
Detecting Data Races on Framework-Based
Applications

Federico Balaguer, Thuc S. M. Ho , Ralph Johnson
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: {balaguer,mauhosi2,johnson}@uiuc.edu

Abstract— Race conditions are hard to detect in framework-
based applications. Frameworks often improve performance by
providing threading, but this threading is usually hidden from
application programmers. Therefore, it is easy for application
programmers to accidentally create data races.

Data races can be detected tracing the flow of execution, but
tracing tends to produce too much data. However, the structure of
frameworks can be used to control the amount of data collected
and that makes tracing practical.

We have developed a tracing and analysis tool that allows
application programmers to explore different configurations of
an application and find probable data races. This enables them
to have mutithreaded frameworks safely without having to learn
the details of the framework design.

I. INTRODUCTION

Multi-threading programming has increased along with the
popularity of web-services and server-applications. Multi-
threading programming is used on the server side for handling
connections and in the client side for performing background
operations [15]. Threads provide great benefits but they are
hard to use and debug as they make the expected behavior of
code less apparent [4].

Threads can affect the behavior of applications developed
with frameworks. Frameworks are an object-oriented reuse
technique and are widely used in many application domains
[11], [16]. Frameworks provide template execution paths (flow
of control) that eventually call code provided by the applica-
tion [8]. Although the framework assumes it is in control, it
relies at some point on the code provided by the application.
This code can use other frameworks which in turn will assume
control over the execution. Between each framework lies
the code of the application that has to fill the gaps among
frameworks. Figure 1 shows the code of the operation doPost()
that will be called from a servlet framework. Inside this
operation another framework is used to retrieve from and save
objects to a database.

There are many factors that can determine whether this
piece of code has a data race. First, different Http requests
can be handled with just one servlet or a new servlet can
handle each of them. Second, the persistence framework can
make blocking or non-blocking calls to the database. Third,
queries and SQL commands can be performed outside or
inside transactions, moreover the transaction semantics can
vary. A data race is a sign that the chain of execution between
frameworks is broken. Data races are a non-atomic execution

doPost(HttpServletRequest req, HttpServletResponse rsp)
// Pseudo code
//retrieve or create account
account =
WebAccount.factory(req.getParameterValues(”ACC”));
//update account
account.update(req);
//save in db (insert / update)
writeResponse(account.save(), rsp);

Fig. 1. doPost() operation of a servlet framework

of critical sections [21]. We found cases where data races exist
even when the observable results in the database were correct.
By changing the database settings we were able to produce
inconsistencies in the database.

This paper presents a technique for finding data races on ap-
plications developed using multiple frameworks. Our approach
has two steps. First, traces are collected from the application
execution. The traces are represented as execution trees [17]
and are collected at those points where the frameworks hands
control over to the application code. Second, traces are used
to compute a set of conflicting accesses using the LockSet
algorithm as described in [26]. von Praun et al showed that
conflicting accesses are good approximations to data races
[28].

A. Frameworks Collision

Frameworks are usually designed under the assumption that
they are in control of the execution of the application using
them [16]. Berlin showed that inconsistencies can appear in an
application when multiple frameworks implement their own
event-loop [3]. Garlan et al described how a user-interface
framework and a network messaging framework interfere with
each other; when one of the frameworks is in control the other
one loses events [12].

The problem we are describing is different. One framework
that has control over the execution of an application hands
control over to another framework that does not fulfill its
expectations. For example, servlets such as the one in Figure 1
are implemented out of web frameworks that eventually call
the doPost() or doGet() functions. The servlet frame-
works are responsible for providing the multi-threading model
in which one instance of a servlet can service one connec-
tion (monothreading) or multiple connections (multithreading).

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

Usually developers of servlets have no control over the com-
putation before the servlets are called and the only opportunity
they have to implement functionality is inside doPost() and
doGet(). The servlet in Figure 1 retrieves an object from a
database, updates fields in the account object and finally stores
the object back into the database using some persistent frame-
work. Usually, persistence frameworks take care of database
connection, sessions and transactions and allow developers to
customize the mapping between objects and tables. Problems
can arise if the persistence framework makes non-blocking
calls to the database because that could unexpectedly yield
control of the servlet allowing other servlets to run.

One alternative to minimize the possibility of data races in
framework-based applications is to create critical sections at
the point where the framework calls the application code. For
many frameworks this is impractical because of the restrictions
it imposes on applications. Another alternative is to force
developers to run the code that interacts with the framework
in only one thread. Swing uses this solution and experience
shows that it is difficult to program [24]. No matter the
solution is based on critical sections, semaphores or advanced
thread programming, developers need to find the source of the
problem. Our approach allows developers to explore different
configurations of the system and study the effect that each
configuration has on shared state.

