
DECOUPLING DESIGN CONCERNS IN LOCATION-
AWARE SERVICES

Andrés Fortier
LIFIA. Facultad de Informática. UNLP. La Plata, Argentina

andres@lifia.info.unlp.edu.ar

Gustavo Rossi
LIFIA. Facultad de Informática. UNLP. La Plata, Argentina
CONICET

gustavo@lifia.info.unlp.edu.ar

Silvia Gordillo
LIFIA. Facultad de Informática. UNLP. La Plata, Argentina
CICPBA

gordillo@lifia.info.unlp.edu.ar

Abstract In this paper we present an original approach to design and implement appli-
cations that provide location-aware services. Our approach emphasizes a clear
separation of the relevant concerns in the application (base behavior, context-
sensitive properties, services, etc.) to improve modularity and thus simplify evo-
lution. We first motivate the problem with a simple scenario of a virtual campus;
we next discuss which are the most important concerns in the application, we
explain why we must separate them and show a simple approach to achieve this
separation. We analyze the most important (sub) models in which we decompose
a location-aware application and explain the use of dependency mechanisms to
trigger behaviors related with the provision of services according to the user
position. We briefly describe a proof of concept by means of an archetypical
implementation we developed following our ideas. We next compare our work
with others and discuss some further work we are pursuing.

Keywords: Location-aware services, location sensing, concern decoupling, modularity

This paper has been partially supported by the Argentine Secretary of Science and Technology (SeCyT)
under the project PICT 13623



2

1. Introduction

Context-Aware (and in particular Location-Aware) applications are hard to
build and more difficult to maintain due to their “organic” nature (Abowd,
1999). For this reason, improving modularity is extremely necessary when
designing this kind of software. Dealing with location (and other kind of con-
text) information is essentially hard because this information has to be acquired
from non-traditional devices and distributed sources, and it must be abstracted
and interpreted to be used by applications (Dey, 2001).

While much research on context-awareness has focused on solving these
problems, and many Context-Aware (CA) applications and frameworks have
been built in the last years (Bardram, 2005; Hofer et al., 2003; Salber et al.,
1999), there is still a poor characterization of those software design issues that
make CA software difficult to build. In addition, CA applications have to deal
with the following problems:

Abstracting context means more than changing representation. Even
though it is clearly explained in (Dey, 2001), the process of context inter-
pretation usually ends far from application concerns. While interpreted
context data is usually dealt as strings, applications are composed of ob-
jects, which means we have to deal with this impedance mismatch.

Adapting to context is hard; design issues related with context-aware
adaptation are not completely understood and thus handled incorrectly.
For example, although rules can be useful (especially if we want to give
the user the control of building his own commands), we claim that more
elaborated structures are needed to improve maintenance and evolution.

Context-related information is usually “tangled” with other application
behavior. For example, the location of an application object (which is
necessary to detect when the user is near the object) is coupled with oth-
ers object’s concerns, making evolution of both types of characteristics
difficult.

Our research deals with the identification of recurrent problems and design
micro-architectures in CA software. In (Rossi et al., 2005) we argued that
design patterns are an excellent way to record and convey design experience
related with CA (Abowd, 1999) adaptation. In this paper, we go further and
describe an architectural approach for dealing with the problem of providing
CA services (Bardram, 2005). Our approach is based on a clear separation of
concerns that allows us not only to decouple context sensing and acquisition
(as in (Salber et al., 1999)), but mainly to improve separation of application
modules, to ease extension and maintenance. For this purpose we make an
extensive use of dependency (i.e. subscribe/notify) mechanisms to provide
context-aware services.



Decoupling Design Concerns in Location-Aware Services 3

Along the paper we will show how to separate application concerns related
with context awareness to improve modularity and, as a by-product, we will
present a strategy to extend legacy applications to provide location and other
context-aware services. In order to be consistent, we will treat services as full
fledged objects and make them dependent of context changes.

The rest of the paper is organized as follows: In Section 2 we introduce a
simple motivating example both to present the problems and to use it through-
out the paper; in Section 3 we describe the most important concerns in this
kind of software and introduce our criteria to decompose the application into
layers and components. A complete description of each of the different mod-
els comprising our architecture is shown in Section 4. In Section 5 we briefly
describe an archetypical implementation. In Section 6 we compare our work
with related work in this field and finally, in Section 7, we conclude and discuss
some further work.

