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Abstract

The challenge of improving the performance of autrqgrocessors is achieved by increasing the
integration scale. This carries a growing vulndigbto transient faults, which increase their
impact on multicore clusters running large sciéntgarallel applications. The requirement for
enhancing the reliability of these systems, coupltl the high cost of rerunning the application
from the beginning, create the motivation for havspecific software strategies for the target
systems. This paper introduces SMCV, which is ¥ fdistributed technique that provides fault
detection for message-passing parallel applicatibps/alidating the contents of the messages to
be sent, preventing the transmission of errors theroprocesses and leveraging the intrinsic
hardware redundancy of the multicore. SMCV achievegde robustness against transient faults
with a reduced overhead, and accomplishes a trfideetween moderate detection latency and
low additional workload.

Keywords: transient fault, silent data corruption, multicataster, parallel scientific application,
soft error detection, message content validatieimlility.

1 Introduction

The challenge of improving the computation perfanoeof current processors has been achieved bsaisicry
integration scale, which implies that the numbertrafisistors within chips is growing. Additionallthe in-
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volved increment of the power density has causeaise in the internal operation temperature. THastors,
added to a decrease in supply voltage, cause parse® be more vulnerable to transient faultsl7},

A transient fault is the consequence of interfeeeinom the environment that affects some hardwareponent
in the computer. This can be caused by electromimgradiation, overheating, or input power variagp and
can temporarily invert one or several bits of tffeded hardware element (single bit-flip or mukioit-flip)
[2].

The way in which each transient fault occurs isjuei any given transient fault does not occur dxdce same
never again throughout the lifespan of the systEmese faults are short-lived and do not affectréggilar oper-
ation of the system, although they can result @itttorrect execution of an application. Physicaihey can be
located anywhere in the hardware of the systenthig context, the faults that affect processorstegs and
logics are critical, since other parts of the systeuch as memories, storage devices and busess,blt+in
mechanisms (such as EC@®@s parity bits) capable of detecting and corregtinis type of faults [1].

From the perspective of the program being runfald¢t can alter the status of a hardware compotieitcon-
tains important information for the application. g@ading on the time and specific location of theltfat can
affect application behavior or results and, thamefaystem reliability [3].

The impact of transient faults becomes more siggaifi in the context of HFCEven if the mean time between
faults (MTBF) in a commercial processor is of thidey of one every two years, in the case of a supeputer
with hundreds or thousands of processors that catpéo solve a task, the MTBF decreases as théewuof
processors increases. Since the year 2000, eportsedue to large transient faults in large comapubr server
groups have become more frequent [1,20]. This titmds worse with the advent of multicore architees,
which incorporate a great degree of parallelisthaatiware level. Also, the impact of the faults bees more
significant in the case of longer applications,egivthe high cost of relaunching execution fromtikginning.
These factors justify the need for a set of stiatetp improve the reliability of high-performancemputation
systems. In this way, the first step is detecthmg faults that affect application results but aveintercepted by
the operating system and, therefore, do not cdugsepplication to be aborted.

Traditionally, the existing proposals for providitigainsient fault tolerance have been divided imiosé that
tackle the problem from a hardware standpoint,tande that do so from the software perspective.
Hardware-based techniques [8,9,11,13] aim to ptrdhecvarious elements in the processor by addilditianal
logics to provide redundancy. These are most widslyd in critical environments, such as flight syst or
high-availability servers, where the consequenéestmansient fault can be disastrous.
Hardware-redundancy-based techniques, howeverjnafficient in general purpose computers. The afst
designing and verifying redundant hardware is hayid the environmental conditions in which the pesors
are used and processor ageing are the main cawusésufts that cannot be predicted during the dmwalent
stage. On the other hand, in many applicationsigamdvideo on demand), the consequences of adaglhot as
severe, so there is no critical need to add thdrdaglt-tolerance mechanisms [21].

The compromise between the achieved reliability #nedresources involved makes software-redundansg
strategies [19] to be the most appropriate for gErEurpose computational systems. The basic ideddtect-
ing faults, called DMR consists in duplicating application computati@uath replicas operate over the same
input data and compare their outputs [8,11]. Theskniques are characterized by their low costfexibility,
allowing various configuration options to adapsteecific application needs [4].

