
Model transformation as a mechanism for the
implementation of domain specific transformation

languages

Jerónimo Irazábal1,2 and Claudia Pons1,2,3 and Carlos Neil3

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata
2 CONICET, Consejo Nacional de Investigaciones Científicas y Técnica

3 Universidad Abierta Interamericana (UAI)
Buenos Aires, Argentina

[jirazabal,cpons]@lifia.info.unlp.edu.ar

Abstract. Model Driven Engineering proposes a software development process
in which the key notions are models and model transformations. Model
transformations are specified using a model transformation language. There are
already several proposals for model transformation specification,
implementation, and execution, which are beginning to be used by Model
Driven Engineering practitioners. The term "model transformation language"
comprises all sorts of artificial languages used in model transformation
development such as QVT, ATL and RubyTL. These languages are specific to
define model transformations; however an extra level of specialization can be
realized on them. That is to say, we can define a transformation language
specifically addressed to a given transformation domain. In the present work we
introduce the proposal of defining domain specific transformation languages
and also we analyze a novel way to define their semantics. Our proposal
consists in using transformation languages themselves to the implementation of
such domain specific languages. We illustrate the proposal through an example
in the data base domain.

Keywords: model driven engineering, model transformation language, domain
specific language, semantics, ATL.

1 Introduction

Modeling is significant for dealing with the complexity of computer systems during
their development and maintenance processes. Models allow engineers to precisely
capture relevant aspects of a system from a given perspective and at an appropriate
level of abstraction. Then, model transformations provide a chain that enables the
automated development of a system from its corresponding models.

Model Driven Engineering (MDE) [1] [2] [3] proposes a software development
process in which the key notions are models and model transformations. In this
process, software is built by constructing one or more models, and successively

transforming these into other models, until finally the output consists of program code
that can be executed. Model transformation is the MDE engine.

A model transformation is a set of transformation rules that together describe how
a model written in the source language is mapped to a model written in the target
language. Model transformations are specified using a model transformation
language. There are already several proposals for model transformation specification,
implementation, and execution, which are beginning to be used by Model-Driven
Engineering practitioners [4]. The term "model transformation language" comprises
all sorts of artificial languages used in model transformation development including
general-purpose programming languages, domain-specific languages (DSLs) [5],
modeling and meta-modeling languages and ontologies. Examples include languages
such as the standard QVT [6], ATL [7] [8] and RubyTL [9].

These languages are specific to define model transformations; however an extra
level of specialization can be realized on them. That is to say, we can define a
transformation language specifically addressed to a given transformation domain. For
example, we can create a language dedicated to the definition of transformations
between data-base models or a language addressed to the definition of transformations
between business models. In this context if we would like to take advantage of a very
specific transformation language we face the problem of implementing such a new
language. There exist powerful frameworks for the definition of domain specific
languages, such as Eclipse [10][11], Microsoft DSL Tools [12][13] and AMMA [14].
These frameworks are mainly focused on the definition of the syntax (both abstract
and concrete) of the DSL, while less attention is devoted to the semantics of the
language. In general the semantics is indirectly defined by the code generation
mechanisms that allow us to specify which the code associated to each modeling
artifact is. The AMMA framework is the exception; it takes advantage of the MDE
ideas. Within AMMA the semantics of the DSL can be defined more abstractly in
terms of Abstract State Machines (ASMs) or in terms of another language. In [15], the
application of this framework to the implementation of the languages SPL and CPL is
described.

In the present work we introduce the proposal of defining domain specific
transformation languages (DSTLs) and also we analyze a novel way to define their
semantics. Our proposal consists in using transformation languages themselves to the
implementation of such DSTLs.

This paper is organized as follows. Section 2 presents the main features of the
proposal to implement domain specific languages using transformation languages.
Section 3 illustrates the use of the approach by the definition of a DSTL for the
transformation of extended relational models. Section 4 shows relevant parts of the
ATL implementation of such DSTL. Section 5 compares this approach with related
research and presents the conclusions.

