

Transformation of Models in OOHDM Using
Metamodeling Techniques

Carlos Neil1 Claudia Pons2

1 Universidad Abierta Interamericana
Facultad de Tecnología Informática

carlos.neil@vaneduc.edu.ar

2 LIFIA - Universidad Nacional de La Plata
 Buenos Aires, Argentina
cpons@sol.info.unlp.edu.ar

Abstract: Due to the nature and complexity of the types of Web applications,
the data of the conceptual model and the data of derived navigational models
persist in relational databases. The mapping of the object-oriented model to data
model has several variants which are generally expressed in an informal way.
In this paper we establish a formal connection between the conceptual model,
represented by a class diagram, and the underlying data model, represented by
an entity-relationship model. In addiction, in the same schema, a formal link
among the data of the conceptual model and the data of the derived navigational
models is proposed, as well as among the latter and views of the data model.
We use MOF-based metamodeling techniques to represent the transformations
and OCL rules to formally define them.

Keywords : Metamodel, Conceptual Model, Data Model, OOHDM,
MOF, UML.

1. Introduction

The metamodeling is a technique used in software development that allows describing
the basic abstractions to describe models and their relationships. A metamodel is an
accurate definition of the modelling elements and the relationships that are necessary
to create semantic models . The metamodeling also plays a fundamental role in CASE-
tool construction and is also the core of automatic code generation (Kraus, Koch.
2003). The CASE tools make it easier to create and manipulate UML diagrams.
Besides, many of these tools provide automatic code generators and reverse
engineering of existing software systems . However, there is not enough support to
validate the models in the design phase. Well-defined semantics is an essential
prerequisite to build CASE tools that will provide advanced validation characteristics.

 The Meta Object Facility (MOF. 1999) provides a framework to give support to
different types of metadata and can be used to define different information models .
The MOF is considered a meta-metamodel and is used to define metamodels, such as
UML (UML 2003). The architecture the MOF data model is equivalent to a meta-
metamodel architecture of four layers (OMG. 2000). The MOF is used to define the
structure and semantics of metamodels for specific and general domains. The MOF is
an oriented-object model and is suitable to define object-oriented metamodels or even
more general models , for instance, the central aspects of the entity-relationship
schema (Chen. 1976) can be represented by means of MOF class diagrams (Gogolla
et al. 2002). The MOF is also used to define specific metamodels for data base, data
warehouse, Web applications and model transformations.
 The methodologies for the development of Web applications propose the
construction of different views and models. While some of these methods are only
focused on the design, others are focused on the complete development of the
application. Particularly, OOHDM (Schwabe, Rossi. 1998) is composed by four
activities: the conceptual design, the navigational design, the abstract interface design
and the implementation. These activities are performed in a mix of iterative and
incremental styles of development; in every phase, object-oriented models are
created, which leads to the improvement of the models created in previous phases.
 This methodology considers an application as a view over the conceptual model
(similar to the views in data base). The classes of these views are called navigational
classes. Every navigational model provides a subjective view of the conceptual
model. In the implementation phase, the design will materialize; particularly the items
of information might be stored in files or data base. Due to the nature and complexity
of the types of Web applications, it is advisable to use data bases to store the
navigational and conceptual objects. In OOHDM an alternative mapping is proposed
for the transformation of classes into tables, where this transformation is expressed in
an informal way.
 In this paper, we propose to formalize the conceptual model transformation,
represented by a class diagram, into the data model, described by means of the entity-
relationship model, from which the latter can be directly mapped to the relational
model (Gogolla, Lindow. 2003). As the navigational design is derived from the
conceptual design and the data views are derived from the underlying data model,
there is necessarily a relation between the navigational model and the view model that
is derived from the data model (Figure 1 and 2).
 We will use an approach of MOF metamodel and present an MOF model for every
schema, similarly to the UML modelling with MOF (Gogolla et al. 2002), where class
diagrams are specified and invariants are established through OCL (OCL 2.0. 2003).
In addiction, we will consider the constraints related to the transformation, associating
the MOF class diagram with its corresponding OCL rules.

