
Daniel Schwabe and
Robson Mattos Guimarães
Pontifícia Universidade Católica
do Rio de Janeiro

Gustavo Rossi
La Plata University, Argentina

Cohesive Design of
Personalized Web
Applications

Good software engineering practices, such as separating

concerns and identifying patterns, simplify the critical design

decisions in building personalized Web applications.

Although writing software that
adapts itself to its users is not a
new problem in software engi-

neering,1-2 the wide reach of the Web,
combined with the myriad platforms that
support browsing, have reshaped it.
Today’s challenge is building customiz-
able Internet applications. Almost from
the Web’s beginning, browsers let users
personalize presentation features. With
the rise of e-commerce and increasing
competition among sophisticated Web
sites, other kinds of personalization have
become even more important. For exam-
ple, a personalizable Internet application
might include multiple interfaces, each
customized to a specific device. It might
provide different navigation topologies to
different users, recommend specific prod-
ucts according to a user’s preferences, or
implement multiple pricing policies. All
these kinds of personalization require an
application to model the user and user
preferences, build profiles, find algo-
rithms for best linking options, and so on.

Researchers have addressed each of
these problems individually, but they have
paid little attention to integrating all the
personalization features into a single
design. How can the designer comprehend
the design abstractions occurring and the
interplays between them, anticipate inter-
action patterns, and so on? Approaching
personalization from the design perspec-
tive can give us an abstract understand-
ing — independent of a specific applica-
tion’s characteristics — of the kinds of
interactions personalized applications
entail. It can also provide a framework for
reusing designs and design experience.
Meanwhile, a solid software engineering
approach can produce complex Web
applications that evolve seamlessly as
their personalization requirements evolve.

This article describes our work in this
area: using the Object-Oriented Hyper-
media Design Method (OOHDM) for con-
structing customized Web applications.3-4

Incorporating well-known object-orient-
ed design structures and techniques,

34 MARCH • APRIL 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

A
da

pt
iv

e
So

ft
w

ar
e

OOHDM produces flexible Web application mod-
els. Designers can add personalized behavior to
these models with minimal code manipulation,
and reasoning over design objects yields better
insight on the personalization process. Although
this article casts the discussion in terms of the
OOHDM primitives, the ideas presented here can
be easily applied to other design approaches, such
as WebML.5

The Software
Engineering Approach
Web-based software evolves continually. Applica-
tions that affect the core of a company’s business,
such as those for e-commerce, require tight sched-
ules for new releases. In this context, shortening
development cycles through design reuse becomes
extremely important. Requirements related to per-
sonalization, however, are usually difficult to fore-
see: legacy Web applications — older Web appli-
cations written before personalization (and other
issues such as dynamic generation) that became so
important — are already a reality, possibly herald-
ing a Web software crisis.

The only way to avoid the problem of dealing
with older Web applications whose requirements
and premises have become obsolete is to under-
stand that designing complex Web applications
requires rigorous software engineering techniques.
Their design must be clearly documented, using
appropriate notations.

This challenge is all the more difficult with Web
applications, however, because they exhibit fea-
tures that make them different from conventional
software. For example, they use a navigational
metaphor typical of hypermedia applications —
most Web applications provide browsing facilities
uncommon in conventional software. In addition,
the exploding popularity of mobile, wireless, and
other Internet-enabled devices forces us to face
new interface design problems.

State-of-the-art software design notations and
methods, such as UML (www.rational.com/uml)
and associated process approaches, fail to consid-
er these characteristics. Ultimately, we need new
methods that address Web applications’ particular
design dimensions. These methods must be easy to
integrate with existing methods so that they con-
form to existing standards. OOHDM is our answer
to this challenge.

OOHDM Design Framework
The key concept behind OOHDM is that Web appli-
cation models involve a conceptual model, a navi-

gational model, and an interface model.3 In
OOHDM, we build these models using object-ori-
ented primitives with a syntax close to that of UML.

Conceptual Model
The conceptual model represents domain objects,
relationships, and the intended applications’
functionality.

Suppose we’re building a Web-based conference
paper review system to help conference organiz-
ers assign reviewers and track reviewer recom-
mendations. (Such a system could also work for
selecting other types of items — software systems,
services or equipment, suppliers, and so on.)