2 DSL implementation schema

The AMMA framework [14] allows us to define the concrete syntax, abstract syntax,
and semantics of DSLs. In [15, 16, 17] the reader can analyze a number of scenarios

where the AMMA framework has been used to define the semantics of DSLs in terms
of other languages or in terms of abstract state machines (ASMs).

Our proposal is similar to the one of AMMA, but we present a novel alternative,
where the language semantics is realized by means of a transformation written in the
ATL language. Our schema can be seen as the interpretation of the DSL into the ATL
transformation language. Our implementation approach consists in the generation of a
transformation T (written in ATL) that takes two inputs: an instance of the DSL
metamodel (that is to say, a domain specific transformation written in the domain
specific language, for example a transformation between data bases) and a model
belonging to the specific domain (for example, a data base model). The output of such
transformation T is the model that is expected to be produced by the application of the
domain specific transformation on the input model.

Figure 1 shows the transformation scenario.

Figure 1. Transformation scenario.

In our implementation we directly deal with the abstract syntax of the DSL. This

simplification can be easily relaxed in order to also consider concrete syntaxes; for
example we could use the TCS language which is provided by AMMA to this
purpose.

3 A domain specific transformation language for transforming
relational models

In this section we first present the simplified version of the relational model that we
will use; then we define a language that allows us to transform relational data base
models in a wide spectrum. Such language deals with the data model, as well as with
the scripts and the existing data that populate the base. Finally, we illustrate the
effectiveness of the language through its application to the transformation of a simple
data base model.

3.1 The relational model

Due to the fact that the transformation language is expected to express the
transformation of the whole spectrum of the data base (i.e., the data model, the scripts
and the data), the source language of the transformation should be able to represent all
those elements. Consequently the metamodel that we define in this work is richer than

the classical relational metamodel, as described in [6], that is restricted to the M1
level of the OMG 4-levels metamodeling architecture [18]; that is to say, our
metamodel contains additional meta-classes to represent scripts and data values as
well. Figure 2 shows the upgraded relational metamodel.

Figure 2. Simplified relational metamodel including scripts and data values

For the sake of clarity, a number of simplifications have been applied to this meta-

model; the most relevant ones are: unique data type (string of chars), simple key and
single script semantics per interpretation. All these simplifications can be removed
without major changes in the proposal.

3.2 A DSTL fitting the relational model

We define a simple domain specific transformation language (DSTL), with the aim
of transforming relational data bases. This language will express the transformation of
the three elements we mentioned before: the data model, the scripts and the data
values. This specific language allows us to denote the most usual kinds of
transformations in the data bases domain. As example we include here the description
of only three transformations: changeName, extractCommonData and factorize. The
abstract syntax of the DSTL is as follows:

<transformation> ::=

 changeName <table> <string> |
 extractCommonData <table> <element> <table> |
 factorize <table> <element> <table> <element>* |
 <transformation>;<transformation>

<table> ::= table <string>
<element> ::= column <string> | foreignKey <string>
<string> ::= a | b | c | … | <string> <string>

Due to the fact that we will use model transformations to implement this DSTL, we

need to have the DSTL’s abstract syntax defined by a metamodel. Figure 3 displays
the metamodel of our relational DSTL.

Figure 3. Metamodel of the domain specific transformation language

After having defined the syntax of our language we need to define its semantics. In

first place we describe the semantics using just natural language. These definitions
transmit an intuitive understanding of the meaning of each syntactic construct,
however much formality is required in order to guarantee the correct implementation
of the DSTL. Such formal definition of the semantics will be addressed in the
following sections.

− changeName: this is a very simple transformation, its effect consists in changing
the name of the input table.