An important aspect of detection lies in the vdimiainterval. If results are compared only at #mel, the fault
that affects the application is detected withdittidditional workload, but the cost of relaunching application
from the beginning is high, especially in the cakkarge parallel applications. On the other ef@aitial results
are validated frequently, a high workload is introed but the cost of re-executing the applicatromfthe last
consistent state is lower than in the previous.cakerefore, a compromise must be reached betweedetec-
tion interval and the additional workload introddce

There are numerous proposals for detection, baseatiiplication, designed for serial programs, whoseose
is ensuring execution reliability. From this staoiip, a parallel application can be viewed as so§stquential
processes that have to be protected from the coaseqs of transient faults by means of the setdopted
techniques.

In this context, SMCV (Sent Message Content Vaiigtis presented, which is a proposal specificdéigigned
for the detection of transient faults in scientifitessage-passing parallel applications that ezemuthe nodes

1 ECC: Error Correcting Code
2 HPC: High Performance Computing
® DMR: Dual Modular Redundancy
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of a multicore cluster. SMCV uses software techegjthat leverage the intrinsic redundancy exisitingulti-
cores, replicating each process of the parallelieaton in a core of the same processor. The tieteés per-
formed by validating the contents of the messagd®etsent using a moderate validation interval ashding a
reduced additional workload and a low overhead wetpect to execution time. SMCYV is a distributedtegy
that improves the reliability of the system (forntgdthe cluster and the parallel application),asolg the error
produced in the context of an application process@eventing it from propagating to the otherse Eimd goal
is to ensure that the applications that finish alevith correct results.

The rest of this paper is organized as followsSéttion 2, the theoretical context related to feamdaults and
their consequences in message-passing parallétatpmhs is reviewed. In Section 3, related workliscussed.
Section 4 describes this work’s proposal and expltie choices made. In Section 5, the methodglogyosed
is described in detail. Section 6 discusses th@&liréxperimental validation. In Section 7, futdiges of work
are described, and Section 8 presents the connkisio

2 Background
2.1 Soft Errors. Classification.

The errors (external manifestations of an incoasisinternal status) produced by transient faukscalled soft
errors. While transient faults affect system hamwaoft errors can be observed from the perspedivpro-
gram execution.

Figure 1 shows the classification of the possilolesequences of transient faults [24].
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Figure 1: Classification of possible outcomes of a transiaalt (adapted from [24])

The soft error rate (SER) of a system is givenl8j:[

SER = DUE + SDC + LF 1)

A Detected Unrecoverable Error (DUE) is a deteetedr that has no possibility of recovery. DUESs areonse-
guence of faults that cause abnormal conditiont daha detectable on some intermediate softwarer leyel

(e.g. Operating System, communication library). malty, they cause the abrupt stop of the applicatior

instance, an attempt to access an illegal memadyead (segmentation fault) or an attempt to rumstnuction

that is not allowed (e.g. zero division).

A Silent Data Corruption (SDC) is the alterationdata during the execution of a program that datsause a
condition that is detectable by system software.effects are silently propagated through the ei@twand

cause the final results to be incorrect. From al\vare point of view, this is caused by the invarsié one or
several bits of a processor’s register being ugdtebapplication, causing the program to gendeatky results.
A Latent Fault (LF) is a fault that corrupts datattare not read or used by the application sqitdethe fault
effectively happening, it does not propagate thhotige execution and has no impact on the results.
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As a consequence, it is important that strategieslaveloped to intercept SDCs, which are the mlasgerous
type of faults that can occur from the point ofwief reliability, because the program appears tauming
correctly but, upon conclusion, its output will &rrupted.

2.2 Transient Faults in Message Passing Parallel Applitions

The occurrence of a transient fault that causeS2@ in a core that is running one of the proces$esmes-
sage-passing parallel application can have twewifft consequences:

SDC = TDC + FSC )

A Transmitted Data Corruption (TDC) is an erromihich the fault affects data that are part of tbetents of a
message that has to be passed. If undetectedpthgtion is propagated to other processes of énallel appli-
cation.

On the other hand, in the case of a Final Statusuption (FSC), the fault affects data that are pentt of the
contents of the message, but is propagated lodaliing the execution of the affected process, qtimg its
final state. In this case, the behavior is simtitathat of a sequential process.