2. Motivating Example

Suppose we are adapting an existing software system in a University Cam-
pus to provide context-based services (in particular, location-based ones), in
the style of the example in (Sousa and Garlan, 2002). Our system already pro-
vides information about careers, courses, professors, courses material, time-
tables, etc. We now want that users carrying their preferred devices can get
information or interact with the system while they move around the campus.
For example, when a student enters a classroom, he can get the corresponding
course’s material, information about its professor, etc. At the same time, those
services corresponding to the containing location context (the Campus) should
be also available. When he moves to the sport area, the course’s related ser-
vices disappear and he receives information about upcoming sport events and
so forth. It should be noticed that different contextual information such as the
user’s role or activity might also shape the software answer.

The first design problem we must face is how to seamlessly extend our ap-
plication in order to be location-aware, i.e. to provide services that correspond
to the actual location context. The next challenge involves adapting the behav-
ior to the user’s role (a professor, student, etc) and other meaningful contextual
parameters such as current time or user’s activity. While applications of this
kind have always been built almost completely from scratch, we consider that
this will not be the case if context-aware computing becomes mainstream; we
will have to adapt dozens of legacy applications by adding new, context-aware
behaviors.

When working with CA applications we can find typical evolution patterns
such as adding new services related to a particular location, improving sensing
mechanisms (for example moving from GPS to infrared), changing the loca-



4

tion model (from symbolic to geometric), and so on. While most technological
requirements in this scenario can be easily fulfilled using state-of-the art hard-
ware and communication devices, there are many design problems that need
some further study. The aim of this paper is to focus on a small set of those
problems, mainly those that characterize the difficulties for software evolution.
We stress on those features specific to this particular example because it is a
good stereotype of a family of software applications with similar problems.

3. Identifying and Separating Design Concerns

As previously mentioned, well-known approaches to context-aware appli-
cations design have clearly identified some broad concerns that must be sep-
arated for achieving modularity: sensing (implemented for example as Wid-
gets in (Dey, 2001)), interpretation (also mentioned as context management in
(Hofer et al., 2003)) and application. Layered architectural approaches such as
in (Hofer et al., 2003), or MVC-based ones like (Salber et al., 1999) provide
the basis for separating those concerns using simple and standard communica-
tion rules. However, applications (the third concern) are considered as being
monolithic artifacts that deserve little or no attention. It is easy to see in the
motivating example that the gap between application objects (in particular their
behaviors) and the outer (context-related) components is not trivial. Of course,
one could argue that once captured and interpreted, context information is not
different to other “old-fashioned” application data, and thus we can use the
very same techniques, which allowed us to survive in the past when dealing
with input information. As a simple counter example let us take into account
location data: to check that a user is in a campus’ room, we must compare
his position with the room location; is this location an attribute of the room
object? What happens if we use different location models? Should we clutter
the room object with these variants? Moreover, suppose that we are adding
location-aware functionality to an existing system; should we change the base
application behavior and write the code for providing location-awareness in-
side application objects? Following this thread, we may ask ourselves how to
cope with services: are they supposed to be application behaviors (i.e. should
we consider the services as methods of the room object?) or should they be
decoupled into independent objects? The same problems also appears when
dealing with other contextual information that cross-cut application objects.

In our research we have identified a set of concerns that should be clearly
separated to improve evolution and maintenance: applicative, location and ser-
vice concerns should be as independent as possible.

In the rest of the paper we will elaborate our strategy for building location-
aware software and we will describe the previously mentioned concerns and
how they interact with the lower-level ones (such as the sensing concern).



Decoupling Design Concerns in Location-Aware Services 5

4. Designing Location-Aware Services

In the following sub-sections we assume that we need to extend an existing
application with location-aware services. This application implements the base
behaviors on top of which services are built. For the sake of understanding we
first describe the overall architecture and concentrate later on each software
component. The preceding example is used throughout the paper.

The Overall Architecture

To improve the description of the important architectural decisions, we present
two orthogonal views showing different design concerns and how they relate
with each other: an application-centered view and a sensing view.

Application view. This view (shown in Figure 1(a)) concentrates on the
application model. In the first layer we specify the application model with
its “standard” behaviors; application classes and methods are not aware of the
user’s context. In our example we would have classes to handle room reser-
vations, professors and material associated with each course, etc. Note that in
this layer the concept of a “user” does not exist, though we might have objects
that correspond to different user roles, such as students, professors and so on.