B. Manipulating Traces

Lange and Nakamura presented several techniques to dis-
play the execution information of programs [18]. These tech-
niques are based on Execution Trees. Each tree represents
the execution of a function that is the root of the tree [23].
Figure 2 shows an execution tree representing the execution
of doPost() of the servlet in Figure 1.

Fig. 2. Execution Tree of operation doPost()

Nodes in the tree can be one of five possible node types:

• Function Invocation nodes represent the invocation of
primitive functions or messages sent to some object.
When a function invocation is root of a tree, the branches
represent the execution of that function.

• Variable Access nodes represent assignments and reads
to a variable.

• Control Primitive nodes represent nodes that give up
control such as yield, and semaphore operations.

• Return nodes represent the end of the execution of
function invocation, in normal conditions the rightmost
node of a tree is a return node

• Jump nodes represent loops and if-then-else structures

The sequence of execution for one tree can be generated by
doing the pre-order traverse of the nodes, that is, visiting first
the root and then recursively visiting each of the child nodes.

Execution trees scale to multi-threaded programs but a
broader context is needed since one execution tree is only
responsible for what is done by one thread. Multi-threaded
programs are represented by a set of competing execution
trees that gain and relinquish control over the execution. Once
the execution trees are established for each thread a tool
can automatically produce a sequence of execution among
the threads and also the sequence in which objects and their
variables are accessed.

II. FINDING CONFLICTING ACCESSES

A. LockSet algorithm

Savage et al presented the LockSet algorithm as part of
Eraser, a tool for finding data races [26]. LockSet searches for
shared-memory references that don’t have a consistent locking
behavior.

Given a non empty set of execution trees that represent
threads of a program, it is possible to find possible conflicting
accesses by computing the set of variable accesses. Each
variable access carries the following information:

• tid: identification of the thread
• vid the identification of the variable being accessed.

The identification of the variable is a composed key
with objectID and the index of the variable inside the
containing object.

• kind: the kind of access, it can be either read or
write.

• fid the identification of the function issuing the access
• pc the program counter
• SemSet: the set of semaphores acquired (but not re-

leased) by the thread until this point in the execution.

A conflicting access happens when in the set of variable
access at least two tuples access the same variable, are
generated by different threads, at least one of them is a write
and intersection of acquired locks is empty.

B. Green LockSet

LockSet is a simple algorithm and it gives too many false
positives. Eraser implements a modified version of LockSet
that consider the following exceptions: initialization, read-
share data and read-write locks. Another source of improve-
ment can be the thread scheduling policy. There are widely
accepted scheduling policies based on non-preemptible coop-
erative threads i.e. fibers that are used in many object-oriented
systems. Fibers, also known as green threads, are thread
libraries implemented at the process level. They are indepen-
dent of the operating system and primarily implemented in
user-space. In fibers-based scheduling a thread yields control

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

voluntarily by calling a thread primitive such as suspend
or implicitly by making non-blocking call. This is important
because the lack of time-slicing makes the execution of the
system possible to simulate. Figure 3 shows an execution tree
of our WebAccount servlet example. The tuple < t1, v1... >
represents the access to the variable v1 by the thread t1. It is
possible to infer that the servlet will yield control twice before
returning control to the servlet framework, if it is using non-
blocking calls to the database (I/O). However, if the servlet
is using blocking calls, it will not yield control and then the
access tuple < t1, v1... > is unique for the variable v1.

Fig. 3. Execution Tree of operation doPost() with I/O

We extend the LockSet algorithm with the semantics of
green threads. Given a collection of ExecutionTrees the re-
sulting Green LockSet algorithm visits the nodes in each tree
following green thread scheduling policy. The algorithm reacts
to the types of node as follows:

• For each node representing a function call, it visits
the children of that node.

• For each node representing a variable access, it
adds the access to the set of variable accesses. The
algorithm checks for LockSet’s conflicting accesses.

• For each node representing an operation that control
primitives, it checks if the operation yields control or
is a semaphore operation. In the first case, the algorithm
picks the next-to-run thread. For operations acquiring
or releasing a semaphore it computes the state of the
semaphore and proceeds accordingly.

• For each node representing a return, it checks whether
the thread ended its computation. When a thread finishes
the algorithm removes all accesses added to the set of
variable accesses

• For each node representing a jump, it visits the jump’s
subtree accordingly.

