
Engineering Pervasive Services for Legacy
Software

Silvia Gordillo, Gustavo Rossi, Andrés Fortier

Abstract. In this paper we present a novel architectural approach
to engineer applications that provide location-aware services; in
particular, we explain how to extend existing software systems
with location-aware services. We show how a clear separation of
design concerns (e.g. applicative, context-specific, etc) helps to
improve modularity. We stress that, by using dependency mecha-
nisms among outstanding components, we can get rid of explicit
rule-based expressions thus simplifying evolution and mainte-
nance. We first motivate our research with a simple example.
Next, we present the big picture of our architectural approach.
Then we detail how to specify location-aware services; we present
details of the services’ activation mechanisms. We finally we
discuss some related work in the field. We conclude with some
further issues in which we are now working.

1 INTRODUCTION AND MOTIVATION

Building applications that provide context-aware services
has proved to be difficult; the most important reasons have
been extensively reported elsewhere [1, 4]. The only way to
guarantee seamless software evolution is to rely on solid soft-
ware engineering practices; in particular, in order to assure
software modularity, a clear separation of design concerns is a
must [3]. To make matters worse, applications that provide
context-aware pervasive services are not built from scratch;
they emerge as a consequence of the evolution of existing
software systems, which are modified or extended to provide
brand new functionality, according to new communication and
hardware possibilities. We have devised a design approach and
an implementation framework to engineering location-aware
services [11]. Instead of using rule-based approaches, we
based our approach on an extensive use of well-known de-
pendency mechanisms in the object-oriented field [8]. In this
paper, we elaborate our approach and show how to use it to
improve existing software systems with location-aware ser-
vices.
As a motivating example, suppose an academic system which
provides information (e.g. using a Web interface) on courses
offered by the university, time-tables, teaching material, etc.
For the sake of simplicity suppose that the system has been
designed using good object-oriented practices, e.g. it follows
the model-view-controller metaphor, in which model, interface

This work was supported in part by SeCyT under Grant PICT 13623.
Silvia Gordillo, Gustavo Rossi and Andrés Fortier are at LIFIA,
Facultad de Informatica, Universidad Nacional de La Plata phone:
542214236585; fax: 542214228252; e-mail: {gordillo, gustavo,
andres}@ lifia.info.unlp.edu.ar.
Silvia Gordillo is also at CICPBA, Gustavo Rossi is also at
CONICET, Andrés Fortier is also at DSIC, Universidad Politécnica
de Valencia, Spain.

and interaction issues are clearly separated and we can identify
a set of model’s behaviors that provide the intended informa-
tion [8].
How do we extend this system in order to provide pervasive
services? For example, when a student is in a room in which a
course is to be given, he has access to the material of the
course; the professor meanwhile can access the list of students
in the course and can upload material (e.g. for homework).
In the rest of the paper, we show in a step by step way how to
seamlessly enrich existing applications with location specific
information (e.g. locations of rooms), and how to engineer
pervasive services. We treat services as light-weighted objects
that are attached to physical locations (service areas) and made
available to the user when he enters into the corresponding
location; additionally, these locations may eventually refer to
specific application objects (e.g. a room).

The rest of the paper is organized as follows: In Section 2
we present an outline of our architectural approach. In Section
3, we discuss the specification of location-aware services;
details on service activation are presented. In Section 4 we
analyze some related work and in Section 5 and present our
concluding remarks.

2 HIGH-LEVEL ARCHITECTURAL DECISIONS

For the sake of comprehension, we will describe each design
problem using a pattern format [3, 5], i.e. we briefly state the
problem we faced, the context and the solution. This style,
which follows the ideas in [2], allows us to show that the pro-
posed solutions are more general than a particular framework
implementation (like ours), and thus can be used in similar
situations. We use a coarse grain for describing these architec-
tural design decisions. Many of them deserve a longer explana-
tion at a lower (say, micro-architectural) level, but we omit this
discussion for conciseness. We will first concentrate on the
most outstanding components and design decisions; details on
architectural and lower-level issues related with hardware
abstractions, sensing concerns and location models can be read
in [11], as we only describe them in a high level way.