Since a parallel application consists in the calfation among multiple processes to perform a tislsuccess
is based on communicating the local computationlt®®btained by each process to the others. Torwexeéll
faults that cause a TDC have a high impact on tideresults. On the other hand, the faults thateans-SC are
related to the centralized part of the computateorg can therefore be detected by comparing therendts.
Following this line, it follows that, if the tasls idivided among a larger number of processes, thidrde a
larger number of messages and a consequent growhb iTDC portion.

In this context, SMCV proposes a detection schdmatis focused on those faults that cause TDCsaddd a
final stage for comparing results to ensure systelbility. The solution proposed is discussedsictions 4
and 5.

3 Related Work

Fault Tolerance (FT) involves three phases: detecpirotection and recovery. One of the ideas mostmon-
ly used for detecting faults, proposed by Rotenl28j, is duplicating the execution of a processthd in a
given core, using another core that works as realury Both replicas operate on the same input datapare
their partial results every given period of timedaonly one of them writes to memory or sends asags to
another process [7,8,9,10,11].

Among the proposals that are based on softwarendzdicy, code duplication, with several variants baen
the idea most widely adopted in the field of transifault detection. SRTS{multaneous & Redundant Thread-
ing) [5] is a first approximation to this, which costs in simultaneously running two replicas of agraon as
separate threads, dynamically scheduling hardweseurces between them, and providing detectiorugfiro
input duplication and output comparison. In [6] CROhip-level Redundant Threadihg proposed, which is
the application of this technique to CR@hvironments. SRTR (SRWith Recovery[7] proposes improvements
to the detection mechanism and provides recoveoutfh reexecution in the pipeline. CRTR (CRith Recov-
ery) [8] improves detection by separating executionmfrihireads to mask the communication latency between
cores, and it applies the recovery mechanisms geapm [7] for a CMP environment. In [9], DDMB®Ynamic
DMR) is proposed, a technique in which the cored thn the application in redundant mode are dyoalfyi
associated to prevent defective cores from affgatitiability, dealing with processing asymmetrégsl improv-
ing scalability. It introduces the possibility abrifiguring the system to operate in redundant nardesing the
cores separately for processing. All these solstiomolve some modification to system hardware.

In [4], theMixed Mode Multicoranodel is proposed, which allows running the agpians that require reliabil-
ity in redundant mode and, for applications thapuiee high performance, avoiding this penalty, tpusviding
flexibility through configuration settings.

In [12], the proposal is obtaining a reduced versib the application by removing inefficient comatibn and
computation related to predictable control floweThll application and its reduced version are iruseparate
threads, providing redundancy and advance redwdtsspeed up the execution of the application. authors in
[11] propose selecting a core to carry out momniigriasks over the processes that are run in ther otires,
cyclically verifying their states. As an alternajymore than one core can be used for diagnosiatiqes, and

4 CMP: Chip Multi-Processor
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the coverage level in case of faults can be cordigiuas well as the maximum overhead allowed. Tthese is
no need to produce a full replica of the program.

Among the solutions that are purely based on soé&waLR [21] proposes the creation of a set of medat
processes for each application, being transpaoeiht The implementation allows the Operating Syste intel-
ligently manage available hardware resources. fBoisnique is designed for sequential programs.

In the context of these options, SMCV proposestaatien solution that is specific to message-pasparallel
applications, not requiring any hardware modificati and leveraging the redundant resources tresidirexist
in the multicore environment.

4 Work Hypothesis. Proposed Solution

In this section we present the rationale for SME¥rst, the usefulness of validating message cositenex-
plained, and the features provided by the methagoéwe mentioned. Then, the leverage of redundamivare
resources by SMCYV to increase system reliabilityascribed.

4.1 Validating Contents of Sent Messages

The detection methodology proposed in this papessentially based on the hypothesis that, in syformed
by a multicore cluster that is running a messagssipg parallel application, most of the significaomputation
(understood as that which impacts application tepwill be part of the content of a message thaeint to oth-
er application process at some point during exenutiFaults can corrupt data, flags, addressesstrution
code. However, if the corrupted value is significkon the results of the application, this situatiwill eventual-
ly be reflected on message incorrectness. Thutheofotal faults that can cause SDC, most will bglto the
TDC category. Therefore, to detect faults that wotrimportant data, the contents of the messageslidibe
monitored. As regards the sequential phase, duvitigh there are no communications, the end reswésreri-
fied to ensure reliability.

