.

7. VERIFYING FDL SPECIFICATIONS WITH
PVS

As has been shown in Section 6, DynAlloy can be inter-
preted in FDL, a language suitable for the description of
systems behavior. There are different options in order to
reason about such descriptions. Techniques such as model
checking, SAT solving and theorem proving give the possi-
bility to detect systems flaws in early stages of the design
life cycle.

In Section 5.3 we showed how DynAlloy specifications can
be analyzed by extending the Alloy Analyzer in a way it can
handle partial correctness statement.

Regarding the problem of theorem proving, there are sev-
eral tools that can be used to carry out this task. Among
them, we can mention Isabelle [30], HOL [17], Coq [9] and
PVS [32]. PVS (Prototype Verification System), is a pow-
erful and widely used theorem prover that has shown very
good results when applied to the specification and verifi-
cation of real systems [34]. Thus, we will concentrate on
the use of this particular theorem prover in order to prove
assertions from FDL specifications.

As it has been described in the basic PVS bibliography
[35, 36, 37], PVS is a theorem prover built on classical
higher-order logic. The main purpose of this tool is to pro-
vide formal support during the design of systems, in a way
in which concepts are described in abstract terms to allow
a better level of analysis. PVS provides very useful mech-
anisms for system specification such as an advanced data-
type specification language [33], the notion of subtypes and
dependent types [37], the possibility to define parametric
theories [37], and a collection of powerful proof commands
to carry out propositional, equality, and arithmetic reason-
ing [35]. These proof commands can be combined to form
proof strategies. The last feature simplifies the process of
developing, debugging, maintaining, and presenting proofs.

Assertions are presented to PVS in the form of sequents.
A sequent is diagrammatically presented as shown in Fig.
11.

The formulas in the upper part of the sequent are called
premises, and those in the lower part of the sequent are
the conclusions. A sequent as the one presented in Fig. 11
asserts that the disjunction of the conclusions follows from
the conjunction of the premises. This semantics is induced
by the deduction rules of the calculus.

Using PVS to reason about FDL specifications is not triv-
ial because this language is not supported by the PVS tool

{-1} alpha 1

{-2} alpha 2
...

{-n} alpha n

|-------

{1} beta 1

{2} beta 2
...

{m} beta m

Figure 11: Diagrammatic representation of se-
quents.

itself. To bridge this gap, a framework was built by encoding
the semantics for FDL in PVS ’ language [26].

This framework is separated in two parts. The first one is
a packet of thirteen files containing all the theories needed
to encode that part of the language that is common in every
specification. Representative examples of these files are:

- FODL Language.pvs: This file contains the dynamic
logic language encoded as a PVS ’ abstract data-type.
A commented extraction of this theory is shown in
Fig. 12.

- wf FODL Language.pvs: In this file we define the well-
formedness property which establish some restrictions
on the language built in the file FODL Language.pvs.

- FODL semantics.pvs: This file contains the encoding
of the semantics of dynamic logic. This encoding is
essentially the declaration of the notion of world plus
the meaning function for formulas and programs.

- FA elements.pvs: This file contains the declaration of
the base set of the algebra whose carrier set is the set
of terms with which dynamic logic language is instan-
tiated.

The other files contain those theories that depend on the
specification. Taking as a case-study the memories with
cache presented in section 2, we provided five files, contain-
ing the theories we used in order to build the FDL specifica-
tion:

1. FA Language.pvs: This file holds the definition of the
symbols for the language of fork algebras. These are
the symbols that are mandatory in the language of
fork algebras such as join, meet, composition, trans-
position, etc., as well as those that are particular to
the model under development (constant, function and
predicate symbols).

2. FA semantic.pvs: In this file we provide the definition
of the semantics of the symbols of fork algebras.

3. SpecActions.pvs: In this file are defined the atomic
actions required in the model.

4. SpecPredicates.pvs: Contains the definitions of the
predicates that appear in the specification.

5. SpecProperties.pvs: Here are provided the assertions
to be proved in the model.

FODL Language[Constant: TYPE ,
Metavariable: TYPE ,
Variable: TYPE ,
Predicate: TYPE , sigPredicate: [Predicate -> nat],
Function : TYPE , sigFunction : [Function -> nat]]:

DATATYPE WITH SUBTYPES Term , Formula , Program

BEGIN

‘‘Construct a Term from a constant / metavariable / variable sym-
bol.’’

c(c: Constant): c?: Term
m(m: Metavariable): m?: Term
v(v: Variable): v?: Term

‘‘Constructs a Term from a function application of a function sym-
bol to a list of Term .’’