2.1 DEALING WITH LOCATION AND LOCATION MODELS

Problem: In many applications (such as in the example), we
need to determine the position of the user in relationship with
physical regions that correspond to application objects. For
example, to decide whether a user is in a room or in its vicin-
ity, we need to know the room’s position in some location
model [9, 10]. Coupling application objects with their posi-
tions or making them location-aware (e.g. adding a variable in
class Room for representing rooms’ positions) have many
disadvantages. The most relevant problem is that it pollutes the

2841-4244-1326-5/07/$25.00/©2007 IEEE

application model with location information (which tends to be
volatile), and with objects that are not important for the origi-
nal application, e.g. a corridor in which we want to provide
certain services. When we are extending legacy software, this
problem is even more evident. In summary, how do we enrich
applications with location information transparently?

Solution: Build a separated Location layer which contains the
abstractions which are necessary to maintain and process loca-
tion information. Objects in this layer may or may not have a
counterpart in the application layer. For example, in this layer
we model the located counterpart of application objects, e.g.
location.room; we also model other objects which have not
been defined in the application, but have a spatial meaning,
such as corridor or building and which may be related by
spatial relationships (corridor connects rooms). The Location
layer also comprises lower-level abstractions that implement
different location models (symbolic, semantic, geometric, etc)
and a component, Location.User which contains the actual
user position (See 2.2). The relationships between the Location
and the Application Layer is shown in Figure 1. Notice that the
relationship between objects in the Location and the Applica-
tion layers resembles the Decorator [5] pattern as located ob-
jects “extend” application objects functionality with spatial
information and behaviors. This solution makes application
objects oblivious of their spatial extensions, therefore allowing
their evolution, and the evolution of the located components
independent and thus less error prone.
There are three important abstract classes in the framework:
LocatedModel, LocatedObject and Location. Every class that
stands for an application counterpart (as in the case of Loca-
tion.Room) is defined as a sub-class of LocatedModel. Purely
spatial classes (like Corridor) are derived from LocatedObject.
The position of all objects in the Location layer are described
by an object of a class implementing the Location type. This
type abstracts different location models (geometric, symbolic,
etc) which we do not describe in Figure 1. Decoupling located
objects from the location model allows us to reason in a higher
level way, as the existence of a corridor or a room and their
spatial relationships are independent of the way they are repre-
sented as locations (e.g. with coordinates, symbols, code bars,
etc).

Figure 1: The Location Layer as a decorator on the application model

2.2 MODELING THE USER AND HIS LOCATION

Problem: Location-Aware Services react according to the
user’s position, so it is evident that we need to record this
position. The usual solution is to build an object which com-
prises the user’s actual contextual data, and to query this ob-
ject to know the actual user’s position. There are two problems
with this approach: First, considering this object as just a data
repository tend to delegate some of its responsibilities to other
objects (thus, compromising modularity). Besides, in many
applications such as in the university campus, there may be
already an object which represents a possible user, e.g. a stu-
dent object in the location model. Which is the relationship
between these objects?

Solution: We model the user’s location in the Location layer
(Location.User). Similarly to other objects in this layer, this
location is described using an object of type Location. Loca-
tion.User may be also related with the corresponding applica-
tion object (if any). We consider Location.User as a critical
object in the process of triggering the activation of services
instead of a passive data repository. Each time this object
changes (i.e. the user changes his location), it communicates
the change to its counterpart in the Service Layer (See Section
3), thus changing the possible available services. Figure 2
shows Location.User and its two sub-classes: Application.User
and Located.User which play the same role as Located.Model
and Located.Object in Figure 1. When the user has a counter-
part in the application model (e.g. he is a registered student or
teacher), we use Application.User which extends the corre-
sponding class (in this example Person). A casual user is rep-
resented by Located.User objects. As we will concentrate
ourselves on the process of activating services, we will not
address authorization issues in this paper. The description in
Section 3.4 holds for both Application and Located users.

Figure 2: Locating the user

2.3 DEALING WITH HARDWARE AND SENSING

Problem: Hardware for sensing the user’s location (and other
context variables) evolves constantly. Sensing policies (e.g.
push vs. pull) vary according to hardware capabilities. It is
clear that low-level details have to be hidden from the applica-
tion. However, sensed data is in the best case string data and it
has to be interpreted to fit into the needs of the application.
Moreover, location models (See 2.1) should evolve independ-
ently of sensing hardware. How do we provide this independ-
ence?