SMCYV is a detection strategy based on validatirgdbntents of the messages to be sent. Each ajpligao-
cess is duplicated, and both replicas comparéalfields that form message contents before sentliegmes-
sage is sent only if the comparison is successful.

This technique allows detecting all faults thats@aT DCs; from the point of view of the parallel hggtion,
SMCV ensures that any fault that affects the stéi process is not propagated to other procetiseadpplica-
tion, which confines the effects of the fault te fbcal process. Faced with an error, SMCV curyemttifies the
application and produces a safe stop. If a finahgarison of the results is added to detect fanlthé serial
portion, SMCV ensures system reliability and, tfieme, that the results of any application thatsirds execu-
tion are correct.

Message contents are validated before sending #ssage. Thus, only one of the replicas effectigelyds the
message, which means that no additional networkviaith is consumed. Taking into account that currest-
works have protocols that ensure reliable commtioies, there is no need to verify the contentshefrnessag-
es upon reception (which would involve the transimis of two messages).

SMCYV provides the following features:

e Each process and its replica are locally validatésb strategy is distributed in each applicatioocpss.
It is decentralized.

e It prevents the propagation of errors among aptingprocesses. Also, it detects errors in theaseri
part of the application by checking the end results

e It introduces a low overhead in execution timegcsionly one comparison is added for each byte of
each outgoing communication and the end resudhuld be noted that the cost of comparison is towe
than that of communication).

* A conservative detection strategy, designed fousatial programs, consists in duplicating applmati
computation; to protect program outputs, each mgmaoite operation is checked before being written
[8]. Compared with this type of alternatives, SM@Wolves a reduced work overload. In this sense, it
can be said that it is a lightweight technique.

« When a fault is detected, the application is stdppdlowing immediately re-launching the execution.
There is no need to wait for the conclusion witboimect results to re-execute, so SMCV narrowsrerro
latency. This carries a gain in reliability, busalin time, which becomes particularly significamsci-
entific applications that can run for several days.
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* SMCV increases system reliability, understood @&srthmber of times the application ends correctly,
because it is able to detect faults that cause TDC.

» It achieves a trade-off between detection lateadglitional workload and involved resources. SMCV
introduces extra latency in detection, since ndfieation is carried out when the corrupt valudiist
used. This postpones detection until the time whenaltered data are part of the contents of the- me
sage. However, this implies a lower additional vieakl than validating each write operation (which
produces low latency with high workload), and heléxerages the resources than an only final com-
parison (which involves duplicating all computatittndetect only at the end, producing high latency
with low workload). The less frequent communicatloetween processes, the higher latency and the
lower workload.

4.2 Leveraging Redundant Hardware Resources

Hardware manufacturer’s trend is to add more ctirggocessors. However, many applications do riet &al-

vantage of all computation resources efficientin. tbe other hand, the increase in the amount oéieat faults
goes hand in hand with the rise in the number o€g@ssing cores. As a consequence, the focus iger only
processor performance, but factors such as retiabihd availability have become more relevant.réfae, the
use of cores to carry out tasks related to faldtrémce has advantages both as regards to levgrdwse re-
sources as well as adding a beneficial featurghiosystem.

In this context, SMCV takes advantage of the isidrmedundancy existing in multicores, using CMPesato

locate the replicas of the processes that perfaefulicomputation for the application. As the cotagion is

duplicated, half of the resources can be used ak pawer, whereas the other half is used for redany. The
output to main memory is the critical aspect fdesting the cores that will be used to detect thét$ that occur
in the others. SMCV tries to exploit the memoryraiehy of the CMP, so that the redundancy of thamata-

tion that is executed in any given core is placedriother core with which some level of cache &ath. Thus,
many comparisons will be resolved at L.@inimizing main memory access.

5 Proposed Methodology Description

As already explained, SMCV is a software-centriategy that can detect transient faults in a moléacluster
on which a message-passing scientific parallelieatdn is being run. Upon detection of a faultiszr report is
issued and the application is aborted, thus inargasystem reliability.

Figure 2 shows an outline of the proposed detectiethodology. Each process in the parallel appdinds run
in a core of the CMP, and the computation it cardet is internally duplicated in a thread, whinHurn is exe-
cuted in a core that shares some cache level hdtlcdre running the original process. Thus, themoineed to
access the main memory, taking benefit from theahdfy to solve comparisons.