Next transformations are considerably more complex and they will receive a more
exhaustive treatment:

− extractCommonData: this transformation specifies the splitting of a table into two
tables with the goal of avoiding data duplication. The source of this transformation
is a table and a selected column (containing duplicated data). The transformation
creates a fresh table. Existing data is collected from the input table and then it is
stored in the fresh table in a grouped way (avoiding the duplication of data). In
parallel the references contained into the scripts are consistently modified so that
the behavior of the scripts keeps unaltered. Figure 4 illustrates the effect of this
transformation at model level.

<ExtractCommonData table="Table" column="element2"
TargetTable="TargetTable"/>

Figure 4. Effect of the extractCommonData transformation.

In order to make the behavior of this transformation more comprehensible, we

describe it from an operational point of view: any algorithm performing this
transformation should carry out, in some concrete way, the following steps.

1. To create the target table (in the case the table does not exist);
2. To replace the selected column in the target source table by a foreign key to the

target table;
3. To replace the direct references to the selected column by an indirect reference

to the column in the target table;
4. To move the data from the column of the source table to the target table,

avoiding data duplication;
5. To modify the data stored in the source table, establishing the value of the

foreign key to the new table as the value of the primary key of the new table,
corresponding to the value of each data in the source table

Factorize: in a similar way to the previous transformation, the factorize
transformation states the splitting of a table into two tables with the goal of avoiding

data duplication. The main difference with respect to the extractCommonData
transformation consists in that this last transformation generates a target table with
references to the source table. Direct references to removed elements of the source
table will be transformed to direct reference to the corresponding element in the target
table. The data from the source table will are transformed in order to keep only one
value for each different value in the grouping column. Such column will become the
new primary key of the source table (previous primary key is removed).
As it is expected, the evaluation of any transformed script on the transformed data
base will present no observable difference with respect to the evaluation of the
corresponding source script on the source data base.
The effect of the transformation on the data model is illustrated in figure 5.

<Factorize table=”Table” groupBy=”id_Table”
 TargetTable=”TargetTable”>

<element>element1</element>
<element>element2</element>

</Factorize>

Figure 5. Effect of the factorize transformation.

Thinking algorithmically, we have the following steps:

1. To create the target table (in the case the table does not exist);
2. To remove the elements in the source table;
3. To remove the primary key from the source table and to set up the grouping

column as the new primary key;
4. To replace direct references to removed elements with a direct reference to the

corresponding element in the target table;
5. To keep only one value for each different value of the new primary key

(duplicated data is removed).
6. To move the existing data from the source table to the new table, replacing the

value of the external references to the source table by the value of the grouping
column in the source table.

As it is expected, the evaluation of any transformed script on the transformed data
base will present no observable difference with respect to the evaluation of the
corresponding source script on the source data base.

3.3 Example

In this section we show the applicability of the domain specific transformation
language. To this purpose we elaborate a very simple example consisting of a simple
data base containing a single table named Book. The table has seven columns: ISBN,
title, editorial, comments, availability, chapterTitle and chapterPages.

By using our DSTL we will transform this data base to a behavioral equivalent data
base without data duplication.

To specify the transformation we use a concrete syntax based on XML and directly
supported by AMMA, as follows:

<ExtractCommonData table=”Book” column=”editorial”
TargetTable=”Editorial”/>

<FactorizeTable table=”Book” groupBy=”isbn”
TargetTable=”Chapter”>

Figure 6 displays the source model on the left hand and the target model (the result of
the transformation) on the right hand.

Figure 3. The data model before and after the transformation application.

After applying the first transformation, the editorial info is not longer a column in the
table. The editorial info becomes an entity in the target data base. The second
transformation prevents us from having the general information of the book
duplicated for each chapter. After performing the transformation, the book general
information becomes separated from the chapters.

4 DSTL Implementation

In this section we present the implementation of our DSTL by using the model
transformation language ATL. The implementation consists in a transformation,
written in ATL that takes two inputs: a relational data base (conforming the relational
metamodel in figure 2) and a transformation specified in the relational transformation
language (conforming the DSTL metamodel in figure 3). The output of such
transformation is the data base (conforming the relational metamodel in figure 2) that
is expected to be produced by the application of the input transformation on the input
model.