285

Solution: Decoupling sensors and their logic, from application
concerns has been the driver of many research projects. While
context widgets in [4] and adaptors in [6] isolate hardware
from the application software, we still need a higher level of
interpretation to relate sensed data, first with location objects
and then with application objects. We thus decided to further
decouple the hardware abstractions (similar to Dey’s widgets
[4]), and the logic for sensing the user’s position. These two
layers, namely Hardware Abstractions, and Sensing Concerns
and their relationships with the previously described compo-
nents are shown in Figure 3. In Figure 4 we present a more
detailed diagram, exemplifying with a simple location sensing
widget, an IR port. The Sensing concern acts as a dependency
transformer between the hardware and the location layer. The
dependency relationship implies that every time something
changes in the sensor, the sensing concern object is notified.
This object abstracts the sensing policy (e.g. push or pull), as a
Strategy object [5], represented by a sub-class of Sensing Pol-
icy. Once it has the new position, it maps the sensed value into
an object of the Location layer (e.g. a room, a corridor, etc).
There might be different algorithms for performing this map-
ping, which obviously depend on both the sensed data and the
actual location model (e.g. symbolic or geometric).
This new location is sent to the Location.user object, indicat-
ing that the user has changed his position. Notice that the sens-
ing concern layer plays the role of an interpreter, enhancing
the behavior of Dey´s interpreters [4] to get a slightly higher
level location object, which can be related with an application
object.

Figure 3: Sensing Concerns and Hardware Abstractions

Figure 4: Refinement of Sensing Concern and Hardware Abstractions

3 ENGINEERING LOCATION-AWARE SERVICES

We consider services as full-fledged software artifacts which
may be (as in the examples in this paper), extensions of an
application’s behavior. They may already exist as methods in
some application object, e.g. providing the material of a course
or they may not use application’s methods, but involve appli-
cation-related objects, e.g. informing which rooms are in this
floor.

Some services will be autonomous; others might require the
use of “external” (eventually Web) services, e.g. returning the
actual temperature in the area. As others, we envision that
service engineering will be a critical software design activity
and, therefore, design issues related with location-aware ser-
vices are fundamental to assure the quality (e.g. modularity,
reuse, etc) of the engineered services. Following the style of
Section 2, we next analyze the most important problems we
faced and the solutions we propose and implemented.

3.1 DESCRIBING SERVICES AS MODULAR APPLICATION’S
EXTENSION

Problem: Services should be engineered independently of
other application components. It should be possible to make
them dynamically available to users, according to different
conditions (location, role of user, etc). It should be possible to
specialize them or compose them to obtain more complex
services. However they may have a close relationship with
applications’ behaviors, i.e. activating a service might imply
the invocation of an application object’s method. How do we
balance modularity with the need to relate services with appli-
cation objects?

Solution: First, we created a Service Layer separated from the
others framework layers. Then we defined Services as objects,
following the Command [5] design pattern. An abstract class
Service is defined to contain the interface common to all ser-
vices. For each possible service, we defined a class, represent-
ing the concrete service, e.g. GetMaterial. When a service is
activated (e.g. because a user enters in a place where the ser-
vice is available), we instantiate the corresponding class and
allocate this object to serve the user. Allocating a service to the
user means to initialize an instance variable of the service
(defined in the abstract class) to refer to the user (See 3.2) and
add the service object to the set of active services for that user
(See 3.2). Other relevant information is defined when the ser-
vice is started (See 3.3 and 3.5).
Treating services as first-class citizens allows manipulating
them uniformly, building service compositions, making their
activation dependant of the behavior of other objects, etc. We
also decouple the instantiation of a service from its execution,
which allows us to manage services’ queues, logs, etc. The
relationship between Services and application objects is a
knowledge relationship as shown in Figure 5. We will discuss
the relationships among the Services and the Location layer in
Section 3.2.
In Figure 6 we show the abstract class Service and its two sub-
classes: User Service and Internal Service. An internal service
is a service which is used either by other services or by the
framework itself, while user services are provided to the user.
The concrete class GetMaterial has an instance variable
course, which will be set, when the service is activated, to
refer to the object representing the course given in the actual
room (where the user is located) as explained in Section 3.2. In
the same way we can define new services, which might depend
on the user’s location or not.
From the point of view of service configuration (e.g. attaching
services to locations and allocating them to users), our frame-

286

work can be considered a black-box framework [2], as the
configuration process (as discussed in the following sections)
can be done using objects composition. Meanwhile, the speci-
fication of new services is understood as a framework exten-
sion, and as the developer needs to know which methods he
has to provide (e.g. to specialize definitions in the abstract
class Service), the framework can be also considered a gray-
box framework [2], because extensions use basically sub-
classing mechanisms.

