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Abstract.  Model Driven Engineering proposes a software development process 
in which the key notions are models and model transformations. Model 
transformations are specified using a model transformation language. There are 
already several proposals for model transformation specification, 
implementation, and execution, which are beginning to be used by Model 
Driven Engineering practitioners. The term "model transformation language" 
comprises all sorts of artificial languages used in model transformation 
development such as QVT, ATL and RubyTL. These languages are specific to 
define model transformations; however an extra level of specialization can be 
realized on them. That is to say, we can define a transformation language 
specifically addressed to a given transformation domain. In the present work we 
introduce the proposal of defining domain specific transformation languages 
and also we analyze a novel way to define their semantics. Our proposal 
consists in using transformation languages themselves to the implementation of 
such domain specific languages. We illustrate the proposal through an example 
in the data base domain.  
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1 Introduction 

Modeling is significant for dealing with the complexity of computer systems during 
their development and maintenance processes. Models allow engineers to precisely 
capture relevant aspects of a system from a given perspective and at an appropriate 
level of abstraction. Then, model transformations provide a chain that enables the 
automated development of a system from its corresponding models.  

Model Driven Engineering (MDE) [1] [2] [3] proposes a software development 
process in which the key notions are models and model transformations. In this 
process, software is built by constructing one or more models, and successively 



transforming these into other models, until finally the output consists of program code 
that can be executed.  Model transformation is the MDE engine. 

A model transformation is a set of transformation rules that together describe how 
a model written in the source language is mapped to a model written in the target 
language. Model transformations are specified using a model transformation 
language. There are already several proposals for model transformation specification, 
implementation, and execution, which are beginning to be used by Model-Driven 
Engineering practitioners [4]. The term "model transformation language" comprises 
all sorts of artificial languages used in model transformation development including 
general-purpose programming languages, domain-specific languages (DSLs) [5], 
modeling and meta-modeling languages and ontologies. Examples include languages 
such as the standard QVT [6], ATL [7] [8] and RubyTL [9].  

These languages are specific to define model transformations; however an extra 
level of specialization can be realized on them. That is to say, we can define a 
transformation language specifically addressed to a given transformation domain. For 
example, we can create a language dedicated to the definition of transformations 
between data-base models or a language addressed to the definition of transformations 
between business models. In this context if we would like to take advantage of a very 
specific transformation language we face the problem of implementing such a new 
language. There exist powerful frameworks for the definition of domain specific 
languages, such as Eclipse [10][11], Microsoft DSL Tools [12][13] and AMMA [14]. 
These frameworks are mainly focused on the definition of the syntax (both abstract 
and concrete) of the DSL, while less attention is devoted to the semantics of the 
language. In general the semantics is indirectly defined by the code generation 
mechanisms that allow us to specify which the code associated to each modeling 
artifact is. The AMMA framework is the exception; it takes advantage of the MDE 
ideas. Within AMMA the semantics of the DSL can be defined more abstractly in 
terms of Abstract State Machines (ASMs) or in terms of another language. In [15], the 
application of this framework to the implementation of the languages SPL and CPL is 
described. 

In the present work we introduce the proposal of defining domain specific 
transformation languages (DSTLs) and also we analyze a novel way to define their 
semantics. Our proposal consists in using transformation languages themselves to the 
implementation of such DSTLs.  

This paper is organized as follows. Section 2 presents the main features of the 
proposal to implement domain specific languages using transformation languages. 
Section 3 illustrates the use of the approach by the definition of a DSTL for the 
transformation of extended relational models.  Section 4 shows relevant parts of the 
ATL implementation of such DSTL. Section 5 compares this approach with related 
research and presents the conclusions. 

2 DSL implementation schema 

The AMMA framework [14] allows us to define the concrete syntax, abstract syntax, 
and semantics of DSLs. In [15, 16, 17] the reader can analyze a number of scenarios 



where the AMMA framework has been used to define the semantics of DSLs in terms 
of other languages or in terms of abstract state machines (ASMs).  

Our proposal is similar to the one of AMMA, but we present a novel alternative, 
where the language semantics is realized by means of a transformation written in the 
ATL language. Our schema can be seen as the interpretation of the DSL into the ATL 
transformation language. Our implementation approach consists in the generation of a 
transformation T (written in ATL) that takes two inputs: an instance of the DSL 
metamodel (that is to say, a domain specific transformation written in the domain 
specific language, for example a transformation between data bases) and a model 
belonging to the specific domain (for example, a data base model). The output of such 
transformation T is the model that is expected to be produced by the application of the 
domain specific transformation on the input model.  