F(f: Function , lF: lPrime: list[Term] | ...): F?: Term

‘‘Construct a Formula by applying boolean operators to a / two For-
mula .’’

NOT(f: Formula): NOT?: Formula
OR(f 0, f 1: Formula): OR?: Formula

‘‘Constructs a Formula from a predicate application of a predi-
cate symbol to a list of Term .’’

P(p: Predicate, lP: lPrime: list[Term] | ...): P?: Formula

‘‘Constructs a (an equation) Formula from two Term .’’
=(t 0: Term , t 1: Term): EQ?: Formula

‘‘Constructs a (universally quantified) Formula from (vari-
able) Term and a Formula .’’

FORALL (x: (v?), f: Formula): FORALL?: Formula

‘‘Constructs a (box) Formula from a Program and a Formula .’’
[](P: Program , f: Formula): BOX?: Formula

‘‘Constructs a (test) Program from a Fomula .’’
T?(f: Formula): T??: Program

‘‘Constructs a (atomic action) Program from two Fomula .’’
A(pre post: [Formula , Formula]): A?: Program

‘‘Constructs a (skip / assignment / sequential composi-
tion / choice / iteration) Program .’’

SKIP: SKIP?: Program
<|(x: (v?), t: Term): ASSIGNMENT?: Program
//(P 0, P 1: Program): COMPOSITION?: Program
+(P 0, P 1: Program): CHOICE?: Program
*(P: Program): ITERATION?: Program

END FODL Language

Figure 12: Dynamic logic language encoded as a
PVS ’ abstract data-type.

Once the theories are built, we can start the theorem prov-
ing process. In Figs. 13 and 14 we show, as examples, the
PVS translation of formulas (14) and (15).

Figures 15 and 16 show the PVS proof scripts of the prop-
erties stated in Figs. 13 and 14.

Notice that in the proof script shown in Fig. 15 two lem-
mas were used to complete the proof. These lemmas state
that the application of the functions SysWrite and Flush
preserves the validity of the formula DirtyInv.

In FDL the lemmas are stated as follows:

(∀s : System) |
(DirtyInv(s) =⇒ [SysWrite(s)]DirtyInv(s))

(∀s : System) |
(DirtyInv(s) =⇒ [Flush(s)]DirtyInv(s))

Preservation_of_DirtyInv: LEMMA
FORALL_(v(cs), DirtyInv(v(cs)) IMPLIES

[](*(SysWrite(v(cs))+Flush(v(cs))),
DirtyInv(v(cs))))

Figure 13: PVS translation of Formula (14).

Consistency_criterion: THEOREM
FORALL_(v(cs), DirtyInv(v(cs)) IMPLIES

[](*(SysWrite(v(cs))+Flush(v(cs)))//DSFlush(v(cs)),
FullyAgree(v(cs))))

Figure 14: PVS translation of Formula (15).

In the proof script presented in Fig. 15, these lemmas ap-
pear referenced by the names “SysWrite preserves DirtyInv”
and “Flush preserves DirtyInv”.

In the case of the proof script of Fig. 16, we also used
a lemma to complete the proof. The lemma states that if
the formula DirtyInv is satisfied, after the application of
function DSFlush the formula FullyAgree is satisfied too.
This property is specified in FDL by the formula

(∀s : System)(DirtyInv(s)⇒
[DSFlush(s)]FullyAgree(s)) .

During the proving process many strategies have been
used. Some of them are strategies already defined in PVS,
while others were implemented by us in order to make the
framework friendlier to the user. Since only objects of type
bool can take place in a sequent, FDL formulas cannot be
part of sequents unless they are conveniently preprocessed.
This is why, given a formula α, we will prove the formula

FORALL (w : World) : meaningF(f)(w) . (16)

rather than α itself. In formula (16), function meaningF has
type Formula → World → bool, and its definition is such
that it asserts the validity of the formula α in the world w.
Notice that there is no ambiguity in saying that α holds,
because by Thm. 6.1 α is a theorem if and only if it is valid
in the semantics we defined.

In order to improve readability of formulas (and therefore
the usability of the tool), we have defined a conversion so
that the user of the framework can simply declare

Theorem 1 : THEOREM f

which is automatically turned into

Theorem 1 : THEOREM

FORALL (w : World) : meaningF(f)(w) .