Our review system’s conceptual model would
contain classes such as “paper,” “reviewer,” and
“review” along with appropriate behaviors —
“assignPaper” and so on. In some Web applica-
tions, these behaviors might be quite complex —
for example, we might need optimal algorithms for
assigning papers according to reviewers’ prefer-
ences. So specifying the behaviors with an object-
oriented notation is valuable even though the
implementation may involve different, possibly
non–object-oriented, languages or databases.

Most personalization mechanisms involve
objects and algorithms that are expressed as part
of the conceptual model. In Figure 1 (next page),
we show a simplified conceptual model of our
conference paper review system. Objects belong-
ing to subclasses of the Person class, such as
“reviewer” and “committee member,” are respon-
sible for processing requests related to individual
customizations.

Navigational Model
In the OOHDM approach, the user does not navigate
through conceptual objects, but through navigation
objects, or nodes. Using a language similar to object
database view-definition approaches,3 OOHDM
defines nodes as views on conceptual objects.

Nodes contain perceivable attributes and
anchors; they are complemented with links that
are themselves specified as views on conceptual
relationships. The navigational class schema shows
the node and link classes that make up the navi-
gational structure of our conference paper review
application. Different user profiles (reviewer and
program committee chair, for example) might have
different interests and access rights, influencing
the actual node structure. One easy way to use
OOHDM to build customized Web applications is
to reuse the conceptual model and build a different
navigational model (view) for each user profile.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 35

Personalized Web Applications

The red text in Figure 1 shows some of the navi-
gation classes for the PC chair user profile.

In OOHDM, we specify the structure of the nav-
igation space through a context schema, which
shows the application’s navigational contexts and
access structures. A navigational context is a set
of objects (papers written by an author, reviewers
for a paper, and so on) that can be explored in a
particular order — sequentially, for example.3

Access structures act as indexes (lists of pointers,
or links) to groups of related objects; each of its
elements is specified by characterizing the target
object (usually showing some of its attributes), and

the anchor containing the link. Figure 2 shows an
example context schema for the review system.
For simplicity, we have omitted details, but this
example should convey how to represent an appli-
cation’s entire navigation space compactly.

In Figure 2, rectangles indicate contexts (sets)
of objects — for example, “paper by PC member.”
Dashed rectangles indicate access structures. Con-
text cards fully detail the contexts, which include
the actual condition defining the context members,
access restrictions, and internal navigation struc-
ture. A context or an index preceded by a black
ellipse (as is the main menu in Figure 2) indicates

36 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Adaptive Software

preferential topic

1

0..*

N1

1

N

0..*

0..*0..*

1..*1..*

3..N

Topic

topic

include new topic (topic)
exclude topic ()

Review from r:Review

Author: v: Reviewer where
v makes r

paper: p:Paper.paperID
where r reviews p

clarity
relevance
technical correctness
final recommendation
comments to PC
comments for authors
final review
status

Conference Track
conference track
include()

Paper from p:Paper

author: a:Author where a is-author-of p
Coauthors: listOf(c:coauthor where c is-

paper ID
title

coauthor-of p)
abstract
status

upload paper ()
include conference track()
include paper topic ()
include conflicting PC Members (names)
change conference track (topic)
change paper topics ()
assign paper to PC Member ()
accept ()
reject ()

Person

name
e-mail
login
password
affiliation
telephone
additional e-mail

Coauthor

confirm registration ()
change password ()

PC Member from a PC Member

confirm registration ()
change password ()

include preferential subject ()
include preferential topic ()

indicate interest in paper (level)

Reviewer from r:Reviewer

confirm registration ()
change password ()

papers, listof(
 p:Paper where r reviews p)

has

has interest

-conflict

paper interest level

1..* 1..*
1..*

1

1..*
0..*

assigned-to

0..*

0..*

0..*

0..*

assign-Reviewer

1 0..*

Author

submit paper ()

Statistic
/total per status
/total per track

Is -author-of Is-coauthor-of

makes

reviews

may -belong -to

Interests: list of(
<t:Topic,level:[0..2]>
where has interest in(p, t, level)

Figure 1. Conceptual model of the conference paper review system. Object classes represent papers, reviews, and people
involved in the review process with their properties (attributes).This model also includes important relations between
object classes, such as “PC Member is-assigned-to Paper.” Text in red indicate the mappings over conceptual classes that
define the navigational classes; this figure shows only a few to illustrate how attributes are mapped from the conceptual
model (for example, the “author” of a “Paper”).The links in the navigational class schema are directional.

an access restriction — typically, the user must log
in to access its elements.