Figure 5: The Service Layer and the relationships with other layers

Figure 6: Services as First-class objects

3.2 LINKING SERVICES TO LOCATIONS AND PROVIDING
LOCATION-AWARENESS

Problem: How do we state that a certain service should be
active (available to the user) in a certain location? How do we
proceed to its activation? The usual solution is to write a set of
rules in which the condition checks whether the user is inside
an area and the action consists in activating the service. While
rules can be decoupled from the application (e.g. similar to
business rules) and designed as objects (See for example the
material in [11]), they tend to become monolithic when the
application evolves; for example when new services emerge,
or a service needs to be attached/detached to a different area
we have to edit (add or modify) rules. Besides, the information
on which services are provided in a location, and the code for
invoking those services, are tangled in the corresponding rules;
this makes the maintenance activity more difficult as we need
to read all rules to grasp the big picture.

Solution: Register services to locations using a dependency
mechanism such that when a user enters into a place, all ser-
vices registered to that place are notified, and thus they are
made available to the user. This solution involves the specifi-
cation of several components to guarantee flexibility (of ser-

vice definition), and modularity (of the underlying software).
The most relevant are the following:

Service.User: This object has two fundamental roles; one
which is purely informational: it knows the actual available
services for the user; the other role relates with the process of
updating these services: it is dependent (a kind of Observer
[5]) on Location.User; therefore every time the user changes
his position (and therefore Location.User changes), Ser-
vice.User is notified and it triggers a set of behaviors to deter-
mine which services are not longer available and which ones
should be added. Service.User implements the most important
dependency mechanism for implementing location-awareness.
In Figure 7 we show these relationships.

Service Area: Services are not always provided in logical
areas, such as a room, a bar, or a corridor, nor should they
depend on sensing hardware (e.g. if a room has many sensors
inside it); instead they may be defined opportunistically in
aggregations of areas or part of areas; we call these aggrega-
tion Service Areas. For example, we might want that the ser-
vices corresponding to a room are provided also in the sur-
rounding of the room, e.g. in a part of a corridor (assuming
that the user can be sensed to be there). A Service Area has a
knowledge relationship with the corresponding Location ob-
ject which defines it (in the Location layer), and with the Ser-
vices which are provided in the Area. The Service.User object
also has a knowledge relationship with the area in which he is
located (See Figure 7).

Service Environment: The Service Environment acts as a
Mediator [5] between the Service.User, and the service areas
(instances of Service Area). When the user changes his posi-
tion, Service.User collaborates with the environment to deter-
mine if the user has left or entered a new area. The Service
Environment then sends the message leaveArea (or enterArea)
to Service.User which will update the current services accord-
ingly.

Figure 7: Components of the Service Layer

Figure 7 shows a static diagram with the relationships among
these classes and also showing how these classes interact with
classes in the Location Layer. Figure 8 shows a simplified

287

sequence diagram with the process of activating a set of new
services for a given user, i.e. making these services available
to the user. When the Location.User object receives the mes-
sage indicating a change of position, it notifies Service.user by
means of the dependency mechanism. Service.user gets the
new position and interacts with Service.Environment to ana-
lyze if the new position implies that the user entered or left a
service area. Service.Environment interacts with Service.Area
(not shown in the sequence diagram) and sends either the mes-
sage enterArea or leaveArea to Service.user. The effect of
executing these methods is that a new set of services is allo-
cated to the user: those corresponding to the actual service
area in which the user is located.

Figure 8: Activating a Location-Aware Service

3.3 RELATING SERVICES WITH APPLICATION OBJECTS

Problem: As previously discussed, there are services which
may need a strong interaction with application objects; for
example suppose that we specify a service which may be pro-
vided in rooms, and which returns the material of the course
that is currently scheduled in the room. We may also associate
a service with research laboratories to provide information on
the corresponding research projects. In both cases, the service
object needs to interact with a specific application object (a
room, a research lab), which will eventually mediate with other
objects (course, project, etc). However, services which only
deal with application data should not be cluttered with details
on location issues; they should only concentrate on their task.
How do we instantiate services to realize the correct relation-
ship?

