
58 Published by the IEEE Computer Society 1089-7801/13/$31.00 © 2013 IEEE IEEE INTERNET COMPUTING

Fe
at

ur
e:

 E
vo

lv
in

g
W

eb
 A

pp
lic

at
io

ns

Personalized Web Accessibility
using Client-Side Refactoring

Alejandra Garrido,
Sergio Firmenich,
Gustavo Rossi,
and Julián Grigera
Universidad Nacional
de La Plata, Argentina

Nuria Medina-Medina
Universidad de Granada, Spain

Ivana Harari
Universidad Nacional
de La Plata, Argentina

According to W3C accessibility standards, most Web applications are neither

accessible nor usable for people with disabilities. Developers often solve this

problem by building separate accessible applications, but these are seldom

usable and typically offer less functionality than the original. Another common

solution is to maintain a single application, but create an accessible view by

applying on-the-fly transformations to each requested page — a solution that

rarely suits all audiences. A third solution is described here: let users improve

Web accessibility in their client browsers through interface refactorings, which

offer many customized, accessible views of a single application.

R efactoring was originally con-
ceived as a technique to improve
software’s internal qualities —

such as understandability and main-
tainability — while preserving seman-
tics.1 In prior work, we adapted the
refactoring approach to improve a Web
application’s external attributes, such
as usability.2 These Web refactorings
consist of small navigation or interface
transformations that enhance perceiv-
able aspects of Web applications, such
as user interaction and content presen-
tation, while preserving functionality.
Refactorings can also solve accessibil-
ity and usability problems for disabled
users.3 Still, it’s usually impractical to
address interface improvements for
all audiences because disabilities can
vary dramatically in nature (visual,
cognitive, or motor), severity (blind-
ness, color blindness, or strabismus)
and extent (total or partial). In such

different contexts, “one for all” is
barely feasible.

When applying refactoring to improve
internal qualities, developers decide
which transformations to apply and
where, because they’re the ones ben-
efitting from the improvement. As Brian
Foote and Joseph Yoder put it, “Who
better to resolve the forces impinging
upon each design issue as it arises, as
the person who is going to have to live
with these decisions?”4 Moreover, differ-
ent developers might prefer alternative
solutions for the same “bad smell” (that
is, the design problem that motivated the
refactoring1). Following on this general
philosophy, we believe that end users
should be able to tailor a website’s inter-
face for their own benefit.

We propose empowering users (or
close representatives) with the ability
to select, in their client browsers, their
own interface refactorings for each site

IC-17-04-Garr.indd 58 6/5/13 12:16 PM

Personalized Web Accessibility using Client-Side Refactoring

JULY/AUGUST 2013 59

they access. We call our approach Client-Side
Web Refactoring. CSWR allows for the automatic
creation of different, personalized views of the
same application to solve the particular bad
smells that each user recognizes. (Developers
should continue to focus on addressing general
usability problems on the server-side, however,
and reach the minimum level of accessibility,
or “A”).

Here, we describe CSWR and a case study
we ran with visually impaired users (though
a similar solution could be applied for other
disabilities).

Refactoring Example
Figure 1a shows the inbox in Gmail, Google’s
email reader. Gmail includes checkboxes on the
left that let users select several emails, which
is handy for applying an action to all of them.
However, for visually impaired people using a
screen reader, it’s uncomfortable to have to go
back to the checkbox at the line’s beginning to
select emails after reading the line, and then
go back to the top to apply an operation after
selecting the emails; they report this as a “bad
accessibility smell” (an accessibility problem
that motivates a refactoring).

A refactoring that solves this bad smell is
Distribute Global Menu, which distributes a
menu of actions affecting a list of elements to
each element individually. This eases the local
application of an operation because it requires
only a single click immediately after the ele-
ment is read. Figure 1b shows the result of
applying this refactoring to the Gmail inbox.
The set of actions was removed from the top

and attached to each email in the form of icons
(each with an alternative text).

However, some users who report the same
bad smell are more comfortable using contex-
tual menus, so the set of actions isn’t read with
every email. For them, the Contextualize Global
Menu refactoring is more appropriate. Also,
experienced users prefer to keep the global
menu so they can operate on several emails at
once; for them, using the Postpone Selection
refactoring will move the checkboxes to the
last column.

