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Abstract. In this paper, an analysis of the 4-(N2-1) Puzzle, which is a 

generalization of the (N2-1) Puzzle, is presented. This problem is of interest due 

to its algorithmic and computational complexity and its applications to robot 

movements with several objectives.  

Taking the formal definition as a starting point, 4 heuristics that can be used to 

predict the best achievable objective and to estimate the number of steps 

required to reach a solution state from a given configuration are analyzed. By 

selecting the objective, a sequential and parallel solution over a cluster is 

presented for the (N2-1) Puzzle, based on the heuristic search algorithm A*. 

Also, variations of the classic heuristic are analyzed. 

The experimental work focuses on analyzing the possible superlinearity and the 

scalability of the parallel solution on clusters, by varying the physical 

configuration and the dimension of the problem. 

Finally, the suitability of the heuristic used to assess the best achievable 

objective in the 4-(N2-1) Puzzle is analyzed. 

Keywords: multi-objective problems, discrete optimization, superlinearity, 

parallel algorithms. 

1   Introduction 

One of the areas of interest in parallel computing in recent years has been search 

processing in graphs. Discrete optimization problems (DOP) comprise a large number 

of areas [1] and are often solved with search algorithms that browse the state space of 

the problem to reach a “solution” state that minimizes a target function [2]. 

In general, these search techniques have a high computational cost because state 

spaces grow in a factorial or exponential manner. Oftentimes it is impossible to 

perform a thorough analysis of the solution space, so algorithms that use heuristics are 

required to assess the cost of the states and process first the nodes that are most likely 

to yield the best results [3] [4]. 

The high computational complexity as regards computational time and memory 

requirements are drivers for the development of parallel algorithms for discrete 

optimization problems to achieve an efficient solution; in particular, graph processing 

techniques to represent the problem have been of great interest [5] [6]. 



This is the case of some variations of the BFS (Best First Search) search method, 

which start from a node of the graph representing the problem to solve and apply 

some type of work assessment metrics to reach a solution, so as to evolve from an 

initial state of the graph towards the “optimum solution” state.  

The natural parallelization of the technique consists in starting the evolution from 

different “possible” nodes on the different processors of the multiprocessor 

architecture. As the algorithm progresses, processors need to be communicated to be 

able to report the partial results achieved and enable search termination detection or 

discard solutions that, based on the selected metrics, will not improve the partial 

solution found so far [7] [8]. 

Some of the aspects observed when using cluster-type parallel architectures for the 

resolution of discrete optimization problems [9] are of interest: 

▪ Parallelization granularity (ratio between independent processing time and 

communication) is critical for performance, since it will affect the improvement of 

solution time as well as communications overhead. 

▪ In general, load balancing has to be dynamic, since the state space is implicit and 

generated during the search. This requires communication, since exploratory work 

is variable and very hard to predict a priori [10].  

In parallel processing, two of the main aspects of performance analysis are the 

Speedup factor (Sp) [11] [12] and the Efficiency (E) that relates the Speedup with the 

number of processors (N) used [13] [14].  

Scalability is a third, very significant factor in parallel applications: problems 

usually “escalate”, i.e., the volume of work to be done increases, and the 

multiprocessor architectures used can also “escalate” by increasing the number of 

processors used. The effect of escalating workload and/or processors on the 

performance of parallel algorithms, considering Sp and E [15], is of interest. 

The maximum theoretical speedup can in some cases be improved, which is known 

as superlinearity (Su). The reasons why the Sp can be greater than N, in particular for 

discrete optimization problems, is an issue of interest: 

▪ The exploration of the total space of possible solutions can be reduced by 

distributing the workload between N processors so as to “cut down” or “finish” the 

global search when reaching the expected result in any of these processors [16] 

[17]. That is, in theory, the cluster architecture will allow superlinearity depending 

on workload balancing, processor heterogeneity, and the processing 

time/communication time ratio of the algorithm used [18]. 

▪ If distributed architectures that are more weakly coupled are used (such as 

miniclusters or grids), the relation between processing time and communication 

time imposes a limit on the possibility of obtaining superlinearity [19]. 