Figure 4. DSTL implementation schema using ATL transformations

In our implementation we use the ATL’s refinement facility in order to simplify the
transformation algorithm. The refinement mechanism allows us to write code only for
the part of the source model that is modified by the transformation, while the rest of
the model is translated from source to target without any modification.

module MRandLTR2MR;
create OUT : MR refining IN : MR, T: LTR;

Each syntactic construct of the DSTL is implemented by one or more ATL
transformation rules.

The simplest construct named ChangeName is implemented by a single
transformation rule, as follows:

rule ChangeName_table {
from

t1: MR!Table (not
t1.getChangeName().oclIsUndefined()

to
t2: MR!Table (

 name <- t1.getChangeName().newName,
 element <- t1.element,
 primaryKey <- t1.primaryKey
)
}

Como pudo observarse, hemos resuelto la limitación de no poder machear más de un
element en simultáneo utilizando funciones auxiliares. Tendremos tres funciones
auxiliares que nos permitirán saber si el element macheado debe ser transformado o
no. La siguiente es la implementación de una de las tres funciones utilizadas:

helper context MR!Table def: getChangeName():
LTR!ChangeName = LTR!ChangeName.allInstances()-
>select(t|t.table = self.name).first();

Next, we introduce the implementation of the extractCommonData construct. This
construct is implemented by three transformation rules, each rule works in each level
of the relational model (i.e. model, scripts and data values).

− The following rule realizes the transformation on the data model:

rule ExtractCommonData_table {

from
 c: MR!Column (not

c.getExtractCommonData().oclIsUndefined())

using {

t : LTR!ExtractCommonData =
c.getExtractCommonData();

}

to

 fk: MR!ForeignKey (
 table <- c.table,
 name <- 'fk_' + t.TargetTable
)

do {

if
fk.table.bd.getTable(t.TargetTable).oclIsUndefined()

then
thisModule.NewExtractionTable(t.TargetTable,
 t.column,
 fk.table.bd)

 else true
endif;

fk.referencedTable <-
 fk.table.bd.getTable(t.TargetTable);
}
}

The rule above transforms the selected column to a foreign reference to the target
table. The creation of the target table is contemplated in the imperative part of the rule

− The following rule implements the transformation on the scripts:

rule ExtractCommonData_script {
from

r1: MR!DirectReferenceToElementTable (not
r1.getExtractCommonData().oclIsUndefined())

using {
t: LTR!ExtractCommonData =
 r1.getExtractCommonData();

}
to

r2: MR!DirectReferenceToElementTable (
name <- r1.name,
element <- r1.element,
reference <- ref

),
ref: MR!DirectReferenceToElementTable (
)

do {
ref.element <-

r2.element.table.bd.getTable(t.TargetTable).get
ElementWithName(t.column);

}
}

The rule above transforms the direct references to the extrcted column, by an
indirect reference to the column (not primary key) of the new table.

− The following rule defines the transformation on the data values:

rule ExtractCommonData_data {
from

d1: MR!ValueElementTable (not
d1.getExtractCommonData().oclIsUndefined())

using {

t: LTR!ExtractCommonData =
d1.getExtractCommonData();

}

to
d2: MR!ValueElementTable (

data <- d1.data,
element <- d1.element

)

do {

if
 d2.element.table.bd.getRefData(t.TargetTable,
 t.column, d1.value).oclIsUndefined()
then
thisModule.NewDataRef(
d2.element.table.bd.getTable(t.TargetTable),d1.value)
else
true
endif;

d2.value <-
d2.element.table.bd.getRefData(t.TargetTable,
 t.column,d1.value).data.getValueId()
}
}

This rule moves each data in the source column to the target table; the rule specifies
that these values are replaced by the corresponding values of the primary key in the
new table.
Finally, the implementation of the factorize construct is similar to the previous
implementations and it is not presented here for space limitations. The complete
implementation of this relatonal DSTL can be downloaded from
http://sol.info.unlp.edu.ar/eclipse.