Each process is run concurrently with its replighjch means that a synchronization mechanism isired,
When a communication is to be performed (point@gipor collective), it temporarily stops executiand waits
for its replica to reach the same point. Once thalldields from the message to be sent are coethdryte to
byte, to validate that the contents calculated bty ieplicas are the same. Only if this proves,tare of the
replicas sends the message, ensuring that no taiatgpare propagated to other processes.

IE ? Copy of Data
| tothereplica
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Figure 2: SMCV methodology. (a) Proposed detection outlibg Bghavior in presence of faults.

5 LLC: Last Level Cache
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The recipient(s) of the messages stop upon receptid remain on hold. Once received, it copiestiments of
the message to its replica (also using memory tfdkyd and both replicas continue with their compiota As-

suming that network errors are detected and ceueat the network layer, the validated messagehesaits
destination uncorrupted. By comparing the messafer®d sending it, the message can be sent only. tWeee

it be compared on reception, two copies of the agessvould have to be sent through the network, lwhiguld

be detrimental to bandwidth use and network faullherability.

Finally, when application execution finishes, theained results are checked once to detect fahdtsmay have
occurred after communications ended, during thialseart of the application.

5.1 Characterizing SMCV'’s Additional Workload

Additional workload is related to computing amoaxdited by the fault detection strategy. This mesriaseful
to compare this methodology with other options.hwe an approach, a conservative strategy basttormali-
dation of memory write operations, similar to thasged in sequential applications, has been analynreithis

case, parallel application processes are alsoahiptl in threads as described, but the resulty ofrite opera-
tions are validated (as opposed to validating dméycontents of the messages sent). This strategyyetect all
faults, but with a significant increase in compiatatamount. On the other hand, it introduces leeation la-
tency, because the fault is detected when the pEwvalue is written to memory, without the neédvaiting

to the next message to be sent.

The work overloadMyy introduced by the write validation technique igagi by:

Wyy = S+ M.k). (Csync + Ccomp) (3)

In Equation (3)Srepresents the number of write operations perfdrinethe application, excluding those corre-
sponding to the messages it sends. It is assuna¢dhth application sendd messages d elements (average)
each.C,yncandCeomp represent the costs of a synchronization operaiimha comparison operation, respectively.
The first factor in Equation (3) is therefore tlogat number of write operations performed by thpliagation. If

all write operations are validated, each will in@k synchronization operation and a comparisonatipe.

On the other hand, the workload added by messdgatian, W,y is given by:

Wyy =M. (Csync +k -Ccomp) (4)

In the case of message validation, for each medsage is an only synchronization operation &rmbmpari-
sons (one for each element in the message).

The relation between the workload introduced by SMEd a strategy that validates all write operaioill
then be given by:

Wmv M. Csync+ M. k. Ccomp

Wwy S. (Csync + Ccomp) +M. k.Csync+M. k. Ccomp

®)

The quotient of Equation (5) is always a numberdothan 1, which means that the additional comjmnat
overload for validating messages is lower than fimavalidating all write operations.

The analysis was carried out for one of the praze$isat communicate all its results. In the casa pfocess
that performs serial computing, the overload famparing the end results is added, but this is #meesin both
techniques. Therefore, this analysis is sufficiegdneral and representative of various situations.

It can be concluded that SMCYV is a lightweight tetgy that adds a reduced workload versus more poatsee
strategies that will detect faults that have noaotn the results of the application.

6 Initial Experimental Validation

The SMCV methodology has been assessed to deteitsidetection efficacy and the overhead introdueed
garding to execution time. The results obtainedshmvn in this section.

6.1 Testing SMCV'’s Effectiveness

Tests were run with the detection tool to tesefficacy. The application used for the tests wasiallel matrix
multiplication (C = A * B), programmed following ¢hMaster/Worker paradigm with 4 processes (the éfast
and 3 Workers), with the Master also taking parthef computation of the C matrix [22]. The Mastevgess
divides matrix A among all Workers and sends eawh the chunk assigned to it, keeping a chunk falfito

7
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participate in the calculation of the resulting matThen, the Master sends each Worker a copyhefentire
matrix B. After this, all processes compute theiresponding chunk of matrix C and, in the finalggt, send the
Master the part that they have calculated. The éfdstilds matrix C from what the Workers sent atisdown
computation. All messages used are non-blocking.cdmmunications library used is OpenMPI.