An arrow leaving a context indicates that from
an element in that context, you can follow a link
to another element in the destination context. For
example, from the “paper by reviewer with review”
context, you can navigate to the “reviews by
paper” context, which is the set of reviews for that
paper. Arrows with a black dot at the origin indi-
cate landmarks, elements that can be accessed
from anywhere in the application.

Because a node, such as a paper, can appear in
different navigational contexts, we must define the
features — the attributes and anchors — that apply
for each context. For example, an anchor indicat-
ing the next paper in a context will activate dif-
ferent links according to the context in which it
appears (“next paper by an author,” “next paper

about a topic,” and so on). We specify those fea-
tures using InContext classes that “decorate” the
node when it is viewed in a context.6

Interface Model
Finally, the abstract interface model indicates the
user-perceptible manifestation of navigation objects.
Separating the interface from the navigation speci-
fication lets us cope with varying interface tech-
nologies modularly. For example, given a particu-
lar navigation model, we can specify different
inter-faces — for a browser or for a variety of mobile
devices such as phones and handheld organizers. We
also use an object-oriented formalism — abstract
data views,7 which act as observers of nodes.6

For conciseness, we do not address interface
personalization in this article, although our model
handles it with the approach it uses for other

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 37

Personalized Web Applications

Update/creation

Creation/update

PC member

Paper

By author + Paper title

Alphabetical(Nonconflicting)
paper title

By paper

Papers assigned
to PC member

By PC member
Reviewer

Reviewer

Papers assigned
to reviewer

By reviewer
without review

Review

By paper

 By grade

Status=not
defined

By status

Papers with status
not defined

Status:

By reviewer with
review

AuthorRegister author; Update author data

 Register coauthor; Update coauthor data

Register PC member; Update PC member data

Register reviewer; Update reviewer data

Submit paper

Check/modify data about a paper;
Access reviews

Verify conflicts of a paper;
Indicate interest;

Assign PC member

Assign reviewer
Enter/edit review

Inform accepted and
rejected papers

Peruse papers

Creation/update

Update

Coauthor

Creation/update

Creation/update

Creation/update

Main menu

coauthor

Figure 2. Context diagram of a conference paper review system. Square solid boxes are sets of related objects, such as
“Paper by PC member,” gathering the papers assigned to that committee member. Lines indicate navigation possibilities,
such as going from “paper by grade” to “reviews by paper.” Dashed boxes are indexes.

kinds of personalization.

Hot Spots
In summary, the OOHDM framework provides hot
spots (an idea from the application frameworks
domain8) that let us specify customized structures
and behaviors. It does this

� in the conceptual model, by explicitly repre-
senting users, roles, and groups, and by defin-
ing algorithms that implement different busi-
ness rules for different users;

� in the navigational model, by defining com-
pletely different applications for each profile,
by customizing node contents and structure,
and by personalizing links and indexes; and

� in the interface model, by defining different
layouts according to user preferences or select-
ed devices.

Mapping OOHDM Designs
The process of building a running Web application
from a set of OOHDM schemas is straightforward;
the heuristics to perform this mapping depend on
the implementation architecture (data model, page
generation strategy, and so on). An automatic tool
supports synchronization of design documents
with implementation code.9

Now let’s look at how we can map the schema
we’ve already discussed — the conference paper
review system — to an implementation using Java,
Enterprise JavaBeans (EJB), Java Server Pages
(JSP), and servlets together with XML/XSL. Figure

3 presents an overall architectural description. This
architecture is in fact a simplification of a more
sophisticated implementation framework we have
been developing.10

We map classes in the conceptual model into
Java classes or EJBs to provide concurrent access
to shared resources. For each user profile, we
define node classes as views over one or more con-
ceptual class; we can readily implement these
using JSPs that generate a portable XML (or
HTML) document. Because nodes also act as
façades for conceptual objects — for example,
when providing some particular behavior — we
can conveniently define servlets that trigger meth-
ods in conceptual objects and then activate corre-
sponding server pages to generate a possible out-
put. We derive XSL specifications from interface
specifications statically when possible or dynami-
cally when interface customization depends on
profile information that might change during the
application’s execution. Figure 4 show portions of
the XML and servlet specifications for a paper
node in the review system.