Client-Side Web Refactoring
As this example shows, a Web refactor ing
changes a Web application’s navigation structure
or look and feel, preserving its content and oper-
ations while removing bad usability or acces-
sibility smells. In previous work, we used Web
refactorings to enhance navigation and presen-
tation during the development life cycle.2,5 We
can generate a complete new version of an appli-
cation with a specific aim — such as a mobile
version — by systematically applying and com-
posing refactorings. Here, we propose a similar
approach to improve accessibility, where refac-
toring is applied after deployment and during
actual use of the Web application, altering the
interface in the browser itself.

Our CSWR approach has two key benefits:

•	 Simpler maintenance — developers main-
tain a single core application, applying Web
usability refactorings that address a general
audience, while different refactored versions
can be created by and for different users.

Figure 1. Applying refactoring to Gmail. The Gmail interface (a) before and (b) after applying
Distribute Global Menu to address accessibility issues with the checkbox and operations on top.
(Gmail logo reprinted with permission.)

(a) (b)

IC-17-04-Garr.indd 59 6/5/13 12:16 PM

Feature: Evolving Web Applications

60 www.computer.org/internet/ IEEE INTERNET COMPUTING

•	 Architecture independence — developing a
CSWR requires little (if any) knowledge of
the target application’s underlying architecture.

The engine behind CSWRs uses a client-
side adaptation framework that aims to adapt
existing applications by changing their DOM
structure.6 CSWRs are implemented by special-
izing the class AbstractRefactoring (provided
in our framework) and redefining the method
adaptDocument() with the refactoring’s mechanics.

For example, consider the Split Page refactoring,
which solves the problem of a saturated, com-
plex webpage by dividing it into a set of sim-
pler pages or sections.2 In this case, the method
adaptDocument() receives the DOM elements that
represent disjoint page sections as parameters
and creates a new page for each section, replac-
ing the original page’s contents with an index
to the new pages (see the bottom of Figure 2a).

To apply the Split Page refactoring to a spe-
cific page, you must first create an instance

Figure 2. Client-Side Web Refactoring. a) Split Page refactoring levels: the generic implementation at
the bottom, two instances (for Gmail and Hotmail) in the middle, and the result on each DOM at the
top. b) Split Page instantiation: the intermediary drags Gmail’s Labels to create a new Folders section.

(a)

(b)

Split page refactoring
(DOM independent)

Section

Instantiated
refactoring

Instantiated
refactoring

DOM DOM
App1 App2

IC-17-04-Garr.indd 60 6/5/13 12:16 PM

Personalized Web Accessibility using Client-Side Refactoring

JULY/AUGUST 2013 61

of SplitPage (such as the two instances in the
middle level of Figure 2a), passing as parameters

•	 a URL identifying the target page or a URI
pattern for a set of pages of the same site
(such as all Gmail pages in Figure 2a’s code);
and

•	 instances of the class Section, which con-
tain DOM elements specified through xPath
expressions. Because DOM elements might not
always be identified through xPath queries
based on attributes, absolute xPath expres-
sions from the DOM root might be required.

The three levels in Figure 2a correspond to
the three steps involved in the refactoring pro-
cess, which can involve three user roles (pic-
tured in the middle column):

•	 The JavaScript (JS) programmer creates new
refactorings by writing a parameterized
script that reuses components offered by our
framework’s refactoring engine.

•	 An intermediary instantiates refactorings for
a specific website. (The JS programmer can
play this role as well). The refactorings are
instantiated either by writing code (as in
Figure 2a) or using our refactoring tool (as in
Figure 2b). This graphical tool lets the inter-
mediary point-and-click on the target page
to select the components that act as values
for each refactoring parameter. Figure 2b,
for example, shows an instantiation of Split
Page, where the group of email labels is
dragged to a Folders section that will go into
a new page.

•	 End users install instantiated refactorings
by choosing them from an accessible menu
in their Web browsers; from then on, they
can access the refactored website config-
ured to their needs. Unlike traditional refac-
toring, we added this new step (separating
it from instantiation) so that handicapped
users unable to code a script or use a graphi-
cal refactoring tool can still be part of the
process by choosing their own refactorings.

