Boxed Ambients with Communication Interfaces*

Eduardo Bonelli, Adriana Compagnohj
Mariangiola Dezani-Ciancaglifiiand Pablo Garralda

L Stevens Institute of Technology, U.S.A.
2 Universita di Torino, ltaly

Abstract. We defineBACI (Boxed Ambients with Communication Interfaces)
an ambient calculus allowing a liberal communication poli€ach ambient car-
ries its local view of the topic of conversation (the type loé information being
exchanged) with parents and children that will conditiorevehit is allowed to
stay or migrate to and which ambients may be allowed to ent&he topic of
conversation view of ambients can dynamically change dumigration.BACI

is flexible enough to allow different topics of conversatimetween an ambient
and different parents, without compromising type-safétyses port names for
communication and ambient names for mobility. Capabsitad co-capabilities
exchange port names and run-time typing information to robmhobility. We
show the type-soundness BACI proving that it satisfies the subject reduction
property. Moreover we study its behavioural semantics bpmaeof a labelled
transition system.

1 Introduction

In an ambient calculus one can distinguish two forms of dyindahavior:communi-
cation and migration[10]. By communication we mean the exchange of information
between processes possibly located in different ambi8ytsnigration, we mean the
ability of an ambient to relocate itself by entering or exitiother ambients. Com-
munication and migration are deeply related, since mignathay enable or disable
communication and vice-versa.

~ In calculi such as BA and NBA, and those Inll6[28.7,11], an mtcan commu-
nicate with its parent ambient (the host ambient) or with #dcimbient (an ambient

it contains), and there may also be local communication gba processes within
an ambient. In typed ambient calculi, communication is calgd by types, and the
type of information being exchanged is often caltedic of conversation (TOCJor
example, if an ambient sends the numbéu its parent, we can say that the TOQris.

Furthermore, notice that migration (entering or exitinganbient) changes the
parent of an ambient. The existing typed mobile ambientutis a TOC for commu-
nication with the parent for each ambient, and even if miggathanges the parent the
TOC remains fixed.

In this paper we introducBACI, a new mobile ambient calculus where each am-

bient carries a communication interface specifying how mbiant may interact with
the environment. The design BRACI was driven by the desire to lift the fixed-TOC-
with-parent restriction allowing an ambient to change TQ&wchanging parents and
enabling straightforward design of ambients that need ahaxge information of dif-
ferent types with different ambients.

* This research was partially supported by the EU within th& FElobal Computing initiative,
project DART ST-2001-33477, by MURST Cofin’02 project McdTand by the USA under the
National Science Foundation project No. CCR-0220286 ITétuse Electronic Transactions.
The funding bodies are not responsible for any use that nigimade of the results presented
here.

NETWORK NETWORK NETWORK

HOST 1 HOST 2 HOST 1 HOST 2 HOST 1 HOST 2

PKG (dfﬁ’ addr) PKG da“a

ROUTER ! ROUTER ROUTER
@ route
PKG

Fig. 1. Example of an ambient using different TOCs with differentgras

i route

Consider the example in Figuké 1, whefesT 1 needs to sendata to HOST 2,

butHosT 1 does not know wheneosT 2 is located. HoweveHOST 1 knows the loca-
tion (addr) of aROUTERthat can forward taHOST 2 the packetKG) containing the

data. Assuming thisHosT 1 spawns the packet and forwards the data to be transported
along with the location of the router. Next, the packet maxeile theROUTERWhere
it obtains theroute to HOST 2. Finally, using thatoute the packet reachasosT 2

and delivers thélata. Notice that theekG ambient uses three different communication
types with its three different parents (i1€0ST 1, ROUTER andHOST 2). In order to

implement this example in calculi where each ambient hasa tiype for parent com-
munication, additional messenger ambients are neededctwlerthe communication
with the different parents, using an auxiliary messengeriam for each communica-
tion type.BACI’s new features offer more flexibility to the designer to detfimore
natural specifications.

Ports and NamesThe communication with a child ambient is often labeled with
the ambient’s name (named communication):

n[(3)™m[---]| ---] (ambient, wants to seng to its childm)

However, in communication with a parent the name is oftehitaplicit, since the
parent can be uniquely determined by the location of an amibie

n[m[(3)T] ---]| ---] (ambientn wants to send to its parent:)

In order to allow different TOCs with different parenBACI introduces named com-
munication with parents.

As we mentioned earlier, we can distinguish between two $ofrdynamic behav-
ior: communication and mobility. Previous calculi used @nbnames to specify both
communication and mobility. However, adding the posgiptth communicate with dif-
ferent parents in different types stressed the differerstesden them. Our calculus,
BACI, induces the separation of concerns by using names onlydbility and intro-
ducing the concept giortsfor communication. Therefore to migrate to an ambient we
use its name, but to exchange information with it we use it pothis framework, an
ambientrn with communication port is writtenn[c|| - - -], so for example:

nlenll - | mlem||(3)7¢] | --] (ambientn wants to send to parent port,)

The introduction of communication ports naturally leadsssociate TOCs to ports,
instead of associating TOCs to ambient names as usual. iEheoeglobal knowledge

on this association: each ambient hasldtsal viewwhich can dynamically increase
with relocation. An ambient with port ¢ and local view!” is written n[I'||c| - - -].
Then our last example becomes:

nl- It eql| o fml o fleg [(3)T | <o)

To sum up, iNBACI each ambient comes equipped wits own local communication
interface A communication interface consists of

— acommunication portised by the other ambients to communicate with the current

one and o . ,)
— alocal viewassociating topics of conversation to parent and childsport

Communication interfaces are required for communicat@moss ambient boundaries.
In order for communication across ambient boundaries @ pékce a pair of communi-
cation ports must be coupledsanding communication pofprovided by the sending
ambient) and aeceiving communication pofprovided by the receiving ambient). The
following (INPUT |-1) reduction rule models one form of communication across am-
bient boundaries (the other one consists in reversing ties if sending ambient and
receiving ambient)

m[Lnlem|(Z = @)ten.P \n_[1:n||6n||<M>T°m-Q | /]| 9]
m[FmHCmHP{j = M} ‘ n[FnHCnHQ | R] | S]

The sending ambient isand the receiving ambientis. The communication interface
of m consists of the communication par}, and the local viewl;,. Likewise, the
communication interface of consists of the communication pest and the local view
I,,. In order for communication to succeed, the type of the imfation sent through the
sending communication pot,() must coincide with the one expected by the receiving
communication portd,,). More precisely, the messagé in n should have some type
@ that coincides with the one that the ambients expecting.

Non-determinism The same port name may be used by different ambients. For
example, in

nl[Lallell(g) e | P] | m[L llc][(in) e | Q]

both ambients use the same port namas part of their communication interfaces.
Moreover, both ambients intend to communicate with a pgperttc,,, but in different
ways: ambient wants to send the namevhile ambientn wants to send the capability

in (which is used to allow an ambient to enter). In other wordsif c,, is a parent port
for exchanging ambient names, afgl containsamb'“*, and form, cp IS a parent port
for exchanging capabilities anfl,, containscap'®». As a consequence, only one of
these ambients would be able to enter a host ambiavith communication port,,
willing to communicate with them. For example, in

Pl llepll(@ = @)t R [n.0] | n[L% [lell{g) ! | in p.O] | m[L c]|in) ! | in p.O]

if ¢ = | ¢(I;) = amb, thenn is allowed to enter and ip = | ¢(I},) = cap thenm is
allowed to enter. Both of the above examples are typable irspstem assuming that
the port of the host ambient is different fram

Related Work Modeling the word wide web requires the space and the mplmilit
space as new dimensions of computing. In the first propoisalsn theD=-calculus
[18] and in the languagKlaim [14], the structure of locations is flat. Instead te-
bile Ambient (MAXxalculus[10] deals with a hierarchical structure of looas (called

ambients). An interestingore modelgeneralising many of the available calculi and
languages has been developed inside the Mikado praject [4].

Many variants of MA have been designed: for a tutorial 5eg. [A=rucial choice
in all these calculi is the form dhteractionbetween processes in different ambients.
In the original calculus{]10] interaction is only local to ambient, and in order for
processes in different ambients to communicate, at leasibbthe ambients’ bound-
aries have to be dissolved. InJ10J/2D.5,22,1], dhen capability dissolves the ambient
boundary. The calculus13 [L3[12], allows general process mobility. Boxed Ambi-
ents (BA)BIZ3[7], parents and children can communicate as irStredcalculus [11].
Our calculusBACI, follows this last protocol.