Sensing Aspects

Location Time

Services
Knowledge

Dependency

Hardware Abstractions

Application Model

Location Time

Services

(a) (b)

Figure 1. A layered architecture for Location-Aware Services

The second layer contains a set of components that extend the application
model with information needed to provide context-aware behavior. For exam-
ple, the campus, the sport field and the rooms have an associated location that
is used to determine if the user is inside one of those areas. It is important



6

to notice that Location objects do not belong to the application concern; ac-
cording to our approach the basic behavior of a room should not be cluttered
with geographic information. As described in section 3, decoupling location
from other application objects allows us to deal with different location models
transparently.

Finally, the third layer contains the (location-aware) services. These ser-
vices are modeled as objects that will be further associated to certain geo-
graphic areas by means of a subscription mechanism.

Relationships among objects in different layers follow two different styles:
typical knowledge relationships (such as the relationship between the object
containing a room’s location and the room itself) and dependency relation-
ships (in the style of the Observer pattern (Gamma et al., 1995)) that allow
broadcasting changes of an object to its dependent objects. In Figure 1(a) we
also show an additional Package (Time) as an example of other context-related
modules that may be included in the second layer.

In Figure 2 we show a small example exploiting the packages in Figure
1(a). Classes likeCourse, Teacher andRoom belong to the application model and
have no location-related behaviors. Location-aware classes (in the bottom of
the diagram) “observe” application model classes and add additional context
behavior. Notice that in this layer we introduce the notion of aLocation.User,
i.e. the location aspect of the user of our context-aware application. This aspect
relates with the actual user’s role through aPerson instance.

Room

-location : Location

Location.Room1

-room 1

Course
1

-room

1

1

-professor

1

-location : Location

Location.User1

-subject

1

-location : Location

Location.Corridor1

-connects

*

1

-roles

*

+ libraryID() : Number

Role

Application 

Model

Location

Model

+ currentRole() : Role

+ libraryID() : Number

Person

+ libraryID() : Number

Student

+ libraryID() : Number

Teacher

Figure 2. Location-Aware Classes vs. Application Classes

Sensing View. In Figure 1(b) we present another architectural view of our
approach. In the first layer we find the hardware abstractions used for gathering
data, such as IButton, InfraredPort, GPSSensor, and so on; this abstractions
have some points in common with Dey’s Widget components (Dey, 2001).

The second layer comprises higher level sensing aspects implemented as ob-
jects that plug the lower level sensing mechanisms (in the hardware abstraction
layer) with the aspects that are relevant to the application’s context that have to



Decoupling Design Concerns in Location-Aware Services 7

be sensed. This decoupling guarantees that the location model and the sensing
mechanisms can evolve independently. For example, we can use a symbolic
location model (Leonhardt, 1998) to describe locations, and infrared beacons
as sensing hardware; we can later change to a non-contact iButton seamlessly
by hiding this evolution in the sensing layer.

Modeling and describing the user. As shown in Figure 1(a) we decided
to model each context concern in a separate package. This idea is also applied
to model the user: we consider the user model as being composed of different
aspects, each one acting (differently) on the services that are available to the
user. In our example, these services depend on the user’s location and thus
we need to model a user’s aspect that handles the location concern. If, in
the future, we decide that the way in which services are presented to a user
may also depend on his preferences (explicitly stated by him or inferred from
his usage history) we will need to add a new view which handles this aspect.
Once the different concerns are modeled, we need some object to coordinate
all views and decide how changes affect the user’s services. We decided to
design this coordinator in the service layer. This object, from now on called
user object (orService.User) knows, and it is dependent of, every concern that
affects the user and reacts based on those concern’s changes. The user model
can be thought as cross-cutting the Services and Location layers; it comprises
packages that belong to each of them.

Application Layer

In our architectural framework, the application model contains those classes
specific to the intended domain and whose behavior do not depend on contex-
tual information. In Figure 3 we show a simplified class model for the ex-
emplary application. Notice that, for example, a room can return the courses
occurring on that room at a particular time; a course meanwhile can provide
its content material, the list of enrolled students, and so on. Also, the differ-
ent roles modeled in the application might be eventually used for role-aware
services. Notice also that there is no information on location, space, etc.