We can cast most personalization patterns into
object-oriented structures, in both the conceptual
and navigational models. Doing this provides a
road map to customized implementations that are
closely related to the corresponding OOHDM spec-
ifications — and thus improves documentation and
stakeholders’ understanding. Expressing design
decisions at a high level of abstraction, such as
schema specifications, simplifies the overall devel-
opment process; it also gives us forward and back-
ward traceability information.

Personalization Patterns
During the past few years, we’ve been mining Web
applications for patterns.11 Patterns, which identi-
fy recurrent design problems along with their
high-quality solutions, were devised by the archi-
tect Christopher Alexander12 and later adapted to
the software systems field.6 In software, identify-
ing patterns is useful for recording design experi-
ence and reasoning about the design process. We
can describe a pattern by stating its intent, the
problem it addresses, and the abstract solution to
that problem. When a group of patterns covers all
design problems in a particular domain, and we
have a set of rules that lets us apply them in a cer-
tain order, we call this group a pattern language.

We’ve discovered a set of patterns related to
personalized Web applications, which together
show, in coarse grain, what we can personalize in
such an application.13 Let’s turn now to some

38 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Adaptive Software

Navigation model Interface modelConceptual model

Clients

Page
structure 2

Web container

OOHDM model

Application container

OO application EJB Servlets JSP • XML/XSL

Page
structure 1

Page
structure 3

Servlet
1Servlet

3

Servlet
3

EJB 1

EJB 2

EJB 3

Node
Class C
Attrib1
Attrib2
Blm1()
Blm2()

Node
Class A
Attrib1
Attrib2
Blm1()
Blm2()

Int 1 Int 2

Int 3Node
Class B
Attrib1
Attrib2
Blm1()
Blm2()

Figure 3.Mapping OOHDM schemas to a Web architecture.Each
schema is mapped onto a different part of the runtime architecture: con-
ceptual classes onto Java classes or EJBs (if concurrent access is needed);
navigational classes onto servlets; and interface objects onto JSP pages.

abstract patterns that illustrate our
design strategies for describing person-
alized software. We’ll present these pat-
terns along with their corresponding
OOHDM specifications.

Role-based Personalization
Different kinds of users perform different
tasks or have different roles. Each role
might have different access rights and
might be interested in different aspects of
the same domain data. Roles access basi-
cally the same information objects,
although they might view them at differ-
ent abstraction levels.

For example, in the conference paper
review system, the roles are PC chair, PC
member, and reviewer; the information
objects are papers and reviews. In a double-blind
review, a PC chair can see a paper’s authors, but
the reviewers cannot. In addition, a reviewer can
access other reviews of a paper assigned to him or
her, but the authors cannot (at least until the final
result is decided).

Solution. Define the application’s nodes and links
as different observations on the information
model, decoupling objects from their consumers.
Consider each possible view as a different appli-
cation over the same domain.

OOHDM approach. We define nodes, links, and
indexes by specifying a query on conceptual
objects. This lets us, for example, define each
attribute of a node either as identical to a concep-
tual object attribute, such as the title attribute of
the paper node in the conceptual schema (Figure
1). We obtain other attributes — for instance, the
authors’ names — from the person conceptual
class through a query. In the specification below,
the variable p stands for the conceptual object act-
ing as the “subject” of the node specification.

NODE Paper FROM Paper: p
Name:String
Authors: Set Select name From Person:A

Where A IsAuthorOf p
Topics: Set [topic1, topic2,…]

Moreover, we can define completely different
applications by just customizing node classes to
each user role or profile, as shown in Figure 5
(next page). When defining the public customized
view of papers, we basically use attributes from

the paper class, adding the paper’s schedule (the
date and time of the session) by querying the ses-
sion object. Meanwhile, in the PC chair view, we
include the list of reviewers by querying corre-
sponding objects in the conceptual model.

Many applications, such as the paper review
system, define personalization according to the
role the user is playing. When a user logs on, the
application enables the roles assigned to that user.

