Transformation of Modelsin OOHDM Using
M etamodeling T echniques

CarlosNeil' Claudia Pons

! Universidad Abierta I nteramericana
Facultad de Tecnologia Informatica
carlos.neil @vaneduc.edu.ar

2 LIFIA - Universidad Nacional de LaPlata
Buenos Aires, Argentina
cpons@sol.info.unlp.edu.ar

Abstract: Due to the nature and complexity of the types of Web applications,
the data of the conceptual model and the data of derived navigational models
persistin relational databases. The mapping of the object-oriented model to data
model has several variants which are generally expressed in an informal way.
In this paper we establish a formal connection between the conceptual model,
represented by a class diagram, and the underlying data model, represented by
an entity-relationship model. In addiction, in the same schema, a formal link
amongthe data of the conceptual model and the data of the derived navigational
models is proposed, as well as among the latter and views of the data model.
We use MOF-based metamodeling techniques to represent the transformations
and OCL rulesto formally define them.

Keywords: Metamodel, Conceptua Model, Data Model, OOHDM,
MOF, UML.

1.Introduction

The metamodeling is atechnique used in software development that allows describing
the basic abstractions to describe models and their relationships. A metamodel is an
accurate definition of the modelling elements and the relationships that are necessary
to create semantic models. The metamodeling also plays afundamental role in CASE
tool construction and is also the core of automatic code generation (Kraus, Koch.
2003). The CASE tools make it easier to create and manipulate UML diagrams.
Besides, many of these tools provide automatic code generators and reverse
engineering of existing software systems. However, there is not enough support to
validate the models in the design phase. Well-defined semantics is an essential
prerequisite to build CASE toolsthat will provide advanced validation characteristics.

The Meta Object Fecility (MOF. 1999) provides a framework to give support to
different types of metadata and can be used to define different information models.
The MOF is considered a meta-metamodel and is used to define metamodels, such as
UML (UML 2003). The architecture the MOF data model is equivalent to a meta-
metamodel architecture of four layers (OMG. 2000). The MOF is used to define the
structure and semantics of metamodels for specific and general domains. The MOF is
an oriented-object model and is suitable to define object-oriented metamodels or even
more general models, for instance, the central aspects of the entity-relationship
schema (Chen. 1976) can be represented by means of MOF class diagrams (Gogolla
et al. 2002). The MOF is also used to define specific metamodels for data base, data
warehouse, W eb applications and model transformations.

The methodologies for the development of Web applications propose the
construction of different views and models. While some of these methods are only
focused on the asign, others are focused on the complete development of the
application. Particularly, OOHDM (Schwabe, Rossi. 1998) is composed by four
activities: the conceptual design, the navigational design, the abstract interface design
and the implementation. These activities are performed in a mix of iterative and
incremental styles of development; in every phase, object-oriented models are
created, which leads to the improvement of the modelscreated in previous phases.

This methodology considers an application as a view over the conceptual model
(similar to the views in data base). The classes of these views are called navigational
classes. Every navigational model provides a subjective view of the conceptual
model. In the implementation phase, the design will materialize; particularly theitems
of information might be stored in files or data base. Due to the nature and complexity
of the types of Web applications, it is advisable to use data bases to store the
navigational and conceptual objects. In OOHDM an dternative mapping is proposed
for the transformation of classes into tables, where this transformation is expressed in
an informal way.

In this paper, we propose to formalize the conceptual model transformation,
represented by a class diagram, into the data model, described by means of the entity-
relationship model, from which the latter can be directly mapped to the relational
model (Gogolla, Lindow. 2003). As the navigational design is derived from the
conceptual design and the data views are derived fromthe underlying data model,
thereis necessarily arelation betweenthe navigational model and the view model that
is derived from the data model (Figure 1 and 2).

We will use an approach of MOF metamodel and present an MOF model for every
schema, similarly to the UML modelling with MOF (Gogolla et al. 2002), where class
diagrams are specified and invariants are established through OCL (OCL 2.0. 2003).
In addiction, we will consider the constraints related to the transformation, associating
the MOF class diagram with its corresponding OCL rules.