Theco-actiongfirst introduced inl[2D], and then used with modificationf5f?2(2¥.7])

require also the agreement of the “passive” ambients imebim mobility. The co-
actions ofBACI in which port names are communicated are inspired by thof€]:.of
there the communication involves only the name of the emgeaimbient.

Ambient calculi are often typed: the types assure behaalguoperties concerning
communication, mobility, resource access, security, [Bi20[9.51.5,22,23[7.21]. To
our knowledge beforBACI only the calculi of [5] and[[12] consideype information
local to ambientswhile in the other proposals there is a global environmentaining
all typing assumptions. When dealing with computing in wadea “open” systems it is
sensible to assume the existence of different local enmigoris. The price to pay is that
static checks are no longer enough to assure correctnesgwaeed to carry typing
information at run time. Following ideas from 16] we defineaperational semantics
with types which is simpler that a fully-fledgetyped operational semantida the
sense that we only need to check agreement between the leseal ypon mobility. In
some sense it can be seen as special capeoof carrying codg24]. The local type
information in BACI can dynamically increase with ambient movements: somgthin
similar happens in the version ofi3calculus considered i [19].

Behavioural typellZ] look mainly as computational traces: they allow pobm
phic communicationd8BACI’s communication interfaces also are a permissive tool for
typing non local communications. 101[2] the type of commuation with the parent
changes when communication takes place. However, they toawe named commu-
nication with the parent, and cannot express the fact thranwanication with different
parents has different types as in our last example.

Paper PlanThe rest of this paper is structured as follows. Sedflon@éhices the
syntax of the calculus and its operational semantics. @d@tpresents the type system.
Sectior ¥ studies a reduction barbed congruence and adabetesition system (LTS).
The bisimilarity induced by the LTS is shown to be sound wigspect to the con-
gruence. Some congruence laws are also identified. Sédtischsses two extended
examples highlighting the features BACI . Finally, we conclude and suggest further
research.

2 The Calculus

2.1 Terms and Types

The syntax for types and terms BACI is given in Tabldl. Notice thaBACI is a
typed calculus and as such by process we always mean a welkdoprocess accord-
ing to the rules of TablE]l6.We assume two disjoint denumerséils of variables one
for name, capability and message variables, and the othgxoft variables. We use
m,n,o,p,q...forambient name constants andy, z, . . . for ambient name variables,
while «, 3 range over both ambient constants and ambient variablesnCmication
port constants are writtefyc,,, ... andv, v’, . . . are used for communication port vari-
ables, whilev is either a communication port constant or variable. Theresgions

inC(v : p) a ,outC(v : p) a,inC(v : p),outC(v : p) arebindersfor v in prefixes and
processes.

Basic types Communication types

p::=amb ambient p::=shh no exchange
| cap capability | ¢1,..., ¢k exchange tuple
Located types Local view
To=(p1,...,01)" I:=0 empty
Names: | I,1 interface
a, Bi=n name constant Ports:
| name variable W“':C pori cor}stbalmt
v ort variable
(Co)-Capabilities: Locations: p
07 D;;:in (6% enter ocations:
| outa exit ni=T17 parent porty
in allow enter Lo |Ch'|d| porty
out allow exit Message*s- oca
C.D path :
T capability variable M; N::=a name
Prefixes: c capability
et capabilities x message variable
I (@ C o) Processes:
Eﬁﬂ fl.y,.l.\/../z;f"k o) Icr;u%tut P:=0 nil process
inC(v : p) port enter Py | P, composition
outC(v : p) port exit '(Ilgn)P restl.nct{.on
| inC(v: p) allow port enter - Lergf'ifﬁ gn
| outC(v: p) allow port exit ailllcllP] ambient

Table 1. Syntax ofBACI

The proces$ is the null processP; | P, denotes the parallel composition of pro-
cessed’; andP; (vn)P is the usual restriction operator that binds all free ocances
of n in P; ! is the replication operator. The expressio® denotes the process that
performs an action (or a co-action)and then continues witR. Ther actions includes
input/output (1/0) actions and mobility actions. The I/Gbanges are directed upwards
to the parent ambient, downwards to a child ambient or lg¢albther processes at the
same level. The direction of each communication is detezthbyyn. The locatior) is
the location of the communication exchangje; denotes communication with a parent
having the porty, | v denotes communication with a child with pertandx denotes
local communication.

The information exchanged in input/output are tuples ofsages. Each message
can be either an ambient name, or a (co)-capaliliihe ambient names received as
messages, can substitute a variable ambient name in anrgrodiestructor or in a capa-
bility. Capabilities and co-capabilities constitute thelility actions and co-actions: the
capabilities allow an ambient to enter another amhienisingin «; or to exit an ambi-
enta, usingout a. In order to be executed, each capability must be matchddtsite-
spective co-capabilityn with in andout with out. Both capabilities and co-capabilities
can be sent as messages. A single (co)-capability or s€eejatapabilities forming a
path may be sent.

Beside these standard mobility actions and co-actiBA& | introduces thenC
andoutC actions and their corresponding co-actiomS andoutC. These actions and
co-actions are similar to the enter and exit (co)-capaslitHowever, they also have a

! The types of messages can be easily extended to handle ygesicsuich as integer or boolean
without any technical problems, but that is omitted herelfiersake of simplicity.

\P=P|!P (STRUCT REP PAR)

vn)(vm)P = (vm)(vn)P (STRUCTRESRES)

vn)(P| Q)= (¥n)Q, if n ¢ In(P) (STRUCTRESPAR)
(vn)m[Inllem || Pl = m[Dm|lem||(vn) P, if n £ m (STRUCTRESAMB)

inn.P =inC(v : shh) n .P, if v ¢ fv(P) (STRUCTIN INC)

out n.P = outC(v : shh) n .P, if v ¢ fv(P) (STRUCTOUT OUTC)

in.P =inC(v : shh).P, if v ¢ fv(P) (STRUCTCO-IN CO-INC)
out.P = outC(v : shh).P, if v ¢ fv(P) (STRUCT CO-OUT COo-OUTC)
(¢c.D).P=C.D.P (STRUCT.)

Table 2. Structural Congruence

port variable that is bound at execution time with the portha&f counterpart ambient

involved in the mobility action. Becau®ACI uses port names exclusively for com-
munication and ambient names only for mobility, knowing ttzene of an ambient is

not enough to establish a communication, the port assaloiath that ambient must be

known as well.

Port names cannot be sent as messages; therefore, the gnbf lgarning a port
name is by using thinC andoutC actions with their co-actions. In their execution, the
ambients affected by this action exchange port names usalgimders in these special
(co)-actions. Additionally, in order to retain typabilitgort variables have an associ-
ated communication type. If the communication type ishh, there is no exchange of
information, otherwise an exchange tuple of basic types&luo indicate exchange
of information of that type. The types used on these actionsa-actions must be
compatible, their relation will be established by the ofieraal semantics rules.

An ambientis writterm[]| || P] wherex is an ambient name constant or an ambient
name variable and@ the enclosed process. The local viéwis a finite set of located
types, i.e. of exchange tuple types decorated with a lotafibe local view is used
to specify the communication type of the enclosed proé&sthe local view together
with the communication port constitute the communication interface of the ambient.

Terms differing only in the names of their bound variables eonsidered equal.
FurthermoreBarendregt’s conventiof] is assumed: all variables are pairwise distinct
and distinct from all free variables. This avoids cluttgrthe presentation with condi-
tions on the names of variables in order to prevent varidakhcand variable capture.

2.2 Operational Semantics

The operational semantics is defined in terms of structuiwaguence and reduction

rules.
Structural congruencés the least congruence such tlidt, 0) is a commutative

monoid and the axioms of Tabé 2 are satisfied. The definisostandard except for
the rules in the second group (whér¢P) is the set of free variables occurring f).
They state that the (co-)capabilitizsn, out n, in, out may be identified with particu-
lar instances of the prefixes “port enter/exit” and “allowtpenter/exit”. The rationale
here is that these prefixes behave as the correspondingdpadilities when they can-
cel the communicated port name (conditiogt fv(P)) and no topic of conversation is
communicated (i.e. the communication typstis). We cannot, however, do away com-
pletely with the (co-)capabilities since, in contrast te #forementioned port prefixes,
they may be sent as messages.