In OOHDM, two primitives allow the design of
link and content personalization for role-based
personalization: views and contexts. Navigation
in OOHDM designs always occurs within naviga-
tion contexts, which are sets of nodes.3 The entire
navigation space is organized into meaningful sets
(contexts), according to the tasks the users must
perform. Because a node is always accessed with-
in a context, we can define additional attributes to
be available to the node only when it is being
accessed within a given context. We achieve this
through InContext classes, which function as dec-
orators6 for nodes.

In the conference paper review system example,
“paper by reviewer” and “paper by title” are use-
ful contexts. The former gathers all papers
assigned to a given reviewer; the latter gathers all
papers, ordered alphabetically. When accessed
within the paper by reviewer context, a paper
could include the acceptance recommendation that
the reviewer gave it; this attribute would not be
available in other contexts. The linking topology
is also customized — there could be next and pre-
vious links in the paper by reviewer context but
not necessarily in the paper by title context.

A judicious design will define the navigation
topology to identify the meaningful contexts for

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 39

Personalized Web Applications

<Paper title="" paperId="" status="">
<author name="" email="" webpageUrl="">

<organization name=""webpageUrl=""></organization>
</author>
<coauthorsList>

<author name="" email="" webpageUrl="">
<organization name="" webpageUrl=""></organization>

</author>
<author name="" email="" webpageUrl="">

<organization name="" webpageUrl=""></organization>
</author>

</coauthorsList>
<abstract></abstract>

</Paper>

Figure 4. XML specification of the paper node in the conference paper
review system.

each role, letting the user see customized content
according to the navigation path chosen (corre-
sponding to different roles). The key need here is
to identify individuals and their corresponding
roles, so that the application enables the appro-
priate roles.

The following text shows a specification of the
papers by reviewer context customized not only to
the reviewer role but also to each individual
reviewer.

Context: Papers BY Reviewer, user: Reviewer
Elements: p:Paper where p IsReviewed By user
InContext Class:PaperByReviewer
Navigation: sequential, order by authorName

We do this by applying a filter stating that the
context’s elements are only those papers that
have been reviewed by the current user. The
InContext Class declaration binds the context
to the specific decorator, adding anchors for
sequential navigation to other papers.

Link Personalization
Web applications deal with a great number of
objects; how we reach them depends on many fac-
tors. Different users — individuals or roles — should
have different linking topologies. For example,
certain users should have more direct access to
certain information objects. In the conference
paper review system, we might want each review-
er to have direct access only to the papers he or
she will evaluate and no others. An electronic
store, such as Amazon, might want to give cus-
tomers personal recommendations of products
they might like. The products that are directly
accessible for one user might be different than
those accessed by a different user.

Solution. Personalize links by calculating the link’s
end point with user-related information. With per-
sonalized links, all users access the same informa-
tion objects. Although anchors may look similar —
see, for example, Amazon’s link to Recommenda-
tions — each individual has a different, customized
node topology.

Algorithms for calculating links’ end points. Link
personalization, the scenario we find in recom-
mender applications,14 is by far the most widespread
kind of individual customization on the Web. In
OOHDM, we specify links by indicating the source
and the target; in the target we can write expres-
sions involving conceptual objects, as shown here:

LINK Recommendations, user:Customer
SOURCE HomePage
TARGET CD: C WHERE C belongsTo
user.reccomendations.

The variable “user” in this expression refers to
the actual individual using the application; in this
example it refers to a customer object. The appli-
cation sends the message “recommendation” to the
object standing for the user.

Not all recommendation strategies involve per-
sonalization, however. For example, sites such as
Amazon provide other kinds of recommendations
that depend on the product rather than the indi-
vidual user. (“Users who bought this product also
bought…” is a product-based recommendation.)

Our conference paper review application
includes another interesting example of link per-
sonalization, shown below.

NODE Paper FROM Paper
Name:String
related: Anchor (relatedPapers)

Link relatedPaper, user: Reviewer
SOURCE Paper
TARGET Paper: P WHERE P belongsTo
user.assignedPapers

When a reviewer accesses a paper node, he or
she can navigate to related papers that the review-
er is evaluating. This link is personalized.

