
Boxed Ambients with Communication Interfaces?

Eduardo Bonelli1, Adriana Compagnoni1,

Mariangiola Dezani-Ciancaglini2, and Pablo Garralda1

1 Stevens Institute of Technology, U.S.A.
2 Università di Torino, Italy

Abstract. We defineBACI (Boxed Ambients with Communication Interfaces),
an ambient calculus allowing a liberal communication policy. Each ambient car-
ries its local view of the topic of conversation (the type of the information being
exchanged) with parents and children that will condition where it is allowed to
stay or migrate to and which ambients may be allowed to enter it. The topic of
conversation view of ambients can dynamically change during migration.BACI
is flexible enough to allow different topics of conversationbetween an ambient
and different parents, without compromising type-safety:it uses port names for
communication and ambient names for mobility. Capabilities and co-capabilities
exchange port names and run-time typing information to control mobility. We
show the type-soundness ofBACI proving that it satisfies the subject reduction
property. Moreover we study its behavioural semantics by means of a labelled
transition system.

1 Introduction

In an ambient calculus one can distinguish two forms of dynamic behavior:communi-
cation andmigration [10]. By communication we mean the exchange of information
between processes possibly located in different ambients.By migration, we mean the
ability of an ambient to relocate itself by entering or exiting other ambients. Com-
munication and migration are deeply related, since migration may enable or disable
communication and vice-versa.

In calculi such as BA and NBA, and those in [6,23,7,11], an ambient can commu-
nicate with its parent ambient (the host ambient) or with a child ambient (an ambient
it contains), and there may also be local communication among the processes within
an ambient. In typed ambient calculi, communication is controlled by types, and the
type of information being exchanged is often calledtopic of conversation (TOC). For
example, if an ambient sends the number3 to its parent, we can say that the TOC isInt.

Furthermore, notice that migration (entering or exiting anambient) changes the
parent of an ambient. The existing typed mobile ambient calculi fix a TOC for commu-
nication with the parent for each ambient, and even if migrating changes the parent the
TOC remains fixed.

In this paper we introduceBACI , a new mobile ambient calculus where each am-
bient carries a communication interface specifying how an ambient may interact with
the environment. The design ofBACI was driven by the desire to lift the fixed-TOC-
with-parent restriction allowing an ambient to change TOC when changing parents and
enabling straightforward design of ambients that need to exchange information of dif-
ferent types with different ambients.

? This research was partially supported by the EU within the FET - Global Computing initiative,
project DART ST-2001-33477, by MURST Cofin’02 project McTati, and by the USA under the
National Science Foundation project No. CCR-0220286 ITR: Secure Electronic Transactions.
The funding bodies are not responsible for any use that mightbe made of the results presented
here.

HOST 1 HOST 2

ROUTER

NETWORK

PKG
(data, addr)

HOST 1 HOST 2

ROUTER

NETWORK

PKG
route

HOST 1 HOST 2

ROUTER

NETWORK

PKG

route

data

Fig. 1. Example of an ambient using different TOCs with different parents

Consider the example in Figure 1, whereHOST 1 needs to senddata to HOST 2,
but HOST 1 does not know whereHOST 2 is located. However,HOST 1 knows the loca-
tion (addr) of a ROUTER that can forward toHOST 2 the packet (PKG) containing the
data. Assuming this,HOST 1 spawns the packet and forwards the data to be transported
along with the location of the router. Next, the packet movesinside theROUTERwhere
it obtains theroute to HOST 2. Finally, using thatroute the packet reachesHOST 2
and delivers thedata. Notice that thePKG ambient uses three different communication
types with its three different parents (i.e.HOST 1, ROUTER andHOST 2). In order to
implement this example in calculi where each ambient has a fixed type for parent com-
munication, additional messenger ambients are needed to encode the communication
with the different parents, using an auxiliary messenger ambient for each communica-
tion type.BACI ’s new features offer more flexibility to the designer to deliver more
natural specifications.

Ports and NamesThe communication with a child ambient is often labeled with
the ambient’s name (named communication):

n[[[〈3〉↓m|m[[[· · ·]]] | · · ·]]] (ambientn wants to send3 to its childm)

However, in communication with a parent the name is often left implicit, since the
parent can be uniquely determined by the location of an ambient.

n[[[m[[[〈3〉↑ | · · ·]]] | · · ·]]] (ambientm wants to send3 to its parentn)

In order to allow different TOCs with different parents,BACI introduces named com-
munication with parents.

As we mentioned earlier, we can distinguish between two forms of dynamic behav-
ior: communication and mobility. Previous calculi used ambient names to specify both
communication and mobility. However, adding the possibility to communicate with dif-
ferent parents in different types stressed the difference between them. Our calculus,
BACI , induces the separation of concerns by using names only for mobility and intro-
ducing the concept ofportsfor communication. Therefore to migrate to an ambient we
use its name, but to exchange information with it we use its port. In this framework, an
ambientn with communication portc is writtenn[[[c‖ · · ·]]], so for example:

n[[[cn‖ · · · | m[[[cm‖〈3〉↑cn]]] | · · ·]]] (ambientm wants to send3 to parent portcn)

The introduction of communication ports naturally leads toassociate TOCs to ports,
instead of associating TOCs to ambient names as usual. Thereis no global knowledge

on this association: each ambient has itslocal viewwhich can dynamically increase
with relocation. An ambientn with port c and local viewΓ is written n[[[Γ‖c‖ · · ·]]].
Then our last example becomes:

n[[[· · · Int↓cm‖cn‖ · · · | m[[[· · · Int↑cn‖cm‖〈3〉↑cn | · · ·]]]]]]

To sum up, inBACI each ambient comes equipped withits own local communication
interface. A communication interface consists of

– a communication portused by the other ambients to communicate with the current
one and

– a local viewassociating topics of conversation to parent and child ports.

Communication interfaces are required for communication across ambient boundaries.
In order for communication across ambient boundaries to take place a pair of communi-
cation ports must be coupled: asending communication port(provided by the sending
ambient) and areceiving communication port(provided by the receiving ambient). The
following (INPUT ↓-↑) reduction rule models one form of communication across am-
bient boundaries (the other one consists in reversing the roles of sending ambient and
receiving ambient)

m[[[Γm‖cm‖(x̃ : ϕ̃)↓cn .P
∣

∣ n[[[Γn‖cn‖〈M̃〉↑cm .Q | R]]] | S]]]
−→

m[[[Γm‖cm‖P{x̃ := M̃}
∣

∣ n[[[Γn‖cn‖Q | R]]] | S]]]

The sending ambient isn and the receiving ambient ism. The communication interface
of m consists of the communication portcm and the local viewΓm. Likewise, the
communication interface ofn consists of the communication portcn and the local view
Γn. In order for communication to succeed, the type of the information sent through the
sending communication port (cn) must coincide with the one expected by the receiving
communication port (cm). More precisely, the messagẽM in n should have some type
ϕ̃ that coincides with the one that the ambientm is expecting.

Non-determinism The same port name may be used by different ambients. For
example, in

n[[[Γn‖c‖〈q〉↑cp | P]]] | m[[[Γm‖c‖〈in〉↑cp | Q]]]

both ambients use the same port namec as part of their communication interfaces.
Moreover, both ambients intend to communicate with a parentport cp, but in different
ways: ambientn wants to send the nameq while ambientm wants to send the capability
in (which is used to allow an ambient to enter). In other words, for n, cp is a parent port
for exchanging ambient names, andΓn containsamb↑cp , and form, cp is a parent port
for exchanging capabilities andΓm containscap↑cp . As a consequence, only one of
these ambients would be able to enter a host ambientp with communication portcp

willing to communicate with them. For example, in

p[[[Γp‖cp‖(x : ϕ)↓c.R | in.0]]] | n[[[Γn‖c‖〈q〉↑cp | in p.0]]] | m[[[Γm‖c‖〈in〉↑cp | in p.0]]]

if ϕ = ↓ c(Γp) = amb, thenn is allowed to enter and ifϕ = ↓ c(Γp) = cap thenm is
allowed to enter. Both of the above examples are typable in our system assuming that
the port of the host ambient is different fromcp.

Related Work Modeling the word wide web requires the space and the mobility in
space as new dimensions of computing. In the first proposals,i.e. in theDπ-calculus
[18] and in the languageKlaim [14], the structure of locations is flat. Instead theMo-
bile Ambient (MA)calculus [10] deals with a hierarchical structure of locations (called

ambients). An interestingcore modelgeneralising many of the available calculi and
languages has been developed inside the Mikado project [4].

Many variants of MA have been designed: for a tutorial see [15]. A crucial choice
in all these calculi is the form ofinteractionbetween processes in different ambients.
In the original calculus [10] interaction is only local to anambient, and in order for
processes in different ambients to communicate, at least one of the ambients’ bound-
aries have to be dissolved. In [10,20,5,22,1], theopen capability dissolves the ambient
boundary. The calculusM3 [13,12], allows general process mobility. InBoxed Ambi-
ents (BA)[6,23,7], parents and children can communicate as in theSealcalculus [11].
Our calculus,BACI , follows this last protocol.
Theco-actions(first introduced in [20], and then used with modifications in[5,22,23,7])
require also the agreement of the “passive” ambients involved in mobility. The co-
actions ofBACI in which port names are communicated are inspired by those of[7]:
there the communication involves only the name of the entering ambient.