This paper is organized in the following way: in section 2 we explain the models
transformation through an example; in section 3 we present the MOF; in section 4 we
mention some constraints to the metamo del; in section 5 we formalize the
transformation by means of OCL rules; in section 6 we present related research and in
section 7, the conclusion and future research.

CONCEPTUAL
MODEL

DATA
MODEL

NAVIGATION
MODEL

NAVIGATION
MODEL

MODEL
VIEW

MODEL
VIEW… …

Figure 1. General Transformation Schema

1

ConceptualToER

ConceptualToNavigation

NavigationalToER

ERToER

ConceptualModel

ApplModel

NavigationModel

ERModel

Figure 2. Packages and Transformations

2. Model Transformation in OOHDM

The development of Web applications presented in OOHDM consists of four steps
within a continuous and gradual process: the conceptual design, the navigational
design, the abstract interface design and the implementation. If the application were
implemented over a relational data base the data of the navigational models would
correspond with the data of the views of the underlying data base. In the
implementation phase the designer will materialize the design, particularly the
information items might be stored in files or data base. Because of the nature and
complexity of the types of Web applications, it is advisable to use data bases to store
the navigational and conceptual objects .
The conceptual model in OOHDM is built upon classes, relationships and sub-
systems and has a distinctive feature that consists of the possibility of having multi-
typed attributes that represent different views of the same entity of the real world. A
class diagram is formed by a group of classes (eventually with heritage relationship)
where these classes are connected with each other by associations, aggregations and
heritage relationships The navigational model, especially the navigational class
model, represents the navigational objects of a hypermedia application, and is built
upon nodes, links and access structures. We will use the decorative stereotype
(Berner et al. 1999) <<Navigational Class>> in the navigational classes that are
derived from the conceptual model. In order to define the nodes, we will use OCL

constraints, where every node attribute will be expressed as a combination of
attributes belonging to different related classes of the conceptual model (Koch, Kraus.
2002). Likewise, the links reflect the relations that will be explored by the final user
and that will be defined as views over the relationships of the conceptual model. We
present several simplified metamodels, one for the conceptual model and another for
the navigational model, where we will express aspects related to the attributes. The
metamodeling of the entity-relationship model has been taken from (Gogolla,
Lindow. 2003).
 There are different approaches for the transformation of a class diagram into a data
model (Reinwald et al. 1996; Rumbaugh et al. 1991). The different alternatives used
for transformation have several consequences (Keller. 1997); the performance in the
access to data base depending on the amount of accessed tables; the performance of
reading versus updating and writing; maintenance costs; the performance and
redundancy versus the maintenance costs and the normal forms , among others. We
will show an example of the transformation of attributes of a class model into an
entity-relationship model (Figure 3), and in natural language, the criteria used for this
transformation and that will be formalized in the metamodel later. The navigational
models which have a data model associated to each of them are views both of the
conceptual model and the underlying data model (See figure 1).
 We will show an example of the navigational model with its model of derived data.
(Figure 4) Conceptually speaking, the transformation of the data of the class model
into the data model and the transformation of the data of the navigational model into
the view model are the same.

Story

-title
-date
-summary

Interview

Q&A

-question
-answer

1 ..1

*

dateIDst title

1..n

1..1

body

part

Person

-name
-address
-email

1..1

Q&A

1..1

IDqa

Essay

-illustration

1..*

PersonStory

InteviewEssay

part

body name

email
summary

answer

IDpr

question

1 ..n

1..1

 1..n

1..n 1 ..1

 illustration

 address

1..*
1..*

1..*

1..1

1..1

author

participant

ConceptualModel ERModel

participant

author

Figure 3. Data Model Derived from the Conceptual Model

Informally, this transformation consists of the following steps:

• Each class is transformed into an entity with its attributes.
• Each entity has an identifier attribute.
• The associations (aggregations and compositions) are transformed into

relationships, keeping the multiplicity.