Join of communication types

P if p=shh,

) p if p=p orp =shh,
pUp = .
L otherwise

Preorder on communication types

p=piff pup =y
Addition of located types to local views

, r if p = shh
n _ ’
I'ep’ = {F, p" otherwise

Application of locations

— to located types

_Jp ifr=p7,
n(r) = {shh otherwise
— to local views
n(0) = shh
(') = U,ern()

Location substitution

— for prefixes

) (z1:<p1,---,z17:g0k)”l if = (21:01,...,2 : 0x)",
m™n =0t = (M,..., M)" it m=(M,..., M),
T otherwise

— for processes

0{n:=7n}=0

(Pr| P){n:=n'}=Pi{n:=n"}| P2{n:=7"}
(vn)P){n:=n"} = (vn)P{n:=n'}
(!P){n:=n'"} ='P{n:=n'}

(e[LallcallPD{n :==n"} = a[Tallcall P]
(m.PY{n:=n'}=n{n:=n}.P{n:=n"}

Table 3.Operations on Locations and Local Views

Mobility
(ENTER)
n[LnlenlinC(v : p) m .P1 | Po] | m[Dmlem [inC(v" = p').Q1 | Q2]
ML @ p" " [lem |n[Tn @ p1m [lenl | P{T v =T em} [P2] | @u{L v = | cn} | Q2]
if 7 em(Tn)Up =3 | en(lm)Up
(EXIT)

plLylles [nLE e [m{Enllen loutClo o) n Py | P2} | Q) | QUEC(<). Ry | Rl
Pl @ o' lepllm[Lm @ p P llem [P1{T v =T cp} | Pl | n[lullenllQ] | Ba{l v’ := | cm} | R

it 1 cp(Tm) Up < | cm(Ip) U '

Communication

(LocAaL) 5 .
(Z:@)".P|(M)*Q — P{i:=M}Q

(INPUT [-T) ~
mLonlem |(& = @) P [[Lallenl|(M)'“™.Q | R] | S]

mlLnllem || P{& := M} [n[lnleal|Q | R] | 5]
(ouTtPuT |-T)

L[|[(M) Yo .P | n[ﬂ\cnn(:z @) 'em.Q | R]| 9]
m[Lllem | P | n[I||en||Q{& = M} | R] | S]

Structural Rules

(STRUCT)
P=P, P —Q, Q=Q
P—Q
(CONTEXT)
P—Q
E{r} — E{Q}

Evaluation Contexts
E 2= {} | E[P | PE | (wn)E | ofI'||c|E]

Table 4.Operational Semantics

The reduction relation is given by three groups of rutasbility, communication
andstructural The structural rules are standard. Before describing litypbind com-
munication, we need some definitions given in Télle 3.

The join of communication types (I p’) and the preorder on themp K p’) simply
state thathh is smaller than any other communication type.

The addition of an expressiqgri to a local viewI” (I" & p") changed” only if p is
?tuple of basic types, i.e. jff # shh. Notice that only in this last cas# is a located
ype.

The application of a location to a located type (n(7)) returns either the com-
munication type ofr or shh according to whether the location ofis n or not. The
application of a locatiom to a local viewI” (n(I)) is the join of the applications of
to the located types ifi". So#(I") is different from_L only if I" contains at most one
located type whose locationig n(I") is shh whenI" contains no located type whose
location isy).

The location substitution{(:= n’}) replaces locations as superscripts of input and
output prefixes. They propagate on processes in the standgrut they never cross

ambient boundaries.))
The mobility rulesconsist of (ENTER) and EXIT). Since they may both be ex-

plained along similar lines, we discuss only the former. TERTER) rule allows an
ambientn to enter a sibling ambient.. Oncen has enterean, communication may
take place. However, this requires thatlirects its messages througtis communica-
tion port (namely,,) and, likewise, thatn directs its messages througls communi-
cation port (namely,,). Sincen may not know the name of:'s communication port,
the capabilityinC(v : p) m and the co-capabilitinC(v’ : p’) provide port variables
andv’ for such communication ports to be made available to theested parties.

Note that the type of the information that may be exchangetherport is also
provided at run-time so thatandm may use compatible topics of conversation. Indeed,
as a consequence ofenteringm, the local views of both ambients are updated. Since
this takes place at run-time, appropriate checks are redjiirorder to guarantee that
such extensions are sound. This is the role of the condition(I7,)Up < | ¢, (L)) U
p'. This condition may be explained as follows:

1. First notice that ¢,,(I7,) Up must be defined, since is a partial relation between
communication types. This implies that the new communicetypep with loca-
tion T ¢,, to be added to the local view, is compatible with any existing located
typeinT;,. A similar comment applies to ¢, (I,) U p'.

2. Assumingp; = 1 ¢ () U pandps = | ¢, (1) U p/, the conditionp; < po
checks to see whetharandm agree on a topic of conversation. Note thanhay
safely avoid listening ten but not vice-versa.

The following example shows why children can safely avoitisien to parents but
not vice-versa, i.e. why the conditign < p; is unsafe.
Take the process

PO clAC (o1 = shh) | T (o - amb).(g) 7]
| m[cap’||c|[inC(v : cap) p | (= : cap)'e.P] | n[d]|c'|linC(v' : amb) p]

Using rule ENTER) with the pre-order condition reversed this process mighuce
firstto

pI0[lc|inC(vs : amb).(q)"*2 | mlcap!®|lc’|[(z : cap)®.P]] | n[0]|¢[linC(v" : amb) p]
and then to

plamb! [lcll{g) "’ | mlcap!|[¢||(x : cap)!*.P] | nfamb!“|/|]

and in this last process a wrong communication of an ambigmienwhen a capability
is expected could occur.
Notice that with the sound rul&{TER) the initial process only reduces to

plamb’ [[¢]inC(v1 : shh) | {g)*" | nfamb!“||c'[]] | m[cap'|[¢'[inC(v : cap) p | (: cap)'*.F]

i.e. only ambient: is allowed to go inside ambiept

Thanks to the structural congruence between prefixes angtéabilities, the stan-
dard enter and exit rules are mimicked IBNTER) and EXIT), respectively. For exam-
ple, the following 6TANDARD ENTER) rule:

n[FannHin m.Py | P2] ‘ m[Fchm”m-Ql | QZ]
—

m[FmH_Cm”n[Fn”CnHPI | P2] | Q1 | Q2]
if T em(ln) X1 en(lm)

may be simulated byENTER). Indeed, ifv,v" are any port variables such that¢
fv(Py) andv ¢ fv(Q1), then sincén m.P; = inC(v : shh) m .P; andin.Q; = inC(v :
shh).Q1, by applying ENTER) we obtain

m[Lm @ shh*™|[eom ||n[I @ shh™ [lea||P{T v =T em} | P2) | Qi{l V' := | en} | Q2]

Note thatP {1 v := 1 ¢,,} = Py andQ1{| v' := | ¢n} = Q1. Also, I}, @ shhi®" =

Iy, and I, @ shh'®" = I3, (cf. TablelB). o .
As for thecommunication ruleghe local communications are standard, while the
parent-child communications require the knowledge of #imé@r communication port,

as already discussed in the introduction.

3 Typing Rules

The typing environment is very simple: it says if a variakibnsls for an ambient name
or a capability.
Environments
Y o=10 empty environment
| X,z : e environment

In the sequel, we only consider typing environments thagass unique type to each
name in its domain. The typing rules define two judgements:

— XY F M : g, read "M is a well-formed message of typé.
- Y+, P: I, read P is a well-formed process assuming the local communication
interface of its host consists of the communication pamnd the local view ™.

The typing rules for the first judgements appear in Thble 5.

In contrast to other systems, then(b) rule assigns an ambient name the constant
typeamb rather than a more informative type as in the majority ofays [15]. Indeed,
more informative types presuppose the availability of igllp information on the type
of ambients. In our setting based on local views the onlyraggion we make is that
we can identify an ambient name when we see one.

The (cap-in -out) and gap-in -out) rules are also simpler than in formulations based
on global knowledge of the communication types of ambiesitge the corresponding
control is delegated to run-time.