Ambient calculi are often typed: the types assure behavioural properties concerning
communication, mobility, resource access, security, etc.[8,20,9,5,1,6,22,23,7,21]. To
our knowledge beforeBACI only the calculi of [5] and [12] considertype information
local to ambients, while in the other proposals there is a global environment containing
all typing assumptions. When dealing with computing in widearea “open” systems it is
sensible to assume the existence of different local environments. The price to pay is that
static checks are no longer enough to assure correctness: wenow need to carry typing
information at run time. Following ideas from [16] we define an operational semantics
with types, which is simpler that a fully-fledgedtyped operational semanticsin the
sense that we only need to check agreement between the local views upon mobility. In
some sense it can be seen as special case ofproof carrying code[24]. The local type
information inBACI can dynamically increase with ambient movements: something
similar happens in the version of Dπ-calculus considered in [19].

Behavioural types[1,2] look mainly as computational traces: they allow polymor-
phic communications.BACI ’s communication interfaces also are a permissive tool for
typing non local communications. In [2] the type of communication with the parent
changes when communication takes place. However, they do not have named commu-
nication with the parent, and cannot express the fact that communication with different
parents has different types as in our last example.

Paper PlanThe rest of this paper is structured as follows. Section 2 introduces the
syntax of the calculus and its operational semantics. Section 3 presents the type system.
Section 4 studies a reduction barbed congruence and a labeled transition system (LTS).
The bisimilarity induced by the LTS is shown to be sound with respect to the con-
gruence. Some congruence laws are also identified. Section 5discusses two extended
examples highlighting the features ofBACI . Finally, we conclude and suggest further
research.

2 The Calculus

2.1 Terms and Types

The syntax for types and terms inBACI is given in Table 1. Notice thatBACI is a
typed calculus and as such by process we always mean a well-formed process accord-
ing to the rules of Table 6.We assume two disjoint denumerable sets of variables one
for name, capability and message variables, and the other for port variables. We use
m, n, o, p, q . . . for ambient name constants andx, y, z, . . . for ambient name variables,
while α, β range over both ambient constants and ambient variables. Communication
port constants are writtenc, cn, . . . andv, v′, . . . are used for communication port vari-
ables, whileγ is either a communication port constant or variable. The expressions
inC(v : ρ) α , outC(v : ρ) α , inC(v : ρ), outC(v : ρ) arebindersfor v in prefixes and
processes.

Basic types
ϕ::=amb ambient

| cap capability
Located types

τ ::=(ϕ1, . . . , ϕk)η

Names:
α, β::=n name constant

| x name variable
(Co)-Capabilities:
C, D::=in α enter

| out α exit
| in allow enter
| out allow exit
| C.D path
| x capability variable

Prefixes:
π::=C capabilities

| (x1 : ϕ1, . . . , xk : ϕk)η input
| 〈M1, . . . , Mk〉

η output
| inC(v : ρ) α port enter
| outC(v : ρ) α port exit
| inC(v : ρ) allow port enter
| outC(v : ρ) allow port exit

Communication types
ρ::=shh no exchange

| ϕ1, . . . , ϕk exchange tuple
Local view

Γ ::=∅ empty
| Γ, τ interface

Ports:
γ::=c port constant

| v port variable
Locations:

η::=↑ γ parent portγ
| ↓ γ child portγ
| ? local

Messages:
M, N ::=α name

| C capability
| x message variable

Processes:
P ::=0 nil process

| P1 | P2 composition
| (νννn)P restriction
| !P replication
| π.P prefixing
| α[[[Γ‖c‖P]]] ambient

Table 1.Syntax ofBACI

The process0 is the null process;P1 | P2 denotes the parallel composition of pro-
cessesP1 andP2; (νννn)P is the usual restriction operator that binds all free occurrences
of n in P ; ! is the replication operator. The expressionπ.P denotes the process that
performs an action (or a co-action)π and then continues withP . Theπ actions includes
input/output (I/O) actions and mobility actions. The I/O exchanges are directed upwards
to the parent ambient, downwards to a child ambient or locally to other processes at the
same level. The direction of each communication is determined byη. The locationη is
the location of the communication exchange:↑ γ denotes communication with a parent
having the portγ, ↓ γ denotes communication with a child with portγ, and? denotes
local communication.

The information exchanged in input/output are tuples of messages. Each message
can be either an ambient name, or a (co)-capability1. The ambient names received as
messages, can substitute a variable ambient name in an ambient constructor or in a capa-
bility. Capabilities and co-capabilities constitute the mobility actions and co-actions: the
capabilities allow an ambient to enter another ambientα, usingin α; or to exit an ambi-
entα, usingout α. In order to be executed, each capability must be matched with its re-
spective co-capability:in with in andout with out. Both capabilities and co-capabilities
can be sent as messages. A single (co)-capability or several(co)-capabilities forming a
path may be sent.

Beside these standard mobility actions and co-actions,BACI introduces theinC

andoutC actions and their corresponding co-actionsinC andoutC. These actions and
co-actions are similar to the enter and exit (co)-capabilities. However, they also have a

1 The types of messages can be easily extended to handle basic types such as integer or boolean
without any technical problems, but that is omitted here forthe sake of simplicity.

!P ≡ P | !P (STRUCT REP PAR)
(νννn)(νννm)P ≡ (νννm)(νννn)P (STRUCT RES RES)
(νννn)(P | Q) ≡ P | (νννn)Q, if n /∈ fn(P) (STRUCT RES PAR)
(νννn)m[[[Γm‖cm‖P]]] ≡ m[[[Γm‖cm‖(νννn)P]]], if n 6= m (STRUCT RES AMB)

in n.P ≡ inC(v : shh) n .P, if v /∈ fv(P) (STRUCT IN INC)
out n.P ≡ outC(v : shh) n .P, if v /∈ fv(P) (STRUCT OUT OUTC)
in.P ≡ inC(v : shh).P, if v /∈ fv(P) (STRUCT CO-IN CO-INC)
out.P ≡ outC(v : shh).P, if v /∈ fv(P) (STRUCT CO-OUT CO-OUTC)

(C.D).P ≡ C.D.P (STRUCT .)

Table 2.Structural Congruence

port variable that is bound at execution time with the port ofthe counterpart ambient
involved in the mobility action. BecauseBACI uses port names exclusively for com-
munication and ambient names only for mobility, knowing thename of an ambient is
not enough to establish a communication, the port associated with that ambient must be
known as well.

Port names cannot be sent as messages; therefore, the only way of learning a port
name is by using theinC andoutC actions with their co-actions. In their execution, the
ambients affected by this action exchange port names using the binders in these special
(co)-actions. Additionally, in order to retain typability, port variables have an associ-
ated communication typeρ. If the communication type isshh, there is no exchange of
information, otherwise an exchange tuple of basic types is used to indicate exchange
of information of that type. The types used on these actions and co-actions must be
compatible, their relation will be established by the operational semantics rules.

An ambient is writtenα[[[Γ‖c‖P]]] whereα is an ambient name constant or an ambient
name variable andP the enclosed process. The local viewΓ is a finite set of located
types, i.e. of exchange tuple types decorated with a location. The local view is used
to specify the communication type of the enclosed processP . The local view together
with the communication portc constitute the communication interface of the ambient.

Terms differing only in the names of their bound variables are considered equal.
Furthermore,Barendregt’s convention[3] is assumed: all variables are pairwise distinct
and distinct from all free variables. This avoids cluttering the presentation with condi-
tions on the names of variables in order to prevent variable clash and variable capture.

2.2 Operational Semantics

The operational semantics is defined in terms of structural congruence and reduction
rules.

Structural congruenceis the least congruence such that(| ,0) is a commutative
monoid and the axioms of Table 2 are satisfied. The definition is standard except for
the rules in the second group (wherefv(P) is the set of free variables occurring inP).
They state that the (co-)capabilitiesin n, out n, in, out may be identified with particu-
lar instances of the prefixes “port enter/exit” and “allow port enter/exit”. The rationale
here is that these prefixes behave as the corresponding (co-)capabilities when they can-
cel the communicated port name (conditionv 6∈ fv(P)) and no topic of conversation is
communicated (i.e. the communication type isshh). We cannot, however, do away com-
pletely with the (co-)capabilities since, in contrast to the aforementioned port prefixes,
they may be sent as messages.

Join of communication types

ρ t ρ′ =

(

ρ if ρ = ρ′ or ρ′ = shh,
ρ′ if ρ = shh,
⊥ otherwise.

Preorder on communication types

ρ � ρ′ iff ρ t ρ′ = ρ′

Addition of located types to local views

Γ ⊕ ρη =



Γ if ρ = shh,
Γ, ρη otherwise.

Application of locations

– to located types

η(τ) =



ρ if τ = ρη,
shh otherwise.

– to local views
η(∅) = shh

η(Γ) =
F

τ∈Γ η(τ)

Location substitution

– for prefixes

π{{η := η′}} =

8

<

:

(x1 : ϕ1, . . . , xk : ϕk)η′

if π = (x1 : ϕ1, . . . , xk : ϕk)η,

〈M1, . . . , Mk〉
η′

if π = 〈M1, . . . , Mk〉
η,

π otherwise.