This paper is organized in the following way: in section 2 we explain the models
transformation through an example; in section 3 we present the MOF; in section 4 we
mention some constraints to the metamodel; in section 5 we formalize the
transformation by means of OCL rules; in section 6 we present related research and in
section 7, the conclusion and future research.

CONCEPTUAL
MODEL

-
- ~
-~ .
v R
NAVIGATION NAVIGATION MODEL MODEL
e MODEL MODEL VIEW VIEW e
Figure 1. General Transformation Schema
1 1
Conceptual TOER
ConceptualModel ERModel
ConceptualToNavigation ERToER
ApplModel
1

Navigational TOER

NavigationModel

Figure 2. Packages and Transformations

2. Model Transformationin OOHDM

The development of Web applications presented in OOHDM consists of four steps
within a continuous and gradual process. the conceptual design, the navigational
design, the abstract interface design and the implementation. If the application were
implemented over a relational data base the data of the navigational models would
correspond with the data of the views of the underlying data base In the
implementation phase the designer will materialize the design, particularly the
information items might be stored in files or data base. Because of the nature and
complexity of the types of Web applications, it is advisable to use data bases to store
the navigational and conceptual objects.

The conceptual model in OOHDM is built upon classes, relationships and sub-
systems and has a distinctive feature that consists of the possibility of having multi-
typed attributes that represent different views of the same entity of the real world. A
class diagram is formed by a group of classes (eventually with heritage relationship)
where these classes are connected with each other by associations, aggregations and
heritage relationships The navigational model, especially the navigational class
model, represents the navigational objects of a hypermedia application, and is built
upon nodes, links and access structures. We will use the decorative stereotype
(Berner et al. 1999) <<Navi gati onal C ass>> in the navigational classes that are
derived from the conceptual model. In order to define the nodes, we will use OCL

constraints, where every node attribute will be expressed as a combination of
attributes belonging to different related classes of the conceptual model (Koch, Kraus.
2002). Likewise, the links reflect the relations that will be explored by the final user
and that will be defined as views over the relationships of the conceptual model. We
present several simplified metamodels, one for the conceptual model and another for
the navigational model, where we will express aspects related to the attributes. The
metamodeling of the entity-relationship model has been taken from (Gogolla,
Lindow. 2003).

There are different approaches for the transformation of a class diagram into a daa
model (Reinwald et al. 1996; Rumbaugh et al. 1991). The different alternatives used
for transformation have several consequences (Keller. 1997); the performance in the
access to data base depending on the amount of accessed tables; the performance of
reading versus updating and writing; maintenance costs; the performance and
redundancy versus the maintenance costs and the norma forms, among others. We
will show an example of the transformation of attributes of a class model into an
entity-relationship model (Figure 3), and in natural language, the criteria used for this
transformation and that will be formalized in the metamodel later. The navigational
models which have a data model associated to each of them are views both of the
conceptual model and the underlying data model (See figure 1).

We will show an example of the navigational model with its model of derived data.
(Figure 4) Conceptually speaking, the transformation of the data of the class model
into the data model and the transformation of the data of the navigational model into
the view model are the same.

ConceptualModel ERModel
Dody 4
IDst title date IDpr name address

body

Story Person

part|-title 1% 1.1 |-name
dat -address
Lax |-summary author |-email

f lt 1| participant

Essay Interview

11
L1k
Q&A

-question
-answer

Hllustration

Figure 3. Data M oddl Derived from the Conceptual M odel
Informally, this transformation consists of the following steps:

Each classistransformed into an entity with its attributes.

Each entity has an identifier attribute.

The associations (aggregations and compositions) are transformed into
relationships, keeping the multiplicity.

The association classes are transformed into rel ationships.

The attributes of association classes become descriptive attributes of the
relationship respectively.

In the generalization relations, both the superclasses and the subclasses
are transformed into entities, each of them with their attributes.