CSWR’s power comes not only from letting
end users choose specific refactorings, but also
from letting intermediaries compose refactor-
ings in different ways. CSWR composition is
done at instantiation time, and requires spe-
cial handling because refactorings can interfere

with each other. Similar to code refactorings,
an applied refactoring might invalidate the next
refactoring’s preconditions. In this case, the
preconditions of CSWRs are the existence of the
DOM elements specified as parameters (xPath
expressions). Thus, an applied refactoring might
invalidate subsequent refactorings if it changes
the xPaths that identify their target elements.
For example, if Split Page and Distribute Global
Menu are both instantiated on the original
DOM’s elements, and Split Page is applied first,
the Distributed Global Menu won’t find its tar-
get elements in their original xPath location.

Our refactoring tool helps intermediary users
correctly compose CSWRs so that they can cre-
ate and distribute a complete, accessible ver-
sion of an application as a composition of CSWR
instances. When an intermediary user selects
several refactorings to compose, the tool creates
and suggests a possible sequence, first by plac-
ing structural refactorings (such as Split Page),
then refactorings that adapt specific DOM ele-
ments (such as Distribute Global Menu), and
finally by placing DOM-independent refactor-
ings (such as Replace Image with their Alt Text).
CSWRs are thus instantiated in order, and users
can specify certain noninterfering CSWRs to be
independent. With this information, the tool cre-
ates the menu of optional CSWRs, so that when
end users install a composed set of CSWRs, they
can still choose to activate or deactivate inde-
pendent CSWRs individually.

Case Study: Accessible Gmail
We carried out a case study on the HTML ver-
sion of Gmail with visually impaired users to
validate our claim that refactorings offer a bet-
ter experience when they’re customized for and
by end users to suit their own expertise, screen-
reader of choice, personal preferences, and so
on. We played the roles of JS programmers and
intermediaries.

Preliminary Study
We first conducted a study with seven potential
Gmail users to test our preliminary hypothesis:
our refactored Gmail version is more acces-
sible and usable than the original. Of the seven
users, six were blind, and one had a severe sight
deficiency. The test users had various computer
and Internet skill levels; most used email cli-
ents and Web browsers, although only one had
previously used webmail tools.

IC-17-04-Garr.indd 61 6/5/13 12:16 PM

Feature: Evolving Web Applications

62 www.computer.org/internet/ IEEE INTERNET COMPUTING

We gave users the following tasks:

1. Read and reply to an email.
2. Compose an email and send it to several

people.
3. Search and delete a specific sent message.

Users had to complete the tasks first in the
original Gmail, so we could check for ignored
bad smells, and then in a refactored version,
to detect unsolved bad smells and determine
how this first refactoring attempt improved or
spoiled the user experience.

The selected refactorings were Split Page (to
partition the email list, tags list, and the main
Google menu), Distr ibute Global Menu (for
email operations), Reorganize into a List (for
sets of unnumbered actions), Remove Redun-
dant Operation (to remove the global menu of
email operations at the top and leave the one at
the bottom of the email list), and Postpone
Selection (to move the checkbox column to the
end of each email’s row).

During the study, we used observation and
questionnaires to gather various feedback. These
led to several findings:

•	 Different skill levels in screen reader use
led to different complications; for example,
refactorings aimed at simplifying the struc-
ture were useful mostly for novice users, but
were burdensome for experienced ones.

•	 Users suggested new refactorings, including
the use of context menus as an alternative to
distributed menus.

•	 Users new to webmail clients couldn’t com-
plete the tasks in the original Gmail, but
could complete them with external aid in
the refactored version (which proves our
hypothesis with new users).

•	 Users had positive feedback on the content’s
organization and functionality. Using a rat-
ings scale of very good, good, average, and
poor, the feedback included five good quali-
fications and one average for organization/
functionality, but ease of use scored only
two goods and four averages, which helped
us gather other bad smells and improve the
tools for intermediaries and final users.

Actual Experiment
Following our preliminary study, we conducted
an experiment with new users. Of the 10 blind

users in this study, three were experienced in
operating Gmail, and the other seven were expe-
rienced in Web browsing, but not with Gmail.
This time, our hypothesis was that a personal-
ized version of Gmail is better than our com-
pletely refactored version. We conducted the
test with one user at a time, going through sim-
plified tasks that covered the same basic ground
as in our previous study:

1. Delete all emails from a specific sender.
2. Find a specific deleted email in the Trash and

put it back in the Inbox.
3. Answer the email recovered in task 2.

Before the actual exper iment, we asked
users to answer a specific email (as in task 3) on
the original Gmail. This had a twofold purpose:
it gave us a sense of their expertise with the
tools (browser and screen reader) and reduced
the bias that might occur for users without pre-
vious Gmail experience.