– for processes

• 0{{η := η′}} = 0

• (P1 | P2){{η := η′}} = P1{{η := η′}} | P2{{η := η′}}
• ((νννn)P){{η := η′}} = (νννn)P{{η := η′}}
• (!P){{η := η′}} =!P{{η := η′}}
• (α[[[Γα‖cα‖P]]]){{η := η′}} = α[[[Γα‖cα‖P]]]
• (π.P){{η := η′}} = π{{η := η′}}.P{{η := η′}}

Table 3.Operations on Locations and Local Views

Mobility

(ENTER)

n[[[Γn‖cn‖inC(v : ρ) m .P1 | P2]]]
˛

˛ m[[[Γm‖cm‖inC(v′ : ρ′).Q1 | Q2]]]
−→

m[[[Γm ⊕ ρ′↓cn‖cm‖n[[[Γn ⊕ ρ↑cm‖cn‖P1{{↑ v := ↑ cm}} | P2]]] | Q1{{↓ v′ := ↓ cn}} | Q2]]]

if ↑ cm(Γn) t ρ � ↓ cn(Γm) t ρ′

(EXIT)

p[[[Γp‖cp‖n[[[Γn‖cn‖m[[[Γm‖cm‖outC(v : ρ) n .P1 | P2]]] | Q]]] | outC(v′ : ρ′).R1 | R2]]]
−→

p[[[Γp ⊕ ρ′↓cm‖cp‖m[[[Γm ⊕ ρ↑cp‖cm‖P1{{↑ v := ↑ cp}} | P2]]] | n[[[Γn‖cn‖Q]]] | R1{{↓ v′ := ↓ cm}} | R2]]]

if ↑ cp(Γm) t ρ � ↓ cm(Γp) t ρ′

Communication

(LOCAL)
(x̃ : ϕ̃)?.P

˛

˛ 〈M̃〉?.Q −→ P{x̃ := M̃} | Q

(INPUT ↓-↑)
m[[[Γm‖cm‖(x̃ : ϕ̃)↓cn .P

˛

˛ n[[[Γn‖cn‖〈M̃〉↑cm .Q | R]]] | S]]]
−→

m[[[Γm‖cm‖P{x̃ := M̃}
˛

˛ n[[[Γn‖cn‖Q | R]]] | S]]]

(OUTPUT↓-↑)

m[[[Γm‖cm‖〈M̃〉↓cn .P
˛

˛ n[[[Γn‖cn‖(x̃ : ϕ̃)↑cm .Q | R]]] | S]]]
−→

m[[[Γm‖cm‖P
˛

˛ n[[[Γ‖cn‖Q{x̃ := M̃} | R]]] | S]]]

Structural Rules

(STRUCT)
P ≡ P ′, P ′ −→ Q′, Q′ ≡ Q

P −→ Q

(CONTEXT)
P −→ Q

E{P} −→ E{Q}

Evaluation Contexts

E ::= {·} | E|P | P |E | (νννn)E | α[[[Γ‖c‖E]]]

Table 4.Operational Semantics

The reduction relation is given by three groups of rules:mobility, communication
andstructural. The structural rules are standard. Before describing mobility and com-
munication, we need some definitions given in Table 3.

The join of communication types (ρt ρ′) and the preorder on them (ρ � ρ′) simply
state thatshh is smaller than any other communication type.

The addition of an expressionρη to a local viewΓ (Γ ⊕ ρη) changesΓ only if ρ is
a tuple of basic types, i.e. ifρ 6= shh. Notice that only in this last caseρη is a located
type.

The application of a locationη to a located typeτ (η(τ)) returns either the com-
munication type ofτ or shh according to whether the location ofτ is η or not. The
application of a locationη to a local viewΓ (η(Γ)) is the join of the applications ofη
to the located types inΓ . Soη(Γ) is different from⊥ only if Γ contains at most one
located type whose location isη; η(Γ) is shh whenΓ contains no located type whose
location isη.

The location substitution ({η := η′}) replaces locations as superscripts of input and
output prefixes. They propagate on processes in the standardway but they never cross
ambient boundaries.

The mobility rulesconsist of (ENTER) and (EXIT). Since they may both be ex-
plained along similar lines, we discuss only the former. The(ENTER) rule allows an
ambientn to enter a sibling ambientm. Oncen has enteredm, communication may
take place. However, this requires thatn directs its messages throughm’s communica-
tion port (namelycm) and, likewise, thatm directs its messages throughn’s communi-
cation port (namelycn). Sincen may not know the name ofm’s communication port,
the capabilityinC(v : ρ) m and the co-capabilityinC(v′ : ρ′) provide port variablesv
andv′ for such communication ports to be made available to the interested parties.

Note that the type of the information that may be exchanged onthe port is also
provided at run-time so thatn andm may use compatible topics of conversation. Indeed,
as a consequence ofn enteringm, the local views of both ambients are updated. Since
this takes place at run-time, appropriate checks are required in order to guarantee that
such extensions are sound. This is the role of the condition↑ cm(Γn)tρ � ↓ cn(Γm)t
ρ′. This condition may be explained as follows:

1. First notice that↑ cm(Γn)tρ must be defined, since� is a partial relation between
communication types. This implies that the new communication typeρ with loca-
tion ↑ cm to be added to the local viewΓn is compatible with any existing located
type inΓn. A similar comment applies to↓ cn(Γm) t ρ′.

2. Assumingρ1 = ↑ cm(Γn) t ρ andρ2 = ↓ cn(Γm) t ρ′, the conditionρ1 � ρ2

checks to see whethern andm agree on a topic of conversation. Note thatn may
safely avoid listening tom but not vice-versa.

The following example shows why children can safely avoid tolisten to parents but
not vice-versa, i.e. why the conditionρ2 � ρ1 is unsafe.

Take the process

p[[[∅‖c‖inC(v1 : shh) | inC(v2 : amb).〈q〉↓v2]]]

| m[[[cap↑c‖c′‖inC(v : cap) p | (x : cap)↑c.P]]] | n[[[∅‖c′‖inC(v′ : amb) p]]]

Using rule (ENTER) with the pre-order condition reversed this process might reduce
first to

p[[[∅‖c‖inC(v2 : amb).〈q〉↓v2 | m[[[cap↑c‖c′‖(x : cap)↑c.P]]]]]] | n[[[∅‖c′‖inC(v′ : amb) p]]]

and then to

p[[[amb↓c′‖c‖〈q〉↓c′ | m[[[cap↑c‖c′‖(x : cap)↑c.P]]] | n[[[amb↑c‖c′‖]]]]]]

and in this last process a wrong communication of an ambient name when a capability
is expected could occur.

Notice that with the sound rule (ENTER) the initial process only reduces to

p[[[amb
↓c′‖c‖inC(v1 : shh) | 〈q〉↓c′ | n[[[amb

↑c‖c′‖]]]]]] |m[[[cap↑c‖c′‖inC(v : cap) p | (x : cap)↑c.P]]]

i.e. only ambientn is allowed to go inside ambientp.
Thanks to the structural congruence between prefixes and (co-)capabilities, the stan-

dard enter and exit rules are mimicked by (ENTER) and (EXIT), respectively. For exam-
ple, the following (STANDARD ENTER) rule:

n[[[Γn‖cn‖in m.P1 | P2]]]
∣

∣ m[[[Γm‖cm‖in.Q1 | Q2]]]
−→

m[[[Γm‖cm‖n[[[Γn‖cn‖P1 | P2]]] | Q1 | Q2]]]
if ↑ cm(Γn) � ↓ cn(Γm)

may be simulated by (ENTER). Indeed, ifv, v′ are any port variables such thatv /∈
fv(P1) andv /∈ fv(Q1), then sincein m.P1 ≡ inC(v : shh) m .P1 andin.Q1 ≡ inC(v :
shh).Q1, by applying (ENTER) we obtain

m[[[Γm ⊕ shh
↓cn‖cm‖n[[[Γn ⊕ shh

↑cm‖cn‖P1{{↑ v := ↑ cm}} | P2]]] | Q1{{↓ v′ := ↓ cn}} | Q2]]]

Note thatP1{{↑ v := ↑ cm}} = P1 andQ1{{↓ v′ := ↓ cn}} = Q1. Also,Γm ⊕ shh↓cn =

Γm andΓn ⊕ shh↑cm = Γn (cf. Table 3).
As for thecommunication rules, the local communications are standard, while the

parent-child communications require the knowledge of the partner communication port,
as already discussed in the introduction.

3 Typing Rules

The typing environment is very simple: it says if a variable stands for an ambient name
or a capability.

Environments
Σ ::= ∅ empty environment

| Σ, x : ϕ environment

In the sequel, we only consider typing environments that assign a unique type to each
name in its domain. The typing rules define two judgements:

– Σ ` M : ϕ, read “M is a well-formed message of typeϕ”.
– Σ `c P : Γ , read “P is a well-formed process assuming the local communication

interface of its host consists of the communication portc and the local viewΓ ”.

The typing rules for the first judgements appear in Table 5.
In contrast to other systems, the (amb) rule assigns an ambient name the constant

typeamb rather than a more informative type as in the majority of systems [15]. Indeed,
more informative types presuppose the availability of (global) information on the type
of ambients. In our setting based on local views the only assumption we make is that
we can identify an ambient name when we see one.

The (cap-in -out) and (cap-in -out) rules are also simpler than in formulations based
on global knowledge of the communication types of ambients,since the corresponding
control is delegated to run-time.

The (AXIOM) and (cap-COMP) rules are standard.
The rules defining the judgementΣ `c P : Γ are given in Table 6.

(amb)
n ∈ N

Σ ` n : amb

(AXIOM)

Σ, x : ϕ ` x : ϕ

(cap-in -out)

C ∈ {in, out}

Σ ` C : cap

(cap-in -out)
Σ ` α : amb C ∈ {in α, out α}

Σ ` C : cap

(cap-COMP)
Σ ` C : cap Σ ` D : cap

Σ ` C.D : cap

Table 5.Well-formed Messages

Regarding the typing rule (0), since0 does not interact with its host it may be typed
under a communication interface consisting of any port namec and interface viewΓ
provisoΓ is ok, i.e.η(Γ) 6= ⊥ for all η, and each port variable occurs at most once in
Γ .

The rule for replication (PROC-REP) is standard, however (PROC-RES) is not. Usu-
ally, the namen together with its type is assumed to belong to the global environment
Σ. However, in our local setting all we know is thatn is an ambient name.