Structure Personalization
Many applications must handle not only thou-
sands of objects but also a great variety of sub-
jects and services. Because the number of possi-
ble options can overwhelm users, we might want
to circumscribe the navigation space to the

40 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Adaptive Software

NODE Public.Paper FROM Paper: p
Name:String
Authors: Set Set….
Abstract: String
Schedule

Select date From Session:s
Where p isScheduledIn s

NODE PC.ChairPaper FROM Paper: p
Name:String
Authors: Set Set….
…..
Reviewers:

Set Select name From Reviewer:r
Where p isReviewedBy r

Figure 5. Profile specifications. Different specifications show different information depending on the profile.

aspects that interest the user. For example, most
portals such as Yahoo or CNN.com deal with
dozens of topics — from weather to news to stock
values. Although we might want to organize
subjects taxonomically to reduce complexity at
each level, users might be reluctant to navigate
to lower-level objects. We want to give the user
some freedom of navigation without causing
cognitive overhead.

Solution. Personalize the Web application’s struc-
ture, or let the user do it. Consider the information
space as a set of aggregated objects (or modules)
and select only those objects that the user might
want to consume. For each module, select only
those parts that the user might wish to read. For
example, one user might see sports and entertain-
ment, another, financial news and politics. This
solution is typically found in “my x” applications
(such as My Yahoo, my.yahoo.com).

Modeling structure personalization
Structure personalization involves choosing a set
of services — such as news, weather, business, and
sports — and further selecting finer-level informa-
tion from each module: which sports, which kinds
of news, and so on. From an object-oriented view,
this situation’s navigational model is a recursive
aggregation of objects. The application selects cor-
responding modules from the user profile as in the
following text, which describes the actual screen
one sees when accessing my.netscape.com.

NODE MyNetscape, user: User
Advertisement: Text
Welcome: Text [user.name]
Modules: Set [user.modules]

NODE Weather From Weather, user: User
cityWeather: Set [user.weather]
forecast: Forecast

[user.weatherForecast]

As in the link personalization example, the user
variable binds the navigational specification with
the conceptual object, which in turn manages the
profile (but doesn’t necessarily store it). The expres-
sions in brackets indicate the values of attributes
that come from the user object in response to mes-
sages such as “module,” “weather,” and so on. For
simplicity, we didn’t define a profile class.

Content Personalization
In some Web applications, we might want to pro-
vide individual users with slightly different con-
tent for a particular information item. For exam-

ple, a virtual store might want to give customers
special discounts according to their buying histo-
ry. (We could solve this problem by splitting an
object and using link personalization — for exam-
ple, linking to “my price.” But this solution intro-
duces artificial objects — prices — that are really
just attributes of an object.)

Solution. Define personalized contents in nodes by
letting node attributes vary according to the user.
From the standpoint of object orientation, this
means that we partially couple the value of an
attribute to the user consuming it. Many stores,
such as Half.com, use this solution.

Content personalization in OOHDM. OOHDM han-
dles content personalization similarly, by sending
messages to users in the node specification, as
shown here:

NODE Customer.CD FROM CD: c,
user:Customer
Name:String
Price: Real [subject.price –
user.CDdiscount]
Description: Image

....

....
Comments: Anchor [Comments]

In this case, user refers to an instance of customer,
and the price attribute value is personalized by
applying the corresponding discount. A more
seamless design can be obtained by moving the
discounting algorithm to the conceptual model, as
a responsibility of the “user” object.

We can regard structure personalization as a
particularization of content personalization. How-
ever, although the two specifications in OOHDM
are similar, their intent is significantly different,
so we discuss them separately.

We can achieve content personalization with
role-based personalization, making certain attrib-
utes accessible only to certain roles and varying
their values depending on the individual user.
When a product’s price doesn’t depend on the par-
ticular user profile, we can delegate the discount
calculation to the corresponding product object
and further optimize the specification.

Behavior Personalization
Web applications combine hypertext navigation
with other functions such as bidding, adding prod-
ucts to a shopping cart, and so on. Although these

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 41

Personalized Web Applications

operations may appear as links in the browser’s
interface, in fact they trigger behaviors far more
complex than just navigation. Suppose we want to
provide individualized responses to a particular
operation: for example, in an electronic store we
might want to simplify the checkout process for
some users, as the “one-click buy” function does at
Amazon.com.