• The association classes are transformed into relationships.
• The attributes of association classes become descriptive attributes of the

relationship respectively.
• In the generalization relations, both the superclasses and the subclasses

are transformed into entities, each of them with their attributes.

The attributes of the navigational model are obtained from the conceptual model,

through OCL constraints that establish the rules of derivation, for example:

Context Interview::name
derive: self.conceptualModel.author.name

Context Interview::address
derive: self.conceptualModel.author.address

Context Interview::email
derive: self.conceptualModel.author.email

We point out that the role called “conceptualModel” establishes the connection

among the navigational objects and its counterpart in the conceptual model.
If the logic model that is used is relational, we can obtain the attributes derived

from the data model by means of SQL queries; for instance, we obtain the
Interview_V entity (table) through an SQL view over the data model.

CREATE VIEW Interview_V
AS SELECT name, address, email
FROM Story AS S, Interview AS I, Person AS P
WHERE S.Idst = I.Idst AND S.Idpr = P.Idpr;

-title
-date
-summary

Story <<Navigation Class >>

- /name
- /address
- /email

Interview <<Navigation Class>>

-question
-answer

Q&A <<Navigation Class>>

1..1

*

body

part

dateIDst title

1..n

1..1

Q&A_V

1..1

IDqa

Story_V

Inteview_V

body

/name

summary

1..n

part

1..*

1..*

1..1

NavigationalModel ERModel

Figure 4. Navigational Model and its Associated Data Model

3. MOF Class Diagrams

In figure 5, we represent in one graph the metamodels related to the conceptual
model, the navigational model (both represented from a data outlook) and to the
entity-relationship model. We will explain them below.

ApplWeb object is associated to a ConceptualSchema object and to one or more
than one NavigationSchema object. A ConceptualSchema is associated to one or
more than one Class object and to zero or more Association objects. A
Class object can be related to zero or more AssociationEnd objects, which can
be associated exactly to an Association object (we shall only consider binary
associations). The Class objects are related to one or more than one Attribute
object and are at the same time related to a class object that denotes its type (we
shall not consider multiplied attributes). Besides, we consider the
AssociationClass as a specialization of Class and Association. A
NavigationSchema object is associated to one or more than one Node object and
to zero or more LinkEnd objects. A Node object is associated to one or mo re than
one Attribute object that is, in turn, associated to another Attribute object of
the conceptual schema. A Node object of the navigational schema is related to the
Class objects of the conceptual schema, from which then node’s attributes are
derived.

-isAbstract

Class

-isKey

Attribute

-multiplicity

AssociationEnd Association

AssociationClass

1

1

2

type

1

-/key

Entity

-multiplicity

RelationshipEnd

Relationship

1

1

2

ConceptualSchema ERSchema

1

1..*

0..*

0..*

0..*

1

1..*

0..*

0. .1

0. .1

1..*

1

1..*

0..*

1

0..1

ApplWeb

NavigationSchema

1

Node LinkLinkEnd

1..*

0..*1 121..* 1

0..*1

1

1

1..*

1

0..1

ConceptualToER0..1 0..11 1

ConceptualToNavigation

1

0..1

0..1

1..*

0..*

1

NavigationToER

0..1

0..1

1

1

1

0. .*
super

super

conceptualClass
0..*

0..*

conceptualAttribute

1

1

Figure 5. Transformation Metamodels

An ERSchema object is formed by one or more than one Entity object and

zero or more Relationship objects. An Entity object can be related to zero or

more RelationshipEnd objects and these can be exactly related to a
Relationship object. An Entity object can be related to one or more than one
Attribute object. The Attribute class has an iskey Boolean attribute that
expresses whether it is part of a unique identifier or not.

The Entity class has a derived attribute /key:Set(attribute)=attribute->
select(a¦a.isKey), which is the unique identifier of the entity.

In the metamodel, transformations are expressed by the ConceptualToER classes
that specify the link between ConceptualSchema and ERSchema; the
ConceptualToNavigation class that explains in detail the link between the
ConceptualSchema and the NavigationSchema classes and the
NavigationalToER class which links the NavigationSchema class to the
ERSchema.