Solution: We provide a pre-built initialization method in the
abstract class Service; when a service is started, executing a
method in Service, it must first initialize itself (this process is
performed using a template method [5]). The standard initiali-
zation method (init) returns the application object correspond-
ing to the actual user’s location (e.g. a room object), which is
sent as a parameter for service execution. This object is ob-
tained by collaborating with the actual user’s location object,
which may have an explicit relationship with an application
object. For pure spatial objects, i.e. those which do not corre-

spond to any application object a nil object is returned. De-
signers can either re-define init, by including it in the concrete
class (therefore being invoked by the template method) or
perform other additional initializations, e.g. when more appli-
cation or spatial information is needed for the service execu-
tion. For example the service can get the course which is
scheduled and set the relationship shown in Figure 6.

3.4 MANAGING SERVICE GRANULARITY

Problem: In most applications, services are associated with
coarse-grained physical objects, e.g. meaningful physical areas
in the university. Moreover, once the user is sensed to be in a
Service area, we can assume that the services allocated to the
area are bound to the corresponding application object as dis-
cussed in Section 3.3. For example when the user enters in a
room, the service GetCourseInformation will refer to the
course object being scheduled in that room. Suppose, however
that we want to provide services with a finer grained physical
scope. For example we might have an art exhibition in the
room and we want to provide additional information on art-
works, as in augmented reality applications, e.g. when the user
stands in front of an artwork he can get information on the
painter or technical data (such as material, painting technique,
etc). Assuming that we can sense the user’s position precisely,
should we define finer grained service areas and allocate the
same service (type) to each of these areas?

Solution: In our conceptual schema, services are allocated to
areas. In the example above, it is clear that the service area is
the room and that defining new areas for each of the physical
objects (artworks), poses a problem of maintenance; adding a
new artwork requires the definition of a new service area. We
instead need to adapt the behavior of the location-aware ser-
vices to the specific object the user is facing. The solution
emerges by analyzing the flow of control that results when the
user is sensed to be in a new location (in front of an artwork).
As explained in Section 3.2, the Service environment detects
that the user did not exit a service area and he did not enter
another one (this conclusion follows by analyzing the physical
object in the corresponding Location model). Therefore, the
previously allocated services still apply. However, the physical
position of the user has changed, and this change has been
registered in Location.User. Then, when the service GetArt-
workInformation is started, the process described in Section
3.3 is performed and the service is bound to the correct physi-
cal object (the artwork). In other words, we can make (loca-
tion-aware) services adaptable to finer grained physical ob-
jects, without changing the overall architecture, nor the under-
lying location model: we just need to slightly re-write the start
behavior of those services.

4 RELATED WORK

The Context Toolkit [4] has been our first source of inspiration
for providing a clear separation of concerns in our architec-
ture. Our hardware abstractions and sensing concerns are simi-
lar to Dey’s [4] context widgets. Hydrogen [6], meanwhile,
introduces some improvements to the capture, interpretation
and delivery of context information with respect to the seminal

288

work of the Context Toolkit. Both the Context Toolkit and
Hydrogen are aimed at providing a reusable context infrastruc-
ture that can be used by several applications. In this sense, the
application concern is not dealt with and therefore there are no
cues about how to structure application objects, particularly
when they involve some information which is important for
deciding about context changes.
Our view is slightly different; we focus on how to seamlessly
extend existing applications with location-aware services.
Even though our architecture also provides reusable compo-
nents, our main goal resides in how to bridge context informa-
tion with application objects. Our approach proposes a clear
separation of concerns between those object features that are
“context-free” (attributes and behaviors), those that involve
information that is context-sensitive (like location and time)
and the context-aware services. In this sense our approach
proposes a set of micro-architectural styles to add location and
services to application objects, which inverts the usual rela-
tionship between these aspects. While naïve software ap-
proaches make objects aware of their positions and services,
we use decorators and commands [5] to achieve the same
result but making the application oblivious of these additions.
This approach also improves traditional rule-based approaches
like [12], which tend to hardcode service activation conditions
in rule conditions; these conditions either refer explicitly to
application objects (which as a consequence must know their
location), or contain location information, thus making them a
critical point during maintenance.
By clearly decoupling these aspects in separated layers, we
obtain modular applications in which modifications in one
layer barely impact in others. Our idea of connecting services
to places has been used in [7], though our use of dependency
mechanisms improves evolution and modularity following the
Observer’s style [5,8]. From an architectural point of view, our
work has been inspired in [2]: the sum of our micro-
architectural decisions, such as using dependencies or decora-
tions also generate a strong, evolvable architecture.