This means that whenever the user attempts to prove a theo-
rem declared as “Theorem 1 : THEOREM f”, PVS internally
builds the sequent

|-------

{1} FORALL (w : World_) : meaningF(f)(w)

Notice that there is no harm or ambiguity in pretty-printing
the sequent as

;;; Proof for formula SpecProperties.Preservation_of_DirtyInv ;;;
developed with old decision procedures (""
(EXPAND-MEANING)
(EXPAND-MEANING 1)
(EXPAND-MEANING 1)
(SKOSIMP*)
(PURIFY-FODL -1)
(LEMMA "PDL_6_box_form")
(INST -1 "DirtyInv(v(cs))"
"SysWrite(v(cs)) + Flush(v(cs))"
"w!1 WITH [(cs) := t!1]")

(EXPAND-MEANING -1)
(INST?)
(EXPAND-MEANING -1)
(PROP)
(HIDE 2)
(EXPAND-MEANING 1)
(PROP)
(("1" (PURIFY-FODL 1))
("2"
(EXPAND-MEANING 1)
(SKOSIMP*)
(EXPAND-MEANING 1)
(PROP)
(PURIFY-FODL -2)
(EXPAND-MEANING 1)
(SKOSIMP*)
(PURIFY-FODL 1)
(HIDE -1 -4)
(PURIFY-FODL -2)
(PROP)
(("1"

(LEMMA "SysWrite_preserves_DirtyInv")
(PURIFY-FODL -1)
(INST -1 "wPrime!2")
(INST -1 "mMetavariable!1")
(INST -1 "wPrime!1(cs)")
(PROP)
(INST -1 "wPrime!2")
(PROP))

("2"
(LEMMA "Flush_preserves_DirtyInv")
(PURIFY-FODL -1)
(INST -1 "wPrime!2")
(INST -1 "mMetavariable!1")
(INST -1 "wPrime!1(cs)")
(PROP)
(INST -1 "wPrime!2")
(PROP))))))

Figure 15: PVS proof script of formula in Fig. 13.

|-------

{1} FORALL (w : World_) : (f)(w)

because constructing the semantics of f and proving that
the formula describing the semantics holds in every world is
the only way to prove, in PVS, that f is a theorem. Thus,
the application of the function meaningF can (and most
often will) remain implicit. In order to leave the applica-
tion implicit we built a strategy in PVS that unfolds the
meaning function but avoids making any explicit reference
to meaningF in the resulting expression. For instance, if we
unfold the (implicit) occurrence of meaningF in the formula
(α ∨ β)(w), we will obtain the formula (α)(w) ∨ (β)(w).

As it is shown in the proof script presented in Fig. 15, the
first strategy applied is (EXPAND-MEANING) and the result
is the sequent

|-------

{1} FORALL (w:World_):

FORALL (mMetavariable:AssMetavariable):

(f)(mMetavariable)(w)

;;; Proof for formula SpecProperties.Consistency_criterion ;;;
developed with old decision procedures (""
(EXPAND "Consistency_criterion" 1)
(EXPAND-MEANING 1)
(EXPAND-MEANING 1)
(EXPAND-MEANING 1)
(SKOSIMP*)
(PURIFY-FODL -1)
(LEMMA "PDL_4_box_form")
(INST -1 "FullyAgree(v(cs))"
"*(SysWrite(v(cs)) + Flush(v(cs)))"
"DSFlush(v(cs))" "w!1 WITH [(cs) := t!1]")

(EXPAND-MEANING -1)
(INST -1 "mMetavariable!1")
(EXPAND-MEANING -1)
(PROP)
(HIDE 2 3)
(EXPAND-MEANING 1)
(SKOSIMP*)
(LEMMA "Preservation_of_DirtyInv")
(EXPAND "Preservation_DirtyInv" -1)
(EXPAND-MEANING -1)
(EXPAND-MEANING -1)
(INST -1 "w!1 WITH [(cs) := t!1]")
(INST -1 "mMetavariable!1")
(INST -1 "(w!1 WITH [(cs) := t!1])(cs)")
(EXPAND-MEANING -1)
(PROP)
(("1"

(EXPAND-MEANING -1)
(INST -1 "wPrime!1")
(PROP)
(PURIFY-FODL -1)
(LEMMA "DSFlush_leaves_FullyAgree")
(EXPAND "DSFlush_leaves_FullyAgree" -1)
(EXPAND-MEANING -1)
(EXPAND-MEANING -1)
(INST -1 "wPrime!1")
(INST -1 "mMetavariable!1")
(INST -1 "wPrime!1(cs)")
(EXPAND-MEANING -1)
(PROP)
(("1" (HIDE -2 -3 -4) (PURIFY-FODL))
("2" (HIDE -2 -3 2) (PURIFY-FODL))))

("2" (HIDE -1 2) (PURIFY-FODL))))

Figure 16: PVS proof script of the formula in Fig.
14.

