
Dynamic Load Balance in Parallel Merge Sorting over Homogeneous Clusters

De Giusti Armando

Chair Professor.Main Researcher CONICET.
III-LIDI Instituto de Investigación en Informática LIDI.

Computer Science School.
National University of La Plata.

degiusti@lidi.info.unlp.edu.ar

Chichizola Franco

Becario de Iniciación UNLP.
III-LIDI Instituto de Investigación en Informática LIDI.

Computer Science School.

National University of La Plata.

francoch@lidi.info.unlp.edu.ar

Naiouf Marcelo

Chair Professor.
III-LIDI Instituto de Investigación en Informática LIDI.

Computer Science School.
National University of La Plata.

mnaiouf@lidi.info.unlp.edu.ar

De Giusti Laura

Becaria de Perfeccionamiento UNLP.
III-LIDI Instituto de Investigación en Informática LIDI.

Computer Science School.

National University of La Plata.

ldgiusti@lidi.info.unlp.edu.ar

Abstract

Sorting is one of the most usual and important
operations carried out in a computer. The time required by

the sequential sorting algorithms is an important problem

when working with large sized sequences. As solution, we
can consider parallelization and attaining a near optimal

performance achieving a balance in the work to be done
by processors. Notice that the work does not depend only

on the amount of data but also on the sequence

disordering, and on the relative computer power of
processors.

This paper develops a technique of redistributing

dynamically the data load from the prediction of work to
be carried out by each processor, balancing the load

among the different processes. The method is proved to

reach the theoretical optimum for the parallel algorithm
performance.

Keywords: Sorting, Algorithm Parallelization,
Performance Prediction, Load Balancing, Dynamic

Redistribution.

1. Introduction

Parallel processing has been increasing practically

from the very beginning of digital computers. The axes

encouraging the topics of concurrence in software and

multiprocessing in hardware are multiple, but can be

mentioned mainly the need of reducing the processing

time of large data quantities. This evolution leads to a

great effort to transform sequential processing into

parallel.

One of the operations that are usually required as a part

of the solution of more complex algorithms is that of

“sorting” a data sequence in order to, for instance, access

the information more efficiently [6]. The best sequential

sorting algorithms have times of O(n x Log n), where n is

the number of elements in the sequence so execution time

is very important with increasing data. [5][7].

The solution to the increasing processing time with n is

the parallelization of the sorting algorithm. Given a

sequence of n data elements, these are distributed among

the different processors, where they are sorted in order to

merge them, thus achieving the ordering of the whole

sequence.

The use of multiple processors working on

subsequences of the total n data elements may get an

optimal performance. In order to obtain it, the work to be

done by each processor should be balanced. When the

architecture is homogeneous, the balance only depends on

the characteristics of the data to be sorted, while in the

heterogeneous case, the relation between computing power

of the different processors should be added[8][2][10][1].

One way of attaining load balancing between the

different processes is to distribute dynamically the data

among them. To do it, a part of the data elements (block 1)

is distributed among the different tasks, then a percentage

of the work is carried out in parallel, and the remaining

work is estimated. From this prediction, the rest of the data

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

(block 2) is distributed trying to balance the work of all the

processes.

2. PSDR Method

In this section the Parallel Sorting with Dynamic

Redistribution (PSDR) method is presented, including the

definition of a work prediction function for the parallel

algorithm.

The swap method with sentinel is analyzed, which

carries out a series of iterations comparing in each of them

all the adjacent data pairs, and swapping them if they are

disordered [5]. The algorithm finishes when all the data

are sorted. When parallelizing the algorithm, each process

sorts its subsequence using this method and then the sorted

parts are merged (parallel merge sort) [7][2][8].

In order to obtain a good global performance in the

data sequence sorting. So as to obtain this equity, a

dynamic data redistribution is used from the work carried

out by each processor up to a certain moment of the

ordering, and the prediction of the remaining work for

each process.

We will analyze four stages of the research carried out:

Sequential Work Prediction, Sorting Algorithm

Parallelization, Work Prediction in the Parallel Model to

be carried out by each process, and Dynamic
Redistribution or Balance of the remaining data among

processors.

2.1. Sequential Work Prediction
In the algorithm used, the work necessary to sort n data

elements not only depends on the data quantity (n), but

also on the their distribution within the sequence. For this

reason, it is really difficult to determine “a priori” the

work and, thus, the necessary time for carrying out the

sorting.

As the sorting algorithm is based on executing

comparisons and swaps, the work is considered to be given

by a combination of the quantity of these operations:

W = NC + (NS * Co) , where:

W is the work - NS is the number of swaps.

NC is the number of comparisons.

Co is the coefficient that indicates the relation between

the necessary work for a swap and a comparison.

As the algorithm progresses, the work to be done in

each iteration decreases [9]. Due to this fact, when the

percentage K1 (with K1 << 50 %) of iterations has been

executed, the work necessary to carry out the complete

data sorting can be estimated. This iteration quantity

represents a percentage K2 of the total work[3]. In

consequence, the work can be estimated by the following

formula:

 TEW = DW*100 / Cp , where

TEW is the total estimated work.