Location Layer

In the location layer we design components that seamlessly “add” location
properties to those objects (in the application model) that must “react” when
the user is in their vicinity. For example, to be able to say that a user is in room
“A” we first need to create a location abstraction of the corresponding room ob-
ject. By clearly decoupling the location from the application object we can use
different location models (Leonhardt, 1998) in an unobtrusive way. In Figure
4 we show the class diagram of a simple location “map” of the campus. Note



8

1

-courses

*

1

-material

*

1

-students

*

1

-professor

1

+ course(date: Date, time: Time)

Room

Course

+ registeredStudents() : Collection of Students

+ professor() : Teacher

+ material() : Collection of Material

+ startDate() : Date

+ endDate() : Date
+ render (gc : GraqphicsContext)

Material

+ render (gc : GraqphicsContext)

Document

+ render (gc : GraqphicsContext)

Slide

+ currentRole() : Role

+ libraryID() : Number

Person

1

-roles

*

+ libraryID() : Number

Student

+ libraryID() : Number

Teacher

+ libraryID() : Number

Role

Figure 3. Class Diagram of the University Campus

that the location layer also comprises classes for “pure” location concepts; for
example corridors and maps don’t have a counterpart in the application layer.
In our example, we may be interested in representing a map of the university
building, where we find rooms that are connected by corridors.

To achieve higher levels of reuse, we further decouple location objects from
the specific location model we use for them. As a result of this separation, we
end up with location objects (like rooms and corridors) that are aware of having
a specific location, but that are independent of the location model being used.
This independence is achieved trough theLocation interface, which specifies
the basic behavior that every location model should implement. Using this
approach, implementation details (for example, knowing if a location is inside
another) are hidden in each location model and allows us to change between
location models dynamically without any impact on the system.

-room : Model.Room

Room

+ includes (location : Location) : Boolean

+ intersects (location : Location) : Boolean

<<interface>>

Location

Campus Building

1

-buildings

* 1

-rooms

*

Corridor1

-connects

*

1

-corridors

*

1

-location

1
+ includes (lo : LocatedObject) : Boolean

+ intersects (lo : LocatedObject) : Boolean

LocatedObject

Figure 4. Class diagram of the University Campus Location package



Decoupling Design Concerns in Location-Aware Services 9

Service Layer

We consider (context-aware) services as possible independent artifacts which
are developed individually and do not need to interact with each other. We also
view them as extending some existing application behavior and thus they might
need to interact with application objects. Also, service users are immersed in a
service environment, which reifies the real-world environment. AService.User

(i.e. the user considered from a services point of view) is modeled so that we
can reflect those services to which a person is subscribed to, which services
are currently available and so on. TheService.User object is also used to build
the whole picture of a user, mediating between every possible context aspect
that is relevant to that person. In this layer, theService.User knows (and is
dependent of) aLocation.User, so that the service layer can react to changes in
the location layer. In the remaining sections of this paper, each time we talk
about a user we will be referring to aService.User.

The service environment is in turn responsible for handling available ser-
vices, configuring service areas and mediating between users and services. A
service may be as simple as an alarm (that is triggered when we enter a place at
a certain time) or as complex as a full-fledged application. Services are mod-
eled as first-class objects which share a common super-class (or implement a
given interface); this allows our framework to treat them uniformly and sim-
plify the addition of new services. In the following sub-sections we give a brief
outline of how services are modeled and implemented using this approach.

Creating New Services. New services are defined as subclasses of the ab-
stract classService, playing the role of a Command (Gamma et al., 1995).
The specific service’s behavior is defined by overriding appropriate methods
of Service such asstart() (used to perform initialization stuff),activate()

(triggered when the users selects the service form the available services list),
etc. In our example, theCourseMaterial service is defined as a sub-class, and
the messageactivate() is redefined so that a graphical interface is opened
to display the courses material. Once the service class has been created and
its behavior defined, it has to be published to allow users to subscribe to the
service; theaddAvailableService message is used to inform the environment
about the new service.

Subscribing to Services. Users can access the available services and decide
to subscribe (or unsubscribe) to any of them. The details of the subscription
mechanism are beyond the scope of this paper; however, is important to men-
tion that a service can be customized by its user.