The set of operations that are considered control primitives
can be changed making simple blocking operation into a non-
blocking one. This in turn will change the way variables are
accessed in the execution tree.

III. IMPLEMENTATION

A. Tracing Tool

Our current design of the tracing tool contains the following
main components: tracers, tracing service, trace logs, and a
trace viewer. They are built upon the concept of activation
points that keep track of tracing information.

An activation point is an abstraction representing the set of
information collected by the tracer after each stepping activity.
For stack-based virtual machines such as the Java Virtual
Machine or the Smalltalk virtual machine in VisualWorks,
activation points can populate its internal data structure from
the stack frame (the method invocation context right after a
step). In our implementation (Figure 4), an activation point
stores the compiled code, byte code index, the class imple-
menting the method, the receiver’s actual class, the selector
associated with the compiled code (if one exists) and the hash
of the receiver object as an object identity. For child processes
(threads) activation points have an extra reference to the tracer
attached to the child process. This allows connecting the parent
trace log with the child trace log.

Activation points also keep track of types of activities being
performed (a message sending, a jump, a variable assignment,
a variable read, a loop or a return from method invocation).
They are kept in the action list in figure 4. This information
is useful while analyzing the trace log contents. Part of these
information can be generated by running additional tools after
the trace process finishes. It may be desirable to extend the
contents of an activation point to fit the kind of analysis
required on a trace log. Figure 4 shows the fields of an
ActivationPoint.

< compiledCode, pc, methodClass, receiverClass,
selector, objectId, action>
compiledCode = thread id
pc = byte code index
methodClass = the class implementing the method
receiverClass = the receiver’s actual class
selector = the method name associated with the compiled code
objectId = the hash of the receiver object as an object identity.
action = list of activities associated with the activation point.

Fig. 4. ActivationPoint Tuple

Tracer and TracingService (Figure 5) are two major com-
ponents of the tracing tool. A Tracer creates and drives the
simulated execution of code using its tracing service and keeps
the log of activation points. The tracing service performs
the actual simulated execution of code and can be derived
from existing debugging service or debugging API in the
development environment. For multi-threaded programs, each
thread is served by one tracer. It also notifies the tracer object
when each stepping activity is completed. Additional types of
stepping activities are added to the tracing service to address
a variety of program behaviors outside the capability of a
common debugger. In particular, whenever the program under
tracing creates a new thread, the current tracer forks a new
tracer instance to trace that thread separately. When that thread
finishes, the trace log is merged back to its parent’s trace
log at the forking point. This flexible approach to tracing
multi-threaded programs allows us to obtain trace logs for
multiple threads independently. Different trace logs can be
combined later for analytical purposes. In latter cases, some
preprocessing may be required before trace logs are suitable

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

ActivationPoint Tracer

ProcessTracer BlockTracer

BlockActivationPoint ForkingActivationPoint

ExecutionTree TracingService

DebuggerService

TraceViewer

1
*

ExecutionTreeNode THREAD

Fig. 5. Class Diagram of the core classes of the Tracer

for analysis.
We discovered that a debugging service in VisualWorks

always forks service threads to perform its duties. When
the tracer is used to trace multi-threading programs, threads
under tracing will be scheduled together with those service
threads by the system default process scheduler. This may
lead to incorrect behavior e.g. the trace log may represent
a sequence of events that is different from the true event
sequence when the multi-threading program runs outside the
tracer. Interesting, this is exactly an instance of the multi-
threading programming issue discussed in this paper, when the
chain of execution is broken by unexpected collaboration of
reusable source codes. In VisualWorks, the DebuggerService
is more than just a class library, and it assumes its own model
of thread handling, which is in conflict with the tracer thread
model. We solved this problem by adapting the tracer to the
implicit multi-threading nature of the tracing service built upon
debugger service. Specially, we introduced a set of semaphores
managed by the main tracer (the tracer that is created first)
that imposes the correct execution order on program threads
scheduled by the default process scheduler.

In applying our tracing tool for detecting data race condi-
tions on framework-based applications, we generally do not
have to trace into the framework code. Instead, the pieces
of code in focus will be user-developed parts that will in-
teract with framework components and/or get called by the
framework itself. This is partly due to the inversion of control
characteristics of framework-based applications [11, Chap1-2].
This fact helps to fight against the log size explosion problem
and eases the analysis of trace logs later. To achieve this, users
of our tracing tool can define proper configurations for the
tracer to run. This method is used to obtain the trace logs for
our case studies.