5 CONCLUDING REMARKS AND FURTHER WORK

In this paper, we have described a set of abstract architectural
components and their associated communication mechanisms,
which provide a substrate for seamlessly extending existing
object-oriented software to support location-aware services.
The most important goal of our approach is that it provides an
original way of mapping application objects to their located
counterparts (i.e. the objects which describe their positions in a
particular reference system). By using dependency mecha-
nisms instead of rules we improve maintenance; the cost we
pay is that the underlying design is more complex than typical
rule-based systems which usually comprise a rule model, a
context model and application objects. We are now research-
ing on the following areas:
-Regarding service specification we are now studying how to
use services as proxies of Web Services; while the use of ob-
jects to manipulate services is straightforward, many of our
design structures relies on pure object-oriented constructs

which have to be slightly modified to deal with XML-based
services.
-We are studying abstraction and composition mechanisms at
the service level, both to express service’s behaviors and acti-
vation conditions. For example we may have an abstract ser-
vice which is activated in every room (e.g. Get material) but
which may be refined into more specific ones according to the
room, or other conditions hold on application objects (e.g. the
kind of course in the course or other constraints).
-We are building interactive tools to improve the specification
of services and service areas to our framework.
-We are extending the approach to other kind of context data.
Traditionally, context data has been treated as plain data which
can be queried (e.g. activities are described as a string such as
“working”); by objectifying such data, services dispatch can be
dealt with by delegating the corresponding decisions to the
involved object (e.g. an instance of a sub-class of Activity or
Role). For other kinds of contextual information, e.g. measur-
able context data, we are extending the notion of service area
to use the same kind of strategies which we use for spatial
information. We are also studying how to deal with n-
dimensional areas, where each dimension deals with a different
kind of context data.
-We are improving the architecture by incorporating an event
model to simplify the management of dependencies. Event
models help objects which receive a notification to delegate to
specific event managers; the impact of this approach is that we
can dynamically add new kind of events (e.g. to manage a new
kind of context information), without having to edit the work-
ing code.

REFERENCES

[1] G. Abowd. “Software Engineering Issues for Ubiquitous Computing”.
Proceedings of the International Conference on Software Engineering
(ICSE 99), ACM Press, 1999, pp. 75-84.

[2] K. Beck, R. Johnson: “Patterns generate architecture”. Proceedings of the
European Conference on Object-Oriented Programming, Ecoop ’94 Lec-
ture Notes in Computer Science.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Som-
merlad, M. Stal: “Pattern-Oriented Software Architecture”. John Wiley,
1996.

[4] A. Dey: “Providing Architectural Support for Building Context-Aware
Applications”. PHD, Thesis, Georgia Institute of Technology, USA, 2001.

[5] R. Gamma, R. Helm, R. Johnson, and J. Vlissides:_”Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison Wesley, 1995.

[6] T. Hofer, M. Pichler, G. Leonhartsberger, W. Schwinger, J. Altmann:
”Context-Awareness on Mobile Devices - The Hydrogen Approach”,
Proceedings of the International Hawaiian Conference on System Science
(HICSS-36), Minitrack on Mobile Distributed Information Systems, Wai-
koloa, Big Island, Hawaii, January 2003.

[7] T. Kanter, “Attaching Context-Aware Services to Moving Locations”,
IEEE Internet Computing V.7, N.2, pp 43-51, 2003.

[8] G. Krasner, S. Pope, "A Cookbook for Using Model-View-Controller User
Interface Paradigm in Smalltalk-80", Journal of Object Oriented Pro-
gramming, August/September, 1988, 26-49.

[9] U. Leonhardt, “Supporting Location-Awareness in Open Distributed
Systems”, Ph.D. Thesis, Dept. of Computing, Imperial College London,
May 1998. http://www.doc.ic.ac.uk/~jnm/ul_thesis.pdf

[10] S. Pradhan, “Semantic Location.” Personal and Ubiquitous Computing
4(4): 213-216 (2000).

[11] G. Rossi, S. Gordillo, A. Fortier: “Seamless Engineering of Location-
Aware Services”, Proceedings of CAMS 2005, 2nd Workshop on Context-
Aware and Mobile Services, Ciprus, October 2005, Springer Verlag.

 [12] UWA Project. www.uwaproject.org

289