All classes inherit a name attribute of Named superclasses that is not shown in the
graph.

4. Constraints on the Metamodel

In the object-oriented model, a graphic like the class diagram is not enough to
achieve an accurate and unambiguous specification (Pons et al. 1999, 2000). There is
a need to describe additional constraints to the objects of the model. Many times,
those restrictions are described in a natural language. Practice has revealed that the
ambiguity in specifications leads to imprecision. In order to avoid it, formal languages
have been developed. However, they have a disadvantage; while they are suitable for
people with a strong background in mathematics, the average system modeller finds it
difficult to understand. The OCL, which has been created to cover that gap, is a
formal language that is easy-to-write-and-read and provides extra information about
the models used in object-oriented development and a declarative language that has
no side effects, that is, the state of an object does not change after having been
evaluated by an OCL expression. Every expression is written within the context of a
class instance that is defined in a UML model. The constraints may be imposed both
on the model and the metamodel. Next, we will show, as examples, a series of
constraints applied in the metamodel (Fig. 5) using OCL sentences.

Two entities (or relationships) that belong to the same entity-relationship model
cannot have the same name:

Context ERModel::ERSchema inv uniqueEntityName:
entity -> forAll (e1,e2 ¦ e1.name = e2.name implies e1 = e2)

 The names of the entities´ attributes (and relationships) are unique:

Context ERModel::Entity inv uniqueAttributeEntityName:
attribute -> forAll (e1,e2 ¦ e1.name = e2.name implies e1 = e2)

Two class that belong to the same conceptual schema cannot have the same name:

Context ConceptualModel::ConceptualSchema inv uniqueClassName:
class -> forAll (c1,c2 ¦ c1.name = c2.name implies c1 = c2)

Two nodes that belong to the same navigation schema cannot have the same name:

Context NavigationModel::NavigationSchema inv uniqueNodeName:
node -> forAll (n1,n2 ¦ n1.name = n2.name implies n1 = n2)

5. Formalization of the Transformation

We will formalize the transformation of the class model into the entity-relationship
model using OCL constraints . In the metamodel, the transformation of the class
schema into the entity-relationship schema is represented by the ConceptualToER
class. A ConceptualToER object is exactly related to a ConceptualSchema
object and an ERSchema object.

We will formally establish some of the transformations of the attributes of the class
model into the entity-relationship model that have been previously expressed in a
natural language. The invariants will be: classToEntity establishing that in every
class there is an entity that has the same name and attributes as the class;
associationToRelationship determining that in every association (aggregation
or composition) there is a relationship that has the same name and multiplicity as the
association. There are other transformations that we can mention but we will not
describe, such as associationToRelationship determining that in every class
association there is a relationship that has the same name and descriptive attributes as
the association; and the hierarchyToGeneralization constraint establishing that
heritage relations are transformed into entities linked to generalization relations.

The transformation, in the metamodel, of the conceptual model into the
navigational model is represented by the ConceptualToNavigation class. A
ConceptualToNavigation object is exactly related to a ConceptualSchema
object and to one or more than one NavigationSchema objects. The most
important transformation is related to the attributes
conceptualAttributeToNavigationAttribute. The attributes of the
navigational model will be derived from the conceptual model. Next, we will formally
describe the transformation.

Every class of the conceptual model is transformed into an entity in the entity-

relationship model:

Context ConceptualToER inv classToEntity:
conceptualSchema.class->forAll(c¦eRSchema.entity->exists(e¦
c.name = e.name and
c.attribute->forAll(ac¦e.attribute->exists(ea¦
ac.name = ea.name and ac.type = ea.type))))

This invariant determines that in every c class of the conceptual schema there is
an e entity of the entity-relationship schema, both with the same name. Besides, in

every ac attribute of the class, there is an ea attribute in the entity with the same
name and of the same type.