2   Contribution 

In this paper, a multi-objective generalization of the (N
2
-1) Puzzle is presented and its 

application to robot movement planning is analyzed [20]. The contributions are: 

▪ Analyzing time improvements in the sequential and parallel algorithms presented 

in [21] achieved with the application of variations in prediction heuristics that 



combine Manhattan Distance (DM) and Linear Conflict Detection (CL) with the 

detection of the last movements carried out to solve the board and the location of 

corner tiles. 

▪ Carrying out experimental work based on these algorithms with boards of various 

dimensions and clusters of 4, 8, 12, and 16 processors, varying heuristics and 

analyzing the performance obtained in each case. 

▪ Analyzing a local work parameter (LW) that is related to load balancing and is used 

during the execution of the parallel algorithm. 

▪ Analyzing the suitability of the heuristic used to assess the best achievable 

objective in the 4-(N
2
-1) Puzzle. 

3   4-(N
2
-1) Puzzle: Generalization of the (N

2
-1) Puzzle to multiple 

objectives 

The 4-(N
2
-1) Puzzle is an extension of the (N

2
-1) Puzzle, applicable in multi-objective 

robot movements. It has the following characteristics: 

▪ Given an initial board, 4 possible solutions are admitted, each of these being a 

“target board”. In Figure 1 these solutions are shown for N = 5. Once the target is 

chosen, the problem becomes that of solving the (N
2
-1) Puzzle, the final board 

being the selected target. 

▪ The analysis of solvable cases for a target board is that presented in Section 4.1, 

and it will be different for the achievable “target boards” if N is an even or an odd 

number.  

 

Fig. 1. Solution boards for the general problem. 

4   Characterization of the (N
2
-1) Puzzle 

The (N
2
-1) Puzzle problem is a generalization of the Puzzle-15 [22]. It consists in 

N
2
-1 pieces numbered from 1 to N

2
-1 and placed on a N

2
-sized board. Each square of 

the board contains one piece, so there is only one empty square. Figure 2 shows the 

(N
2
-1) Puzzle with N = 4.  

▪ A legal movement implies moving the empty square to an adjacent position, either 

horizontally or vertically, by moving the piece that was in the newly emptied 

square to the previous position of the empty square. 



▪ The objective of the Puzzle is applying legal movements until the initial board 

becomes the selected final board (Figure 2). The solution to the problem should be 

the one that minimizes the number of movements required to achieve the final 

configuration from the initial given configuration. 

 

Fig. 2. Boards for the 15 (N=4) Puzzle. a. Initial board. b. Final board. 

4.1 Solvability of the Puzzle 

The state space of the (N
2
-1) Puzzle has N

2
! states. However, not every state can be 

reached from any other state by applying legal movements. This is because the graph 

representing the state space of the Puzzle has two equally-sized connected 

components, and therefore, if the initial and the final states are not in the same 

component, there is no solution for the problem.  

By applying a simple detection step prior to the search process, in order to 

determine if the final configuration can be reached from the initial configuration, the 

state space of the (N
2
-1) Puzzle is reduced to N

2
!/2.  

The procedure to corroborate if an initial board can be solved into a final board is 

the following:  

▪ For each piece i (i = 2..N
2
-1), the number of pieces with a lower number that 

appear after the piece in question – whether on the same row to the right or on any 

lower row – are counted. We will call this the “i inversion number”, and will 

denote it as n
i
.  

▪ Then, NT = n
2
 + n

3
 +… n

(N
2
-1)

 is calculated for both the initial and final boards. If N 

is an even number, the number of the row where the empty square is located is 

added to NT. 

▪ If the parity of both results is the same, then the final board can be reached from 

the initial board. This is because (NT mod 2) does not vary with any legal 

movement. 

Figure 2 shows an example for an even N, where the board in 2.a has NT = 28 and 

the board in 2.b has NT=4; therefore the board in Figure 2.a can be solved into that 

final board. 