The rule for parallel composition (PROC-COMP) is also standard.
The typing rule (PROC-CAP) reveals that all what is known about a capability is

that it is just a capability. Since we rely only on local information we shall relegate the
correct use of capabilities at run-time.

A process of the forminC(v : ρ) α .P is well-formed under the assumption that the
host ambient has local viewΓ , if P is well-formed under the assumption that the host
ambient has local viewΓ ⊕ρ↑v. Thus, the prefixinC(v : ρ) α allows its host ambient to
extend its local knowledge and hence be ready to communicatewith arbitrary ambients
willing to enter. Note that this prefix binds the free occurrences of the port variablev in
P . The typing of the other prefixes mentioned in rules (PROC-INC-OUTC) and (PROC-
COINC-COOUTC) is similar. The difference between these two rules is thatin the first
one the process shall communicate with a new host ambient, whereas in the second one
the process shall communicate with a newly entering child ambient.

The (PROC-INPUT) and (PROC-OUTPUT) request that the type of the information
that is exchanged together with its location must belong to the local view of the host
ambient.

The (PROC-AMB) rule may be interpreted as follows. In order forβ[[[Γ ′‖c′‖P]]] to be
considered a well-formed process under a host ambient whosecommunication interface
consists of a portc and a local viewΓ , it must be satisfied that:

1. processP is well-formed under a host ambient whose communication interface
consists of portc′ and local viewΓ ′, whereβ must be an ambient name or an
ambient variable;

2. eitherβ[[[Γ ′‖c′‖P]]] does not communicate with its host ambient or the type of the
information exchange between it and its host ambient must bethe same (condition
↑ c(Γ ′) � ↓ c′(Γ));

3. no free port variables should occur inΓ ′, i.e.Γ ′ should beclosed;
4. the local viewΓ of the host ambient must beok.

The example considered on page 9 shows why we do not allowβ[[[Γ ′‖c′‖P]]] to offer a
communication to its host ambient when the host ambient doesnot communicate along

(0)
Γ ok

Σ `c 0 : Γ

(PROC-REP)
Σ `c P : Γ

Σ `c!P : Γ

(PROC-RES)
Σ `c P : Γ

Σ `c (νννn)P : Γ

(PROC-COMP)
Σ `c P1 : Γ Σ `c P2 : Γ

Σ `c P1 | P2 : Γ

(PROC-CAP)
Σ ` C : cap Σ `c P : Γ

Σ `c C.P : Γ

(PROC-INC-OUTC)

Σ `c P : Γ ⊕ ρ↑v π ∈ {inC(v : ρ) α , outC(v : ρ) α }

Σ `c π.P : Γ

(PROC-COINC-COOUTC)

Σ `c P : Γ ⊕ ρ↓v π ∈ {inC(v : ρ), outC(v : ρ)}

Σ `c π.P : Γ

(PROC-INPUT)
Σ, x1 : ϕ1, . . . , xk : ϕk `c P : Γ (ϕ1 × . . . × ϕk)η ∈ Γ

Σ `c (x1 : ϕ1, . . . , xk : ϕk)η.P : Γ

(PROC-OUTPUT)
Σ `c P : Γ Σ ` Mi : ϕi (1 ≤ i ≤ k) (ϕ1 × . . . × ϕk)η ∈ Γ

Σ `c 〈M1, . . . , Mk〉
η.P : Γ

(PROC-AMB)

Σ `c′ P : Γ ′ Σ ` β : amb ↑ c(Γ ′) � ↓ c′(Γ) Γ ′ is closed Γ is ok

Σ `c β[[[Γ ′‖c′‖P]]] : Γ

Table 6.Well-formed Processes

the portc′. In fact, the process

p[[[∅‖c‖inC(v : amb).〈q〉↓v | m[[[cap↑c‖c′‖(x : cap)↑c.P]]]]]] | n[[[∅‖c′‖inC(v′ : amb) p]]]

is typable by replacing the condition↑ c′(Γ) � ↓ c(Γ ′) to ↑ c(Γ ′) � ↓ c′(Γ) in rule
(PROC-AMB).

The type system guarantees that communication inside ambients and across ambient
boundaries never leads to type mismatches. This is formalized as:

Theorem 1 (Subject Reduction).If Σ `c P : Γ andP −→ Q, thenΣ `c Q : Γ .

4 Behavioral Semantics

In order to study the behavioral semantics ofBACI we define an intuitive notion of
barbed congruence [25,17] based on the unlabelled reduction semantics given in Ta-
ble 4. We then introduce a labelled transition semantics inspired by [20,22,7] and state
that it coincides with unlabelled reduction. Finally, we define a notion of labelled bisim-
ilarity and show that it is sound with respect to barbed congruence. The immediate ben-
efit is that the co-inductive nature of bisimilarity can be exploited by putting the vast
body of proof techniques to work in order to reason about barbed congruence. Note that
in this short presentation we omit the global environmentΣ, the host portc and the
local viewΓ over which the relations on well-formed processes are indexed by.

SinceBACI has co-capabilities and allows parent-child communications there are
several reasonable choices of barbs, among which we have:

P ↓1
n , P ≡ (νννm̃)(n[[[Γ‖c‖in.Q | R]]] | S)(1)

P ↓2
n , P ≡ (νννm̃)(n[[[Γ‖c‖inC(v : ρ).Q | R]]] | S)(2)

P ↓3
〈c,c′〉 , P ≡ (νννm̃)(n[[[Γ‖c‖(x1 : ϕ1, . . . , xk : ϕk)↑c′ .Q | R]]] | S)(3)

P ↓4
〈c,c′〉 , P ≡ (νννm̃)(n[[[Γ‖c‖〈M1, . . . , Mk〉

↑c′ .Q | R]]] | S)(4)

provided thatn 6∈ m̃ in (1) and (2). In order toobservewhether a processP may
interact with the environment via some ambient namen or via a pair of port names
〈c, c′〉, it must be placed in a context that presents an ambient that attempts to enter it
or to communicate with it.

We write P ⇓n (P ⇓〈c,c′〉) if P =⇒ P ′ andP ′ ↓n (P ↓〈c,c′〉), where=⇒ is the
reflexive and transitive closure of−→.

The notions of observational congruence induced by the above definitions of barb
are standard in ambient calculi.

Definition 1. A relationR is reduction closed ifPRQ andP −→ P ′ imply the exis-
tence of someQ′ such thatQ =⇒ Q′ andP ′RQ′. R is barb preserving ifPRQ and
P ↓n (P ↓〈c,c′〉) implyQ⇓n (Q⇓〈c,c′〉).

Definition 2 (Reduction Barbed Congruence).Reduction barbed congruence is the
largest equivalence relation that is preserved by contextsand, when restricted to closed
processes, is reduction closed and barb preserving. Let then∼=i be the reduction barbed
congruence relation from choosing the notion of observation as in (i) above (withi ∈
[1..4]).

Notice that since we only consider processes which are well-formed, a relationR
is preserved by contexts ifPRQ andC[P] well-formed implyC[Q] well-formed and
C[P]RC[Q], for all processesP , Q and contextsC[·].

As expected the above congruencies coincide, so we can denote barbed congruence
for BACI simply by∼=.

Lemma 1 (Independence from barbs).∼=i = ∼=j for all i, j ∈ [1..4].

Proof. We need to show that all barbs imply each other. This can be accomplished, as
usual, by exhibiting a corresponding context. For instance, to see that∼=2 implies∼=3 use
the contextC[·] = m[[[Γ‖c′‖[·] | 〈M̃〉↓c.inC(v : ρ)]]], and note that for allP such thatm
is fresh inP one hasP ⇓3

〈c,c′〉 if and only ifC[P]⇓2
m. A suitable context to show that∼=4

implies∼=1 isC[·] = p[[[Γ‖c‖(νννq)(q[[[∅‖cq‖[·] |m[[[∅‖cm‖in n.out n.out q]]] | out]]]) | out.〈M̃〉↑c′]]],
and similarly for the other cases.

Notice that processes with different types can be distinguished irrespective of their
purely behavioural properties. This means that if two processesP andQ cannot be
typed with the sameΓ (w.r.t. a givenc), they cannot be congruent. In fact, ifΣ `c P : Γ
but Σ `c Q : Γ does not hold we can find a contextC[·] such thatC[P] is a (well-
formed) process whileC[Q] is not. A suitable context is simplyn[[[Γ ′‖c‖π.[·]]]], where
Γ ′ is the maximum subset ofΓ which is closed, andπ contains (in any order) exactly
the set of actions{inC(v : ρ) m | ρ↑v} and the set of co-actions{inC(v : ρ) | ρ↓v}. For
that reason, type equality is not requiredper sefor the definition of barbed congruence.

4.1 Algebraic Laws

This section presents some algebraic laws that better portray the semantics of processes
in BACI . These and other laws can be proved by means of the labelled bisimilarity
developed in the next section.

The laws holding inBACI which deal with mobility are very similar to those true
for the NBA calculus [7], so we will not discuss them.