This sequent is the pretty-printed version of the sequent

|-------

{1} FORALL (w:World_):

FORALL (mMetavariable:AssMetavariable):

m(mMetavariable)(inl(f)) w

and considers a new definition of the meaning function that
involves the use of valuations for rigid variables. These val-
uations are necessary for the sake of specifying pre and post
conditions. The next example shows how this rigid variables
are used:

(∀m : Memory)(∀d : Data)(∀a : Addr) |
((m = M0 ∧ d = D0) =⇒

[Write(m, a, d); Read(m, a, d)](d = D0))

In the previous assertion, M0 and D0 are variables that
record the initial values of variables m and d, respectively.
The value of M0 and D0 must remain the same in all worlds,
and this is the reason why these variables are called rigid.
In order to prove the validity of the assertion it is neces-
sary to allow M0 and D0 range over all possible memories

and data, respectively. Since mMetavariable ranges over
valuations for the rigid variables, this is achieved by univer-
sally quantifying mMetavariable. From now on the meaning
function will be denoted by m, and will recursively construct
the semantics of a formula each time its definition is implic-
itly expanded by the application of the strategy (EXPAND-
MEANING ...) to a formula number.

The next strategy applied in the proof script is called
SKOSIMP. This strategy skolemizes a universal quantifier,
and the star is used to tell PVS that it should skolemize as
many quantifiers as possible, even if that requires simplifying
the sequent by breaking conjunctions and disjunctions in the
sequent. Essentially, if we apply this strategy to the sequent

|-------

{1} FORALL (w: World_):

FORALL (mMetavariable: AssMetavariable):

(f)(mMetavariable)(w)

we will obtain as a result

|-------

{1} (f)(mMetavariable!1)(w!1)

due to the introduction of Skolem constants to replace the
quantifiers.

After that, a strategy called PURIFY-FODL is applied.
This strategy was designed to perform all the expansions
necessary in order to construct the semantics of the formula
whose number is given as argument. If the argument is omit-
ted, all the formulas in the sequent are expanded. Notice
that this procedure involves the recursive expansion of the
meaning function.

The use of the command LEMMA allows the user to in-
troduce a given formula as a hypothesis (it will appear in
the upper part of the sequent, and will be numbered as
-1). To get a complete proof of the target property this
formula must be discharged. Otherwise, the proof is consid-
ered incomplete because it relays on a lemma whose proof
is still pending. Suppose we want to use a formula g, that
was named “hypothesis for f” when it was declared, as an
assumption to prove formula f . Applying the command
(LEMMA “hypothesis for f”) has the following effect:

{-1} g

|-------

{1} (f)(mMetavariable!1)(w!1)

Following the proof script, the INST command is applied.
This command tells PVS that the universal quantifiers in
the formula given as argument must be instantiated with
the terms listed in the call. The quantifiers are instantiated
in the order they appear in the formula. Notice that one of
the terms used to instantiate the quantifiers is “w!1 WITH

[(cs) := t!1]”. This is the PVS notation for functional
update, and stands for the world (valuation) that agrees in
all variables but cs with world w!1. This world evaluates
variable cs to the value “t!1”.

Another command used during the proof is HIDE. This
command hides formulas that appear in a sequent, therefore
improving readability. If we have the sequent

{-1} f1

{-2} f2

{-3} f3

|-------

{1} g1

{2} g2

and apply (HIDE -2 2), the result is the sequent

{-1} f1

{-2} f3

|-------

{1} g1

The command EXPAND appearing in the proof script is
a primitive PVS command that allows one to substitute
an identifier by its definition. For instance, if function g is
defined by g(x, y) = x+y, after the application of (EXPAND
“g” 1) to the sequent

|-------

{1} f (x!1, y!1) = g (r!1, s!1)

we obtain the sequent

|-------

{1} f (x!1, y!1) = r!1 + s!1

The last command to which we make reference in the proof
script is PROP. This command is used in order to simplify
a sequent

by:

• splitting conjunctions in the thesis part of the sequent
or disjunctions in the hypothesis part,

• flattening disjunctions in the thesis part of the sequent
or disjunctions in the hypothesis part.