DW is the work carried out in K1% of the iterations.

Cp represents the work percentage performed in the

K1% of the iterations.

2.2. Sorting Algorithm Parallelization
There exist several techniques for Parallel Sorting, one

of them being the Sorting by Merging, which uses the

master-slave paradigm and consider the following steps:

The n items are divided in k subsequences of equal size.

Each subsequence is sent to a different processor, which

sorts it using the previously explained “swap method”

with sentinel.

The Merge of the k subsequences sortered by each

processor is carried out, obtaining a complete, ordered

sequence. A single stage merge is implemented, instead of

a multi-step merge, since the latter solution requires more

communication among processors, affecting the algorithm

performance in a cluster architecture [3].

In this way, the sorting algorithm performance is

determined by the process which should carry out most of

the work.

2.3. Work Prediction in the Parallel Model
As was previously explained, each process carries out

the sorting of n/k data elements, and in order to estimate

the work to be performed by each of them, the formula

detailed in step 2.1 is used. As processes are being

executed in parallel, the work considered for this stage is

determined by that of the process which will carry out

most of the work.

In order to estimate the parallel work, we should add -

to the previous- the work necessary to perform the merge

among the ordered subsequences, thus obtaining the final

sequence.

The estimate is represented in the following formula:

PW = max i [1..k] (TEWi) + MW , where:

PW is the parallel work.

TEWi estimated work for process i by means of the

formula explained in 2.1.

MW is the work for carrying out the merge.

2.4. Redistribution or Dynamic Balance
From the work estimate to be carried out in each

processor through the formula in stage 2.2, the data can be

redistributed, thus balancing the work of each process.

The redistribution is carried out as follows:

A percentage of data (block 1) is equally distributed into

each process, thus obtaining a rest without being

distributed.

The work to be done is estimated for each process from

the performed in the K1% of the iterations, according to

the formula mentioned in 2.2.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

The rest of the data (block 2) is redistributed, trying to

balance the total work to be carried out by each process

(total work = work (block 1) + work (block 2)).

Each process merges sorted blocks 1 and 2.

Each process sorted subsequences are gathered, and the

merge is carried out in order to obtain the final ordered

sequence.

3. Experimentation and obtained results

The support for carrying out the experimentation was

C language with the MPI library for communications, over

a cluster of 20 homogeneous PCs (Pentium IV) networked

by an Ethernet network of 100 Mbytes [4].

Two additional algorithms were implemented in order

to compare the load balance:

Parallel Sorting without redistribution (PSWR), in

which all the data are equally distributed (in terms of data

quantity) among all the processes.

Parallel Sorting with fixed redistribution (PSFR), in

which a percentage of data is initially and equally

distributed (in terms of quantity) and then the rest is

distributed in the same way.

Several tests were carried out including different sizes

of sequences to be ordered (50000, 100000, 500000, and

1000000 of data elements) as well as different quantities

of tasks to be used (4, 8 and 16 tasks).

The initially undistributed data percentage (block2)

was 10%, 20%, 30%, and 40%.

In addition, the tests included different types of

sequences according to the distribution of the data initially

sent to each process :

the data sent to a task are completely inverted, and the

rest are random (type 1).

the data sent to half of the tasks are inverted and the rest

are random (type 2).

The load balance was established as the difference

between the maximum and minimum work divided by the

average work performed among all the processes involved

in the execution.

In a first instance, we experimented with integer

sequences (integer of 4 bytes), then with real numbers

(long double of 12 bytes) in order to perform the behavior

of the algorithm when working with structures of larger

sizes. In both cases, the percentage of iterations used in

order to predict the work to be done was 5% (K1 = 5). And

the work percentage performed in that 5% of the iterations

(K2) was of approximately 11% for integers and 13% for

reals [3].

3.1. Maximum Work
The graphics 1 and 2 show the maximum work carried

out by each of the three algorithms with 1000000 of data,

8 tasks, and using the type 1 of sequences.

Maximum Work - Sequence type 1 - Integer

1,00E+10

1,20E+10

1,40E+10

1,60E+10

1,80E+10

2,00E+10

2,20E+10

2,40E+10

PSDR 18731080000 14799850000 12379630000 10194050000

PSFR 18923280000 15567540000 13059450000 11398600000

PSW R 23124820000 23124820000 23124820000 23124820000

10 20 30 40

Graphics 1. Maximun work with integer sequences.

Maximun Work - Sequence type 1 - Real

0,00E+00

1,00E+10

2,00E+10

3,00E+10

PSDR. 21800194000 17237688000 13201942000 10464170600

PSFR 21985262000 17966442000 14852812000 12664349100

PSWR 26913848000 26913848000 26913848000 26913848000

10 20 30 40

Graphics 2. Maximun work with real sequences.