The attributes of the navigational model are obtained from the conceptual model,
through OCL constraints that establish the rules of derivation, for example:

Context Interview :name
derive: self.conceptual Model . aut hor. nane

Context Interview :address
derive: self.conceptual Model . aut hor. address

Context Interview :email
derive: self.conceptual Model. aut hor. enmil

We point out that the role called “concept ual Model ” establishes the connection
among the navigational objects and its counterpart in the conceptual model.

If the logic model that is used is relational, we can obtain the attributes derived
from the data model by means of SQL queries; for instance, we obtain the
Interview_V entity (table) through an SQL view over the data model.

CREATE VIEW I ntervi ew V
AS SELECT nane, address, emmil

FROM Story AS S, Interview AS I, Person AS P
WHERE S.ldst = 1.ldst AND S.ldpr = P.ldpr;

NavigationalModel ERModel

1.1
body
Story <<Navigation Class >> body IDst title date
part [title

-date
summary
part L Fg

1.% -summary
Interview <<Navigation Class>>|

hame
laddress
lemail

1.1
1.k
Q&A <<Navigation Class>>

-question
-answer

Figure 4. Navigational Model and its Associated DataM odel

3. MOF Class Diagrams

In figure 5, we represent in one graph the metamodels related to the conceptual
model, the navigational model (both represented from a data outlook) and to the
entity-relationship model. We will explain them below.

Appl Web object is associated to a Concept ual Schenma object and to one or more
than one Navi gat i onSchenma object. A Concept ual Schema is associated to one or
more than one Cl ass object and to zero or more Associ ati on objects. A
d ass object can be related to zero or more Associ ati onEnd objects, which can
be associated exactly to an Associ ati on object (we shall only consider binary
associations). The O ass objects are related to one or more than one Attribute
object and are at the same time related to a cl ass object that denotes its type (we
shall not consider multiplied attributes). Besides, we consider the
Associ ationClass as a specidization of Cass and Association. A
Navi gat i onSchenma object is associated to one or more than one Node object and
to zero or more Li nkEnd objects. A Node object is associated to one or more than
one Attri but e object that is, in turn, associated to another Attri bute object of
the conceptual schema. A Node object of the navigational schema is related to the
d ass objects of the conceptual schema, from which then node's attributes are
derived.

1 1
ConceptualSchemal] 1 0.1 [ConceptualToER | 0--1 1 [ERSchema
1
1 1 1 1
0.*
| Super 1>
Entity
-lkey
0..1
type X 1
1 1]1.x |1 0.* 1 |1 1. 0.*
ApplWeb super Class 1 0.*| AssociationEnd|2 1|Association 1 Attribute RelationshipEnd
0..* lisAbstract -multiplicity HisKey -multiplicity
1 0.* AN 0.1 N\ conceptualAttribute 1x|1x| ox 2
conceptualClasg h B ”
0.1 1
ConceptualToNavigation AssociationClass 0.1 Relationship 0.
0.1
0.* 0.1
1.%
NavigationSchema | 1 1. Node 1 0.*[LinkEnd |2 1 Link |Navigati0nToER
1.* 1 | 1 | 0.* 0.1

Figure 5. Transformation M etamodels

An ERSchema object is formed by one or more than one Entity object and
zero or more Rel ati onshi p objects. An Entity object can be related to zero or

more Rel ationshi pEnd objects and these can be exactly related to a
Rel ati onshi p object. An Entity object can be related to one or more than one
Attribute object. The Attribute class has an i skey Boolean attribute that
expresses whether it is part of a unique identifier or not.

TheEntity classhasaderived attribute/ key: Set (attri bute)=attri bute->
sel ect (a} a. i sKey), whichis theuniqueidentifier of the entity.

In the metamodel, transformations are expressed by the Concept ual ToER classes
that specify the link between Conceptual Schema and ERSchema; the
Concept ual ToNavi gati on class that explains in detail the link between the
Conceptual Scherma and the NavigationSchena classes and the
Navi gat i onal ToER class which links the Navi gationSchenma class to the
ERSchena.

All classesinherit a nane attribute of Named superclasses that is not showninthe
graph.

