
MAY/JUNE 2010	 1089-7801/10/$26.00 © 2010 IEEE	 Published by the IEEE Computer Society� 9

G
ue

st
 E

di
to

rs
’

In
tr

od
uc

ti
on

Piero Fraternali
Politecnico di Milano

Gustavo Rossi
Universidad Nacional de La Plata

Fernando Sánchez-Figueroa
Universidad de Extremadura

T he original World Wide Web was
a platform for accessing static
or dynamic content encoded in

hypertext markup language. User inter-
action was limited to navigating links
and entering data in forms. This thin-
client architecture was simple and uni-
versal (no client installation required)
but severely limited the quality of the
applications that could be delivered
over the Internet. Early attempts at
extending interface functionality (such
as Java applets and client-side script-
ing) enriched HTML-based navigation
with interactive objects, animated pre-
sentation effects, and input validation.
However, these features’ diffusion was
limited by standardization issues (for
example, proliferation of client-side
scripting languages) and architectural
issues (such as firewall incompatibility).

The intervening years have seen
much progress in increasing the func-
tionality of tasks performed through
the Web, with a corresponding increase
in the complexity of their creation.
Modern Web solutions resemble desk-
top applications, enabling sophisticated
user interactions, client-side process-
ing, asynchronous communications, and

multimedia. The “network as platform
computing” idea, strengthened by
Web 2.0’s emergence, has accentuated
HTML/HTTP’s limits.

Web 2.0 is built around user-centric
applications (for instance, social net-
works or user-generated content man-
agement solutions) that demand a high
degree of usability and powerful inter-
actions. A pure HTTP/HTML archi-
tecture fails to support the required
capabilities in several respects: pre-
sentation, where only the interaction
widgets and containers predefined in
HTML are available; communication,
which supports only the synchro-
nous interaction native in HTTP and
requires that callback mechanisms
for asynchronous behavior either be
simulated on top of the HTTP client-
response cycle or implemented at a low
level in TCP/IP; business logic, which
occurs mostly at the server side; and
data management, where only limited
client-side data storage capabilities are
available (such as using cookies). More
and more, post-HTML/HTTP technolo-
gies are shaping the Web, among which
rich Internet applications (RIAs) play a
prominent role.

Rich Internet Applications

Rich Internet Applications

10 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

RIAs
The term RIA refers to a heterogeneous family
of solutions, characterized by a common goal
of adding new capabilities to the conventional
hypertext-based Web. RIAs combine the Web’s
lightweight distribution architecture with
desktop applications’ interface interactivity and
computation power, and the resulting combina-
tion improves all the elements of a Web appli-
cation (data, business logic, communication,
and presentation).

The original Web kept data (state) on a server,
and the client explicitly downloaded informa-
tion when needed. RIA technologies support
client-side storage in a way that depends on the
specific technology and device. For example,
clients can locally store the shopping cart in an
e-commerce application or an appointment cal-
endar while users are manipulating this data.
In the original Web, the server also performed
business logic. RIA technologies enable moving
part of the computation to the client. Offload-
ing computation to the client allows quicker
response and optimizes communication costs.
For example, in a shopping cart or calendar
solution, users can navigate, filter, and manipu-
late the data using complex operations before
sending it to the server. The original Web was
a request-response machine: the server sent
information only in response to a client request.
In RIA, both the client and server can initiate
communication; program elements in the client
stand ready to receive and execute asynchro-
nous server commands. This bidirectionality
eliminates many unnecessary server roundtrips
typical of thin-client applications.

Most of all, RIAs’ popularity owes much
to their powerful presentation and interac-
tion capabilities. A traditional Web application
interface consists of multiple pages, refreshed
at each user’s interaction. In RIAs, the inter-
face can be a single page comprising subpages
that manages all the user’s interactions, like
in a desktop application. This paradigm avoids
full-page refreshes at each interaction and per-
mits applications to independently load, display,
and update individual page elements. Applica-
tions can also extend the interface dynami-
cally by loading parts of the presentation logic
(for example, JavaScript code) and interface
elements at runtime. Developers can define
extended interaction events (such as event lis-
teners and handlers) and temporal behaviors

(for instance, animations based on temporal
relationships among interface components) to
further improve the user experience. Because
an application can download new behaviors
dynamically, it isn’t restricted to a small set of
HTML-predefined standard controls and con-
tainers. For example, an RIA application can
dynamically customize existing widgets, adapt-
ing them to specific usage contexts — such as to
the display device’s rendering capacity.

Many applications can reap RIAs’ benefits:
product/service selection, configuration and
customization, workflow-driven applications,
education, entertainment, collaborative work,
and more. At present, Web applications such as
Google Maps, YouTube, and Flickr exploit the
large spectrum of possibilities RIAs offer.