3.2. Maximum Work Reduction Percentage
The graphics 3 and 4 show the reduction relation

among the maximum works carried out in the methods

with dynamic and fixed redistribution, for 1000000 of data

and with 4, 8, and 16 tasks, using sequences of the two

types. The reduction is computed through the following

count:

R= ((MWFR – MWDR) / MWFR) * 100, where

R is the reduction percentage obtained.

MWFR is the maximum work with fixed redistribution.

MWDR is the maximum work with dynamic

redistribution.

Maximum Work Reduction - Sequence type 1 - Integer

0%

2%

4%

6%

8%

10%

12%

4T. 1,02% 4,94% 4,71% 8,69%

8T. 1,02% 4,93% 5,21% 10,57%

16T. 1,02% 4,93% 5,45% 11,02%

10 20 30 40

 Graphics 3. Maximun work reduction with integer sequences.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

Maximun Work Reduction - Sequence type 1 - Real

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

4 T. 0,84% 4,12% 11,24% 16,24%

8 T. 0,84% 4,06% 11,11% 17,37%

16 T. 0,60% 4,01% 10,99% 17,66%

10 20 30 40

 Graphics 4. Maximun work reduction with real sequences.

3.3. Load Balance
In order to analyze the load balance in the system, the

difference between the maximum work and the minimum

carried out in each algorithm is presented. On the other

hand, the unbalance percentage, which represents such

difference, is also computed in relation to the mean work.

The graphics 5 and 6 show the previously mentioned

unbalance percentage in the three algorithms, for 1000000

of data, with 8 tasks, and with the two types of sequences.

%Unbalance - Sequence type 1 - Integer

0%

5%

10%

15%

20%

PSDR 18,99% 17,96% 9,88% 0,08%

PSFR 19,67% 18,76% 16,86% 13,85%

PSW R 19,88% 19,88% 19,88% 19,88%

B10 B20 B30 B40

 Graphics 5. Unbalance percentage with integer sequences.

% Unbalance - Sequence type 1 - Real

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

PSDR 40,38% 37,14% 33,93% 4,00%

PSRF 42,17% 40,31% 36,33% 30,18%

PSWR 42,60% 42,60% 42,60% 42,60%

10 20 30 40

 Graphics 6. Unbalance percentage with real sequences.

4. Conclusions and future work

There exists a great number of load balance techniques,

both static and dynamic. Even though the static techniques

are easier to carry out, they cannot be used when the work

load is not known “ a priori”. In these cases, dynamically

redistributing the load can attain a better load balance,

without producing a high overhead.

This paper shows a way of estimating dynamically the

work to be done in order to sort a data sequence by means

of the swap method with sentinel.

When the ordering performance in parallel can be

predicted from the work estimated for each process, it is

possible correct and optimize the data distribution per

processor, improving in this way the performance of the

complete operation.

The graphics have shown that the proposed dynamic

redistribution method balances in a better manner the work

load among processors, reducing the maximum work to be

done and, thus, the final work, optimizing the system

performance as well.

It can also be noticed that the method can be used with

different structures of data to be ordered, and that the

greater this structure is, the greater will be the reduction in

the maximum work to be done, which, in turn, leads to an

more significant improvement in the final system’s

performance.

As future work, there exists an attempt to include

processors heterogeneity as another factor in determining

the quantity of work that each processor should perform.

In addition, the considerations and necessary changes for

using multicluster environments - communicating a cluster

in Argentina (UNLP), other in Spain (UAB), and another

in Brazil - are being analyzed.

Also, the algorithm is being modified so it can be

executed in different architecture models, in particular,

distributed-shared memory architectures (SGI Origin

2000).

5. References

[1], Amato N., Ravishankar Iyer, Sharad Sundaresan, Yan Wu,

"A Comparison of Parallel Sorting Algorithms on Different

Architectures", Technical Report No. 98/029, Department of

Computer Science. Texas A\&M University, 1996.

[2], Cole R., "Parallel Merge Sort", Siam Journal of Computing,

Vol.17 Nº4, 1998.

[3], De Giusti Laura, Chichizola Franco. Informe Técnico.

[4], IBM. Informe técnico, 2003.

[5], Knuth, "The Art of Computer Programming, Vol 3: Sorting

and Searching", Addison-Wesley, 1973.

[6], Kumar V., Grama A., Gupta A., Karypis G., “Introduction to

Parallel Computing. Design and Analysis of Algorithms”,

Benjamin/Cummings, 1994.

[7],Lang, "Sequential and Parallel Sorting Algorithms",

www.iti.fh-flensburg.de/lang/algorithmen/sortieren/algoen.htm.

[8], Minsoo Jeon, Dongseung Kim, "Parallel Merge Sort With

Load Balancing", International Journal of Parallel Programming,

Vol.31 Nº1, 2003.

[9], Naiouf Marcelo, “Procesamiento paralelo. Balance de carga

dinámico en algoritmos de sorting.”, Tesis Doctoral, Julio 2004.

[10], Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington,

Pok Sze Wong, Hanmao Shi, "On the versatility of Parallel

Sorting by Regular Sampling", Parallel Computing Vol.19, 1993.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