InsteadBACI ’s refined treatment of communication using port names allows to get
quite interesting laws concerning input-output. For example, an ambient only willing
to communicate with its father but using a “wrong” port name is dead, i.e. we have the
following garbage collection laws:

n[[[Γn‖cn‖m[[[Γm‖cm‖(x̃ : ϕ̃)↑c.P]]] | Q]]] ∼= n[[[Γn‖cn‖Q]]]

n[[[Γn‖cn‖m[[[Γm‖cm‖〈M̃〉↑c.P]]] | Q]]] ∼= n[[[Γn‖cn‖Q]]]

In NBA a communication parent-child can be forced only if it is the only active pro-
cess inside both ambients. InBACI instead there can be other active processes provided
that they do not know the port name of the communication partner and some ambient
names do not occur in some processes and/or they are restricted. The conditions on port
names avoid interfering communications and the conditionson ambient names avoid
interfering movements. In particular in the third group of equivalenciesR cannot con-
tainm since otherwise an ambient insideR could exitm and communicate the portcm

to processS. More precisely we have:
if cm does not occur inR

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖〈M̃〉↑cn .P]]] | (x̃ : ϕ̃)↓cm .Q | R]]])
∼=

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖P]]] | Q{x̃ := M̃} | R]]])

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖(x̃ : ϕ̃)↑cn .P]]] | 〈M̃〉↓cm .Q | R]]])
∼=

(νννn)(n[[[Γn‖cn‖m[[[Γm‖cm‖P{x̃ := M̃}]]] | Q | R]]])

if cn andn do not occur inR

n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖〈M̃〉↑cn .P | R]]]) | (x̃ : ϕ̃)↓cm .Q]]]
∼=

(νννm)(n[[[Γn‖cn‖m[[[Γm‖cm‖P | R]]]) | Q{x̃ := M̃}]]]

n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖(x̃ : ϕ̃)↑cn .P | R]]]) | 〈M̃〉↓cm .Q]]]
∼=

n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖P{x̃ := M̃} | R]]]) | Q]]]

Pre-prefixesκ ::= in n | out n | in | inC(c : ρ) n | outC(c : ρ) n | inC(c : ρ)
Prefixes µ ::= κ | 〈M̃〉η | outC(c : ρ) | out

Labels ξ ::= τ | µ | 〈−̃〉η | n[[[Γn‖cn‖κ]]] | M̃ get (cm, cn) | put (cm, cn)
ConcretionsK ::= (νννp̃)〈〈P 〉〉Q | (νννp̃)〈〈M̃〉〉P
Outcomes O ::= P | K

Table 7.Labels and Outcomes

if cm, m do not occur inS andcn, n, m do not occur inR

(νννn)(n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖〈M̃〉↑cn .P | R]]]) | (x̃ : ϕ̃)↓cm .Q | S]]])
∼=

(νννn)(νννm)(n[[[Γn‖cn‖m[[[Γm‖cm‖P | R]]]) | Q{x̃ := M̃} | S]]])

(νννn)(n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖(x̃ : ϕ̃)↑cn .P | R]]]) | 〈M̃〉↓cm .Q | S]]])
∼=

(νννn)(n[[[Γn‖cn‖(νννm)(m[[[Γm‖cm‖P{x̃ := M̃} | R]]]) | Q | S]]])

4.2 Labelled Transition Semantics

This section presents a labelled transition semantics (LTS) and proves that it coincides
with reduction. It is the first step towards a characterization of reduction barbed congru-
ence in terms of labelled bisimulation. The LTS is given in Tables 8, 9 and 10. These
tables define the labelled transition relation

P
ξ

−→ O

whereP is a process,ξ is a label andO is an “outcome”. Labels and outcomes are
defined in Table 7.

An outcome may be a process or aconcretion. Concretions are required for dealing
with transitions of components of the system that interact with the environment in order
to be completed. Indeed, they prove convenient for formulating the silent transitions. In
the concretion(νννp̃)〈〈P 〉〉Q, the processP is the part of the system that interacts with the
environment. For example, to complete anin n transition, the sibling ambient which
hosts the entering one must be requested from the context. Likewise, in the concretion
(νννp̃)〈〈M̃ 〉〉Q, the messagẽM is the part of the system that interacts with the environment.
This outcome is required only for the case of the transition for message output. In
both cases,Q represents the remaining part of the process that is not affected by the
transition.

The structural congruence relation for concretions is obtained by extending the
homonymous relation for processes with the following axioms and rules:

(νννr)((νννp̃)〈〈P 〉〉Q) ≡ (νννr, p̃)〈〈P 〉〉Q
(νννr)((νννp̃)〈〈M̃ 〉〉P) ≡ (νννr, p̃)〈〈M̃〉〉P

P ≡ P ′ andQ ≡ Q′ =⇒ (νννp̃)〈〈P 〉〉Q ≡ (νννp̃)〈〈P ′〉〉Q′

P ≡ P ′ =⇒ (νννp̃)〈〈M̃ 〉〉P ≡ (νννp̃)〈〈M̃ 〉〉P ′

Also, we use the following notational conventions:

(CAP)

M ∈ {in n, out n, in, out}

M.P
M
−→ P

(PATH)

M1.(M2.P)
ξ

−→ P ′

(M1.M2).P
ξ

−→ P ′

(CAPC)
ζ ∈ {inC, outC}

ζ(v : ρ) n .P
ζ(c:ρ) n
−→ P{{↑ v := ↑ c}}

(CO-CAPC)

ζ ∈ {inC, outC}

ζ(v : ρ).P
ζ(c:ρ)
−→ P{{↓ v := ↓ c}}

(IN-OUT)

P
ξ

−→ P ′ ξ ∈ {in n, out n}

m[[[Γm‖cm‖P]]]
m[[[Γm‖cm‖ξ]]]

−→ 〈〈m[[[Γm‖cm‖P ′]]]〉〉0

(CO-IN)

P
ξ

−→ P ′ ξ ∈ {in, inC(c : ρ)}

m[[[Γm‖cm‖P]]]
m[[[Γm‖cm‖ξ]]]

−→ 〈〈P ′〉〉0

(INC-OUTC)

P
ξ

−→ P ′ ξ ∈ {inC(c : ρ) n, outC(c : ρ) n} Γm ⊕ ρ↑c ok

m[[[Γm‖cm‖P]]]
m[[[Γm‖cm‖ξ]]]

−→ 〈〈m[[[Γm ⊕ ρ↑c‖cm‖P ′]]]〉〉0

(INPUT)

(x̃ : ϕ̃)η.P
(M̃)η

−→ P{x̃ := M̃}

(OUTPUT)

〈M̃〉η.P
〈−〉η

−→ 〈〈M̃〉〉P

(GET)

P
(M̃)↑c

−→ P1

m[[[Γm‖cm‖P]]]
M̃ get (cm,c)

−→ m[[[Γm‖cm‖P1]]]

(PUT)

P
〈−〉↑c

−→ (νννp̃)〈〈M̃〉〉P1

m[[[Γm‖cm‖P]]]
put (cm,c)
−→ (νννp̃)〈〈M̃〉〉m[[[Γm‖cm‖P1]]]

Table 8.Commitments: Visible transitions

– ((νννp̃)〈〈P 〉〉Q) | R = (νννp̃)〈〈P 〉〉(Q | R)
– ((νννp̃)〈〈M̃ 〉〉P) | R = (νννp̃)〈〈M̃ 〉〉(P | R)

The transitions are inspired by those of NBA [7]. Theτ transitions for message
exchanges are (τ -EXCHANGE) for local exchange and (τ -PUT) and (τ -GET) for non-
local exchange. For example, in (τ -PUT) the directed output action towards the child
ambient must be met by a corresponding input action from the child. Rule (GET) makes
sure that this input action is executed inside some ambient whose local communication
port coincides with the one specified in the output action.

Theτ transitions for mobility are (τ -ENTER), (τ -ENTERC), (τ -EXIT), (τ -EXITC).
Since these are similar in spirit we shall discuss only (τ -ENTERC). Rule (τ -ENTERC)
is in charge of synchronizing two actions, namely the request of an ambient to enter
a host ambient with the action witnessing the approval (by means of an appropriate
co-capability) on the part of the host ambient. Therefore, the label of the first action
is n[[[Γn‖cn‖inC(cm : ρ) m]]] while that of the second ism[[[Γm‖cm‖inC(cn : ρ′)]]].

The former tells of the name and local interface informationof the moving ambient
and the latter does the same for the host ambient. The processthat actually moves is
represented byP1 in the concretion resulting from the first action whileQ1 represents
the process that shall run alongside the visiting ambient. The processesP2 andQ2 are
the sub-components ofP andQ, respectively, that do not participate in the movement.
Note that the third premise of the rule (τ -ENTERC) corresponds to the dynamic type
checking that we discussed for reduction.

As expected, unlabelled reduction and labelled reduction coincide. Both items of
Theorem 2 are proved by induction on the derivation of the antecedent. Moreover, item
2 requires the following lemma that relates labelled reduction and structural congru-
ence, for the case when the derivation is obtained using the rule (STRUCT).

Lemma 2. If P
ξ

−→ O and P ≡ Q, then there existsO′ such thatQ
ξ

−→ O′ and
O ≡ O′.

Theorem 2.

1. If P
τ

−→ P ′, thenP −→ P ′.
2. If P −→ P ′, thenP

τ
−→≡ P ′, where

τ
−→≡ denotes the composition of the rela-

tions
τ

−→ and≡.

By comparing the notion of observability (cf. the definitionof barbs) with the rules
of Table 8 and in particular with rule (CO-IN) one can easily see that a name is ob-
servable iff at least one of the two actionsn[[[Γ‖c‖in]]] or n[[[Γ‖c‖inC(c′ : ρ)]]] can be
performed. In particular,

Lemma 3. P ↓1
n iff P

n[[[Γ‖c‖in]]]
−→ (νννp̃)〈〈Q〉〉R for someΓ , c, p̃, Q, R.

A similar observation applies to rules (GET), (PUT) and the observability of pairs of
port names (cf. barbs (3) and (4) above). Thanks to Lemma 1 we only need to consider
one notion of barb.