The (Ax10M) and gap-CcOMP) rules are standard.

The rules defining the judgemehtt-. P : I" are given in TablEl6.

(amb) (AxIOM) (cap-in -out)

nenN C € {in,out}
Yt n:amb Ywipbw:ie S+ C:cap
(cap-in -out) (cap-comP)
YFa:amb C € {in o,out a} YXFC:cap X FD:cap
Y FC:cap YEC.D:cap

Table 5. Well-formed Messages

Regarding the typing ruled], since0 does not interact with its host it may be typed
under a communication interface consisting of any port naraed interface view"
provisoI is ok, i.e.n(I") # L for all , and each port variable occurs at most once in

The rule for replicationROGREP) is standard, howevePROGRES) is not. Usu-
ally, the namen together with its type is assumed to belong to the globalrenment
X. However, in our local setting all we know is thais an ambient name.

The rule for parallel compositiolPROG-COMP) is also standard.

The typing rule PROGCAP) reveals that all what is known about a capability is
that it is just a capability. Since we rely only on local infaation we shall relegate the
correct use of capabilities at run-time.

A process of the fornmC(v : p) « . P is well-formed under the assumption that the
host ambient has local view, if P is well-formed under the assumption that the host

ambient has local view @ p!?. Thus, the prefisnC(v : p) o allows its host ambient to
extend its local knowledge and hence be ready to communigtit@rbitrary ambients
willing to enter. Note that this prefix binds the free occuaes of the port variablein

P. The typing of the other prefixes mentioned in ruler¢GINC-ouTC) and PROG
COINC-cooUTC) is similar. The difference between these two rules isithéte first
one the process shall communicate with a new host ambieeteah in the second one
the process shall communicate with a newly entering childiant.

The PROGINPUT) and PROGOUTPUT) request that the type of the information
tha'{).is exchanged together with its location must belondnéolécal view of the host
ambient,

The PROGAMB) rule may be interpreted as follows. In order f&f’||’|| P] to be
considered a well-formed process under a host ambient wdomsmunication interface
consists of a por¢ and a local viewl, it must be satisfied that:

1. processP is well-formed under a host ambient whose communicatiogeriate
consists of port’ and local viewI”, where must be an ambient name or an
ambient variable;

2. eitherg[I"||c'|| P] does not communicate with its host ambient or the type of the
information exchange between it and its host ambient musitdeame (condition
TeI) 2L

3. no free port variables should occurlifi, i.e. I’ should beclosed

4. the local viewl" of the host ambient must hok.

The example considered on pdge 9 shows why we do not @[éW| || P] to offer a
communication to its host ambient when the host ambient doesommunicate along

(0) (PROGREP) (PROGREY)
I" ok Yk P T Yk P: T

Xt.0: 0 YrEJAP: T Yke(wn)P: T

(PROG-COMP) (PROGCAP)
YbreP: I Xtk P: I Y+C:cap XYt P: T

YreP|P: T Y. CP: T

(PROGINC-0UTC)
St P:I'®p'" we{inC(v:p)a,outC(v:p)a}

YrenmP: I

(PROG-COINC-cOOUTC)
Yk P:I'®p' 7we{inC(v:p),outC(v: p)}

YrenmP: I

(PROGINPUT)
Xowr:ip,.. o,z ipp e P (1 x ... x)" €D

Yhe(rr:o1,..., ki pp)".P: T

(PROGOUTPUT)
YbeP:T' YXFMi:pi (1<i<k) (p1X...xpp)T€r

She (M, ...,M)".P:T

(PROGAMB)
Yo P:I" XEpB:iamb Tce(I) =1 () I'isclosed I'isok

Yk B ||P: T

Table 6. Well-formed Processes

the portc’. In fact, the process
p[0]el[inC(v : amb).{g)* | m[cap'®|l¢'||(x : cap)!®.P]] | n[d]|[inC(v" : amb) p]
is typable by replacing the conditidnc’(I") < | ¢(I")to 7 ¢c(I”) =< | ¢(I") in rule
(PROGAMB).
The type system guarantees that communication inside ast@iad across ambient
boundaries never leads to type mismatches. This is forethiz:

Theorem 1 (Subject Reduction)if ¥ -, P: I'andP — Q,thenX . Q : I.

4 Behavioral Semantics

In order to study the behavioral semanticsBACI we define an intuitive notion of
barbed congruencE [?5]17] based on the unlabelled reduséimantics given in Ta-
ble[. We then introduce a labelled transition semantigsiiad by [20,27] and state
that it coincides with unlabelled reduction. Finally, wdide a notion of labelled bisim-
ilarity and show that it is sound with respect to barbed cargce. The immediate ben-
efit is that the co-inductive nature of bisimilarity can belketed by putting the vast
body of proof techniques to work in order to reason aboutd@dongruence. Note that
in this short presentation we omit the global environmEnthe host port and the
local view I" over which the relations on well-formed processes are iedéy.

SinceBACI has co-capabilities and allows parent-child communicetithere are
several reasonable choices of barbs, among which we have:

@) Pl, & P=@n)n[lcinQ|R]|S)

2 P2 2 P=@n)(n[l|dmCv:p).Q|R]|S)

@) Pl 2 P=@i)@ldl@ ez 00)!.Q | B]|S)
@ Pll,, = P=@n)®[l|d(M,...,M)'“.Q|R]|S)

provided thatn € m in (@) and [2). In order tabservewhether a proces® may
interact with the environment via some ambient namer via a pair of port names
(¢, '), it must be placed in a context that presents an ambient ttegthpts to enter it
or to communicate with it.]

We write P {|,, (P {(c,cy) if P = P’ and P’ |,, (P |(.)), Where=is the
reflexive and transitive closure of—.

The notions of observational congruence induced by theaHbsefinitions of barb
are standard in ambient calculi.

Definition 1. A relationR is reduction closed iPRQ and P — P’ imply the exis-
tence of somé€)’ such that) — @’ and P'R(Q’. R is barb preserving ifPRQ and

Pl, (Pl<c.,c/)) ImplyQ‘Un (Qll(c,c’))-

Definition 2 (Reduction Barbed Congruence)Reduction barbed congruence is the
largest equivalence relation that is preserved by contasth when restricted to closed
processes, is reduction closed and barb preserving. LetZhée the reduction barbed
congruence relation from choosing the notion of observatis in ¢) above (withi €
[1..4]).

Notice that since we only consider processes which are feetted, a relatioriR
is preserved by contexts PRQ andC|[P] well-formed implyC[Q] well-formed and
C[P]RC|Q], for all processe®, @ and context&’[-].

As expected the above congruencies coincide, so we canedeaxdted congruence
for BACI simply by,

Lemma 1l (Independence from barbs).=; = =; forall 4, j € [1..4].

Proof. We need to show that all barbs imply each other. This can benaglished, as
usual, by exhibiting a corresponding context. For instatuwsee that, implies=; use
the contexC[-] = m[I'||||[-] | (M)!¢.inC(v : p)], and note that for alP such thatn
is fresh inP one has” {L?c oy ifand only if C[P]2,. A suitable context to show that,
implies=, is C[] = p[I'||¢] (vq) (a[®]lcql|[] | m[0]lcrmfin n.out n.out] |ouT]) | SUE.(AT) '],
and similarly for the other cases.

Notice that processes with different types can be diststged irrespective of their
purely behavioural properties. This means that if two pssesP and @ cannot be
typed with the samé’ (w.r.t. a giverc), they cannot be congruent. In fact)if-, P : I
but ¥ k. @ : I" does not hold we can find a contex{:] such thatC[P] is a (well-
formed) process whil€'[Q)] is not. A suitable context is simply[I"||c||x.[-]], where
I is the maximum subset df which is closed, and contains (in any order) exactly
the set of actionginC(v : p) m | p'?} and the set of co-actiofsnC(v : p) | p'*}. For
that reason, type equality is not requinget sefor the definition of barbed congruence.

4.1 Algebraic Laws

This section presents some algebraic laws that bettergydite semantics of processes
in BACI. These and other laws can be proved by means of the labekedilairity
developed in the next section.

The laws holding iBACI which deal with mobility are very similar to those true
for the NBA calculusl[[F], so we will not discuss them.