 Besides, every entity has an identifier attribute:

Objects have an identity that characterizes their existence and allows distinguishing

two objects that have the same state. This does not occur in the entities where an
attribute (compound attribute perhaps) must have the characteristic of being unique
and minimal. Thus, we have to include an attribute that will comply with those
requirements in every transformed entity.

Context Entity inv entityKeyNotEmpty:
key() -> notEmpty

 Besides, if the attribute is a key attribute it has to belong only to the entity.

Context Attribute inv attributeOwnedByEntity:
self.isKey implies entity->size()= 1

 The attribute class takes part in four associations: Class, Node, Entity,
and Relationship, but one attribute object has to belong to only one of them:

Context Attribute inv attributeOwnedByCXorNXorEXorR:
(entity->size() + class->size() + node->size() +
relationship->size())= 1

Associations are transformed into relationships, keeping the multiplicity and,

besides, the classes that relate the associations are related to entities that are related
among them by the relationships:

Context ConceptualToER inv AssociationToRelationship:
conceptualSchema.association -> forAll(a ¦
eRSchema.relationship -> exists(r ¦ a.name = r.name and
a.associatioEnd -> forAll(ae¦r.relationShipEnd ->
exists(re ¦ ae.class.name = re.entity.name and ae.multiplicity =
re.multiplicity)))

This invariant establishes that in every a association of the conceptual schema
there is an r relationship of the entity-relationship schema, both of them having the
same name. Every association end of the ae association has the same multiplicity as
the re relationship end. In addition, in every association the class name related to the
association end is the same as that the entity related to the relationship end.

The attributes of the navigational model are derived from the conceptual model:

Context Nodo inv conceptualAttributeToNavigationAttribute:
self.attribute.conceptualAttribute -> forAll(f ¦
self.conceptualClass.transitiveClosure.allAttributes-> exists (a
¦ a = f))

This invariant establishes that all the attributes of the navigational are derived from

the attributes of the conceptual model. We point out that the transitiveClosure
operation returns a set of attributes that conform the transitive closure of a class
regarding its associations; besides, allAttibutes is an operation returning the set of
both inherited and proper attributes of a class, as defined in UML.

Taking into account the fact that navigational attributes should be defined in terms

of conceptual attributes only (that is to say navigational attributes cannot be related to
each other), we establish the following constraint:

Context Nodo attributeOwnedByNavigationalAttribute inv:
self.attribute ->forAll(a ¦
a.conceptualAttribute.class.oclIsKindOf(Class))

6. Related Research

This paper is related to other approaches that use metamodeling techniques. In
(Gogolla et al. 2003) a formal connection is established between the entity-
relationship model and the relational model using MOF-based metamodeling
techniques to represent both models and their transformation. The semantics and
syntax of both the entity-relationship model and the relational model, and their
transformations are studied in (Gogolla et al. 2002). Both papers establish constraints
to the metamodels and their transformations using OCL. In (OMG. 2000) a
framework used to represent metadata about source data, target data, transformations,
process and operations that create and administer a data warehouse is presented. In
(Atzeni, Torlone. 1995), the problem of schemas translation among different data
model is studied, they introduce a theoretical graphic formalism that allows
representing schemas and models uniformly to compare different data models, as well
as describing the translation performance. In (Neil, Pons 2003) the transformation of
the multidimensional model into UML is presented, and constraints both to model and
to the metamodel are expressed by means of OCL constraints . In (Neil, Pons, 2004)
an algorithm to transform an entity-relationship model into a multidimensional
temporal model is formalized by means of metamodeling techniques. In (Keller.
1997) different patterns for the transformation of classes into relational tables is
presented. In (Rumbaugh et al. 1991) the transformation of classes into tables is
detailed in an informal way. The storage of objects in relational data bases is studied
in (Reinwald et al. 1996). Finally, (Koch, Kraus. 2002, Kraus, Koch. 2003) presents a
common metamodel for the Web application. They argue that although all
methodologies for the development of Web applications use different notations and
propose slightly different development processes they could be based on a common
metamodel for the Web application domain because of the unification of the modeling
constructs of current Web methodologies allowing for their better comparison and
integrations.