A trace log is first generated as a sequence of activation
points. Then, based on the relative relations between activation
points, a tree-like structure is built that represents the activation
points in calling sequence. Every level of a trace log begins
and ends with a pair of activation points that correspond to
the first message call and the returning call. As mentioned
above, several trace logs can be generated independently or
concurrently and then combined for later analysis.

There can be many ways to visualize the tracing log.
One of the possibilities is implemented in the TraceViewer.
TraceViewer displays the tracing log as a tree-like hierarchy
plus reference to the source code with the step taken high-

Fig. 6. Partial view of a trace log inside the TraceViewer

lighted. One can easily trace through the code by navigating
the tree hierarchy. A screenshot of the trace log obtained in
the Seaside-PPL case study described in subsection IV-B is
displayed in figure 6.

Our current implementation of the tracing tool in Visual-
Works Smalltalk is depicted by Figure 5. Class ActivationPoint
represents an activation point. Its subclasses BlockActivation-
Point and ForkingActivationPoint describe an activation point
that occurs inside a block or when a child thread forks,
subsequently. Tracer class is responsible for most of operations
that a tracer requires. BlockTracer and ProcessTracer are used
to trace a block of code and a whole process. TracingSer-
vice inherits from existing DebuggerService in VisualWorks
system library and serves the request from tracer objects.
ExecutionLog represents the tree-like structure of trace logs
and TraceViewer is a GUI tool to visualize the trace log.

B. Data Race Finder (DRF)

The Data Race Finder (DRF) has a simple class model
(Figure 7) based primarily in two classes: TracePlayer and
TraceCoordinator.

ExecutionTree

TracePlayer TraceCoordinator

TraceBlocker

Fig. 7. Classes implementing the Data Race Finder

Instances of class TracePlayer are always associated with
one ExecutionTree and one instance of TraceCoordinator. A
TracePlayer is able to traverse its ExecutionTree simulating the
execution. It means that it recognizes control primitive
operations. Any scheduling decision is implemented in the
class TraceCoordinator. One instance of TraceCoordinator has
one association with at least one TracePlayer which informs
it about any scheduling related event. Each TraceCoordinator
has a queue of ready-to-run players and a collection of objects
representing semaphores in use (TraceBlocker). Every running

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

instance of DRF has one TraceCoordinator for scheduling the
TracePlayers. TraceBlocker class represents objects that can
block the execution of a TracePlayer. Instances of this class
are used to represent semaphores and locks. Each instance has
a collection of blocked Players.

Users of the tool need to load the Execution Trees that will
be part of the simulation. The top pane in Figure 8 is a list
representing the ready queue of the TraceCoordinator. As the
simulation progresses this list changes because TracePlayer
can fork new TracePlayers, finish or get blocked by a blocker.

Fig. 8. Interface of the Data Race Finder

The bottom area of the tool is the log where messages are
printed. The buttons on the ”logging” box control how DRF
behaves ones users gives the run command. The options are:

• steps: logging each function call in the simulation as
seeing by the corresponding TracePlayer

• yield: simulating thread scheduling
• variables: logging accesses to variables
• variables →data races : logging conflicting accesses

IV. CASE STUDIES

We need to test our ideas and techniques on tracing and
data race detection. One thing is to validate our claim that
by tracing the framework flow of control we can minimize
the amount of collected data. Among others, we want to
convince ourselves on the effectiveness of post-mortem trace
log analysis in data race detection.

We applied the techniques and tools described in previous
sections in two following case studies. The first case study is a
simple servlet-based web-application where the servlet engine
generates concurrent accesses to shared objects in memory.
The second case study is a more sophisticated example that
uses a web application framework called Seaside together
with PPL, an object-relational persistence framework. The
case studies illustrate common problems in multi-threading
programming with web and server applications as mentioned
in the introduction section.

A. Servlet-Based Web-Application

Servlet is a common way to provide dynamic contents for
web applications. Servlets work closely with domain-specific
frameworks to fulfill the needs of an application. In this case
study we build a servlet-based web application that allows
users to browse and register themselves for training courses.
The servlet engine is provided by Web Toolkit extension in
VisualWorks. The example is an extension to Web Toolkit
that is part of the Cincom VisualWorks Smalltalk [1]. In this
example, Toyz is the name of a fictitious company that offers
its own employees to register for on-line courses. To keep the
case study simple, domain objects are created and manipulated
entirely in the web application memory space. They are shared
between various sessions. In reality, however, domain objects
are often kept under control by external services such as web
services or persistence frameworks, many of them utilize an
asynchronous service model.