InsteadBACI ’s refined treatment of communication using port names allimnget
quite interesting laws concerning input-output. For exkapgn ambient only willing
to communicate with its father but using a “wrong” port nameééad, i.e. we have the
following garbage collection laws

[Lallenllm[Tnleml|(Z - ¢)1¢.P) | Q] = n[L len Q]

[Ll enllm[Dnllem|[(M >TCP]|Q]”7”L[F leall @

In NBA a communication parent-child can be forced only ifite only active pro-
cess inside both ambients.BACI instead there can be other active processes provided
that they do not know the port name of the communication pa@nd some ambient
names do not occur in some processes and/or they are regtiitte conditions on port
names avoid interfering communications and the conditmmambient names avoid
interfering movements. In particular in the third group gtiszzalenciesk cannot con-
tainm since otherwise an ambient insidecould exitm and communicate the parg,
to processS. More precisely we have:
if ¢,,, does not occur iR

(wn)(n[Lallenl[ml L lem | (M) e P | (2 2 @)'m.Q | R])

R =

(wn)(nlLullen|m[allem|[Pl | Q{& := M} | R])
(wn)(n[Lallenl[mlLnlleml|(Z @)Te.P]| (M)'m.Q | R])

I Z

(Vn)(n[f’nIICnHm[FmIICmHP{fc = M}]| Q| R))
if ¢,, andn do not occur inR
n[FannII(Vm)(m[FchmII<{4>T°” PR |(:@)tm.ql
)l m{Tillen|P | B | Q4 = 1)
nllnllenll@m)(mlEmflem(2 : &)len.P| R]) | (M)t.Q)

n[Ly ||en || (wm) (m[L |lem || P{Z := M} | R]) | Q]

Pre-prefixess ::=inn | outn | in | inC(c:p)n | outC(c:p)n | inC(c:p)
Prefixes p ==x | (M)" | outC(c: p) | out _

Labels Eu=T | p| (5" n[]jn”Cn”H] | M get (cm,cn) | put (cm,cn)
ConcretionsK = (vp)(P)Q | (vp)(M)P

Outcomes O == P | K

Table 7. Labels and Outcomes

if ¢,,, m do not occur inS andc,,, n, m do not occur inR

(wn)(n[Tallen | wm) (Ml L e |(M) o .P | R) | (2 : §)'.Q | S])

(wn)wm) (n[Tlleallm Tl | P | R]) | Q12 = 3T} | S])
(wn) ([T eallwm)(mlTnleml|(F = §)1en P | B]) | (NDYem.Q | S])

o~

(vn) ([Tl enl| wm) (UL e | P{E := M} | R]) | Q | S])

4.2 Labelled Transition Semantics

This section presents a labelled transition semantics)BR8 proves that it coincides
with reduction. It is the first step towards a characteraratf reduction barbed congru-
ence in terms of labelled bisimulation. The LTS is given ib€a[3[® and0. These
tables define the labelled transition relation

P-*.0

where P is a process{ is a label andD is an “outcome”. Labels and outcomes are

defined in Tabl€]7.)]])
An outcome may be a process oc@ncretion Concretions are required for dealing

with transitions of components of the system that interattt the environmentin order
to be completed. Indeed, they prove convenient for fornmgahe silent transitions. In
the concretior{vp){P)Q, the process is the part of the system that interacts with the
environment. For example, to complete iam transition, the sibling ambient which
hosts the entering one must be requested from the contéetwise, in the concretion

(vp)(M)Q, the messaga is the part of the system that interacts with the environment
This outcome is required only for the case of the transitionrhessage output. In
both cases) represents the remaining part of the process that is nattaffdoy the

transition. _) o _
The structural congruence relation for concretions is iokth by extending the

homonymous relation for processes with the following axd@and rules:

(wr)(wp(P)Q) = (vr,pAP)Q
(wr)(wpM)P) = (vr,p(M)P
P=PandQ=Q — plP)Q = (vp)(P)Q'’
pP=r = (Wp)(M)P = (vp)(M)P’

Also, we use the following notational conventions:

(cAaP) (PATH)

M € {inn,out n,in,out} M;.(Ms.P) £, p
mp2Lp (My.M).P - P!
(carC) (co-caprC)
¢ € {inC, outC} ¢ € {inC,outC}
Cw:ip)n.P cep)m P{lv:=1¢c} C(v:p).Pcﬂ) P{lv:=]c¢}
(IN-0uUT) (co-IN)
P -5 P €€ {inn,outn} PP ¢e{im,nClc:p)}

m[Im |lem ||€] ’ m[m |lem ||€] !
m[Lnllem|| Pl =="" Am[Cnllem |[PNO - m[Dnllem||P] == (P')0
(INC-0uTC)
P p € e {inC(c: p)n,outC(c: p)n} I @ p'°ok

m[Tmllemll€]
—

m[L |cm|| P] (m[lm @ p'“[lem | PT)O
(INPUT) (ouTPUT)

(&:¢)".P an? P{& := M} (ryn.p S8 e

(GET)

(anyte
—

P Py

M Cm,sC
mlLllem|[P) ™ S mi L lem | 1)

(PUT)

(— Te ~

(wp)(M)Pr

m{Lnllem||P] ™22 p) (MY |cm] | P1]

P

Table 8. Commitments: Visible transitions

— (wpP)Q) | R = (vp)P)(Q | R)

— (wp)(M)P) | R = (wp(M)(P | R)

The transitions are inspired by those of NBA [7]. Theransitions for message
exchanges arer(EXCHANGE) for local exchange andr¢pPuT) and (-GET) for non-
local exchange. For example, im-euT) the directed output action towards the child
ambient must be met by a corresponding input action fromliid.dRule (GET) makes
sure that this input action is executed inside some ambibose/local communication
port coincides with the one specified in the output action.

Ther transitions for mobility are{-ENTER), (7-ENTERC), (1-EXIT), (7-EXITC).
Since these are similar in spirit we shall discuss omRENTERC). Rule -ENTERC)
is in charge of synchronizing two actions, namely the regjoéan ambient to enter
a host ambient with the action witnessing the approval (bgmseof an appropriate
co-capability) on the part of the host ambient. Therefdne, label of the first action

is n[l,|len]linC(en @ p) m] while that of the second is[, | cn|[inC(e, = p')]-

The former tells of the name and local interface informatiérthe moving ambient
and the latter does the same for the host ambient. The prdtatsactually moves is
represented byP; in the concretion resulting from the first action whélg represents
the process that shall run alongside the visiting ambiemg. rocesse®, and(Q- are
the sub-components @f and (@, respectively, that do not participate in the movement.
Note that the third premise of the rule-ENTERC) corresponds to the dynamic type
checking that we discussed for reduction.

As expected, unlabelled reduction and labelled reduct@noide. Both items of
Theore are proved by induction on the derivation of the@adent. Moreover, item
2 requires the following lemma that relates labelled reidncand structural congru-
ence, for the case when the derivation is obtained usingdBg$TRUCT).

Lemma2. If P - OandP = Q, then there exist®)’ such thatQ £, 0 and
o=0'.
Theorem 2.

1. If P -7 P', thenP — P'.
2. If P — P’, thenP = P’, where—>= denotes the composition of the rela-
tions—— and=.

By comparing the notion of observability (cf. the definitiohbarbs) with the rules
of Table[® and in particular with rulec-IN) one can easily see that a name is ob-

servable iff at least one of the two actionfl"||c||in] or n[I||c[[inC(c’ : p)] can be
performed. In particular,
Lemma 3. P |1 iff P "1™ (50 Q)R for somer, ¢, 5, Q, R.

A similar observation applies to rulesgT), (PUT) and the observability of pairs of

port names (cf. barbs (3) and (4) above). Thanks to Lefldma Inlyeneed to consider
one notion of barb.

4.3 Full Bismilarity and its Soundness

This section defines a notion of labelled bisimilarity andwsh that it is sound with
respect to reduction barbed congruence. Labelled bigiityileequires checking when
two processes produce equal observable actions. The prabthat the current defini-
tion of labelled reduction may produce a concretion instfaglprocess. This situation
is remedied by introducinkigher-order (HO) transition§22] for those labelled transi-
tions of TabldB that produce a concretion as an outcome.