7. Conclusions and Future Research

In this research, we have presented, by means of MOF class diagrams, a metamodel
that makes a connection among the conceptual model, the navigational model and the
data model. The relationship among these models is more precisely specified through
OCL constraints that regulate the transformations defined between the navigational
model and the underlying data model, between conceptual model and the navigational
model and between the latter and the views of the data model.
In future research, we will improve the metamodel to establish, within the framework
of the Model Driven Architecture (MDA, 2003), the transformation rules between the
conceptual data model of a Web application (Platform-Independent Model, PIM) and
the logical data model in a relational data model (Platform-Specific Model, PSM).

References

Atzeni P, Torlone R., Schema translation between heterogeneous data models in a lattice
framework. 6th IFIP TC-2 Working Conference on Database Semantics (DS-6), Atlanta,
Georgia, May 30-June 2, 1995.

Berner S., Glinz M.,Joos S. A Classification of Stereotypes for Object-Oriented Modelling
Languages. In Proceedings of Unified Modelling Languages Conference UML ´99. 1999.

Chen P. The Entity-Relationship Model – Toward a Unified View of Data. ACM Transactions
on Database System. 1976.

Gogolla M., Lindow A., Richters M., Ziemann P. Metamodel Transformation of Data Models,
Workshop in Software Model Engineering. 2002.

Gogolla M., Lindow A. Transforming Data Models with UML, IOS Press, 2003.
Keller, W. “Mapping Objects to Tables – A Pattern Language”, Proc. Of European Conference

on Pattern Languages of Programming Conference (EuroPLOP)’’97, Bushman, F. and
Riehle, D. (eds), Irsee, Germany, 1997.

Koch N., Kraus A. The Expressive Power of UML-based Web Engineering. Second Int.
Workshop on Web-oriented Software Technology (IWWOST´02). May 2002.

Kraus A., Koch N. A Metamodel for UWE. Technical Report 0301, University of Munich.
2003.

Neil C., Pons C. Aplicando Restricciones a un Datawarehouse Temporal Utilizando UML/OCL
Congreso Argentino de Ciencias de la Computación e Informática. 2003.

Neil C., Pons C. Formalizing the Model Transformation Using Metamodeling
Techniques. ASSE Argentinean Symposium on Software Engineering. (33 JAIIO04)
September 2004. Cordoba. Argentina

MDA. Object Management Group. MDA Guide Version 1.0.1. OMG document, omg/2003-06-
01, 2003.

MOF. Mata Object Facility 1.3. OMG (1999)
Pons, C., Baum, G., Felder M. Foundations of Object Oriented Modeling Notations in a

Dynamic Logic Framework. Fundamentals of Information Systems. Kluwer Academic
Publisher. Chapter 1. 1999.

Pons, C., Baum, G., Felder M. Formal Foundations of Object Oriented Modeling Notations. 3rd
International Conference on Formal Engineering Methods, IEEE ICFEM 2000. UK.

OCL 2.0. OMG Final Adopted Specification. October 2003

OMG. Object Management Group. OMG (2000). www.omg.org
Reinwald, B., Lehman, T., J. Pirahesh, H., Gottemukkala, V. Storing and using objects in a

relational database; IBM Systems Journal, Vol. 35, No. 2, 1996.
Richters, M., Gogolla, M. Validating UML Models and OCL Constraints. In Andy Evans and

Stuart Kent, editors, Proc. 3rd Int. Conf. Unified Modelling Language (UML'2000), pages
265-277. Springer, Berlin, LNCS 1939, 2000.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. Object-Oriented Modelling
and Design, Prentice Hall, 1991.

Schwabe D., Rossi G. (1998). Developing hypermedia applications using OOHDM. In
Proceedings of Workshop on Hypermedia development Process, Methods and Models,
Hypertext´98.

UML. The Unified Modeling Language (UML) Specification – Version 2.0, revised by the
Object Management Group (OMG), 2003.