Solution. Personalize the application behavior by
making the behavior dependent on the user trig-
gering it. The result of this process might or might
not imply that users perceive different pages upon
activating the personalized operations. If naviga-
tion is involved, behavior personalization could be
similar to link personalization. However, the main
difference from link personalization is that what
we are customizing is not the target of a link but
the operation executed.

OOHDM approach. OOHDM offers various ways of
obtaining personalized behaviors. Polymorphic
behavior is implemented as a method in the corre-
sponding node (for example, checkout in node
order). Then, the message is sent to the corre-
sponding conceptual class with user as a parame-
ter, which in turn delegates the message to the
object standing for the user (customer), as shown
in the class and sequence diagrams, Figure 6. The
customer in turn uses a strategy for different
implementations of checkout.6

Using Patterns to Simplify Design
We specified all these pattern microarchitectures

using “pure” object-oriented modeling concepts,
with minor syntactic additions such as the user
variable in navigational objects. Decoupling con-
cerns in Web applications, as we’ve described here,
is a key approach for obtaining modular, evolvable
designs. These design specifications are useful
even when using non–object-oriented implemen-
tation tools (Jim Conallen’s book, Building Web
Applications with UML, for example, includes an
interesting discussion regarding ASP implementa-
tions15). Personalized applications pose new mod-
eling challenges, such as representing the user, the
personalization rules, and so forth.

We derive many personalized structures simply
from well-designed conceptual and navigational
models, and they might not require specific algo-
rithms at all. For example, in the conference paper
review system, each instance of PC committee
member contains explicit references to the papers
that member will evaluate, and in this way the cor-
responding Web page shows links to those papers.

Understanding the personalization patterns to
apply simplifies the design enterprise, because we
can reuse design experience when dealing with
previously solved situations.

We have purposely avoided discussing aspects
of personalization related to in-the-small algo-
rithms (such as collaborative filtering, classifica-
tion, and so on) or to the process of extracting
valuable profile information from different data
sources such as log files. In some specific person-
alization domains (such as recommender applica-
tions), we can find such finer-grained patterns.14

Conclusion
We strongly believe that the key aspect for obtain-
ing evolvable personalized Web applications is to
separate design concerns by focusing on architec-
tural and design issues before building the actual
application. Most of the design decisions we dis-
cussed here can be easily applied in other Web
design methods.

To complete our pattern language, we are cur-
rently mining finer-grained patterns related to per-
sonalization. For example, the advising pattern
focuses on helping a user find what he or she
wants in a complex site.16 In e-commerce applica-
tions, a typical use of advising consists of includ-
ing recommendations on the user’s home page. We
can implement advising as a refinement of link
personalization. Push communication provides
another way of helping users identify new prod-
ucts in a site, by proactively informing them about
new things they might be interested in.16 This pat-

42 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Adaptive Software

myCheckOut

CheckOutMethod

Normal Express

checkout
 myCheckOut perform

perform perform perform

Customer

Order Node Order Customer

checkout (user)

checkout

CheckOut Method

perform

One-click
a)

b)

Figure 6.The OOHDM approach to behavior personalization: a)
class diagram for personalized checkout and b) sequence diagram
for the checkout behavior.

tern can be implemented simply by sending emails
to the user or as a refinement of structure or con-
tent personalization.

We are also investigating the problem of reengi-
neering legacy Web applications to incorporate
personalization features; we are closely following
the OOHDM design framework while reverse and
forward-engineering these applications. In this
process, we have identified specific design prob-
lems that occur in personalizing Web applications
and have found appropriate solutions for each of
those problems. For example, by applying well-
known design patterns like wrappers,6 we can
seamlessly extend existing applications by adding
a personalization layer where we design the per-
sonalization rules.

We are currently working on applying similar
strategies for separating business (personalization)
rules from wrappers so that we can engineer those
rules using lighter weight objects. The final pur-
pose is to build a software infrastructure that lets
us personalize legacy Web applications just by
plugging in new code that implements the per-
sonalization logic.

References

1. P. Oreizy et al., “An Architecture-Based Approach to Self-

Adaptive Software,” IEEE Intelligent Systems, vol. 14, no.

3, May-June 1999, pp. 54-62.

2. P. Brusilovsky, “Methods and Techniques of Adaptive

Hypermedia,” User Modeling and User Adaptive Interac-

tion, vol. 6, nos. 2-3, 1996, pp. 87-129.