We can implement RIAs with several dif-
ferent technologies. Most implementation tech-
nologies are invoked through a browser and
might rely on the Web’s inherent facilities or
supplement conventional browsers with scripts
or plug-ins. We can also execute an RIA outside
a browser: with scripting-based technologies
such as Ajax, Web pages can include programs
(scripts) that reference presentation elements,
respond to user-interface gestures, and have
their own storage. Modern browsers understand
these scripting languages and can interpret and
effect these scripts. Plug-in solutions include
Flash (www.adobe.com/products/flash), Open-
Laszlo (www.openlaszlo.org), and Flex (www.
adobe.com/products/flex). Plug-ins provide bet-
ter performance than JavaScript because they
run their own native code, allowing advanced
rendering and event processing.

Browser-based approaches, such as Mozilla
XUL (www.mozilla.org/projects/xul), support a
rich interaction natively, without the need for
proprietary extensions to the browser. However,
this type of solution is hindered by its browser-
dependent nature (for example, applications
based on XUL might be inaccessible to users
with other browsers). Finally, we can also exe-
cute RIAs outside the browser, using a specific
runtime environment, as with AIR (www.adobe.
com/products/air) and JavaFX (http://sun.coom/
javafx). Here, the user must install additional
software, but the capabilities regarding client-
side storage and offline use improve.

These technologies’ success has accelerated
RIA adoption. However, as in every fast-grow-
ing technological sector, development practices

MAY/JUNE 2010� 11

Guest Editors’ Introduction

run ahead of tools and methodologies. This gap
provides research opportunities.

Research Issues
RIAs’ advent creates an articulated research
landscape with features that include the lan-
guage and architectural standards used to
develop RIAs, the software frameworks built
on top of these standards that enhance develop-
ment productivity and solution quality, and the
development tools and methodologies backing
the RIA life cycle’s development activities.

At the language and architecture level,
the W3C is considering many issues that RIA
technologies have put forth for consolidation
in the forthcoming HTML5 standard, now in
a draft version (see http://dev.w3.org/html5/
spec/Overview.html). Relevant research issues
span such diverse aspects as the new language
elements’ syntax and semantics, backward
compatibility, performance of parsing and
rendering engines, compilation of declara-
tive specifications into imperative languages,
cache architectures, security, accessibility, and
more. For HTML5 to assume a central role in
RIA development, the research community
must conduct a focused review effort to ensure
that the complex set of features embodying
the new language have internal coherence and
meet RIA developers’ requirements.

Developers use languages and architec-
tures to build software frameworks, which, if
well-constructed, help them adopt good design
practices and enhance development quality.
At present, RIA frameworks are a hot topic,
attracting much effort. Examples include Back-
base (www.backbase.com), Dojo (http://dojotool
kit.org), and Rico (http://openrico.org). These
frameworks automate the most tedious pro-
gramming tasks for the client or server side via
specific primitives, libraries, or code-generation
techniques, and provide reusable patterns for
accelerating application design. A key research
issue for such frameworks is the automatic and
dynamic allocation of data and computation
between the client and server, based not only
on static application requirements but also cur-
rent processing loads.

Much of the progress in building software
systems comes from tools that automate the
implementation of common behaviors. How-
ever, each additional automation potentially
increases system complexity. Such complexity

is contained only through principled develop-
ment methodologies. A bitter lesson from soft-
ware engineering is that development without
principled approaches becomes too complicated,
expensive, and unmaintainable. Internet appli-
cations’ strong interdisciplinary nature exacer-
bates these problems.1 Systematic development
methods improve productivity, reduce effort
and costs, improve maintenance and evolution,
and make applications less error-prone. This is
particularly important when a new develop-
ment paradigm emerges: the involved technolo-
gies’ variety and complexity and the wide range
of new capabilities demand a rethinking of the
Web engineering process.

Recently, the Web engineering community
has advocated adopting the model-driven devel-
opment (MDD) paradigm for RIAs.2 MDD refers
to a family of development approaches based on
using models as a primary artifact in the devel-
opment life cycle. Engineers use models for a
range of tasks: requirement specification, valida-
tion, code generation, testing, size estimations,
and more. Researchers have extended numerous
existing methodologies, originally conceived for
traditional Web applications, to cope with the new
modeling issues appearing in RIAs.3–6 However,
this extension is far from trivial: RIAs incor-
porate many novel features, such as presenta-
tion behaviors, data and processing distribution,
flexible event handling, and communication.
Consequently, RIA models can quickly grow too
complex for developers to understand or manage.
Furthermore, pre-RIA Web engineering tools’
model-checking and code-generation capabilities
have yet to be fully demonstrated for RIAs. The
research agenda at this level is broad and com-
prises such items as the mechanisms for design-
ing expressive yet compact domain-specific
languages and models for RIAs from orthogonal
abstractions (for instance, aspect orientation),
RIA semantics for model verification and support
for testing, efficient and traceable model-trans-
formation and code-generation techniques, and
end-to-end methodologies for RIA development.