4.3 Full Bismilarity and its Soundness

This section defines a notion of labelled bisimilarity and shows that it is sound with
respect to reduction barbed congruence. Labelled bisimilarity requires checking when
two processes produce equal observable actions. The problem is that the current defini-
tion of labelled reduction may produce a concretion insteadof a process. This situation
is remedied by introducinghigher-order (HO) transitions[22] for those labelled transi-
tions of Table 8 that produce a concretion as an outcome.

The HO-transitions are given in Table 11. In these transitions we use richer labels
obtained by adding to the previous labelsξ a new component which can be of one of
the following five shapes:

– P ;
– [[[Γ‖c‖P]]];
– n[[[Γ‖c‖P]]];
– [[[Γ‖c‖P]]]n[[[Γ ′‖c′‖Q]]];
– n[[[Γ‖c‖P]]] | Q.

This component describes the minimum contribution of the context necessary to fire the
transition. For example in rule (HO OUT) the context must provide both the 3 compo-
nents (local view, port and process) of the ambientn from which the processP1 exits
and in which the processP2 remains and the whole ambientq in which the processP1
enters.

For HO transitions we get the following version of Lemma 3:

(τ -ENTER)

P
n[[[Γn‖cn‖in m]]]

−→ (νννp̃)〈〈P1〉〉P2 Q
m[[[Γm‖cm‖in]]]

−→ (νννq̃)〈〈Q1〉〉Q2 ↑ cm(Γn) � ↓ cn(Γm)

P | Q
τ

−→ (νννp̃, q̃)(m[[[Γm‖cm‖Q1 | P1]]] | P2 | Q2)

(τ -ENTERC)

P
n[[[Γn‖cn‖inC(cm:ρ) m]]]

−→ (νννp̃)〈〈P1〉〉P2 Q
m[[[Γm‖cm‖inC(cn:ρ′)]]]

−→ (νννq̃)〈〈Q1〉〉Q2

↑ cm(Γn) t ρ � ↓ cn(Γm) t ρ′

P | Q
τ

−→ (νννp̃, q̃)(m[[[Γm ⊕ ρ′↓cn‖cm‖Q1 | P1]]] | P2 | Q2)

(τ -EXIT)

P
n[[[Γn‖cn‖out m]]]

−→ (νννp̃)〈〈P1〉〉P2 Q
out
−→ Q1 ↑ cq(Γn) � ↓ cn(Γq)

q[[[Γq‖cq‖m[[[Γm‖cm‖P]]] | Q]]]
τ

−→ (νννp̃)(q[[[Γq‖cq‖m[[[Γm‖cm‖P2]]] | P1 | Q1]]])

(τ -EXITC)

P
n[[[Γn‖cn‖outC(cq :ρ) m]]]

−→ (νννp̃)〈〈P1〉〉P2 Q
outC(cn:ρ′)

−→ Q1 ↑ cq(Γn) t ρ � ↓ cn(Γq) t ρ′

q[[[Γq‖cq‖m[[[Γm‖cm‖P]]] | Q]]]
τ

−→ (νννp̃)(q[[[Γq ⊕ ρ′↓cn‖cq‖m[[[Γm‖cm‖P2]]] | P1 | Q1]]])

(τ -EXCHANGE)

P
(M̃)?

−→ P1 Q
〈−〉?

−→ (νννq̃)〈〈M̃〉〉Q1

P | Q
τ

−→ (νννq̃)(P1 | Q1)

(τ -PUT)

P
〈−〉↓cm

−→ (νννp̃)〈〈M̃〉〉P1 Q
M̃ get (cn,cm)

−→ Q1

n[[[Γn‖cn‖P | Q]]]
τ

−→ (νννp̃)n[[[Γn‖cn‖P1 | Q1]]]

(τ -GET)

P
(M̃)↓cm

−→ P1 Q
put (cm,cn)

−→ (νννq̃)〈〈M̃〉〉Q1

n[[[Γn‖cn‖P | Q]]]
τ

−→ (νννq̃)(n[[[Γn‖cn‖P1 | Q1]]])

Table 9.Commitments:τ transitions

(PAR)

P
ξ

−→ O

P | Q
ξ

−→ O | Q

(RES)

P
ξ

−→ O n /∈ fn(ξ)

(νννn)P
ξ

−→ (νννn)O

(τ -AMB)

P
τ

−→ P ′

n[[[Γ‖c‖P]]]
τ

−→ n[[[Γ‖c‖P ′]]]

(REPL)

π.P
ξ

−→ O

!π.P
ξ

−→!π.P | O

Table 10.Commitments: Structural transitions

Lemma 4. P ↓1
n iff P

n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]
−→ (νννp̃)(n[[[Γ‖c‖Q | m[[[∅‖c′‖0]]]]]] | R) for all m, c′

and for someΓ , c, p̃, Q, R.

As last step towards defining labelled bisimilarity, letΛ denote the set of labels
that includes both the first order labels defined in Tables 8 and 10 and the HO ones of
Table 11. In the following notational convention we letλ range overΛ. Let =⇒ denote
the reflexive and transitive closure of

τ
−→.

1.
λ

=⇒ denotes=⇒
λ

−→=⇒.

2.
λ̂

=⇒ denotes=⇒ if λ = τ and
λ

=⇒ otherwise.

Definition 3 (Bisimulation). A symmetric relationR over closed processes is a bisim-

ulation if PRQ andP
λ

−→ P ′ imply there existsQ′ such that

– Q
λ

=⇒ Q′ and
– P ′RQ′.

Two closed processesP andQ are bisimilar, writtenP ≈c Q, if PRQ for some bisim-
ulationR.

The definition of bisimulation is extended to arbitrary processes as usual:

Definition 4 (Full Bisimilarity). Two processesP andQ are fully bisimilar, written
P ≈ Q, if Ps ≈c Qs for every closing substitutions that respects types.

Following the proof scheme of [22,7] we can show that full bisimilarity is preserved
by context.

Theorem 3. Full bisimilarity is a congruence.

Moreover from Lemma 4 it follows that:

Lemma 5. Full bisimilarity is barb preserving over closed processes.

Proof. SupposeP, Q are closed processes,P ≈c Q andP ↓1
n.

By Lemma 4P
n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]

−→ P ′ for all m, c′ and someΓ, c, P ′. As a conse-

quenceQ
n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]

=⇒ Q′ for someQ′. In particular, there is aQ′′ such that

Q =⇒ Q′′ n[[[Γ‖c‖in]]]m[[[∅‖c′‖0]]]
−→ Q′. From Lemma 4 we deduceQ′′ ↓1

n and henceQ⇓1
n, as

required.

(HO IN)

P
m[[[Γm‖cm‖in n]]]

−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) � ↓ cm(Γn)

P
m[[[Γm‖cm‖in n]]][[[Γn‖cn‖Q]]]

−→ (νννp̃)(n[[[Γn‖cn‖P1 | Q]]] | P2)

(HO INC)

P
m[[[Γm‖cm‖inC(cn:ρ) n]]]

−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) t ρ � ↓ cm(Γn)

P
m[[[Γm‖cm‖inC(cn:ρ) n]]][[[Γn‖cn‖Q]]]

−→ (νννp̃)(n[[[Γn‖cn‖P1 | Q]]] | P2)

(HO CO-IN)

P
n[[[Γn‖cn‖in]]]

−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) � ↓ cm(Γn)

P
n[[[Γn‖cn‖in]]]m[[[Γm‖cm‖Q]]]

−→ (νννp̃)(n[[[Γn‖cn‖P1 | m[[[Γm‖cm‖Q]]]]]] | P2)

(HO CO-INC)

P
n[[[Γn‖cn‖inC(cm:ρ)]]]

−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) � ↓ cm(Γn) t ρ

P
n[[[Γn‖cn‖inC(cm:ρ)]]]m[[[Γm‖cm‖Q]]]

−→ (νννp̃)(n[[[Γn‖cn‖P1 | m[[[Γm‖cm‖Q]]]]]] | P2)

(HO OUT)

P
m[[[Γm‖cm‖out n]]]

−→ (νννp̃)〈〈P1〉〉P2 ↑ cq(Γm) � ↓ cm(Γq)

P
m[[[Γm‖cm‖out n]]][[[Γn‖cn‖Q]]]q[[[Γq‖cq‖R]]]

−→ (νννp̃)(q[[[Γq‖cq‖P1 | n[[[Γn‖cn‖P2 | Q]]] | R]]])

(HO OUTC)

P
m[[[Γm‖cm‖outC(cn:ρ) n]]]

−→ (νννp̃)〈〈P1〉〉P2 ↑ cn(Γm) t ρ � ↓ cm(Γn)

P
m[[[Γm‖cm‖outC(cn:ρ) n]]][[[Γn‖cn‖Q]]]q[[[Γq‖cq‖R]]]

−→ (νννp̃)(q[[[Γq‖cq‖P1 | n[[[Γn‖cn‖P2 | Q]]] | R]]])

(HO OUTPUT)

P
〈−〉η

−→ (νννp̃)〈〈M̃〉〉P ′ η ∈ {?, ↓ c}

P
〈−〉ηQ
−→ (νννp̃)(P ′ | Q{x̃ := M̃})

(HO PUT)

P
put (cm,cn)

−→ (νννq̃)〈〈M̃〉〉P ′

P
put (cm,cn)Q

−→ (νννq̃)(P ′ | Q{x̃ := M̃})

(HO OUTPUT↑)

P
〈−〉↑c

−→ (νννp̃)〈〈M̃〉〉P ′

P
〈−〉↑cm[[[Γm‖cm‖R]]] | Q

−→ (νννp̃)(m[[[Γm‖cm‖P ′ | R]]] | Q{x̃ := M̃})

Table 11.Commitments: Higher-Order transitions

Finally, we prove the desired result that≈ is contained in∼=.