Figure 1 shows the transformation scenario. 
 

 
 

Figure 1. Transformation scenario. 

 
In our implementation we directly deal with the abstract syntax of the DSL. This 

simplification can be easily relaxed in order to also consider concrete syntaxes; for 
example we could use the TCS language which is provided by AMMA to this 
purpose. 

3 A domain specific transformation language for transforming 
relational models 

In this section we first present the simplified version of the relational model that we 
will use; then we define a language that allows us to transform relational data base 
models in a wide spectrum. Such language deals with the data model, as well as with 
the scripts and the existing data that populate the base. Finally, we illustrate the 
effectiveness of the language through its application to the transformation of a simple 
data base model. 

3.1 The relational model 

Due to the fact that the transformation language is expected to express the 
transformation of the whole spectrum of the data base (i.e., the data model, the scripts 
and the data), the source language of the transformation should be able to represent all 
those elements. Consequently the metamodel that we define in this work is richer than 



the classical relational metamodel, as described in [6], that is restricted to the M1 
level of the OMG 4-levels metamodeling architecture [18]; that is to say, our 
metamodel contains additional meta-classes to represent scripts and data values as 
well. Figure 2 shows the upgraded relational metamodel.  
 

 
 

 
 
 
 

Figure 2. Simplified relational metamodel including scripts and data values 

 
For the sake of clarity, a number of simplifications have been applied to this meta-

model; the most relevant ones are: unique data type (string of chars), simple key and 
single script semantics per interpretation. All these simplifications can be removed 
without major changes in the proposal. 

3.2 A DSTL fitting the relational model 

We define a simple domain specific transformation language (DSTL), with the aim 
of transforming relational data bases. This language will express the transformation of 
the three elements we mentioned before: the data model, the scripts and the data 
values. This specific language allows us to denote the most usual kinds of 
transformations in the data bases domain. As example we include here the description 
of only three transformations: changeName, extractCommonData and factorize. The 
abstract syntax of the DSTL is as follows: 

 
 
<transformation> ::=   



 changeName <table> <string>    | 
 extractCommonData <table> <element> <table> | 
 factorize <table> <element> <table> <element>* | 
 <transformation>;<transformation> 
 
<table> ::=  table <string> 
<element> ::= column <string> | foreignKey <string> 
<string>  ::=  a | b | c | … | <string> <string> 
 
 
Due to the fact that we will use model transformations to implement this DSTL, we 

need to have the DSTL’s abstract syntax defined by a metamodel. Figure 3 displays 
the metamodel of our relational DSTL. 

 
 

 
 

 
 

Figure 3. Metamodel of the domain specific transformation language  

 
After having defined the syntax of our language we need to define its semantics. In 

first place we describe the semantics using just natural language. These definitions 
transmit an intuitive understanding of the meaning of each syntactic construct, 
however much formality is required in order to guarantee the correct implementation 
of the DSTL. Such formal definition of the semantics will be addressed in the 
following sections. 

 

− changeName: this is a very simple transformation, its  effect consists in changing 
the name of the input table. 

 



Next transformations are considerably more complex and they will receive a more 
exhaustive treatment: 

 

− extractCommonData: this transformation specifies the splitting of a table into two 
tables with the goal of avoiding data duplication. The source of this transformation 
is a table and a selected column (containing duplicated data). The transformation 
creates a fresh table. Existing data is collected from the input table and then it is 
stored in the fresh table in a grouped way (avoiding the duplication of data). In 
parallel the references contained into the scripts are consistently modified so that 
the behavior of the scripts keeps unaltered. Figure 4 illustrates the effect of this 
transformation at model level. 
 
 
 

     
 
 

<ExtractCommonData table="Table" column="element2" 
TargetTable="TargetTable"/> 

 

Figure 4. Effect of the extractCommonData transformation. 

 
 
In order to make the behavior of this transformation more comprehensible, we 

describe it from an operational point of view: any algorithm performing this 
transformation should carry out, in some concrete way, the following steps. 