4.2 Heuristics 

Heuristic search algorithms use information about the problem to guide the search 

process, so they value the nodes based on the application of a heuristic function. Thus, 



they process first the node that looks more promising. The heuristic value of a node is 

an estimate and indicates how close it is to the solution node.  

A more polished heuristic will carry out estimates that are closer to the real cost; 

therefore, the algorithms that use it will need to process less nodes. 

The heuristics used for the implementation of the sequential and parallel 

algorithms are: (H1) addition of Manhattan Distances, (H2) H1+ detection of Linear 

Conflicts, (H3) H2+ Last Movements, (H4) H3+ Corner Tiles. The corresponding 

definitions can be found in [23]. 

In this paper, the best heuristic (H4) is used for the 4-(N
2
-1) Puzzle in order to 

estimate the most easily reachable objective (lowest number of steps to reach the 

solution), and its suitability is determined. 

5   Sequential solution 

A* is a variation of the Best First Search search technique [6], where each node n is 

valuated in accordance to the cost of reaching it from the root of the search tree (g(n)) 

and a heuristic that estimates the cost to go from n to the solution node (h(n)). Thus, 

the cost function will be f(n) = g(n) + h(n). If the heuristic is admissible, i.e., it never 

overestimates the real cost, the algorithm A* will always find the best solution. 

The algorithm keeps a list of unexplored nodes (open list1) ordered by the value of 

function f, and a second list of already explored nodes (closed list2) used to avoid 

loops in the search graph. Initially, the open list contains only one element, the initial 

node, and the closed list is empty. 

After each step, the node with the lowest f value (the most promising node) is 

removed from the open list and examined. If the node is the solution, the algorithm 

ends. Otherwise, the node is expanded (generating the children nodes by applying 

legal movements) and added to the closed list. Each successive node is added to the 

open list if it has not been previously processed or if it has been processed but its cost 

value improves the previous one. 

In order to check time improvement as the heuristic is tuned, tests with 60 initial 

configurations were carried out varying the heuristic function (H1, H2, H3, H4). In 

most cases (65%), the heuristic H4 produced the best execution times, followed by H3 

(20%), and H2 (15%). In general, it was noted that, as the heuristic is adjusted, 

running time, the number of processed and exploited nodes, and the average size of 

the lists of the structure used as closed list (factor LPLC) decrease. 

                                                           
1 The open and closed lists are implemented by means of a priority queue and a hash table, 

respectively. 
2 The open and closed lists are implemented by means of a priority queue and a hash table, 

respectively. 



6   Outline of the parallel solution 

The parallelization strategy consists in keeping local open and closed lists on each 

processor. At the beginning, only one of the processors will work with the initial 

node, and it will also be in charge of detecting the end of the search. As other nodes 

are generated, processors will receive them and start working.  

All processors will search locally, building their own closed list – to avoid locally 

repeated work – as well as their open list. Processors should communicate among 

them the minimum values of the solutions found in order to minimize unnecessary 

searches. 

Since the graph for the problem is implicit and generated during the execution, a 

dynamic load balancing technique has to be adopted. These strategies are based on the 

idle processor selecting a work donor process. If the latter has work, it sends part of 

its load to the requesting process. Otherwise, it sends a rejection message, and the idle 

process looks for another donor. The technique used in the algorithm is the 

Asynchronous Round Robin [11]. The quality of the nodes sent has to be considered 

as well, since, if the nodes sent are known not to lead to a better solution, then the 

receiver will quickly become idle. 

To detect the end of the search in a distributed environment with a dynamic load 

balancing technique, the modified Dijkstra’s Termination Algorithm [24] is used, 

whose purpose is detecting the state in which processes are idle and there are no 

messages circulating through the network. To this end, processes are connected in a 

ring structure and pass a message called token between them. 

A global pruning algorithm was used where each of the p “worker” processes has a 

value that indicates the cost of the best solution found so far (BSC), which is used to 

limit the search process. Thus, the nodes to process will be only those whose cost is 

lower than BSC. 