Theorem 4 (Soundness of Full Bisimilarity).If P ≈ Q thenP ∼= Q.

Proof. It suffices to show that≈ is a barbed bisimulation up to≡ (since then it fol-
lows that≡≈≡ - ie. the composition of the relations≡, ≈ and≡ - is also a barbed
bisimulation andP ≈ Q and≡≈≡⊆∼= imply P ∼= Q). This follows from the fact that
≈:

1. is a congruence: Theorem 3.
2. is reduction closed on closed processes: SupposeP, Q are closed processes,P ≈ Q

andP −→ P ′. By Theorem 2,P
τ

−→≡ P ′. SinceP ≈ Q, there existsQ′ such that
Q =⇒ Q′ andP ′ ≡≈≡ Q′.

3. is barb preserving on closed processes: Lemma 5.

We conjecture incompleteness of≈ for the same reason the authors of [7] conjecture
incompleteness of the full bisimilarity arising from a similar LTS for NBA, namely the
difficulty of finding a context which discriminates the label〈M̃〉↑c. We conjecture also
that a LTS forBACI inducing a complete full bisimilarity could be developed inthe
style of [7].

5 Examples

In this section we sketch some examples in order to show the expressiveness ofBACI .
Before doing so, we define the following auxiliary notation to make the examples easier
to read.

α
[[[Γ‖c‖P]]] , α[[[Γ‖c‖!in | !out | P]]]

This allows sibling and nested ambients ofα to freely enter and exit. Note thatα

allows to enter either ambients which do not communicate with α or ambients whose
communication port name is already known byα
.

We convene not to write the types of the input variables sincethey are always clear
from the context.

5.1 Remote printer

For this example we consider two networks (represented as ambients) calledn1 andn2.
Ambientn1 is the network where a client is located andn2 the one where a printer is
located. Although the client ignores the path to the printernetwork, inn1 there is also
a router, calledr1to2, that knows the path ton2. For simplicity, we placen1 andn2
at the same nesting level inside a larger ambient, calledinter . However, in general,n1
andn2 can be far from each other within the nesting hierarchies.

INTERNET, inter
[[[∅‖c‖N1 | N2]]]

N1, n1
[[[∅‖c1‖CLIENT | ROUTER]]]

N2, n2
[[[∅‖c2‖PRINTER]]]

The idea is that the client sends a printjob to PRINTERvia ROUTER. A job ambient
should receive two parameters (data and printer name) fromCLIENTafter releasing the
job. After receiving the parameters, the job exits the client and enterROUTER. There,
it shall receive the path ton2, where the printer is located. After reachingn2, the job
enters the printer and communicate the data to be printed.

JOBcl , job[[[Γjob‖cj‖(d, p)↑ccl .out cl.in r1to2.(route)↑cr .route.in p.〈d〉↑cpr]]]

whereΓjob , {(data × amb)↑ccl , cap↑cr , data↑cpr}

Notice that thejob ambient is able to communicate with different parent ports in differ-
ent TOCs. Here,cj is the port of the job,ccl is the port of the client,cr is the port of the
router andcpr is the port of the printer.

CLIENT spawns the job and sends the data to be printed using the job ambient.
Then, the job is received byROUTERwhich gives the job the route ton2. Finally, the
job entersPRINTERand delivers its data.

CLIENT , client1
[[[Γclient1‖ccl‖〈(d1, printer1)〉↓cj | ! JOBclient1]]]

whereΓclient1 , {(data × amb)↓cj}

ROUTER, r1to2
[[[cap↓cj‖cr‖!〈(out r1to2.out n1.in n2)〉↓cj]]]

PRINTER, printer1
[[[data↓cj‖cpr‖! (d)↓cj]]]

After delivering its data thejob ambient becomes inactive and useless. Using the alge-
braic properties we can show thatjob[[[Γjob‖cj‖0]]] ∼= 0 and therefore

printer1
[[[data↓cj‖cpr‖! (d)↓cj | job[[[Γjob‖cj‖0]]]]]] ∼=
printer1
[[[data↓cj‖cpr‖! (d)↓cj]]]

All thesegarbageambients that accumulate inside the printer ambient can be safely
discarded.

Since different ambients can have the same port name, more than one client can
have port nameccl and more than one server the port namecpr, even if the ambients
have different names. Moreover, we can add more clients and printers without changing
JOBor ROUTER.

N1’ , n1
[[[∅‖c1‖CLIENT | CLIENT’ | ROUTER]]]

N2’ , n2
[[[∅‖c2‖PRINTER| PRINTER’]]]

CLIENT’ , client2
[[[Γclient2‖ccl‖〈(d2, printer2)〉↓cj | ! JOBclient2]]]

whereΓclient2 , {(data × amb)↓cj}

PRINTER’, printer2
[[[data↓cj‖cpr‖! (d)↓cj]]]

Havingccl as a port name for all clients andcpr for all servers allows any client to use
any available printer, and not just a particular one as in theprevious example.CLIENT’
can also usePRINTER’by sending the message〈(d2, printer2)〉↓cj to the spawned
job.

The routing in the previous example was relatively simple with only one destination,
only one route and only one router. How can we route a job to twodifferent networks,
for instance,n2 andn3? Here, we can get the destination network parameter from the
client and use it to find the corresponding route. However, weneed some mechanism to
determine if we choose the route forn2 or the route forn3 depending on that parameter.
There are no control flow primitives in the calculus similar to the test for equality found
in π-calculus, for instance. Nevertheless, we can instruct theclient to send the name
of the router serving a given printer network (assuming we have a different router for
each destination network), but the client would need to knowthe relation between the
destination and the router that serves that destination. That is not very tidy. Besides,
we would need to change the job interface, which seems to be very “natural” as it is.
Another option is to take advantage of the locality of names and use the same name
for both the destination network and the router serving the route to that destination. We
now re-define the components of the system according to thesenew requirements:

INTERNET, inter
[[[∅‖ci‖N1” | N2” | N3]]]

N1” , n1
[[[∅‖c1‖CLIENT | CLIENT’ | ROUTER| ROUTER’]]]

N2” , n2
[[[∅‖c2‖PRINTER]]]

N3 , n3
[[[∅‖c3‖PRINTER’]]]

We moved one of the printers to networkn3 to make the example more interesting.
With this setting, any client located onn1 should be able to send a job to either the
printer onn2 or the printer onn3. For this purpose, we change the name of the existing
router (routing jobs ton2) and also add a new router that serves jobs heading ton3.
Both routers have the same name as the routes they serve. Using the same names, we
don’t need to require the client to know the name of the routers. This gives us a clean
and natural representation. We have to change the definitionof JOBand theCLIENTs
since in the previous example the router name was “hard-coded” and now is a parameter
given by the client.

JOBcl , job[[[Γjob‖cj‖(d, p, n)↑ccl .out cl.in n.(route)↑cr .route.in p.〈data〉↑cpr]]]

whereΓjob , {(data × amb × amb)↑ccl , cap↑cr , data↑cpr}

CLIENT , client1
[[[Γclient1‖ccl‖〈(d1, printer1, n2)〉↓cj | ! JOBclient1]]]

whereΓclient1 , {(data × amb × amb)↓cj}

CLIENT’ , client2
[[[Γclient2‖ccl‖〈(d2, printer2, n3)〉↓cj | ! JOBclient2]]]

whereΓclient2 , {(data × amb × amb)↓cj}

Finally, we change the name of the routers and we add the new router which has the
same structure as the old one but with different route, of course.

ROUTER, n2
[[[cap↓cj‖cr‖!〈(out n2.out n1.in n2)〉↓cj]]]

ROUTER’, n3
[[[cap↓cj‖cr‖!〈(out n3.out n1.in n3)〉↓cj]]]

The two orthogonal concepts of interfaces and names allow usto separate the in-
put/output from the mobility concerns. We can use the interfaces to group several ambi-
ents with similar input/output abilities and, at the same time, we can keep each ambient
identity by using different ambient names for each of them.

5.2 File servers cluster

This example represents some free download sites in which the user has a list of servers
to choose for his download. However, for this example, we require that every time a
customer requests a file download, the cluster designates one server from all the avail-
able servers in the cluster (i.e. all the servers that are notserving other clients) to serve
that request. Additionally, we want a cluster administrator to be able to execute some
administrative operations like shutdown or power up any particular server. For this rea-
son, we assign a unique and distinctive name to each server. However, we use a common
port name and interface for all of them to allow the cluster tocommunicate with all of
them.

CLUSTER, cluster
[[[Γclu‖cclu‖LOAD_BAL | SRV1| SRV2]]]
whereΓclu , {amb × Filename↓csrv}

LOAD_BAL,!(inC(vcl : (amb × Filename)).(clname, fn)↓vcl .〈clname, fn〉↓csrv)

Theclusterincludes all the servers (only two in this example) and theload balanc-
ing mechanism. This mechanism allows a client to enter the cluster: the cluster receives
the client’s request that it forwards to any available server. Notice that the client’s com-
munication port is not known in advance to the cluster and vice-versa. They are learned
on theENTER reduction, where the port names replace the variables boundby inC and
inC. Each server has two main sub-processes: the service itselfand thepower manage-
mentprocess. TheSERVEprocess receives the forwarded request from the cluster am-
bient, and then it responds spawning a messenger ambient called job. This job reaches
the client and deliver the requested file. The acute reader will notice that, before receiv-
ing a request,SERVEwaits for an “on” message from the power management ambient
calledpwr. Thepwr ambient is used to inform the serving process that the serveris
still on. We now show how to use this feature to “shutdown” a server.