For the main part of the experiment, we
devised an optimal set of four refactorings based
on the experience from the previous study and
applied them to Gmail:

•	 Split Page, to reduce each page’s contents
and thus ease content access;

•	 Distribute Menu, to simplify the tasks applied
to each item on a list (such as emails);

•	 Contextualize Menu, to present actions over
an item as a contextual menu; and

•	 Postpone Selection, to let users read the email
subjects and check them immediately after-
ward to apply an action to several selected
emails.

Before we asked the subjects to complete the
tasks, we explained each refactoring. Once the
users were finished with the tasks in the com-
pletely refactored version, we had them arrange
their own set of refactorings using the menu
options in their browsers. They then performed
the affected tasks — those related to the selected
refactorings — again for further comparison.

Results
The main measurement we gathered was task
completion time, comparing the times from the
completely refactored site with those repeated
in the personalized version (see Table 1). Out of
10 users, five preferred Contextualize Menu to

IC-17-04-Garr.indd 62 6/5/13 12:16 PM

Personalized Web Accessibility using Client-Side Refactoring

JULY/AUGUST 2013 63

Distribute Menu, two discarded Split Page, and
the rest preferred the refactored site as it was.

The overall completion times decreased by
an average of 33.44 percent, with 32.03 percent
for the subjects who chose Contextualize Menu
and 36.94 percent for the group with no Split
Page refactoring.

From this second study, we gathered new
feedback, which led to the following findings:

•	 Novice users found it easier to navigate using
Split Page, but this wasn’t the case for expe-
rienced users because the split structure
requires additional navigation steps for some
tasks (such as when folders were moved to a
folder index in a separate page).

•	 Some novice users suggested splitting the
pages in a new way, so that some of the fea-
tures were always present; others wanted to
easily hide the main menu when desired.

•	 Users’ habits directly interfere with the results.
For example, experienced users didn’t appre-
ciate the benefits of Distribute Menu until
after they tried it and used it for a while,
because they were used to dealing with the
global menu.

These results clearly show the importance of
personalization: because experienced users can
move quickly through a page with keyboard
combinations, they prefer loaded pages and
shorter navigation paths — a solution that frus-
trates inexperienced users because it demands
going through lots of content every time the
page reloads.

Discussion
In previous work,6 we developed tools that let
users create conceptual models and then define
adaptations in terms of these models, based on
the idea of ModdingInterface.7 We’re now plan-
ning to adapt this conceptual layer specifically
for use with CSWR. This new abstraction level
would let developers define concepts (and their
properties) over DOM elements and define the
adaptations in terms of concepts, instead of
manipulating DOM elements directly with xPath
expressions. Thus, if two Web applications man-
age the same concepts — and thereby form an
application family that shares the same abstract
model — the CSWRs defined in terms of abstract
concepts can be applied to both applications.

For example, webmail applications that
share the same abstract model (Inbox, Folder,
Email, and so on) can use the same set of
CSWRs defined in terms of these concepts. This
approach not only allows more CSWR reusabil-
ity, but it might improve script resilience. Such
resilience is one of the most important draw-
backs for client-side scripting, and our approach
isn’t exempt: when webpage DOMs change,
scripts might stop working. If the development
uses an agile process, server-side refactorings
might update the DOM often. Another common
constraint in this type of technology is that
it’s not applicable to all websites; for example,
sites developed using technologies such as Flash
might present problems.

Although we propose CSWR to improve
accessibility for unsighted users, developers can
easily apply the same approach to create different

Table 1. Results comparing completely refactored vs. personalized versions of Gmail.

User Selected refactorings
Completely

refactored (secs)
Personalized

(secs)
Drop rate

(%)

1 SplitPage, ContextualizeMenu, Postpone Selection 180 160 11.11

2 SplitPage, ContextualizeMenu, Postpone Selection 300 200 33.33

3 SplitPage, ContextualizeMenu, Postpone Selection 143 43 69.93

4 SplitPage, ContextualizeMenu, Postpone Selection 91 52 42.86

5 SplitPage, ContextualizeMenu, Postpone Selection 68 66 2.94

Partial 32.03

6 DistributeMenu, Postpone Selection 90 65 27.78

7 DistributeMenu, Postpone Selection 180 97 46.11

Partial 36.94

Overall 33.44

IC-17-04-Garr.indd 63 6/5/13 12:16 PM

Feature: Evolving Web Applications

64 www.computer.org/internet/ IEEE INTERNET COMPUTING

Related Work in Improving Web Accessibility

Ideally, accessibility should be contemplated early, during
Web application design, and webpages should follow exist-