The servlet ServletAddCourse in Figure 9 is responsible
for adding a new course for a registered web user. This
servlet inherits from HttpServlet, which allows only a single
servlet object to serve many different requests. As usual, the
servlet carries out its duty in a http POST request handler,
as shown below. However, ServletAddCourse delegates the
actual domain processing to a set of utility classes, including
a factory class (Toyz). Toyz on its side queries and updates
the domain objects to serve each servlet request. In particular,
a shared SortedCollection object is used to keep registered
courses for all employees. This object is read during the call to
getNumberOfRegisteredCoursesFor: and modified in addXref:.

ServletAddCourse>>doPost: aRequest response: aResponse
| courseNumber mySession eNumber |
courseNumber := aRequest anyFormValueAt: ’courseNumber’.
mySession := aRequest session.
eNumber := (mySession at: ’signon’) number.
Toyz instance addCourse: courseNumber to: eNumber.
aResponse redirectTo: ’j2eeEmployeecourses6.ssp’

Toyz>>addCourse: courseNumber to: employeeNumber
| eName cName num |
num := self getNumberOfRegisteredCoursesFor: employeeNumber.
num < 4 ifTrue:
[eName := self getEmployeeName: employeeNumber.
cName := self getCourseName: courseNumber.
self addXref: (Xref new employeeNumber: employeeNumber
employeeName: eName courseNumber: courseNumber courseName: cName)]

Fig. 9. Smalltalk Source Code for Adding Course

We obtain trace logs for servlet execution during http POST
requests for two concurrent sessions. The tracer is fine-tuned
to trace instructions involving querying and updating list data
structures, which are skipped by default. This suggests that
while looking for possible data races, we already aim at some
suspicious pieces of code. This appears to be productive in
practice but requires some a priori knowledge of the code
under tracing. The data race detector reveals a data race
condition deeply buried inside list data structure operations.

Following the steps of our approach, we traced two concur-
rent accesses of the servlet and loaded the obtained execution
trees into DRF. That sets the scenario when the application

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

servlet is handling two requests for the same domain object.
We ran the LockSet algorithm and found a number of conflict-
ing accesses. One of them is presented in Figure 10. We ran
the tool again with Green LockSet algorithm and the above
conflicting access was not reported.

Variable Access Violation: 7250.firstIndex
’servlet-first’ SortedCollection:7250 (OrderedCollection) insert:before: WRITE: 1
’servlet-second’ SortedCollection:7250 (OrderedCollection) do: LOOP

Fig. 10. Output showing a Conflicting Access with Servlets

The first line on Figure 10 is a write operation on the
instance variable firstIndex for a SortedCollection object,
whereas the second line corresponds to read operations inside
a LOOP based on that instance variable.

B. Seaside and PPL

Seaside [2], [10] is a mature Smalltalk framework for build-
ing industrial-strength web applications. Seaside framework
users can enjoy the power of object-oriented programming in
Smalltalk and a rich set of features:

• the servlet architecture of Seaside as a web application
server.

• a session object accessible from any web page.
• components (Smalltalk objects) that know how to render

themselves as HTML pages and process user requests
• continuation-based multiple control flow that allow de-

velopers to approach dynamic web pages in a manner
similar to common GUI interface manipulation

• transactions that help isolate a set of related actions
(including user interaction) with flow control over page
navigation.

We applied our tracing tool to study the architecture of
Seaside. In particular, the tracing tool has been used to detect
possible racing conditions in web applications built upon
Seaside.

Seaside uses the concept of transactions to ensure the
correct behavior of flow control. Whenever the user crosses the
boundary of a transaction, it is impossible go back to change
anything in the state of the program. Actually, a page expired
event will be raised and the user is redirected to the current
active web page. However, a close look at the transactional
mechanism and the continuation-based flow control in general
yields that transactional behavior can’t be guaranteed with
implicit multi-threading programming involvement. Specifi-
cally, users can start simultaneously two sessions of the same
web application. It is quite often that these two web sessions
can share some domain objects. Processing of those shared
objects can be delegated to other framework, which may lead
to possible data race conditions.