The HO-transitions are given in Tallle] 11. In these transitiove use richer labels
obtained by adding to the previous labgla new component which can be of one of
the following five shapes:

— P,

= [L]ellP];

= n[L|c[P];

= (Ll Pl L] Q]
= n[lc|P]] Q.

This component describes the minimum contribution of theext necessary to fire the
transition. For example in rule (HO W) the context must provide both the 3 compo-
nents (local view, port and process) of the ambieffitom which the proces®; exits

an? in which the procesB, remains and the whole ambienin which the proces$;
enters.

For HO transitions we get the following version of Lemhha 3:

(T-ENTER)
n[n |lcn lin m] ~ m[Lm |lem ||E] ~
P U= T wp Py Q@ =" (v(Q@u)Q2 T em(In) 2l en(lm)
P|Q = p,q)(m[Imllenl|Q1 | P1] | P2 | Q2)
(7-ENTERC)
P n[FnHCnHi"_C()Cmﬁp) m] (Vﬁ)<P1>>P2 Q m[Fch»,L“n)C(cn:pl)] (V!j)((1>>Q2
T Cm(Fn) Lp = l C’!L(Fm) U p,
P|Q = wph,)(m[ln & p* " [lem||Qr | P] | P2 | Q2)

(-EXIT)

P

n[Ln|lenllout m]
—

WANPYP: Q25 Q1 1 co(Tn) = | en(l)

allallcallmTmlleml| P | Q1 == () (allylleallm[Imllem[|P2] | Py | Q1))
(T-EXITC)

AL len lloutC(cq:p) m]
—

outC(cp:p’)
—

P wp) (PP Q Q1 Teg(Im)Up =] en(ly)Up

allylleqllmlnllenl|P] | Q1 = Wh)(ally @ p" " [leq |m[Tnllcm || P2] | P1 | @:])
(T-EXCHANGE)

P e QL wainy:

PlQ— (wd)(P1| Q)

(7-PUT)

(—ytem L~ NI get (e em)
—

wp)M)Pr - Q (O

n[Lallenl| P | Q] — (wp)n[LnllenllPr | Q1]

(7-GET)
(]Q/)lCm
—_

P

QP (wa)(h1)Q,

n[Lallenl| P | Q] == w@)(n[InlcnllP1 | Q:])

P

Table 9. Commitments: transitions

(PAR) (RE9

P-=0 P50 né¢m)
P1Q-01Q (vn)P - (vn)O
(7-AMB) (REPL)

pP— P P50
n[l||e|P] == n[l||e|P] 1x.P SimP|O

Table 10.Commitments: Structural transitions

Lemma 4. P |1 iff p "INl sy el | m{d) 0] | R) for all m, ¢
and for somd’, ¢, p, Q, R.

As last step towards defining labelled bisimilarity, létdenote the set of labels

that includes both the first order labels defined in TablesdI@hand the HO ones of
Table[11. In the following notational convention we letange overl. Let—> denote

the reflexive and transitive closure e%.
1. £> denotes—> =,
2. =2 denotes— if A = 7 and=>> otherwise.

Definition 3 (Bisimulation). A symmetric relatiorik over closed processes is a bisim-
ulation if PRQ and P X p imply there existg)’ such that

-Q 2 Q' and

- P'RQ'.

Two closed processddand(are bisimilar, writtenP =, @, if PRQ for some bisim-
ulationR.

The definition of bisimulation is extended to arbitrary pgeses as usual:

Definition 4 (Full Bisimilarity). Two processe® and @ are fully bisimilar, written
P = Q, if Ps =, Qs for every closing substitutiomthat respects types.

Following the proof scheme dt[#2,7] we can show that fullmiarity is preserved
by context.

Theorem 3. Full bisimilarity is a congruence.

Moreover from Lemm&l4 it follows that:
Lemma 5. Full bisimilarity is barb preserving over closed processes
Proof. SupposeP, Q are closed processeB,~. Q andP |}.

By LemmaDI_P n[FHcHIn]_m)[@”d”o]
n[I[|c[lin]m[8]|c’[|0]
=

P’ for all m,c and somel’,c, P’. As a conse-
Q' for some@’. In particular, there is &"” such that
Q'. From Lemmd¥ we dedue@” | and hence) |}l as

quence@

0 — Q" n[L [lellin]m(0]|e
required.

llo]

(HO IN)
p i lenlinnl sy PPy 1 en(Tn) < | em(In)

o e lin)T len @)
P — @p)(n[Lnllenl| Pr | Q]| P2)
(HO INC)
p mirmleniCEnon) 5 PYPy 1 ea(Tm) Up < | em(In)

m[Tr |lem ||inC(en:p) n][Inllen||Q] ~
P eng W) ([T lenl| P | Q1| P2)
(HO Co-IN)
n[I'nl|lcn in] ~
p ™ Gay PP, 1 en(Tn) < L em(In)

AL len [om(Tom e 1Q)
p — @p)(n[Lallenll Pr [m[Tnllem Q] | P2)
(HO Co-INC)
p et emOl (s pyP, 1 en(Tm) < | em(Th) U p

n[Ip |len IInC(em :p)lm[Im llem [|Q] ~
P m#) WB)(nlLullenll Py | m{Tmllem |Q | P2)
(HO OurT)
m[Iy, || em |Jout n) ~
p i lenlot sy PP 1 () < | em(Ty)

m[Fm“cmHout n][rn“Cn“Q] [F HC “R] ~
P Dol Qlataleal® o5 (g lleq|| Py |l leal| P2 | Q1] R])
(HO OuTtC)
p mirmlen ot n) (5 pyPy 1 ea(Tn) Up < | em(Ih)

m[Im [lem JoutClen:p) n][Tnllen ||QlalTyllcq I R]

P = (wB) (Ll lleqll Py | nlTnlea P2 | Q1| R])
(HO OuTPUT) (HO PuT)

PR wp) (P e x| c} P e gy P

PR WP QE =y P g (P Q(E = 1)

(HO ouTtpuT!)
(=)Te

P2 wp)anyp'

() Tem[Tmlleml|R | Q , - j -
P = WP) (M lem|| P’ | R] | Q{3 := M})

Table 11.Commitments: Higher-Order transitions

Finally, we prove the desired result thatis contained ire.
Theorem 4 (Soundness of Full Bisimilarity).If P ~ @ thenP = Q).

Proof. It suffices to show that- is a barbed bisimulation up te (since then it fol-
lows that=~= - ie. the composition of the relations, ~ and= - is also a barbed
bisimulation andP ~ @ and=~=C% imply P = Q). This follows from the fact that

~"
~.

1. is a congruence: Theordih 3.
2. isreduction closed on closed processes: Suppogeare closed processd’,~ ()

andP — P’. By TheorenfRP ——= P’. SinceP ~ @, there exist%)’ such that
Q = Q" andP’ =~=(Q'.
3. is barb preserving on closed processes: Lefdma 5.

We conjecture incompletenessefor the same reason the authorsof [7] conjecture
incompleteness of the full bisimilarity arising from a slaniLTS for NBA, namely the

difficulty of finding a context which discriminates the Iah(@?[)“. We conjecture also
that a LTS forBACI inducing a complete full bisimilarity could be developectie
style of [4].

5 Examples

In this section we sketch some examples in order to show theesgiveness BACI .
Before doing so, we define the following auxiliary notationmiake the examples easier
to read.

a=[Ile]P] = ofI'|[c|fin | tout | P]

This allows sibling and nested ambientscofo freely enter and exit. Note that™
allows to_enter either ambients which do not communicatl wibr ambients whose
communication port name is already knowndsy

We convene not to write the types of the |nput variables siheg are always clear
from the context.

5.1 Remote printer

For this example we consider two networks (represented ageais) calledh1 andn?2.
Ambientnl is the network where a client is located amlthe one where a printer is
located. Although the client ignores the path to the printtwork, inn1 there is also
arouter, calledr1to2, that knows the path te2. For simplicity, we place:1 andn2
at the same nesting level inside a larger ambient, calléd-. However, in generah1
andn?2 can be far from each other within the nesting hierarchies.

INTERNETZ inter=[0]|c/[N1| N2
N1£ n1=[0] c:|[CLIENT | ROUTER
N2 £ 1n2=[)||c;|PRINTER

The idea is that the client sends a pijoih to PRINTERvia ROUTER A job ambient
should receive two parameters (data and printer name)@bIENT after releasing the
job. After receiving the parameters, the job exits the ¢lam enteROUTER There,
it shall receive the path ta2, where the printer is located. After reaching, the job
enters the printer and communicate the data to be printed.