ing standards or guidelines such as Web Content Accessibil-
ity Guidelines (WCAG). Such guidelines could, for example,1,2
be incorporated in the Web engineering life cycle. Other key
approaches to ensure or enforce accessibility include system-
atically assessing compliance with guidelines3 and automatically
detecting accessibility problems in webpages.4,5 Despite these
research efforts, however, most Web applications aren’t yet
fully accessible, and the problem must be tackled with more
dynamic approaches.

A well-known technique to transform existing webpages
to be accessible is transcoding,6 which applies transformations
on the fly, based on semantic annotations manually added by
developers or automatically derived from Web design mod-
els. Transcodings can be applied on the server, the client, or
a proxy.6 Our approach shares the philosophy behind trans-
coding, but most of the existing transcoding systems for acces-
sibility lack extensibility and personalization:

•	 All transcoding methods (including Text Magnification and
Content Reorder)6 are predefined by their developers, and
it isn’t possible to add new transcoding methods. Most such
systems are only extensible – in terms of which webpages
will be transcoded – if volunteers are allowed to annotate
a website and apply the transcodings for future visitors.
Our Client-Side Web Refactoring (CSWR) approach allows
for a new type of volunteer (JavaScript programmer) who
can add new refactorings in response to new bad smells or
tackle the same bad smell in a different way.

•	 Transcoding-aware annotations have the same impact for
all users regardless of their special capacities. Because
transcodings are considered transparent from the users’
viewpoint, it isn’t possible to fine tune them for a spe-
cific webpage according to each user. With CSWR, each
user can select a different set of refactorings for each
website.

•	 Transcodings don’t necessarily preserve behavior; they
can remove some operations, such as when they aim to
simplify content. In contrast, refactorings were conceived
as behavior-preserving transformations,7 which, in the
case of Web applications, means preserving content and
functionality.8

•	 Transcodings don’t necessarily compose, and they might
even interfere with each other.6 We propose CSWR com-
position as an additional way of customizing a website, let-
ting users apply a sequence of refactorings incrementally.

Interest is growing in client-side scripting9 for customizing
existing pages, as proven by large communities using Grease-
Monkey (www.greasespot.net), a popular tool for client-side
scripting that allows any kind of change over a webpage’s DOM.

Specific tools such as WebAdapt2Me (http://www-03.ibm.com/
able/accessibility_services/WebAdapt2Me.html) and Access-
Monkey10 focus on accessibility. However, both tools only let
users make basic changes to style, such as font size or color,
and basic changes to content order.

When it comes to accessibility improvements, current client-
side tools are too primitive. Generic tools such as Grease-
Monkey hardly provide mechanisms for script compatibility;
when different scripts are applied over the same pages, the
execution of one script can spoil the previous one’s changes
or invalidate the execution of the script that follows. Besides,
while GreaseMonkey lets users adapt a specific page, it doesn’t
let them generalize – that is, they can’t apply the same change
on different pages if changes depend on the DOM’s structure.
Although GreaseMonkey is excellent as a weaver, it doesn’t
offer facilities for accessibility. In contrast, our tool is a weaver
that further provides mechanisms for refactoring definition,
composition, and installation. Tools designed specifically for
accessibility based on client-side scripting, such as Access-
Monkey, also have several limitations, mainly because they’re
focused on basic style changes, which are usually insufficient to
solve problems such as user disorientation or long navigation
chains.

References
1. V. Luque Centeno et al., “Web Composition with WCAG in Mind,” Proc.

Int’l Cross-Disciplinary Workshop on Web Accessibility (W4A), ACM, 2005,

pp. 38–45.

2. P. Plessers et al., “Accessibility: A Web Engineering Approach,” Proc. 14th

Int’l Conf. World Wide Web, ACM, 2005, pp. 353–362.

3. J. Vanderdonckt, A. Beirekdar, and M. Noirhomme-Fraiture, “Automated

Evaluation of Web Usability and Accessibility by Guideline Review,” Proc. 4th

Int’l Conf. Web Engineering, LNCS 3140, Springer, 2004, pp. 17–30.