We modify the Sushi web shop example built in Seaside
[10] to illustrate how the data race conditions can be ob-
served. The Seaside framework eventually calls the handler
WAStoreTask>>go to display a set of dynamic web pages.
First, it creates cart, an instance of the shopping cart, Figure

11. This object is shared between working sessions with the
same login name. The cart contents are filled in a couple of
pages that come next. Finally, the cart is saved using PPL,
a persistent framework. PPL was developed in the Illinois
Department of Public Health and it was used in several projects
[29]. PPL interacts with the underlying database management
system using a multithreaded ODBC library. It is that kind of
interaction between concurrent accesses initiated by Seaside
and PPL, and between PPL and multihtreaded ODBC that
raises a data race occurring inside PPL framework.

WAStoreTask >> go
| shipping billing creditCard |
person := Person new.
self isolate: [[self login] whileFalse].
WACartFactory instance connect.
”cart instance is shared between sessions”
cart := WACartFactory instance retrieveCart: person name.
self isolate:
[[self fillCart.
self confirmContentsOfCart] whileFalse].

self isolate:
[”save the cart using a multithreaded persistence framework”
cart save.
self displayConfirmation]

Fig. 11. Implementation of Operation go in Seaside

PPL assumes that it is in control of its internal variable
isPersisted. However, that assumption is undermined when the
asynchronous ODBC call yields its thread of execution. Figure
12 shows the implementation of operation saveAsTransaction
on PPL.

PersistentObject>>saveAsTransaction: aDBConnection
self isPersisted
ifTrue: [self update: aDBConnection]
ifFalse: [self create: aDBConnection].
self makeClean

Fig. 12. Implementation of saveAsTransaction in PPL

We obtain the trace logs for cart save during two executions
of the above code in a Seaside application. Note that the line of
code cart save is protected inside the block isolated:. Sea-
side uses such blocks to ensure transactional behavior among
a sequence of web page accesses. The data race detection
tool reveals possible data race conditions between these two
executions. In particular, it reports concurrent accesses with
at least one write to instance variables of the cart object as
suspicious places for data races (Figure 13).

Variable Access Violation: 10317.isPersisted
’session-first’ Seaside.WAStoreCart:10317 (PersistentObject) isPersisted RETURN
’session-first’ Seaside.WAStoreCart:10317 (PersistentObject) basicCreate: WRITE: 2
’servlet-second’ Seaside.WAStoreCart:10317 (PersistentObject) isPersisted RETURN

Fig. 13. Output showing a Conflicting Access with Seaside And PPL

In the above variable access violation report the instance
variable isPersisted of cart object WAStoreCart:10317 is con-

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

currently read by the method isPersisted and written by
method basicCreate: of the same object.

V. RELATED WORK

A. Tracing methodology

Our approach to tracing object-oriented programs relies on
debugging mechanism. Actually, the debugger is used as a
simulator to interpret program instructions and collect tracing
information. Reusing the debugger can be considered just as
an implementation advantage, since the main goal is to be able
to drive the simulated code and to examine program state after
each stepping activity. Several extensions and adaptations are
made to existing debugging machinery to meet the demands
of the tracing process.

Tracing programs based on debugging technology has been
used in other works [14], [18], [25]. Lange and Nakamura
built a tool called Program Explorer to trace C++ object-
oriented programs. Their approach consists of applying trace
points (similar to debug breakpoints) to program source code
that can reveal a C++ object’s this pointer to a trace
recorder. Programs are then recompiled and trace events are
generated during execution. Lencenvicius et al used a debugger
written in Java to continually monitor the results of a user-
specified query string while a Java program is running. This
customized debugger instrumented Java class files to invoke
the debugger at points specified by the dynamic query. Hamou-
Lhadj and Lethbridge provided a survey of representative trace
exploratory tools and techniques, among which debugger-
based tools in Java such as Shimba [27] generally require
setting breakpoints at places of interest and then executing
target systems under control of a customized debugger.

The strength of our approach consists of the following:

• The tracer interprets program instructions to generate
trace logs containing required information for analytical
purposes.

• The tracing process is carried out with unmodified pro-
gram source code, without any prior program instrumen-
tation and trace-points setting. We need only to specify
the block of code that requires tracing and an optional
tracing configuration.

• In general, we don’t need to trace the whole application.
In contrast, most of the times we can limit the tracing
to the flow of control of a framework. It does not
require deep/exhaustive knowledge of the traced program,
allowing exploratory understanding of unfamiliar code.

• The tracer is specially designed and fine-tuned to trace
multi-threading programs.