3. D. Schwabe and G. Rossi, “An Object-Oriented Approach

to Web-Based Application Design,” Theory and Practice of

Object Systems (TAPOS), vol. 4, no. 4, Oct. 1998, pp. 207-

225.

4. G. Rossi, D. Schwabe, and R. Guimarães, “Designing Per-

sonalized Web Applications,” Proc. 10 Int’l Conf. WWW

(WWW10), ACM Press, New York, 2001, pp. 275-284.

5. S. Ceri, P. Fraternali, and S. Paraboschi: “Web Modeling

Language (WebML): A Modeling Language for Designing

Web Sites,” Proc. 9 Int’l World Wide Web Conference, Else-

vier, New York, 2000, pp. 137-157.

6. E. Gamma et al., Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, Reading, Mass., 1995.

7. D.D. Cowan and C.J.P. Lucena, “Abstract Data Views, An

Interface Specification Concept to Enhance Design for

Reuse,” IEEE Trans. Software Eng., vol. 21, no.3, Mar. 1995,

pp. 229-243.

8. M. Fayad, D. Schmid, and R. Johnson, eds., Building

Object-Oriented Application Frameworks, John Wiley &

Sons, New York, 2000.

9. D. Schwabe, R. Pontes, and I. Moura, “OOHDM-Web: An

Environment for Implementation of Hypermedia Applica-

tions in the WWW,” ACM SigWEB Newsletter, vol. 8, no.

2, June 1999.

10. M.D. Jacyntho, “A Java Framework for Implementation of

Hypermedia Applications in the WWW,” MSc thesis, Dept.

of Informatics, Pontifícia Universidade Católica do Rio de

Janeiro, 2001 (in Portuguese).

11. G. Rossi, D. Schwabe, and F. Lyardet, “Improving Web

Applications with Navigational Patterns,” Int’l J. Comput-

er and Telecomm. Networking, May 1999, pp. 589-600.

12. S. Alexander et al., A Pattern Language, Oxford Univ.

Press, New York, 1977.

13. G. Rossi et al., “Patterns for Personalized Web Applica-

tions,” 6th European Conf. Pattern Languages of Program

— EuroPLoP 2001, Hillside Group, Kloster Irsee, 2001, also

available at www.hillside.net/patterns/EuroPLoP2001/

papers/Rossi.zip.

14. J.B. Schafer, J. Konstan, and J. Riedl, “Recommender Sys-

tems in E-Commerce,” Proc. E-Commerce 99, ACM Press,

New York, 1999, pp. 158-166.

15. J. Conallen, Building Web Applications with UML, Addi-

son-Wesley, Reading, Mass., 2000.

16. G. Rossi, F. Lyardet, and D. Schwabe, “Patterns for E-Com-

merce Applications,” Proc. 5 European Conf. Pattern Lan-

guages of Program — EuroPLoP 2000, Hillside Group, Kloster

Irsee, 2000, also available at www.coldewey.com/

europlop2000/papers/rossi+lyardet+schwabe.zip.

Daniel Schwabe is an associate professor in the Department of

Informatics at Pontifícia Universidade Católica do Rio de

Janeiro (PUC-Rio). He researches hypermedia and knowl-

edge-based application design, from both academic and

industrial perspectives. He holds a bachelor’s degree in

mathematics, an MSc in informatics from PUC-Rio, and a

PhD in computer science from UCLA. He is a member of

the ACM and the Brazilian Computing Society.

Robson Mattos Guimarães currently works at Oi PCS, a new

mobile telephone company, where he is responsible for

wireless Internet technologies at its research laboratory.

His interests include pervasive computing, mobile appli-

cations, and the Semantic Web. He is finishing his master’s

degree in the Informatics Department at PUC-Rio, Brazil.

Gustavo Rossi is a full professor at La Plata University in

Argentina and is the head of LIFIA, Laboratory for Edu-

cation and Research in Advanced Informatics. His

research interests include Web design patterns and

frameworks. He is one of the OOHDM methodology

authors and is working on the application of design pat-

terns to the Web field. He holds a PhD in informatics

from PUC-Rio.

Readers can contact the authors at {schwabe, robson}@inf.

puc-rio.br or gustavo@sol.info.unlp.edu.ar.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 43

Personalized Web Applications

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