4. Constraints on the M etamode

In the object-oriented model, a graphic like the class diagram is not enough to
achieve an accurate and unambiguous specification (Pons et al. 1999, 2000). There is
a need to describe additional constraints to the objects of the model. Many times,
those restrictions are described in a natural language. Practice has revealed that the
ambiguity in specifications leads to imprecision. In order to avoid it, formal languages
have been developed. However, they have a disadvantage; while they are suitable for
people with a strong background in mathematics, the average system modeller finds it
difficult to understand. The OCL, which has been created to cover that gap, is a
formal language that is easy-to-write-and-read and provides extra information about
the models used in object-oriented development and a declarative language that has
no side effects, that is, the state of an object does not change after having been
evaluated by an OCL expression. Every expression is written within the context of a
class instance that is defined in a UML model. The constraints may be imposed both
on the model and the metamodel. Next, we will show, as examples, a series of
constraints applied in the metamodel (Fig. 5) using OCL sentences.

Two entities (or relationships) that belong to the same entity-relationship model
cannot have the same name:

Cont ext ERMbdel : : ERSchena i nv uni queEntit yNamne:
entity -> forAll (el,e2 | el.name = e2.nane inplies el = e2)

The names of the entities” attributes (and relationships) are unique:

Cont ext ERMbdel ::Entity inv uniqueAttributeEntityNane:
attribute -> forAll (el,e2 | el.name = e2.nane inplies el = e2)

Two class that belong to the same conceptual schema cannot have the same name:

Cont ext Concept ual Mobdel : : Concept ual Schema i nv uni queCl assNane:
class -> forAll (cl,c2 | cl.name = c2.nane inplies cl = c2)

Two nodes that belong to the same navigation schema cannot have the same name:

Cont ext Navi gati onModel : : Navi gati onSchena i nv uni queNodeNane:
node -> forAll (nl,n2 |} nl.name = n2.nane inplies nl = n2)

5. Formalization of the Transformation

We will formalize the transformation of the class model into the entity-relationship
model using OCL constraints. In the metamodel, the transformation of the class
schema into the entity-relationship schema is represented by the Concept ual ToER
class. A Conceptual ToOER object is exactly related to a Concept ual Schena
object and an ERSchena object.

Wewill formally establish some of the transformations of the attributes of the class
model into the entity-relationship model that have been previously expressed in a
natural language. The invariants will be: cl assToEnt ity establishing that in every
class there is an entity that has the same name and attributes as the class;
associ ati onToRel ati onshi p determining that in every association (aggregation
or composition) there is a relationship that has the same name and multiplicity as the
association. There are other ransformations that we can mention but we will not
describe, such @ associ ati onToRel ati onshi p determining that in every class
association there is a relationship that has the same name and descriptive attributes as
the association; and the hi er ar chyToGener al i zati on constraint establishing that
heritage relations are transformed into entities linked to generalization relations.

The transformation, in the metamodel, of the conceptual model into the
navigational model is represented by the Concept ual ToNavi gati on class. A
Concept ual ToNavi gati on object is exactly related to a Concept ual Schema
object and to one or more than one Navi gati onSchena objects. The most
important transformation is related to the attributes
concept ual Attri but eToNavi gati onAttribute. The attributes of the
navigational model will be derived from the conceptual model. Next, we will formally
describe the transformation.

Every class of the conceptual model is transformed into an entity in the entity-
relationship model:

Cont ext Conceptual ToER i nv cl assToEntity:

concept ual Schena. cl ass->f or Al | (c} eRSchema. entity->exi sts(e]
c.name = e.nanme and

c.attribute->forAll (ac)e.attribute->exists(eaj

ac.name = ea.nanme and ac.type = ea.type))))

This invariant determines that in every c¢ class of the conceptual schema there is
an e entity of the entity-relationship schema, both with the same name. Besides, in

every ac attribute of the class, there is an ea attribute in the entity with the same
name and of the same type.