Our tracing methodology differs from the above-mentioned
approaches in that it interprets the code under tracing to
gather the tracing information selectively. Such an approach
allows to generate extra tracing information post-mortem,
e.g. to process the trace log and insert additional tracing
information regarding accesses to method parameters. On the
other hand, this approach can also have some disadvantages.
Since the method invocation context is examined on every

step, performance may suffer. However, the interactive usage
of the tracer to trace small to average block of code makes this
disadvantage not a very serious obstacle. On the other hand,
flexible configurations allow us to obtain trace logs quickly
for the case studies in section IV.

B. Analyzing Trace Logs

Burrows et al [26] describe a tool called Eraser that is
capable of detecting data races in lock-based multi-threading
programs using an efficient implementation of the LockSet
algorithm. Eraser instruments a binary program to generate the
trace log for data race detection and is generally not limited
to object-oriented programs.

Lange and Nakamura [17] suggest efficient techniques of
merging and pruning objects and method calls to reduce the
trace log search space. Much effort has been spent on visual-
ization and statistical discovery to extract useful information
from program traces [14], [19]. Jinsight [22] is a Java visu-
alization program that can display a program execution view
and help comprehend the behavior of multiple threads in Java
programs. Various filters [18] can be applied to trace logs to
get simpler representations. However, low-level filters (filters
on function calls, for example) have a disadvantage that they
can not show a good interaction between remaining elements,
and the information contained in filtered out elements are lost.
It is important to know what to filter, where to filter and how to
represent what remains after filtering. Recently program query
languages have been proposed over traces to study dynamic
program behaviors [9], [13], [20]

To approach the problem of finding race conditions from
program dynamic information we propose the concept of
merging different trace logs (each for one thread of execution).
Each program thread can be traced separately (using a tracer
object in our design) and then merged back when the trace
log is ready. A program analyzer will visit the nodes inside
the trace logs and perform required analytical activities. Trace
log information is kept as documentation of the frameworks,
this is different from [7] and [28]. Every trace log node holds
information regarded the identity of the object receiving the
message call, a pointer to its source code, and the charac-
teristics of the message call. Details on how the data races
are detected using the combined trace log is discussed in
subsection III-B.

Instead of detecting possible race conditions in existing
programs, Boyapati et al [6] suggest a completely different
approach to prevent data races and deadlocks in the first
place, using a static type system extension to the Java source
language. A corresponding type system extension for the Java
virtual machine language is built, which results in a language
called SafeJVML. Well typed SafeJVML programs are shown
to be free of data races and deadlocks [5].

VI. CONCLUSION

Multi-threading programming offers a trade-off between
responsiveness and complexity. Multi-threading applications
have better responsiveness but they are more complex to

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

develop and maintain. Frameworks are also affected. Frame-
works seem to hide the complexity of multi-threading by con-
trolling the creation and control of threads, but if application
domain objects are shared by two different threads then there
is the possibility of data races. Because frameworks hide the
creation and control of threads, it can be hard for application
programmers to find the data races, even though the data races
are in the code that they wrote.

Since framework-based applications and multi-threading
programming are common, developers may need techniques
and tools that can keep them aware of such pitfalls and
avoid unwanted outcomes. Test cases may help in first place.
However, data races can be present in a program even if the
results in a external module such a database appear to be
correct during some testing execution. Changes to external
libraries or components of a system can make data races to
surface. Having a better way to detect possible data races will
be of great help to increase software quality. We presented
a technique that uses tracing to find conflicting accesses. We
extended the LockSet algorithm with green thread semantics.
Conflicting accesses are good approximations to data races.
We found that Execution Trees are good documentation of the
flow of control of a frameworks and that they can be used
effectively in finding data races. Execution Trees can also be
used as an exploration tool when considering changes in the
framework or calls to external libraries.

The design of the tools and data structures presented in this
paper are guidelines to others who want to implement similar
utilities in other languages. They will be specially useful in
reflective languages that provide access to bytecodes and other
artifacts that help simulate the execution of virtual machine.

As we showed in the paper, the structure of frameworks can
be used to reduce the amount of tracing so that programmers
do not get overwhelmed with tracing data. Moreover, the fact
that the internal details of frameworks that do not interest
them can be hidden alleviates the need to process large volume
of trace logs and thus helps application developers focus on
their own code. We applied our technique and tools to case
studies with servlets and web applications based on the Seaside
framework. The tool reveals a few data race conditions and
confirms our above arguments on data races on framework-
based applications.

ACKNOWLEDGMENT

The authors would like to thank Stéphane Ducasse, mem-
bers of the Software Architecture Group (SAG) at University
of Illinois at Urbana-Champaign and the anonymous reviewers
for their valuable comments to the paper.