4. C. Benavídez et al., “Semi-Automatic Evaluation of Web Accessibility with

HERA 2.0,” Proc. Int’l Conf. Computers Helping People with Special Needs,

LNCS 4061, Springer, 2006, pp. 199–206.

5. TAW3: Tool for the Analysis of Websites, Fundación CTIC, Spanish Ministry of

Employment and Social Affairs (IMSERSO) Online Web Accessibility Test;

www.tawdis.net.

6. C. Asakawa and H. Takagi, “Transcoding,” Web Accessibility: A Foundation for

Research, S. Harper and Y. Yesilada, eds., Springer, 2008, pp. 231–261.

7. M. Fowler, Refactoring: Improving the Design of Existing Code, Addison Wesley,

1999.

8. A. Garrido, G. Rossi, and D. Distante, “Refactoring for Usability in Web

Applications,” IEEE Software, vol. 3, no. 28, 2011, pp. 60–67.

9. O. Diaz, C. Arellano, and J. Iturrioz, “Layman Tuning of Websites: Facing

Change Resilience,” Proc. 17th Int’l Conf. World Wide Web (WWW), 2008,

ACM, pp. 127–128.

10. J. Bigham and R. Ladner, “Accessmonkey: A Collaborative Scripting Frame-

work for Web Users and Developers,” Proc. Int’l Cross-Disciplinary Conf. Web

Accessibility (W4A), ACM, 2007, pp. 25–34.

IC-17-04-Garr.indd 64 6/5/13 12:16 PM

Personalized Web Accessibility using Client-Side Refactoring

JULY/AUGUST 2013 65

views of a Web application targeted to improve
other external qualities or to create, for exam-
ple, a mobile version. Note that W3C guidelines
for both accessibility (Web Content Accessi-
bility Guidelines; www.w3.org/TR/WCAG10)
and mobile (Mobile Web Best Practices; www
.w3.org/TR/mobile-bp) have several similari-
ties, which can be implemented as CSWR if
they aren’t contemplated originally by Web
applications.

R efactoring is a powerful and essential tool
that lets developers improve running appli-

cations based on feedback. This feedback might
come from bad smells in the code identified by
developers, or from bad smells in usability and
accessibility experienced by users. However, for
developers to correct bad smells based on user
feedback typically takes a long time — especially
for bad accessibility smells, which generally
aren’t a priority. We thus put refactoring in
the hands of users, who know better what they
actually need. This not only lets users custom-
ize specific interaction improvements, but also
removes such improvements from the main
development cycle of the applications them-
selves, which reduces cost and effort.

Web refactorings are a technically compelling
way to dynamically improve users’ experience,
as they are composable and let users create dif-
ferent application versions without any knowl-
edge of the internal design. This is a huge benefit
because it also allows a crowdsourcing approach
to making CSWRs and their compositions avail-
able. Indeed, our future work includes building
a crowdsourcing tool for volunteers to upload
new generic refactorings or instantiate existing
refactorings for a particular website, which could
come as a package of composed refactorings to
create a completely new version of a site. We
propose hosting crowdsourced CSWRs to spread
their adoption with the least possible burden for
end users. Moreover, to overcome the existence
of different versions of refactorings in response
to webpages’ DOM evolution, our crowdsourc-
ing tool’s architecture would automatically
select the latest versions of a given CSWR or
CSWR set.

References
1. M. Fowler, Refactoring: Improving the Design of Exist-

ing Code, Addison Wesley, 1999.

2. A. Garrido, G. Rossi, and D. Distante, “Refactoring for

Usability in Web Applications,” IEEE Software, vol. 3,

no. 28, 2011, pp. 60–67.

3. N. Medina-Medina et al., “Refactoring for Acces-

sibility in Web Applications,” Proc. 11th Int’l Conf.

Interacción Persona-Ordenador, Assoc. Interacción

Persona-Ordenador, 2012, pp. 427–430; www.aipo.es/

items.php?id=364.

4. B. Foote and J. Yoder, “Big Balls of Mud,” Pattern Lan-

guages of Program Design 4, N. Harrison, B. Foote, and

H. Rohnert, eds., Addison Wesley, 2000, pp. 653-692.

5. N. Medina-Medina et al., “An Incremental Approach

for Building Accessible and Usable Web Applications,”

Proc. 11th Int’l Conf. Web Information System Eng.

(WISE), Springer, 2010, pp. 564–577.