Once a user is subscribed to a service and provided he satisfies the service’s
constraints (for example in relationship to the user’s role), he can use the ser-
vice when entering the area associated with the service.



10

Service Areas. A key aspect in our approach is that services are associated
with (registered to) specific areas, called service areas. When the user enters
a service area, all services registered to the area (to which the user has sub-
scribed) are made available. Service areas are defined to achieve independence
from the sensing mechanism. To illustrate the idea, suppose that our sensing
mechanism is based on infrared beacons. Since a beacon’s signal range is lim-
ited, we may need to use more than one beacon to detect the presence of a
person in a certain area. As an example, suppose that two beacons (B1 and
B2) are placed in the opposite corners of a room (Room A) to detect the user
presence. Even when there is a clear distinction between capturing B1’s id
and B2’s id from the location-model point of view, this difference should be
transparent to services allocated to the Room (area) A.

Services are not associated to physical areas (in terms of location models)
but to logical areas namedservice areas. In this way, we can think of the ser-
vices that are available in Room A or in the hall, instead of thinking about the
services that are triggered by a group of beacons. In Figure 5 we show a class
diagram indicating the relationships between the Environment, the Service Ar-
eas and the associated Services.

ServiceEnvironment

User

Service Area

Service

1

-serviceAreas

*

1

-users

*

1

-availableServices*

1

-subscribedServices

*

1

-activeServices

*

1

-services

*

Figure 5. Services and Service Areas

Service Activation. When the person’s movement is captured by a sen-
sor, it sends thelocation(newLocation) message to theLocation.User cor-
responding to the actual user. This message triggers a change in the loca-
tion model that is captured (by means of the dependency mechanism) by the
User object in the service layer. This object interacts with its environment to
calculate, based on the user’s old location, if the user left a service area. If
this is the case, the user object is told to leave that service area by means
of the leaveArea(aServiceArea) message, which will remove the services
provided by that service area from the user’s active services. In a similar
way, according to the new user’s location, the environment checks if the user
has entered a new service area. In that case, the user object receives the



Decoupling Design Concerns in Location-Aware Services 11

enterArea(aServiceArea) message in order to add the corresponding ser-
vices.

Sensing Concerns

We introduce the idea of a sensing concern to separate the context model
from the way it is sensed. A sensing concern represents the “glue” between the
different aspects that are relevant to our context-aware application and the way
they are sensed. A sensing concern is created and configured to be an observer
of one (or more than one) sensing mechanism. When a sensor indicates that an
event occurred (i.e. some context information changed), the sensing concern
acts on its subject by sending an appropriate message.

In this layer, the core behavior is modeled in theSensingConcern class and
its subclasses. A sensing concern is attached to a sensor with a fetch policy
suited for it; for example, a GPS system may need a pull policy while a bar-
code reader a push one. Additionally, we specify the message that should be
sent to the object that models a specific context concern in order to update its
aspect (in our example thelocation(newLocation) message should be sent
to theLocation.User). Depending on the programming environment used, this
behavior can be achieved by sub-classingSensingConcern or via reflection.

Continuing with our example, when the student enters Room A the infrared
port of his PDA captures B2’s id, and the port abstraction (in the hardware
layer) reacts by notifying its dependents that a new id has been received. Since
a sensing concern has been created to modify the user’s location, it receives
the notification and reacts by adding the beacon’s covering area to the user’s
active areas. Once this happens the corresponding user object interacts with its
environment to find out which new services are active and available.

Putting all things together

In order to clarify the objects interactions occurring in our architecture, in
Figure 6 we present an interaction diagram that shows how a change in the
location layer triggers the service assignment to a user. From the services point
of view, a change can drive the framework to add or remove service areas
depending on the user’s previous and current location. To keep the diagram
simple, we assume that the initial interaction begins with a message sent by an
object of the Sensing Aspects layer. When the sensing hardware (whatever it
is) detects the presence of a user in a room, the sensing concern attached to
it sends the messagelocation(newLocation) to the user. ThenewLocation

parameter is an object that implements theLocation interface.
Once theLocation.User receives the message it triggers a change. Since the

user in the service layer is dependent of theLocation.User it gets an update
which, in turn, triggers a change that is captured by theServiceEnvironment.