REFERENCES

[1] Cincom smalltalk. http://smalltalk.cincom.com.
[2] Seaside. http://www.seaside.st.
[3] Lucy Berlin. When objects collide: Experiences with reusing multiple

class hierarchies. In Conference on Object Oriented Programming,
System, Languages and Applications, pages 181–193, 1990.

[4] Joshua Bloch and Neal Gafter. Java(TM) Puzzlers : Traps, Pitfalls, and
Corner Cases. Addison-Wesley, 2005.

[5] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe
Programming. PhD thesis, Massachusetts Institute of Technology, 2004.

[6] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. A type system
for preventing data races and deadlocks in java programs. In Conference
on Object-Oriented Programming Systems, Languages and Application,
pages 211–230. ACM Press, 2002.

[7] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs. In Conference
on Programming Language Design and Implementation, pages 258 –
269. ACM Press, 2002.

[8] Desmond D’Souza, Aamod Sane, and Alan Birchenough. First-class
extensibility for UML packaging of profiles, stereotypes, patterns, 1999.

[9] Stéphane Ducasse, Michael Freidig, and Roel Wuyts. Logic and trace-
based object-oriented application testing. In International Workshop on
Object-Oriented Reeingeering, 2004.

[10] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside - a
multiple control flow web application framework. In In Proceedings of
European Smalltalk User Group Research Track, 2004.

[11] Mohamed Fayad, Doug Schimidt, and Ralph Johnson, editors. Object-
oriented Foundations of Framework Design. Willey, 1999.

[12] David Garlan, Robert Allen, and John Ockerbloom. Architectural
mismatch: Why reuse is so hard. In IEEE Software, 1995.

[13] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational
queries over program traces. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and Application,
pages 385–402. ACM Press, 2005.

[14] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. A survey of trace
exploration tools and techniques. In Proceedings of the 2004 conference
of the Centre for Advanced Studies on Collaborative research, 2004.

[15] Paul Hyde. Java Thread Programming: The Authoritative Solution.
Sams, 2000.

[16] Ralph Johnson and Brian Foote. Designing reusable classes. Journal of
Object-Oriented Programming, June/July 1988.

[17] Danny Lange and Yuichi Nakamura. Interactive visualization of design
patterns can help in framework understanding. In Conference on Object-
Oriented Programming Systems, Languages and Application, pages 342–
357. ACM Press, 1995.

[18] Danny Lange and Yuichi Nakamura. Object-oriented program tracing
and visualization. IEEE Computer, 30(5):63–70, 1997.

[19] Darko Marinov and Robert O’Callahan. Object equality profiling. In
Conference on Object-Oriented Programming Systems, Languages and
Application, pages 313–325. ACM Press, 2003.

[20] Michael Martin, Benjamin Livshits, and Monica Lam. Finding applica-
tion errors using PQL: A program query language. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages
and Application. ACM Press, 2005.

[21] Robert H. B. Netzer and Barton P. Miller. What are race conditions?:
Some issues and formalizations. ACM Lett. Program. Lang. Syst.,
1(1):74–88, 1992.

[22] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John Vlis-
sides, and Jeaha Yang. Visualizing the execution of java programs. In
Seminar on Software Visualization, 2002.

[23] Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman.
Execution patterns in object-oriented visualization. In Proceedings
Conference on Object-Oriented Technologies and Systems, 1998.

[24] Monica Pawlan. Multithreaded Swing applications. Sun Developer Net-
work. http://java.sun.com/developer/technicalArticles/Threads/swing/,
September 2001.

[25] Ambuj Singh Raimondas Lencevicius, Urs Hoelzle. Dynamic query-
based debugging. In European Conference on Object-Oriented Pro-
gramming, pages 135–160. Springer Verlag, 1999.

[26] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer Systems, 1997.

[27] Hausi Müller Tarja Systä, Kai Koskimies. Shimba - an environment
for reverse engineering java software systems. Software Practice and
Experience, 31(4):371–394, 2001.

[28] Christoph von Praun and Thomas Gross. Object race detection. In
Conference on Object-Oriented Programming Systems, Languages and
Application, pages 70–82. ACM Press, 2001.

[29] Joe Yoder, Ralph Johnson, and Quince Wilson. Connecting business ob-
jects to relational databases. In Fifth Conference on Patterns Languages
of Programs, 1998.

Proceedings of the 30th Annual International Computer Software and Applications Conference (COMPSAC'06)
0-7695-2655-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