SRV i , srvi
[[[Γsrvi‖csrv‖!(on)↓cpwr .SERVE| PWR]]]
whereΓsrvi , {onMsg↓cpwr , amb × Filename↑cclu}

SERVE, (clname, fname)↑cclu.JOB

JOB, job[[[∅‖cj‖out srvi.inC(v : data) clname .(file(fname))↑v]]]

PWR, pwr[[[onMsg↑csrv‖cpwr‖!〈on〉↑csrv | in pwroff]]]

The purpose ofpwr is simple. If it is present inside a server, it enables the service by
continuously sending “on” messages. However, if it is not present, the server is not
able to listen (and respond) to a request. Therefore, in order to shut a server down, the
administrator should send aPOWER_OFF message to that server.

POWER_OFF(s) , pwroff
[[[∅‖cpoff‖in cluster.in s.in]]]

Thepwr ambient would be locked insidepwroff after entering that ambient. Once
insidepwroff, pwr is rendered inoperative. In fact, using algebraic properties we can
show that

pwroff
[[[∅‖cpoff‖pwr[[[onMsg↑csrv‖cpwr‖!〈on〉↑csrv]]]]]] ∼= 0

and get rid of thesegarbageambients.
Likewise, the administrator can restore thepwr ambient inside the server to “power on”
that server.

POWER_ON(s) , pwron
[[[∅‖cpon‖in cluster.in s.TURN_ON]]]

TURN_ON, pwr[[[onMsg↑csrv‖cpwr‖out pwron | !〈on〉↑csrv | in poweroff]]]

Finally, we present a “generic” client. The clients are generic in the sense that they
do not need to know any of the port names in advance, all of themare learned on
execution. The only requirement is that the client is well behaved and it sends its own
name in the request. A malicious client could send a different name. However, this can
only cause a response to be lost or sent to the wrong client, which is unlikely since the
malicious client needs to guess a correct client name.

CLIENT , client
[[[Γcl‖cclient‖inC(vclu : (amb × Filename)) cluster .
〈client, afilename〉.inC(cj : data).(file)↓cj .P | Q]]]

This is the basic structure of a client ambient. The port namecan be changed without
restrictions.Γcl , P andQ can be anything that does not have conflicting types with the
cluster andjob ambients . The whole configuration looks like this:

SYSTEM, ADMIN | CLUSTER| CLIENTS

TheADMIN process could include processes like those in the power management
and theCLIENTSare also placed (initially) outside the cluster. As we have seen, they
need to enter the cluster to get served.

6 Conclusions

We have presented a typed calculus of mobile ambients that features both local and
dynamic typing. Each ambient comes equipped with a local communication interface
consisting of a communication port and a local view indicating the type of the informa-
tion that may be exchanged over parent and children ports. Besides the usual communi-
cation within an ambient, messages may be exchanged across ambient boundaries. The
type system guarantees that in this case the types of the local ports of the sending and
receiving ambients agree. Since communication interfacesare local and ambients may
migrate, ambients must be able to increase their local knowledge of their surroundings.
Therefore, the mobility rules allow an ambient to learn the communication type of the
local port which it enters. Appropriate run-time checks arerequired so that the enter-
ing and the host ambient agree on a topic of conversation. Among the novel aspects of
BACI are:

– Communicating ports. In contrast with previous ambient calculi,BACI uses names
for mobility and ports for communication.

– Named communication with parents. While in previous calculi communication with
a parent was decided by the location of an ambient, inBACI , the communication
with a parent is indexed by the parent’s port, in a similar wayin which communi-
cation with a child is usually indexed. This new named communication allows an
ambient to communicate with different parents in differenttypes (TOCs).

– Finer control of non-determinism. The division between names and ports introduces
the ability to have non-determinism for mobility and determinism for communica-
tion and vice-versa, while in previous calculi, that was notpossible.

– Local typing. Having different TOCs with different parents allows control over
which parent can exchange information, while in previous calculi the type of a
communication with the parent remained fixed.

Although communication control is local this is not so for mobility. Mobility is
currently unrestricted and this poses the question if one might also include, in the local
knowledge of an ambient, some indication of whether the ambient is allowed to move
or not. Other items that warrant further work include: considering a restriction operator
on port names, considering multiple ports (possibly takingdynamic port creation into
account), matching and mismatching constructs and group types in order to impose
access control.

References

1. Torben Amtoft, Assaf J. Kfoury, and Santiago M. Pericas-Geertsen. What are
Polymorphically-Typed Ambients? In David Sands, editor,ESOP’01, volume 2028 ofLNCS,
pages 206–220, Berlin, 2001. Springer-Verlag.

2. Torben Amtoft, Henning Makholm, and Joe B. Wells. PolyA: True Type Polymorphism for
Mobile Ambients. InTCS’04, 2004. to appear.

3. H.P. Barendregt.The Lambda Calculus: its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics 103. North-Holland, Amsterdam, revised edition, 1984.

4. Gérard Boudol. A Parametric Model of Migration and Mobility, Release 1. Mikado Deliv-
erable D1.2.1, available at http://mikado.di.fc.ul.pt/repository/D1.2.1.pdf, 2003.

5. Michele Bugliesi and Giuseppe Castagna. Behavioral Typing for Safe Ambients.Computer
Languages, 28(1):61 – 99, 2002.

6. Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Access Control for Mobile Agents:
The Calculus of Boxed Ambients.ACM Transactions on Programming Languages and Sys-
tems, 26(1):57–124, 2004.

7. Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vladimiro Sassone. Communication
and Mobility Control in Boxed Ambients. To appear inInformation and Computation. Ex-
tended and revised version of M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communica-
tion Interference in Mobile Boxed Ambients. In FSTTCS’02, volume 2556 of LNCS, pages
71-84. Springer-Verlag, 2002.

8. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility Types for Mobile Ambients.
In Jiri Wiedermann, Peter van Emde Boas, and Mogens Nielsen,editors,ICALP’99, volume
1644 ofLNCS, pages 230–239, Berlin, 1999. Springer-Verlag.

9. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient Groups and Mobility Types.
In Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu
Ito, editors,TCS’00, volume 1872 ofLNCS, pages 333–347, Berlin, 2000. Springer-Verlag.
Extended version to appear in Information and Computation,special issue on TCS’00.

10. Luca Cardelli and Andrew D. Gordon. Mobile Ambients.Theoretical Computer Science,
240(1):177–213, 2000. Special Issue on Coordination, Daniel Le Métayer Editor.

11. Giuseppe Castagna and Jan Vitek. Seal: A Framework for Secure Mobile Computations. In
Henri E. Bal, Boumediene Belkhouche, and Luca Cardelli, editors, Internet Programming
Languages, volume 1686 ofLNCS, pages 47–77, Berlin, 1999. Springer-Verlag.

12. Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Rosario Pugliese. Dy-
namic and Local Typing for Mobile Ambients. InTCS’04, 2004. to appear.

13. Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Ivano Salvo. M3: Mo-
bility Types for Mobile Processes in Mobile Ambients. In James Harland, editor,CATS’03,
volume 78 ofENTCS. Elsevier, 2003.

14. Rocco De Nicola, GianLuigi Ferrari, and Rosario Pugliese. Klaim: a Kernel Language for
Agents Interaction and Mobility.IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

15. Elio Giovannetti. Ambient Calculi with Types: a Tutorial. In Corrado Priami, editor,Global
Computing - Programming Environments, Languages, Security and Analysis of Systems, vol-
ume 2874 ofLNCS, Berlin, 2003. Springer-Verlag.

16. Healfdene Goguen. Typed operational semantics. In Mariangiola Dezani-Ciancaglini and
Gordon Plotkin, editors,TLCA’95, volume 902 ofLNCS, pages 186–200, Berlin, 1995.
Springer-Verlag.

17. Andrew D. Gordon and Luca Cardelli. Equational properties of mobile ambients.Mathe-
matical Structures in Computer Science, 13(3):371–408, 2003.

18. Mattew Hennessy and James Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173:82–120, 2002.

19. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed system (extended abstract). In Andrew D. Gordon,
editor,FOSSACS’03, volume 2620 ofLNCS, pages 282–299, Berlin, 2003. Springer-Verlag.

20. Francesca Levi and Davide Sangiorgi. Controlling Interference in Ambients.Transactions
on Programming Languages and Systems, 25(1):1–69, 2003.

21. Cédric Lhoussaine and Vladimiro Sassone. A DependentlyTyped Ambient Calculus. In
David Schmidt, editor,ESOP’04, volume 2986 ofLNCS, pages 171–187, Berlin, 2004.
Springer-Verlag.

22. Massimo Merro and Matthew Hennessy. Bisimulation Congruences in Safe Ambients. In
Neil D. Jones and Xavier Leroy, editors,POPL’02, pages 71–80, New York, 2002. ACM
Press.

23. Massimo Merro and Vladimiro Sassone. Typing and Subtyping Mobility in Boxed Ambients.
In Lubos Brim, Petr Jancar, Mojmir Kretinsky, and Antonin Kucera, editors,CONCUR’02,
volume 2421 ofLNCS, pages 304–320, Berlin, 2002. Springer-Verlag.

24. George C. Necula. Proof-carrying code. In Neil D. Jones,editor,POPL’97, pages 106–119.
ACM Press, 1997.

25. Davide Sangiorgi and Robin Milner. The problem of “Weak Bisimulation up to”. In Wal-
ter R. Cleaveland, editor,CONCUR’92, volume 630 ofLNCS, pages 32–46, Berlin, 1992.
Springer-Verlag.

	Boxed Ambients with Communication Interfaces