The effect of this command can be seen as follows:

• |------- is transformed to

{1} p AND q

|------- and |-------

{1} p {1} q

•
{1} p AND q

|------- is transformed to

{-1} p

{-2} q

|-------

• |------- is transformed to

{1} p OR q

|-------

{1} p

{2} q

• {-1} p OR q

|------- is transformed to

{-1} p {-1} q

|------- and |-------

Notice that the remaining strategies and commands used
in the proofs are among the ones explained above. Even if
the proof seems to be cryptic for readers not familiar with
PVS, it is quite short and straightforward for users used
to the framework and PVS ’ language. This is in part be-
cause the use of lemmas simplifies the process of proving a
property by allowing modular proofs. We recommend the
reading of [26] as the reference material for this section.

8. CONCLUSIONS AND FURTHER WORK
We have succeeded in finding a logic that can be under-

stood by an Alloy user without demanding significant new
skills. This logic possesses a complete and purely relational
equational calculus which can be used in the verification
of Alloy assertions. Further work includes the inclusion of
the calculus in an axiomatic theorem prover such as, for in-
stance, Isabelle [30]. Also, we presented in Section 4.1.4
an example of a property that cannot be analyzed with the
Alloy Analyzer but can be analyzed in FRL. This has to
be studied further in order to determine to what extent it
extends to other assertions.

Extending Alloy with actions allowed us to deal with prop-
erties of executions in a more natural and abstract way. We
are currently modifying the Alloy analyzer’s source code in
order to analyze properties involving actions.

9. ACKNOWLEDGEMENTS
We wish to thank Daniel Jackson for reading preliminary

versions of this paper and making valuable suggestions. Also
Sam Owre and Natarajan Shankar are to be thanked for
their work on the verification of properties using PVS.

10. REFERENCES
[1] Abrial J.-R., The B-Book: Assigning Programs to

Meanings, Cambridge University Press, 1996.

[2] Arkoudas, K, Denotational Proof Languages, PhD
thesis, MIT, 2000.

[3] Arkoudas K., Khurshid S., Marinov D. and Rinard
M., Integrating Model Checking and Theorem Proving
for Relational Reasoning, to appear in Proceedings of
RelMiCS’03.

[4] Bickford M. and Guaspari D., Lightweight Analysis of
UML. TM-98-0036, Odyssey Research Associates,
Ithaca, NY, November 1998.

[5] Booch G., Jacobson I. and Rumbaugh J., The Unified
Modeling Language User Guide, The Addison-Wesley
Object Technology Series, 1998.

[6] Burris, S. and Sankappanavar, H.P., A Course in
Universal Algebra, Graduate Texts in Mathematics 78,
Springer–Verlag, 1981.

[7] E. Clarke, O. Grumberg and D. Peled, Model
Checking, The MIT Press, 2000.

[8] R. Cleaveland, M. Klein and B. Steffen, Faster Model
Checking for the Modal Mu-Calculus, in Proceedings
of the Fourth International Workshop on Computer
Aided Verification, LNCS, Springer-Verlag, 1992.

[9] Coq Development Team, The Coq Proof Assistant -
Reference Manual, Institut National de Recherche en
Informatique et en Automatique (INRIA), 2001.

[10] Dijkstra E. W. and Scholten C. S., Predicate calculus
and program semantics, Springer-Verlag, 1990.

[11] Evans A., Kent S. and Selic B. (eds.), UML 2000 -
The Unified Modeling Language. Advancing the
Standard, Proceedings of the Third International
Conference in York, UK, October 2-6, 2000. Springer
Verlag Berlin, LNCS 1939.

[12] France R. and Rumpe B. (eds.), UML ’99 - The
Unified Modeling Language. Beyond the Standard,
Proceedings of the Second International Conference in

Fort Collins, Colorado, USA, October 28-30, 1999.
Springer Verlag Berlin, LNCS 1723.

[13] Frias, M. F., Haeberer, A. M. and Veloso, P. A. S., A
Finite Axiomatization for Fork Algebras, Logic
Journal of the IGPL, Vol. 5, No. 3, 311–319, 1997.

[14] Frias M., Fork Algebras in Algebra, Logic and
Computer Science, World Scientific Publishing Co.,
Series Advances on Logic, 2002.

[15] Frias M.F., Baum G.A. and Maibaum T.S.E.,
Interpretability of First-Order Dynamic Logic in a
Relational Calculus, in Proceedings of RelMiCS 6,
LNCS 2561, Springer-Verlag, 2002.