JOB,; = job[Tjob ||| (d, p)Teet.out cl.in r1to2.(route) e route.in p.(d)Terr]
WhereFjob é {(data X amb)TCcl , capTCT’ dataTCpr}

Notice that thejob ambient is able to communicate with different parent portiffer-
ent TOCs. Hereg; is the port of the jobg,; is the port of the client;, is the port of the
router and:, is the port of the printer.

CLIENT spawns the job and sends the data to be printed using the jbleaim
Then, the job is received BROUTERwhich gives the job the route te2. Finally, the
job enterPRINTERand delivers its data.

CLIENT £ client1=[Teiient1 || cal| {(d1, printer1))ti | 1 JOBuyient]
wherel.jcni1 = {(data x amb)!<}

ROUTER2 r1t02= [cap!®||c,||'((out r1t02.0ut nl.in n2))+%]
PRINTERZ printer1=[data‘®||c,.||! (d)*]

After delivering its data thgob ambient becomes inactive and useless. Using the alge-
braic properties we can show thab[I ;s |c,||0] = 0 and therefore

printer1=[data® || c,,.||' (d)* | job[Tjob||c;]|0]] =
printerli[datalcj llepr]|! (d)tei]

All these garbageambients that accumulate inside the printer ambient carafadys

discarded. .]
Since different ambients can have the same port name, marnedthe client can

have port name.; and more than one server the port natpg even if the ambients
have different names. Moreover, we can add more clients angkps without changing
JOBor ROUTER

N1’ £ n1=[0]|c;[|CLIENT | CLIENT’ | ROUTER
N2’ £ n2=[0)] c2||PRINTER PRINTER]

CLIENT’ £ client2= [Liieni2 ||ca|| ((d2, printer2)) i | | JOByenta]
wherel.cniz 2 {(data x amb)!%}

PRINTERZ printer2=[data'® ||c,,||! (d)+%]

Havingc.; as a port name for all clients arg, for all servers allows any client to use
any available printer, and not just a particular one as irptiegious exampleCLIENT’

can also us®RINTER’by sending the messadéd2, printer2))!¢ to the spawned
job.

The routing in the previous example was relatively simplénwnly one destination,
only one route and only one router. How can we route a job todifferent networks,
for instancen2 andn3? Here, we can get the destination network parameter from the
client and use it to find the corresponding route. Howevemmed some mechanism to
determine if we choose the route o2 or the route fon3 depending on that parameter.
There are no control flow primitives in the calculus similathe test for equality found

in w-calculus, for instance. Nevertheless, we can instructlieat to send the name
of the router serving a given printer network (assuming weeradifferent router for

each destination network), but the client would need to ktteevrelation between the
destination and the router that serves that destinatioat iEhnot very tidy. Besides,
we would need to change the job interface, which seems to tye"natural” as it is.
Another option is to take advantage of the locality of naned ase the same name
for both the destination network and the router serving thute to that destination. We
now re-define the components of the system according to tiegeequirements:

INTERNET2 inter=[0]|c;|N1" | N2” | N3

N1” £ n1=[0||c;||CLIENT | CLIENT’ | ROUTER ROUTER]
N2” 2 n2=[0)]|co||PRINTER

N3 2 n3=[0)|cs||PRINTER]

We moved one of the printers to netwon® to make the example more interesting.
With this setting, any client located o#l should be able to send a job to either the
printer onn2 or the printer om3. For this purpose, we change the name of the existing
router (routing jobs tm2) and also add a new router that serves jobs headingto
Both routers have the same name as the routes they serve, tsisame names, we
don’t need to require the client to know the name of the rauf€his gives us a clean
and natural representation. We have to change the defimifid®B and theCLIENTs
since in the previous example the router name was “hardef@aal now is a parameter
given by the client.

JOB,; £ job[Ijob||c;l|(d, p,n) Tt .out cl.in n.(route) 1 route.in p.(data)']
wherelj,, £ {(data x amb x amb)T¢ cap'er datal“"}

CLIENT £ client1=[Lejient1 || ca||{(d1, printer1, n2)) ¢ | 1 JIOBuenti]
wherel e = {(data x amb x amb)!¢i}

CLIENT’ £ client2= [wiient2 ||cal|((d2, printer2,n3)) ¢ | | JOBuenta)
wherel.cniz = {(data x amb x amb)!¢i}

Finally, we change the name of the routers and we add the na@rravhich has the
same structure as the old one but with different route, ofsmu

ROUTER2 n2=[cap!“ ||c,||!{(out n2.out nl.in n2))+e]
ROUTER'2 n3=[cap'“||c,||!{(out n3.out nl.in n3)) ']

The two orthogonal concepts of interfaces and names allotw separate the in-
put/output from the mobility concerns. We can use the iate$ to group several ambi-
ents with similar input/output abilities and, at the sam®etj we can keep each ambient
identity by using different ambient names for each of them.

5.2 File servers cluster

This example represents some free download sites in whichgér has a list of servers
to choose for his download. However, for this example, waiiregthat every time a
customer requests a file download, the cluster designatesarmer from all the avail-
able servers in the cluster (i.e. all the servers that arsemwing other clients) to serve
that request. Additionally, we want a cluster administratobe able to execute some
administrative operations like shutdown or power up anyipaar server. For this rea-
son, we assign a unigue and distinctive name to each semw@eWer, we use acommon
port name and interface for all of them to allow the clustecaommunicate with all of
them.

CLUSTERZ cluster=[l.iy||ceru|| LOAD_BAL | SRVl SRV2

wherel.;,, 2 {amb x Filename!®}

LOAD_BAL2!(inC(v, : (amb x Filename)).(clname, fn)v= (clname, fn)'cr)

Theclusterincludes all the servers (only two in this example) anditiae balanc-
ing mechanism. This mechanism allows a client to enter thealutste cluster receives
the client’s request that it forwards to any available semetice that the client's com-
munication port is not known in advance to the cluster and-viersa. They are learned
on theENTERreduction, where the port names replace the variables bloyidC and
inC. Each server has two main sub-processes: the serviceadtmtthepower manage-
mentprocess. Th&ERVEprocess receives the forwarded request from the cluster am-
bient, and then it responds spawning a messenger ambiéd ¢ab. This job reaches
the client and deliver the requested file. The acute readenetice that, before receiv-
ing a requestSERVEwaits for an “on” message from the power management ambient
calledpwr. The pwr ambient is used to inform the serving process that the sésver
still on. We now show how to use this feature to “shutdown”izvee

SRV £ Srvii[[‘srviHcsrvH !(OH)lCPwT.SERVE PWFi
wherel’,,; £ {onMsg'“**" amb x Filename'¢!*}

SERVEZ (clname, fname)i¢ JOB
JOB= job[()||c;||out srvi.inC(v : data) clname .(file(fname))'?]
PWR2 pwr{onMsg! || cpur||!{(on) T¢ | in pwroff]

The purpose opwr is simple. If it is present inside a server, it enables theiserby
continuously sending “on” messages. However, if it is nasent, the server is not
able to listen (and respond) to a request. Therefore, inrdodghut a server down, the
administrator should sendOW ER_OF F message to that server.

POWER_OFFs) £ pwroff=[0||cpos|lin cluster.in s.in]
The pwr ambient would be locked insidawroff after entering that ambient. Once
inside pwroff, pwr is rendered inoperative. In fact, using algebraic propsnive can
show that

pwroff=[0]| cpottl| pwr[on Mngc”“

|cpwr|[!{on)Ter]] = 0

and get rid of thesgarbageambients.
Likewise, the administrator can restore ther ambient inside the server to “power on”
that server.

POWER_ONs) £ pwron= [(|cpon|in cluster.in s TURN_ON
TURN_ON2 pwronMsg!c

|Cpuwr||out pwron | {on) ¢+ | in poweroff]

Finally, we present a “generic” client. The clients are gani@ the sense that they
do not need to know any of the port names in advance, all of tammearned on
execution. The only requirement is that the client is wehdneed and it sends its own
name in the request. A malicious client could send a diffename. However, this can
only cause a response to be lost or sent to the wrong cliemthvidunlikely since the
malicious client needs to guess a correct client name.