5 Conclusions and related work

Our proposal of using domain specific transformation languages instead of general
purpose transformation languages (such as ATL) is expected to reduce the complexity
of transformation programs. Domain experts will feel more comfortable using a
specific language with constructs reflecting well-known concepts (such as, table and
column in our example); consequently it is predictable that they will be able to write
more understandable and reusable transformations in a shorter time.

Additionally we propose the semantics of such DSTL to be defined using a
transformation language itself (i.e., ATL). This fact provides several advantages: the
language semantics is formally described; it is executable; the semantics is
understandable because it is written in a well-known language; the semantics can be
easily modified.

As an experimental example in this paper we have reported the definition of a
DSTL in the domain of data bases and we have described its implementation in ATL.
The experience was successful; currently we are working in the definition of other
DSTL in other domains.

Acknowledgments

This work has been sponsored by Microsoft® under the LACCIR RFP 2008 Research
Founding Initiative.

6 References

[1] Stahl, T. and Völter, M. Model-Driven Software Development. John Wiley &
Sons, Ltd. (2006)

[2] Claudia Pons, Roxana Giandini, Gabriela Pérez. “Desarrollo de Software Dirigido
por Modelos. Conceptos teóricos y su aplicación práctica”. Editorial: EDUNLP
and McGraw-Hill Education. (2010).

[3] Kleppe, Anneke G. and Warmer Jos, and Bast, Wim. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA. (2003)

[4] Czarnecki, Helsen. Feature-based survey of model transformation approaches.
IBM System Journal, V.45, N3, 2006.

[5] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

[6] MOF QVT Adopted Specification 2.0. OMG Adopted Specification. November
2005. http://www.omg.org

[7] ATLAS team: ATLAS MegaModel Management (AM3) Home page,
http://www.eclipse.org/gmt/am3/. (2006)

[8] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at the
MoDELS 2005 Conference. Volume 3844 of Lecture Notes in Computer Science,
Springer-Verlag (2006) 128–138

[9] Sánchez Cuadrado, J., García Molina, J. and Menarguez Tortosa, M. : RubyTL: A
Practical, Extensible Transformation Language. In proceedings of European
Conference on Model Driven Architecture – Foundations and Applications, LNCS
4066. Springer. (2006)

[10] GME: The Generic Modeling Environment, Reference site,
http://www.isis.vanderbilt.edu/Projects/gme. (2006).

[11] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Professional. ISBN: 0-321-53407-7, 2009.

[12] Steve Cook, Gareth Jones, Stuart Kent, Alan Cameron Wills. Domain-Specific
Development with Visual Studio DSL Tools. Addison-Wesley Professional. ISBN
0321398203, 2007.

[13] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley (2004)

[14] Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-based DSL Frameworks.
(2006) OOPSLA Companion 2006:602-616[5].

[15] Frédéric Jouault, Jean Bézivin, Charles Consel, Ivan Kurtev, Fabien Latry:
Building DSLs with AMMA/ATL, a Case Study on SPL and CPL Telephony
Languages. Proceedings of the 1st ECOOP Workshop on Domain-Specific
Program Development (DSPD), July 3rd, Nantes, France (2006).

[16] Barbero, M., Bézivin, J., Jouault, F. Building a DSL for Interactive TV
Applications with AMMA. In Proceedings of the TOOLS Europe 2007 Workshop
on Model-Driven Development Tool Implementers Forum. Zurich, Switzerland
(June 2007).

[17] Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs.
http://hal.ccsd.cnrs.fr/docs/00/06/61/21/PDF/rr0602.pdf (Downloaded March
2009).

[18] OMG/MOF Meta Object Facility (MOF) 2.0. OMG Adopted Specification.
October 2003. http://www.omg.org