[16] Frias M., López Pombo C., Baum G., Aguirre N. and
Maibaum T., Taking Alloy to the Movies, in
Proceedings of FME’03, Pisa, Italy, 2003, LNCS 2805,
pp. 678–697.

[17] Gordon M., and Melham T.,Introduction to HOL: A
theorem proving environment for higher order logic,
Cambridge University Press, 1993.

[18] Harel D., Kozen D. and Tiuryn J., Dynamic Logic,
MIT Press, October 2000.

[19] Jackson D., Automating First-Order Relational Logic,
in Proceedings of SIGSOFT FSE 2000, pp. 130-139,
Proc. ACM SIGSOFT Conf. Foundations of Software
Engineering. San Diego, November 2000.

[20] Jackson D., Micromodels of Software: Lightweight
Modelling and Analysis with Alloy, 2002.

[21] Jackson D., Alloy: A Lightweight Object Modelling
Notation, ACM Transactions on Software Engineering
and Methodology (TOSEM), Volume 11, Issue 2
(April 2002), pp. 256-290.

[22] Jackson D. and Sullivan K., COM Revisited: Tool
Assisted Modelling and Analysis of Software
Structures,

[23] Jackson D., Schechter I. and Shlyakhter I., Alcoa: the
Alloy Constraint Analyzer, Proceedings of the
International Conference on Software Engineering,
Limerick, Ireland, June 2000.

[24] Jackson, D., Shlyakhter, I., and Sridharan, M., A
Micromodularity Mechanism. Proc. ACM SIGSOFT
Conf. Foundations of Software Engineering/European
Software Engineering Conference (FSE/ESEC ’01),
Vienna, September 2001.

[25] Jones C.B., Systematic Software Development Using
VDM, Prentice Hall, 1995.

[26] Lopez Pombo C.G., Owre S. and Shankar N., An Ag

proof checker using PVS as a semantic framework,
Technical Report SRI-CSL-02-04, SRI International,
June 2002.

[27] Maddux R., Pair-Dense Relation Algebras,
Transactions of the American Mathematical Society,
Vol. 328, N. 1, 1991.

[28] Manna Z., Anuchitanukul A., Bjorner N., Browne A.,
Chang E., Colon M., de Alfaro L., Devarajan H.,
Sipma H. and Uribe T., STeP: The Stanford Temporal
Prover,
http://theory.stanford.edu/people/zm/papers/step.ps.Z.
Technical report STAN-CS-TR-94-1518, Computer
Science Department, Stanford University, July 1994.

[29] K. McMillan, Symbolic Model Checking, Kluwer
Academic Publishers, 1993.

[30] Nipkow T., Paulson L. C. and Wenzel M., A Proof
Assistant for Higher-Order Logic, Springer Verlag,
1st. edition, March 2002.

[31] Object Constraint Language Specification”. Version
1.1, 1 September 1997.

[32] Owre S., Rushby J.M. and Shankar N., PVS: A
prototype verification system, In Deepak Kapur,
editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pp. 748–752, Saratoga, NY, jun
1992. Springer-Verlag.

[33] Owre S. and Shankar N., Abstract datatypes in PVS,
Technical Report CSL-93-9R, SRI International,
December 1993. Subtantially revised in June 1997.

[34] Owre S., Shankar N., Rushby J,M, and
Stringer-Calvert D.W.J., PVS: An Experience Report,
in Proceedings of Applied Formal
Methods—FM-Trends 98, Lecture Notes in Computer
Science 1641, 1998, pp. 338–345.

[35] Owre S., Shankar N., Rushby J,M, and
Stringer-Calvert D.W.J., PVS Prover Guide, SRI
International, version 2.4 edition, November 2001.

[36] Owre S., Shankar N., Rushby J.M. and
Stringer-Calvert D.W.J., PVS System Guide, SRI
International, version 2.4 edition, December 2001.

[37] Owre S., Shankar N., Rushby J.M. and
Stringer-Calvert D.W.J., PVS Language reference,
SRI International, version 2.4 edition, December 2001.

[38] Spivey J.M., Understanding Z: A Specification
Language and Its Formal Semantics, Cambridge
Tracts in Theoretical Computer Science, 1988.

[39] Tarski, A. and Givant, S.,A Formalization of Set
Theory without Variables, A.M.S. Coll. Pub., vol. 41,
1987.

[40] M. Vardi and P. Wolper, An automata-theoretic
approach to automatic program verification, in
Proceedings of the 1st IEEE Symposium on Logic in
Computer Science, 1986, pp. 322-331.