In this Issue
This special issue features two articles that
address some of the research challenges we’ve
highlighted. One focuses on language and
architecture issues, whereas the other deals
with the methodological principles at the base
of an MDD approach to RIA development.

Rich Internet Applications

12 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

In “Compiler Transformations to Enable
Synchronous Execution in an RIA Runtime,”
Anantharaman P. Narayana Iyer, Arijit Chat-
terjee, and Jyoti Kishnani describe a tech-
nique based on compiler transformations
that enables synchronous execution on an
asynchronous RIA programming model. This
solution simplifies the complexity of synchro-
nizing multiple pieces of program logic when
using asynchronous communication. The pro-
posed method exploits a compiler to modify
the RIA code using a block-chaining algo-
rithm, wherein asynchronous functions are
transformed into a sequence of synchronously
executing blocks. The authors have imple-
mented their solution using the Adobe Flash
Player and Flex framework.

In “Architectural and Technological Vari-
ability in Rich Internet Applications,” San-
tiago Meliá, Jaime Gómez, Sandy Pérez, and
Óscar Díaz advocate introducing architecture
and technological concerns at an early stage
of model-driven RIA development. To this
end, they propose an RIA-specific architecture
model that developers can use to represent an
RIA architectural configuration. Their model
enables model transformations that accelerate
RIA implementation. This technology allows
developers to choose, during the modeling
phase, the right options from alternative RIA
technological and architectural configurations.
The authors have used their approach to extend
OOH4RIA,4 an MDD methodology for RIAs.

T he articles in this special issue touch on
some of the many open issues that we must

solve to make RIA engineering a fully indus-
trial process. As their increasing diffusion dem-
onstrates, RIAs are here to stay. It is our task
to continue investigating their features and
propose novel methods and tools to make their
development more efficient.�

References
1.	 J.C. Preciado et al., “Necessity of Methodologies to

Model Rich Internet Applications,” Proc. IEEE Int’l

Symp. Web Site Evolution, IEEE CS Press, 2005, pp. 7–13.

2.	 N. Moreno, J.R. Romero, and A. Vallecillo, “An Over-

view of Model-Driven Web Engineering and the MDA,”

Web Engineering: Modelling and Implementing Web

Applications, G. Rossi et al., eds., Springer-Verlag,

2007, pp. 353–382.

3.	 A. Bozzon et al., “Conceptual Modeling and Code Gen-

eration for Rich Internet Applications,” Proc. Int’l Conf.

Web Engineering (ICWE 06), ACM Press, 2006, pp.

353–360.

4.	 S. Meliá et al., “A Model-Driven Development for GWT-

Based Rich Internet Applications with OOH4RIA,”

Proc. Int’l Conf. Web Engineering (ICWE 08), IEEE CS

Press, 2008, pp. 13–23.

5.	 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa,

“Engineering Rich Internet Application User Interfaces

over Legacy Web Models,” IEEE Internet Computing,

vol. 11, no. 6, 2007, pp. 53–59.

6.	 M. Urbieta et al., “Designing the Interface of Rich

Internet Applications,” Proc. Latin-American Web Con-

gress (LA-WEB 07), 2007, pp. 144–153.

Piero Fraternali is a full professor in the Dipartimento di

Elettronica e Informazione at Politecnico di Milano.

His main research interests concern database integ-

rity, rule-based languages, methodologies and tools

for Web application development, multimedia infor-

mation retrieval, and search-based applications. Fra-

ternali is a co-inventor of WebML (www.webml.org), a

model for the conceptual design of Web applications,

and cofounder of Web Models (www.webratio.com), a

start-up focused on innovative Web development tools.

Contact him at piero.fraternali@polimi.it.

Gustavo Rossi is full professor at Facultad de Informatica,

Universidad Nacional de La Plata, Argentina, and

director of LIFIA (the Research Laboratory in Advanced

Informatics). He’s also a researcher at CONICET. His

research includes agile and model-driven development

of Web applications, Web model refactoring, and rich

Internet applications. Rossi has a PhD in computer sci-

ence from PUC-Rio, Brazil. He’s an editor of Web Engi-

neering: Modeling and Implementing Web Applications

(Springer, 2007). Contact him at gustavo@lifia.info.

unlp.edu.ar.

Fernando Sánchez-Figueroa is a full professor in the

Departamento de Ingeniería de Sistemas Informáti-

cos y Telemáticos at Universidad de Extremadura. His

main research interests concern rich Internet applica-

tions and user interfaces for people with disabilities.

He’s cofounder of Homeria Open Solutions (www.

homeria.com), a spin-off focused on novel and origi-

nal Web development tools such as RUX-Tool, aimed

for the design of RIA user interfaces. Contact him at

fernando@unex.es.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