 
1. To create the target table (in the case the table does not exist); 
2. To replace the selected column in the target source table by a foreign key to the 

target table; 
3. To replace the direct references to the selected column by an indirect reference 

to the column in the target table; 
4. To move the data from the column of the source table to the target table, 

avoiding data duplication; 
5. To modify the data stored in the source table, establishing the value of the 

foreign key to the new table as the value of the primary key of the new table, 
corresponding to the value of each data in the source table 

 
Factorize: in a similar way to the previous transformation, the factorize 
transformation states the splitting of a table into two tables with the goal of avoiding 



data duplication. The main difference with respect to the extractCommonData 
transformation consists in that this last transformation generates a target table with 
references to the source table. Direct references to removed elements of the source 
table will be transformed to direct reference to the corresponding element in the target 
table. The data from the source table will are transformed in order to keep only one 
value for each different value in the grouping column. Such column will become the 
new primary key of the source table (previous primary key is removed). 
As it is expected, the evaluation of any transformed script on the transformed data 
base will present no observable difference with respect to the evaluation of the 
corresponding source script on the source data base. 
The effect of the transformation on the data model is illustrated in figure 5. 
 
 
 

 
 
          

<Factorize table=”Table” groupBy=”id_Table”    
                 TargetTable=”TargetTable”> 

<element>element1</element> 
<element>element2</element> 

</Factorize> 

 

Figure 5. Effect of the factorize transformation.  

    
Thinking algorithmically, we have the following steps: 

 
1. To create the target table (in the case the table does not exist); 
2. To remove the elements in the source table; 
3. To remove the primary key from the source table and to set up the grouping 

column as the new primary key; 
4. To replace direct references to removed elements with a direct reference to the 

corresponding element in the target table; 
5. To keep only one value for each different value of the new primary key 

(duplicated data is removed). 
6. To move the existing data from the source table to the new table, replacing the 

value of the external references to the source table by the value of the grouping 
column in the source table. 

 



As it is expected, the evaluation of any transformed script on the transformed data 
base will present no observable difference with respect to the evaluation of the 
corresponding source script on the source data base. 

3.3 Example 

In this section we show the applicability of the domain specific transformation 
language. To this purpose we elaborate a very simple example consisting of a simple 
data base containing a single table named Book. The table has seven columns: ISBN, 
title, editorial, comments, availability, chapterTitle and chapterPages. 

By using our DSTL we will transform this data base to a behavioral equivalent data 
base without data duplication. 

To specify the transformation we use a concrete syntax based on XML and directly 
supported by AMMA, as follows: 

 

<ExtractCommonData table=”Book” column=”editorial” 
TargetTable=”Editorial”/> 

<FactorizeTable table=”Book” groupBy=”isbn” 
TargetTable=”Chapter”> 

 

Figure 6 displays the source model on the left hand and the target model (the result of 
the transformation) on the right hand. 
 
 
 

          
 

Figure 3. The data model before and after the transformation application. 

 
After applying the first transformation, the editorial info is not longer a column in the 
table. The editorial info becomes an entity in the target data base. The second 
transformation prevents us from having the general information of the book 
duplicated for each chapter. After performing the transformation, the book general 
information becomes separated from the chapters.  



4 DSTL Implementation 

In this section we present the implementation of our DSTL by using the model 
transformation language ATL. The implementation consists in a transformation, 
written in ATL that takes two inputs: a relational data base (conforming the relational 
metamodel in figure 2) and a transformation specified in the relational transformation 
language (conforming the DSTL metamodel in figure 3). The output of such 
transformation is the data base (conforming the relational metamodel in figure 2) that 
is expected to be produced by the application of the input transformation on the input 
model.  

 
 

 
 

Figure 4. DSTL implementation schema using ATL transformations 

In our implementation we use the ATL’s refinement facility in order to simplify the 
transformation algorithm. The refinement mechanism allows us to write code only for 
the part of the source model that is modified by the transformation, while the rest of 
the model is translated from source to target without any modification. 

 
module MRandLTR2MR; 
create OUT : MR refining  IN : MR, T: LTR; 

 

Each syntactic construct of the DSTL is implemented by one or more ATL 
transformation rules. 