12

Service.UserLocation.User ServiceEnvironment

location(newLocation)
changed(�locationChanged�,oldLocation)

locationChanged(oldLocation)

changed(�locationChanged�,oldLocation)

locationChanged(oldLocation)

leaveArea(aServiceArea)

enterArea(aServiceArea)

location

newLocation

location

newLocation

Figure 6. A three layer architecture for Location-Aware Services

When the environment gets this notification it calculates (by interacting with
the user and the available service areas) which service areas the user left (if
any) and which ones he entered. After the messageleaveArea (or enterArea )
is sent to the user, he will end with old services removed (or new added).

Adding other Context Models

In this section we briefly describe how we can add time constraints to our
application using the same philosophy described in the paper. Suppose that
we want to specify that a service is available at a certain area in a particular
period of time. Following with the campus example, we would expect the
course material service to be available at the time the course is being held;
once the lecture is over, the material shouldn’t be accessible as a room service.
To implement this mechanism we must first add the notion of time and time
events to the context abstractions; in order to do so we add a Time package
containing the classTimer. TheTimer class is a Singleton (Gamma et al., 1995)
that has two main responsibilities: it can be queried for the current time and it
can be configured to send time events in predefined moments.

Once this package is added to the application, we need to configure our
services to have a time constraint: the service will only be activated in a pre-
defined period of time. At first glance, the implementation of this constraint
seems to be straightforward: as we have seen before, when the user enters a
room, he triggers a change that ends with the user asking for the services avail-
able in a service area. When a service area is asked for its available services,
it checks the service’s constraints; a service will be available if and only if the
time constraint is satisfied (this can be verified by asking the timer for the cur-
rent time). Now, suppose that the user enters the room before the course starts;



Decoupling Design Concerns in Location-Aware Services 13

since the time constraint is not satisfied, the course’s material is not presented
to the user. After a couple of minutes the course begins, but since the user is
still inside the room (i.e. he hasn’t left the room and re-entered it again) he
doesn’t have the course material service. The problem in this case is that, so
far, service changes are only triggered by location changes, while time changes
should also affect the services available for a user. To solve this problem, we
need to be able to configure time events associated with time constraints: when
a service is accessible during a specific period of time, time events should be
generated at the beginning and at the end of the period, so that the services
available for a user are re-evaluated. The events generated by the timer, are
captured by the dependency mechanism and dispatched to the environment,
which in turn asks the user object to analyze again the services provided by the
service area that has just changed.

5. An archetypical Implementation

We have built a proof of concept of our architectural framework using a
pure object oriented environment (VisualWorks Smalltalk) that supports de-
pendency mechanisms and reflection, and where truly transparent distribution
can be implemented. To achieve distributed objects collaboration in a transpar-
ent way we used the Opentalk framework, which we adapted to support PDAs
sockets; we also extended the framework to perform object migration from one
device to another. We used HP iPaq 2210 PDAs as user devices; user’s loca-
tion sensing was performed using infrared beacons and we are now adapting
the sensing mechanism to work with bluetooth signals.

Our design prototype is not conceived to work on a client-server style, but
mainly on a fully distributed environment shared between different devices.
This approach promotes an environment where we can find different kinds of
PDAs and desktop machines working together in a transparent way. We have
filled our expectations so far, since we are interacting with wireless PDAs and
wired PCs without any trouble; we also have upgraded our PDA hardware to
HP iPaq hx2750 without even noticing it.

6. Related Work

We found our model of context to be quite similar with the one presented
by Dourish (Dourish, 2004). While in most approaches, context is viewed as
a collection of data that can be specified at design time and whose structure is
supposed to remain unaltered during the lifetime of the application, Dourish
proposes a phenomenological view of context. In this approach, context is
considered as an emergent of the relationship and interaction of the entities
involved in a given situation. Similarly, in our approach, context is not treated
as data on which rules or functions act, but it is the result of the interaction



14

between objects, each one modeling a given context concern. In addition, we
do not assume a fixed context shape, and even allow run-time changes on the
context model.