All the experiments were run on a cluster with 1&dls, each one having 2 Quad Core Intel Xeon 24%13z
processors, 12 MB of L2 cache and 2 GB of main mgnfeor this first test, an only blade was usedhine 4
processes and their replicas mapped to the 8 obrbe blade. As mentioned, it can be noted thy balf of
computing resources are used for useful work fleenstandpoint of the parallel application.

To implement SMCV, wrappers for some communicapamitives of MPI library were developed, interpogi
MPI calls and adding functionality of fault det@etiby comparison upon sending, message contenliatign
upon reception, and concurrency control betweelicap The Pthreads library was used for creatimegrepli-
cas, and replica synchronization was done with phiorzs.

The SMCV strategy was applied to the describediegjbn, replicating each of its processes in adbras ex-
plained in Section 5 (for this, the source codéhefapplication is required). The experiment cdasi$n inject-
ing faults at various points of the applicationrbgans of a debugging tool. To do this, a breakpsiimserted at
a certain point of the execution of one of the aggpion processes; the value of a variable is niedlifand com-
putation is resumed, so that the consequence dhtheat the end of the execution can be analyied tech-
nigue simulates a real fault in a processor registace for data corruption to become apparemhust be ob-
servable as a difference between the memory states replicas).

Even though a transient fault can randomly occuargt point during execution, significant processtitge
points were selected for the simulated injectiamthbor the Master and the Workers.

The strategy was capable of detecting all fauks #ffected message contents (TDC), as expectéiljing and
aborting the application so that the corruption wakable to propagate. Thus, all Workers procgsisiprotect-
ed. On the other hand, the faults that occurretthéndata kept by the Master for local computatemy those
that were produced after the partial results frdinWaorkers had been collected by the Master inld#t stage
(corresponding to the FSC portion) were detecteidevdomparing the end results.

6.2 Overhead Measurements

The overhead is a metric of the incidence of thea®n tool on system performance, in the absefidaults.
The overhead can be determined as the extra egadirtie implied by adding the SMCV strategy to tni-
nal application, on the architecture described abd@he time added by SMCV is a consequence of ipéad-
tion of each process, the synchronization betweglticas, the comparison carried out before eactsagesis
sent, the duplication of the messages receivedttantinal verification of the results.

Experiments were carried out by applying the SMC&thodology to the matrix multiplication applicatianth
2, 4 and 8 processes (including the Master), wdjlase matrix sizes of 512, 1024, 2048, 4096 and &16-
ments. The mapping between processes and procesasnmsniade in a way that ensures the same conditfons
execution with and without the SMCV strategy, inlerto directly compare the execution times. U@ toro-
cesses, an only blade was used, running applicptimeesses and its replicas using the all 8 cémebe case of
8 processes, two blades were used, each of themmngua processes of the application (without SM@wY 4
processes and its replicas (8 cores) with SMCV.

Each experiment was run five times, and the resudte averaged to improve stability. The standadlizsults,
with respect to the execution time of the applmativith no fault detection, are shown in Table @ &mgure 3.

Table 1: Overhead measurements

Processes

Size (N) 2 4 3
512 0,87% 14,24%  5511%
1024 0,01% 1,63% 21,40%
2048 0,39% 1,61% 10,05%
4096 -0,14% 0,91% 4,74%
8192 0,17% 0,92% 2,45%
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Figure 3: SMCV'’s overhead in execution time

As it can be observed, the overhead decrease aszth of the problem grows up. This is becausth larger

matrixes, the application spends more time compgutifowever, for any given number of processesntimaber

of messages remains constant. Therefore, synclat@rz comparison and message contents duplictititas

are overshadowed by processing time. On the ottwed,hsmall matrixes require a short computatiore tand

therefore all communication-related detection diiéis become more relevant.

Similarly, it can be seen that, for any given masize, overhead increases with the number of grE=e This is
explained by the fact that the number of messagnd therefore, synchronizations, verifications angies)

increases with the number of processes.

The case of 2 processes was the one that presemitbr dispersion between different repetitionshef exper-
iment. A factor of randomness is present; inclusinghe case of N = 4096, the incorporation of SM&ppears
to perform better than the original application.wéwer, with the precision of the obtained measuremedif-

ferences below 1 %, which occur in all cases, arsidered negligible.