The simplest construct named ChangeName is implemented by a single 
transformation rule, as follows: 

 

rule ChangeName_table { 
from 

t1: MR!Table (not 
t1.getChangeName().oclIsUndefined() 

to 
t2: MR!Table ( 

      name <- t1.getChangeName().newName, 
 element <- t1.element, 
 primaryKey <- t1.primaryKey 
    ) 
} 
 



Como pudo observarse, hemos resuelto la limitación de no poder machear más de un 
element en simultáneo utilizando funciones auxiliares. Tendremos tres funciones 
auxiliares que nos permitirán saber si el element macheado debe ser transformado o 
no. La siguiente es la implementación de una de las tres funciones utilizadas: 

 

helper context MR!Table def: getChangeName(): 
LTR!ChangeName = LTR!ChangeName.allInstances()-
>select(t|t.table = self.name).first(); 
 

 
Next, we introduce the implementation of the extractCommonData construct. This 
construct is implemented by three transformation rules, each rule  works in each level 
of the relational model (i.e. model, scripts and data values). 
 

− The following rule realizes the transformation on the data model:  
 

rule ExtractCommonData_table { 

from  
 c: MR!Column (not 

c.getExtractCommonData().oclIsUndefined()) 

using { 

t : LTR!ExtractCommonData = 
c.getExtractCommonData(); 

} 

to    

 fk: MR!ForeignKey ( 
 table <- c.table, 
 name <- 'fk_' + t.TargetTable   
) 

 

do { 

if   
fk.table.bd.getTable(t.TargetTable).oclIsUndefined() 

then  
thisModule.NewExtractionTable(t.TargetTable,    
                                  t.column, 
                                  fk.table.bd) 

 else true 
endif;    

fk.referencedTable <-   
     fk.table.bd.getTable(t.TargetTable);  
}  
}  



 

The rule above transforms the selected column to a foreign reference to the target 
table. The creation of the target table is contemplated in the imperative part of the rule 

− The following rule implements the transformation on the scripts:  
 

rule ExtractCommonData_script { 
from  

r1: MR!DirectReferenceToElementTable (not  
r1.getExtractCommonData().oclIsUndefined()) 

using { 
t: LTR!ExtractCommonData =  
 r1.getExtractCommonData(); 

} 
to    

r2: MR!DirectReferenceToElementTable ( 
name <- r1.name, 
element <- r1.element, 
reference <- ref 

), 
ref: MR!DirectReferenceToElementTable (     
) 

do { 
ref.element <-  

r2.element.table.bd.getTable(t.TargetTable).get 
ElementWithName(t.column); 

} 
} 
 

The rule above transforms the direct references to the extrcted column, by an 
indirect reference to the column (not primary key) of the new table. 

− The following rule defines the transformation on the data values:  
 

 
rule ExtractCommonData_data { 
from 

d1: MR!ValueElementTable (not  
d1.getExtractCommonData().oclIsUndefined()) 

using { 

t: LTR!ExtractCommonData =  
d1.getExtractCommonData(); 

} 

to 
d2: MR!ValueElementTable ( 

data <- d1.data, 
element <- d1.element 



) 

do { 

if               
   d2.element.table.bd.getRefData(t.TargetTable, 
               t.column, d1.value).oclIsUndefined() 
then                   
thisModule.NewDataRef( 
d2.element.table.bd.getTable(t.TargetTable),d1.value) 
else  
true 
endif; 
    
d2.value <-            
d2.element.table.bd.getRefData(t.TargetTable, 
                  t.column,d1.value).data.getValueId() 
} 
} 

This rule moves each data in the source column to the target table; the rule specifies 
that these values are replaced by the corresponding values of the primary key in the 
new table.  
Finally, the implementation of the factorize construct is similar to the previous 
implementations and it is not presented here for space limitations. The complete 
implementation of this relatonal DSTL can be downloaded from 
http://sol.info.unlp.edu.ar/eclipse. 

5 Conclusions and related work 

Our proposal of using domain specific transformation languages instead of general 
purpose transformation languages (such as ATL) is expected to reduce the complexity 
of transformation programs. Domain experts will feel more comfortable using a 
specific language with constructs reflecting well-known concepts (such as, table and 
column in our example); consequently it is predictable that they will be able to write 
more understandable and reusable transformations in a shorter time.  

Additionally we propose the semantics of such DSTL to be defined using a 
transformation language itself (i.e., ATL). This fact provides several advantages:  the 
language semantics is formally described; it is executable; the semantics is 
understandable because it is written in a well-known language; the semantics can be 
easily modified. 

As an experimental example in this paper we have reported the definition of a 
DSTL in the domain of data bases and we have described its implementation in ATL. 
The experience was successful; currently we are working in the definition of other 
DSTL in other domains. 
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