6. S. Firmenich et al., “A Crowdsourced Approach for

Concern-Sensitive Integration of Information across

the Web,” J. Web Engineering, vol. 10, no. 4, 2011,

pp. 289–315.

7. O. Diaz, C. Arellano, and J. Iturr ioz, “Layman Tun-

ing of Websites: Facing Change Resilience,” Proc.

17th Int’l Conf. World Wide Web (WWW), ACM, 2008,

pp. 127–128.

Alejandra Garrido is an assistant professor at Facultad

de Informática, Universidad Nacional de La Plata,

Argentina, where she’s a member of the Research and

Development in Advanced IT Lab (LIFIA). She is also a

researcher at Argentina’s National Scientific and Tech-

nical Research Council (CONICET). Her research inter-

ests include refactoring and Web engineering, focusing

on design patterns, frameworks, refactoring for the C

language, and refactoring for usability. Garrido has a

PhD in computer science from the University of Illinois

at Urbana-Champaign. She’s a member of the Hillside

Group. Contact her at garrido@lifia.info.unlp.edu.ar.

Sergio Firmenich is a teaching assistant at Facultad de

Informática, Universidad Nacional de La Plata, Argen-

tina, and a member of the Research and Development

in Advanced IT Lab (LIFIA). His research interests

focus on Web application adaptability — specifically,

on engineering the adaptation of existing applications.

Firmenich has a PhD in computer science from Univer-

sidad Nacional de La Plata. Contact him at firmenich@

lifia.info.unlp.edu.ar.

Gustavo Rossi is a professor at Facultad de Informática,

Universidad Nacional de La Plata, Argentina, and the

director of the Research and Development in Advanced

IT Lab (LIFIA). He is also a researcher at CONICET. His

research interests include Web application design and

agile approaches. Rossi has a PhD in informatics from

IC-17-04-Garr.indd 65 6/5/13 12:16 PM

Feature: Evolving Web Applications

66 www.computer.org/internet/ IEEE INTERNET COMPUTING

the Pontifical Catholic University of Rio de Janeiro,

Brazi l . He’s one of the developers of the Object-

Oriented Hypermedia Design Method (OOHDM) and is

a member of IEEE and ACM. Contact him at gustavo@

lifia.info.unlp.edu.ar.

Julián Grigera is a PhD student at Facultad de Informática,

Universidad Nacional de La Plata, Argent ina. His

research interests are in Web development and agile

methodologies, and he’s previously worked on context-

aware systems architecture and sensing mechanisms,

and usability and accessibility for Web applications

and mobile devices. Grigera has a Licentiate degree in

informatics from the University of La Plata. Contact

him at juliang@lifia.info.unlp.edu.ar.

Nuria Medina-Medina i s an associate professor and

researcher in the Department of Computer Languages

and Systems at the University of Granada, where she’s a

member of the Group on Specification, Development, and

Evolution of Software (GEDES). Her research interests

include hypermedia systems, user modeling, user

adaptation, and software evolution, as well as Web

browsing, refactoring for the visually impaired, and

bioinformatics. Medina-Medina has a PhD in computer

science from the University of Granada. Contact her at

nmedina@ugr.es.

Ivana Harari is an assistant professor and Director of Web

Accessibility at the Facultad de Informática, Univer-

sidad Nacional de La Plata, Argentina. Her research

interests include human–computer interaction, mobile

user interface design, and Web accessibility, as well

as usability engineering and testing, user-centered

design, free and open source software (FOSS) tools for

disabled people, and adaptive and accessible mobile

interfaces. Harari has an education specialist degree

in university teaching from the University of La Plata.

Contact her at iharari@ada.info.unlp.ed u.ar.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

IEEE Software offers
pioneering ideas,
expert analyses, and
thoughtful insights for
software professionals
who need to keep up
with rapid technology
change. It’s the authority
on translating software
theory into practice.

www.computer.org/
software/subscribe

www.computer.org/software

cyber Dumpster Diving // 9

the airbus a380’s cabin software // 21

programming with ghosts // 74

January/february 2013

www.computer.org/software

from minecraft to minds // 11

Landing a spacecraft on mars // 83

Design patterns: magic or myth? // 87

marcH/aprIL 2013

www.computer.org/software

storytelling for software
professionals // 9

In Defense of Boring // 16

Beyond Data mining // 92

may/June 2013

IC-17-04-Garr.indd 66 6/5/13 12:16 PM