Based on the experiments carried out, it can beladed that, when the size of the problem increasegshe
number of processes remains constant, the oveibesagnificantly low. This would mean that, in regiplica-

tions with high performance requirements, handlange amounts of data, similar overheads can besroda.

7 Future Work

This work is part of a more extensive proposal vehpsrpose is providing transient fault tolerancesigstems
formed by scientific, message-passing paralleliappbns that are run on multicore cluster architess.

Fault tolerance includes the phases of detectimiegtion, and recovery. In the context of permaifieults, the
existing techniques most widely used are checkpuwjrand event log for protection, and rollback-resny [24].
The proposal consists in integrating the transfantt detection methodology to the protection amdowvery
strategies available for permanent faults to previdnsient fault tolerance. This means that tier® need of
using triple modular redundancy (TMR) [16] with @} mechanisms to detect and recover from a transie
fault. Also, since transient faults do not requéystem reconfiguration, recovery can be achievedresy
executing the same core of the failed process.

In the road towards achieving this goal, the folluyMines are open:

1. Perfecting the detection strategy:

» Expanding the experimental validation. A test fisatnore thorough than the one carried out so far re
quires the use of the methodology with standardiegdfons. In the next stage, HPL and NAS bench-
marks will be used, which are well-known applicatip widely used environments for performance
evaluation of highly parallel supercomputers. Thesechmarks respond to other parallel programming
paradigms, and also have the advantage of provigifgverification functions of the results, whiih
useful for validating the detection strategy. Algme use of benchmarks will allow useful standadiz
tion for comparing SMCV's performance with othepagaches. In this sense, the integration with fault
injection tools is desirable, to improve validaticapabilities by means of extensive random faydtcin
tion campaigns. The overhead obtained with thepcapions will be measured.

« Achieving transparency for the application. At therent development level, SMCV's duplication pro-
cess, based on threads, requires minor changée @pplication code (and recompiling) to suppaoet th
location of the replica in shared-memory with thiggimal process and the use of the communications
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library with extended functionality. To obtain thisinsparency, replication must be implementetiat t
level of processes rather than threads.

e Optimizing the methodology to improve the trade-odtween reliability, overhead, additional work-
load, detection latency (related to the recovest)cand resource utilization. A detailed charazsgion
will allow suggesting new ways of improving perfante, considering the possibility of configuring
the robustness level based on application coveragds or maximum overhead permitted [6,11,13].

e Characterizing SMCV from the point of view of powsmsumption. The duplicated execution causes a
power overhead that can be measured, in ordertbmiap the implementation to reduce it.

e Making a formal comparison with other approachesaasient-fault detection, in order to quantify ad
vantages and drawbacks of the proposed methodology.

2. Providing full tolerance to SDC, restoring the systto its state previous to the fault:

In a following stage, the distributed detectiorattgy (already optimized) will be integrated wittult tolerance
architectures oriented to permanent faults. The igoabtaining a system capable of tolerating bp¢éhmanent
and transient faults. In this sense, integratiah WADIC [15] will be attempted; RADIC is a transpat, scala-
ble, flexible, and fully distributed architectureat provides fault tolerance through non-reliadeEments and
can recover after a permanent fault in a node. diimeis to leverage the methodology provided by RBDbr

permanent faults (the rollback recovery mechanisith non-coordinated checkpoints and message |l@ys),
add transient fault tolerance. The resulting systé@lhhave to be tested to determine the reliapibibtained,
transparency for the application, resource utimgtoverhead in absence of faults, and degradatipmesence
of faults.

8 Conclusions

In this paper, SMCYV is presented, which is a tramisfault detection methodology, purely implemerttadugh

software and specifically designed for scientifiiessage-passing parallel applications that ar@mumulticore

clusters. Under the premise that in this type giaptions, all information that is relevant foretlend results is
transmitted among the processes that are part theitSMCV strategy is based on validating the eotst of the
messages to be sent and comparing the end resathieve a compromise between a high level ofswimss
against faults and the introduction of a low ex@rutime overhead, consequence of the non-detectidhe

faults that would normally not affect the resuldso, it introduces a reduced additional workloaatsus the
more conservative strategies that validate alleatdtmemory operations, similar to the ones useskguential
applications.
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