Besides, every entity has an identifier attribute:

Objects have an identity that characterizes their existence and alows distinguishing
two objects that have the same state. This does not occur in the entities where an
attribute (compound attribute perhaps) must have the characteristic of being unique
and minimal. Thus, we have to include an attribute that will comply with those
requirementsin every transformed entity.

Context Entity inv entityKeyNot Enpty:
key() -> notEnpty

Besides, if the attribute is akey attribute it has to belong only to the entity.

Context Attribute inv attributeOwmedByEntity:
self.isKey inplies entity->size()=1

The attri but e class takes part in four associations C ass, Node, Entity,
and Rel at i onshi p, but oneattri but e object hasto belong to only one of them:

Context Attribute inv attributeOwmedByCxor NXor EXor R:
(entity->size() + class->size() + node->size() +
rel ati onship->size())=1

Associations are transformed into relationships, keeping the multiplicity and,
besides, the classes that relate the associations are related to entities that are related
among them by the relationships

Cont ext Concept ual TOER i nv Associ ati onToRel ati onshi p:

concept ual Schena. association -> forAl(a |

eRSchema. rel ati onship -> exists(r | a.nanme = r.name and
a.associatioEnd -> forAll (aejr.rel ati onShi pend ->

exists(re | ae.class.nane = re.entity.name and ae.nultiplicity =
re.multiplicity)))

This invariant establishes that in every a association of the conceptual schema
thereisanr relationship of the entity-relationship schema, both of them having the
same name. Every association end of the ae association has the same multiplicity as
the r e relationship end. In addition, in every association the class name related to the
association end isthe same as that the entity related to the rel ationship end.

The attributes of the navigational model are derived from the conceptual model:

Cont ext Nodo inv conceptual AttributeToNavi gati onAttri bute:
self.attribute.conceptual Attribute -> forAll(f |

sel f.conceptual C ass.transitiveCd osure.all Attributes-> exists (a
i a=1))

I

This invariant establishes that all the attributes of the navigational are derived from
the attributes of the conceptual model. We point out that the transitiveClosure
operation returns a set of attributes that conform the transitive closure of a class
regarding its associations; besides, allAttibutes is an operation returning the set of
both inherited and proper attributes of a class, as defined in UML.

Taking into account the fact that navigational attributes should be defined in terms
of conceptual attributes only (that isto say navigational attributes cannot be related to
each other), we establish the following constraint:

Cont ext Nodo attri buteOmedByNavi gational Attribute inv:
self.attribute ->forAll (a |
a.conceptual Attribute.class. ocl | skKi ndOf (d ass))

6. Related Research

This paper is related to other approaches that use metamodeling techniques. In
(Gogolla et al. 2003) a formal connection is established between the entity-
relationship model and the relational model using MOF-based metamodeling
techniques to represent both models and their transformation. The semantics and
syntax of both the entity-relationship model and the relational model, and their
transformations are studied in (Gogolla et al. 2002). Both papers establish constraints
to the metamodels and their transformations using OCL. In (OMG. 2000) a
framework used to represent metadata about source data, target data, transformations,
process and operations that create and administer a data warehouse is presented. In
(Atzeni, Torlone. 1995), the problem of schemas translation among different data
model is studied, they introduce a theoretical graphic formalism that allows
representing schemas and models uniformly to compare different data models, as well
as describing the translation performance. In (Neil, Pons 2003) the transformation of
the multidimensional model into UML is presented, and constraints both to model and
to the metamodel are expressed by means of OCL constraints. In (Neil, Pons, 2004)
an agorithm to transform an entity-relationship model into a multidimensional
temporal model is formalized by means of metamodeling techniques. In (Keller.
1997) different patterns for the transformation of classes into relational tables is
presented. In Rumbaugh et a. 1991) the transformation of classes into tables is
detailed in an informal way. The storage of objects in relational data bases is studied
in (Reinwald et al. 1996). Finally, (Koch, Kraus. 2002, Kraus, Koch. 2003) presents a
common metamodel for the Web application. They argue that athough all
methodologies for the development of Web applications use different notations and
propose slightly different development processes they could be based on a common
metamodel for the Web application domain because of the unification of the modeling
constructs of current Web methodologies allowing for their better comparison and
integrations.