CLIENT £ client=[I.i||cetient ||inC(verw : (amb x Filename)) cluster .
(client, afilenamé.inC(c; : data).(file)!5.P | Q]

This is the basic structure of a client ambient. The port neamebe changed without
restrictions./; , P andQ can be anything that does not have conflicting types with the
cluster andjob ambients . The whole configuration looks like this:

SYSTEM2 ADMIN | CLUSTER CLIENTS

The ADMIN process could include processes like those in the power geament
and theCLIENTSare also placed (initially) outside the cluster. As we haaens they
need to enter the cluster to get served.

6 Conclusions

We have presented a typed calculus of mobile ambients thairks both local and

dynamic typing. Each ambient comes equipped with a localnsonication interface

consisting of a communication port and a local view indicgthe type of the informa-

tion that may be exchanged over parent and children porsdBgthe usual communi-
cation within an ambient, messages may be exchanged acniisra boundaries. The
type system guarantees that in this case the types of thiedora of the sending and
receiving ambients agree. Since communication interface$ocal and ambients may
migrate, ambients must be able to increase their local kenbgé of their surroundings.
Therefore, the mobility rules allow an ambient to learn tbenmunication type of the

local port which it enters. Appropriate run-time checks @guired so that the enter-
ing and the host ambient agree on a topic of conversation.ngntize novel aspects of
BACI are:

— Communicating portdn contrast with previous ambient calclBACI uses names
for mobility and ports for communication.

— Named communication with paren®hile in previous calculi communication with
a parent was decided by the location of an ambienBARI, the communication
with a parent is indexed by the parent’s port, in a similar wawhich communi-
cation with a child is usually indexed. This new named comication allows an
ambient to communicate with different parents in differigpes (TOCs).

— Finer control of non-determinisnt he division between names and ports introduces
the ability to have non-determinism for mobility and deterism for communica-
tion and vice-versa, while in previous calculi, that was pagsible.

— Local typing Having different TOCs with different parents allows cahtover
which parent can exchange information, while in previousuathe type of a
communication with the parent remained fixed.

Although communication control is local this is not so for loilty. Mobility is
currently unrestricted and this poses the question if orghtralso include, in the local
knowledge of an ambient, some indication of whether the anth$ allowed to move
or not. Other items that warrant further work include: cdesing a restriction operator
on port names, considering multiple ports (possibly taldggamic port creation into
account), matching and mismatching constructs and gropgstyn order to impose
access control.

References

1. Torben Amtoft, Assaf J. Kfoury, and Santiago M. Pericaef@sen. What are
Polymorphically-Typed Ambients? In David Sands, edi&B30OP’'01 volume 2028 of NCS
pages 206-220, Berlin, 2001. Springer-Verlag.

2. Torben Amtoft, Henning Makholm, and Joe B. Wells. PolyAud Type Polymorphism for
Mobile Ambients. INTCS’04 2004. to appear.

3. H.P. BarendregtThe Lambda Calculus: its Syntax and Semant&sidies in Logic and the

Foundations of Mathematics 103. North-Holland, Amstergdaavised edition, 1984.)
4. Gérard Boudol. A Parametric Model of Migration and MdfiliRelease 1. Mikado Deliv-
erable D1.2.1, available at http://mikado.di.fc.ul.pplository/D1.2.1.pdf, 2003.

10.
11.

12.
13.

14.

15.

16.

17.
18.
19.

20.
21.

22.

23.

24.
25.

. Michele Bugliesi and Giuseppe Castagna. Behavioraliyfor Safe AmbientsComputer

Languages28(1):61 — 99, 2002.

. Michele Bugliesi, Giuseppe Castagna, and Silvia CrafaceAs Control for Mobile Agents:

The Calculus of Boxed Ambient®A\CM Transactions on Programming Languages and Sys-
tems 26(1):57-124, 2004.

. Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vlaitio Sassone. Communication

and Mobility Control in Boxed Ambients. To appearlimformation and ComputatiorEx-
tended and revised version of M. Bugliesi, S. Crafa, M. Mgaral V. Sassone. Communica-
tion Interference in Mobile Boxed Ambients. In FSTTCS'08|ume 2556 of LNCS, pages
71-84. Springer-Verlag, 2002.

. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mlityi Types for Mobile Ambients.

In Jiri Wiedermann, Peter van Emde Boas, and Mogens Nietgbtors,ICALP’99, volume
1644 of LNCS pages 230-239, Berlin, 1999. Springer-Verlag.

. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Arabt Groups and Mobility Types.

In Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, PeteroBsdd, and Takayasu
Ito, editors,TCS'0Q volume 1872 oL NCS pages 333-347, Berlin, 2000. Springer-Verlag.
Extended version to appear in Information and Computasipacial issue on TCS’00.

Luca Cardelli and Andrew D. Gordon. Mobile Ambientsheoretical Computer Science
240(1):177-213, 2000. Special Issue on Coordination, & Métayer Editor.

Giuseppe Castagna and Jan Vitek. Seal: A Framework far&&obile Computations. In
Henri E. Bal, Boumediene Belkhouche, and Luca CardellitoesljInternet Programming
Languagesvolume 1686 oL NCS pages 47—77, Berlin, 1999. Springer-Verlag.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio @mnetti, and Rosario Pugliese. Dy-
namic and Local Typing for Mobile Ambients. IRCS’04 2004. to appeatr.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio @mnetti, and Ivano Salvo. M3: Mo-
bility Types for Mobile Processes in Mobile Ambients. In JaHarland, editoiCATS’03

volume 78 ofENTCS Elsevier, 2003.,)))
Rocco De Nicola, GianLuigi Ferrari, and Rosario PuglieKlaim: a Kernel Language for

Agents Interaction and MobilitylEEE Transactions on Software Engineer;jirgg(5):315—

330, 1998.
Elio Giovannetti. Ambient Calculi with Types: a Tutdrién Corrado Priami, editoiGlobal

Computing - Programming Environments, Languages, Secamil Analysis of Systemal-
ume 2874 oLLNCS Berlin, 2003. Springer-Verlag.

Healfdene Goguen. Typed operational semantics. Inavgibla Dezani-Ciancaglini and
Gordon Plotkin, editorsTLCA'95 volume 902 ofLNCS pages 186-200, Berlin, 1995.
Springer-Verlag.

Andrew D. Gordon and Luca Cardelli. Equational progsroif mobile ambientsMathe-
matical Structures in Computer Sciend&(3):371-408, 2003.

Mattew Hennessy and James Riely. Resource Access Cionigstems of Mobile Agents.
Information and Computatiqrl73:82—-120, 2002.

Matthew Hennessy, Massimo Merro, and Julian Rathke. afidsva behavioural theory of
access and mobility control in distributed system (exteratestract). In Andrew D. Gordon,
editor, FOSSACS’03volume 2620 of.NCS pages 282-299, Berlin, 2003. Springer-Verlag.
Francesca Levi and Davide Sangiorgi. Controlling fetence in AmbientsTransactions
on Programming Languages and SysteB%1):1-69, 2003.

Cédric Lhoussaine and Vladimiro Sassone. A Dependdyihed Ambient Calculus. In
David Schmidt, editorESOP’04 volume 2986 ofLNCS pages 171-187, Berlin, 2004.
Springer-Verlag.

Massimo Merro and Matthew Hennessy. Bisimulation Coegces in Safe Ambients. In
Neil D. Jones and Xavier Leroy, editoBOPL'02 pages 71-80, New York, 2002. ACM
Press.

Massimo Merro and Vladimiro Sassone. Typing and Subtyplobility in Boxed Ambients.
In Lubos Brim, Petr Jancar, Mojmir Kretinsky, and Antonindéua, editorsCONCUR’'02
volume 2421 oLNCS pages 304-320, Berlin, 2002. Springer-Verlag.

George C. Necula. Proof-carrying code. In Neil D. Joadi&pr,POPL'97, pages 106-119.

ACM Press, 1997. o o)
Davide Sangiorgi and Robin Milner. The problem of “WeakiBulation up to”. In Wal-

ter R. Cleaveland, editoEONCUR’92 volume 630 ofLNCS pages 32-46, Berlin, 1992.
Springer-Verlag.

	Boxed Ambients with Communication Interfaces