From an architectural point of view, our work can be rooted to the Con-
text Toolkit (Dey, 2001) which is one of the first approaches in which sensing,
interpretation and use of context information is clearly decoupled. We obvi-
ously share this philosophy though pretend to take it one step further, attacking
inner application concerns. Hydrogen (Hofer et al., 2003) introduces some im-
provements to the capture, interpretation and delivery of context information
with respect to the seminal work of the Context Toolkit. However, both fail to
provide cues about how application objects should be structured to seamlessly
interact with the sensing layers. Our approach proposes a clear separation
of concerns between those object features that are “context-free”, those that
involve context-sensitive information (like location and time) and the context-
aware services. By placing these aspects in separated layers, we obtain mod-
ular applications in which modifications in one layer barely impact in others.
From an architectural point of view, our work has been inspired in (Beck and
Johnson, 1994): the sum of our micro-architectural decisions (such as using
dependencies or decorators) also generate a strong, evolvable architecture.

In the Java Context Aware Framework (Bardram, 2005), a Java-based frame-
work is presented for building context-aware applications. Even though the
framework presents a behavior oriented structure, it still models context in a
traditional way (by means of context and context items) and makes an explicit
separation between the entities and their context (in fact, entities explicitly
know their context). In our proposal, we think of context as extending the base
application behavior instead of viewing context as data to be acted upon. Since
the layers are built on top of the application model, there is no need to change
the core of the system in order to make it context-aware.

To summarize, in our approach we seecontext aspectsas active objects
and the context itself as an emerging property of their interaction. To achieve
independence between the contexts aspects and the sensing mechanisms we
placed a layer between them, so that changes in one model does not affect
the other. At the architectural level, and thanks to the increasing power of the
mobile devices, we decided to work with distributed objects instead of using
a client-server architecture. In this way the applications running on the PDAs
are responsible of handling the services of each user and can provide more
advanced services than the ones provided by web pages, avoiding at the same
time the scalability problems associated with concentrating all the processing
in a single server. Lastly, in order to be isolated from lower level details, we
decided to implement our framework on a pure object oriented environment as
Smalltalk.



Decoupling Design Concerns in Location-Aware Services 15

7. Concluding Remarks and Further Work

We have presented a new approach for designing location aware services
and described how to enhance existing applications with new context-aware
behaviors. By using a dependency mechanism to connect locations, services
and application objects we have been able to avoid cluttering the application
with rules. We have also improved separation of different design concerns,
such as applicative, spatial, temporal, sensing, etc. Additionally, we showed
how to achieve a finer granularity of design concerns with respect to existing
approaches.

Our view represents a step forward with respect to existing approaches in
which context information is treated as plain data that has to be queried to
provide adaptive behavior. We briefly described a prototype system that we
are using as a proof of concept for building context-aware services.

We are now working on the definition of a composite location system that
allows symbolic and geometric location models to co-exist seamlessly. We
are also planning to enhance the simple dependency mechanism to a complete
event-based approach, delegating specific behavior to events and improving at
the same time the framework’s reusability. We are additionally researching on
interface aspects to improve presentation of large number of services.

References
Abowd, G. D. (1999). Software engineering issues for ubiquitous computing. InICSE ’99:

Proceedings of the 21st international conference on Software engineering, pages 75–84,
Los Alamitos, CA, USA. IEEE Computer Society Press.

Bardram, J. E. (2005). The java context awareness framework (jcaf) - a service infrastructure
and programming framework for context-aware applications. InPervasive, pages 98–115.

Beck, K. and Johnson, R. E. (1994). Patterns generate architectures. InECOOP, pages 139–149.
Dey, A. (2001).Providing Architectural Support for Building Context-Aware Applications. PhD

thesis, Georgia Institute of Technology.
Dourish, P. (2004). What we talk about when we talk about context.Personal and Ubiquitous

Computing, 8(1):19–30.
Gamma, E., Helm, R., and Johnson, R. (1995).Design Patterns. Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley.
Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., and Retschitzegger, W.

(2003). Context-awareness on mobile devices - the hydrogen approach. InHICSS, page 292.
Leonhardt, U. (1998).Supporting Location-Awareness in Open Distributed Systems. PhD thesis,

Dept. of Computing, Imperial College.
Rossi, G., Gordillo, S., and Lyardet, F. (2005). Design patterns for context aware adaptation,

Workshop on Context-aware Adaptation and Personalization for the Mobile Internet.
Salber, D., Dey, A. K., and Abowd, G. D. (1999). The context toolkit: Aiding the development

of context-enabled applications. InCHI, pages 434–441.
Sousa, J. P. and Garlan, D. (2002). Aura: an architectural framework for user mobility in ubiq-

uitous computing environments. InWICSA, pages 29–43.