7. Conclusions and Future Research

In this research, we have presented, by means of MOF class diagrams, a metamodel
that makes a connection among the conceptual model, the navigational model and the
data model. The relationship among these models is more precisely specified through
OCL constraints that regulate the transformations defined between the navigational
model and the underlying data model, between conceptual model and the navigational
model and between the | atter and the views of the data model.

In future research, we will improve the metamodel to establish, within the framework
of the Model Driven Architecture (MDA, 2003), the transformation rules between the
conceptual data model of a Web application (Platform-1ndependent Model, PIM) and
the logical data model in arelational data model (Platform-Specific Model, PSM).

Refer ences

Atzeni P, Torlone R., Schema trandation between heterogeneous data models in a lattice
framework. 6th IFIP TC-2 Working Conference on Database Semantics (DS6), Atlanta,
Georgia, May 30-June 2, 1995.

Berner S., Glinz M.,Joos S. A Classification of Stereotypes for Object-Oriented Modelling
Languages. In Proceedings of Unified ModellingLanguages Conference UML “99. 1999.
Chen P. The Entity-Relationship Model — Toward a Unified View of Data ACM Transactions

on Database System. 1976.

GogollaM., Lindow A., Richters M., Ziemann P. Metamodel Transformation of Data Models,
Workshop in Software Model Engineering. 2002.

GogollaM., Lindow A. Transforming Data Models with UML, 10S Press, 2003.

Keller, W. “Mapping Objects to Tables— A Pattern Language”, Proc. Of European Conference
on Pattern Languages of Programming Conference (EuroPLOP)’’97, Bushman, F. and
Riehle, D. (eds), Irsee, Germany, 1997.

Koch N., Kraus A. The Expressive Power of UML-based Web Engineering. Second Int.
Workshop on Web-oriented Software Technology (IWWOST 02). May 2002.

Kraus A., Koch N. A Metamodel for UWE. Technical Report 0301, University of Munich.
2003.

Neil C., Pons C. Aplicando Restricciones a un Datawarehouse Temporal Utilizando UML/OCL
Congreso Argentino de Ciencias de la Computacion e Informética. 2003.

Neil C.,Pons C. Formadizing the Model Transformation Using Metamodeling
Techniques. ASSE Argentinean Symposium on Software Engineering. (33 JAIIO04)
September 2004. Cordoba. Argentina

MDA. Object Management Group. MDA Guide Version 1.0.1. OMG document, omg/2003-06-
01, 2003.

MOF. Mata Object Fecility 1.3. OMG (1999)

Pons, C., Baum, G., Felder M. Foundations of Object Oriented Modeling Notations in a
Dynamic Logic Framework. Fundamentals of Information Systems. Kluwer Academic
Publisher. Chapter 1. 1999.

Pons, C., Baum, G., Felder M. Formal Foundations of Object Oriented Modeling Notations. 3rd
International Conference on Formal Engineering Methods, |EEE |CFEM 2000. UK.

OCL 2.0. OMG Fina Adopted Specification. October 2003

OMG. Object Management Group. OMG (2000). www.omg.org

Reinwald, B., Lehman, T., J. Pirahesh, H., Gottemukkala, V. Soring and using objects in a
relational database; IBM Systems Journal, Val. 35, No. 2, 1996.

Richters, M., Gogolla, M. Validating UML Models and OCL Constraints. In Andy Evans and
Stuart Kent, editors, Proc. 3rd Int. Conf. Unified Modelling Language (UML'2000), pages
265-277. Springer, Berlin, LNCS 1939, 2000.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. Object-Oriented Modelling

and Design, Prentice Hall, 1991.

Schwabe D., Rossi G. (1998). Developing hypermedia applications using OOHDM. In
Proceedings of Workshop on Hypermedia development Process, Methods and Models,
Hypertext 98.

UML. The Unified Modeling Language (UML) Specification — Version 2.0, revised by the
Object Management Group (OMG), 2003.