A process that has some work pending on its open list will process at the most a 

fixed amount of nodes for each iteration (LW), or it will process nodes until it finds a 

solution or until its open list is empty. Then, the “worker” receives the costs of the 

“best solutions” – if there are any – found so far by the other workers and updates its 

BSC variable as needed.  

If the process still has some work pending on its open list, it checks if there are any 

work requests from other processes, and if there are, it sends the first and last nodes of 

its open list to the requesting processor. It then continues working with its nodes.  

If the process does not have any pending work, it will be idle, so it will send a 

work request to its donor following the ARR algorithm. If the process found a new 

solution, it sends the corresponding cost to the other processes. It then waits for the 

types of messages listed below, which will be processed with no particular order of 

priority: 

▪ Work request: an idle worker selected this process as its donor.  

▪ Work: the donor sends the requested work. The process is active again. 

▪ Rejection of work request: the selected donor does not have any work. The process 

must send a work request message to the next donor. 

▪ Token: reception of the token for termination detection. If necessary, the token is 

updated and the next process begins. Process 0, upon receiving the token, checks if 



it has to end the search process and, if that is the case, it sends a message to the 

other processes to inform the end of the computation. 

▪ New solution found: if necessary, the BSC variable is updated. 

The termination token is used to translate the minimum cost solution movements to 

process 0, so that the messages communicating new solutions only have a value (cost) 

to avoid communication overhead. 

7   Experimental results 

For the tests, a cluster of 20 Pentium IV, 2.4 GHz, and 1GB RAM computers 

connected over a 100-Mbit LAN was used. 

To study the performance of parallel search algorithms in graphs, tests with various 

initial and final configurations were carried out, with 4 machines and N = 5, varying 

the LW parameter (500, 750, 1000). For each initial configuration, the sequential 

algorithm was run with the different heuristics (since the speedup has to be taken 

based on the best sequential algorithm). In 65 % of the tests, superlinear results were 

obtained.  

One cause for superlinearity occurs when, during parallel execution, a solution 

node is reached after examining a lower number of nodes than the sequential 

algorithm. In BFS algorithms, this anomaly is caused by nodes that have the exact 

same cost. Another cause is the reduction of the LPLC factor in each processor. Since 

work is distributed among processors, each closed list is smaller and therefore the 

search processes for the elimination of cycles are faster, which means that it is more 

likely to be enough memory for them.  

To see how the algorithm escalates as the size of the problem increases 

(N = 4, 5, 6) and as the number of processors in the architecture escalates 

(P = 4, 8, 12, 16), two types of initial configuration were defined, created based on: 

(1) inversion of the third column and the third row of the lower right 4x4 sub-board 

(Figure 3.a), (2) inversion of the second column and the second row of the lower right 

4x4 sub-board (Figure 3.b). The solution to be found will be based on the classic 

solution board. 

 

Fig. 3. Examples of 5x5 boards. a. Configuration 1 b. Configuration 2. 

For each configuration and each P, the LW block size (500, 750, 1000) that 

optimizes times was looked for. The best times for each configuration are shown in 

Figures 4.a and 4.b, respectively. 



Based on these results, it can be seen that, as P increases, for a specific N and 

configuration, the speedup increases as well. Therefore, efficiency first increases and 

then decreases when the number of machines increases, or it remains more or less at 

the same level. Also, when N increases, the speedup decreases. This may be due to 

two reasons: 

▪ The state space grows exponentially as N increases, which results in an increase of 

the nodes expanded by the algorithm.  

▪ Each work request communication will require sending a larger volume of data 

because the boards are bigger. 

The role of the LW parameter, presented in Section 6, should be noted. It measures 

the number of nodes to process at each “worker” by iteration of the algorithm before 

checking work requests received and examining partial solutions found by other 

processors. 

A large value of LW might cause idle processors waiting to receive work to remain 

in this state for a long time. Also, since the costs of sub-optimum solutions found by 

others would not be received, unnecessary nodes would be processed. A very small 

value of LW would allow more frequent checks, but it might cause an increase of 

times due to the constant verifications. 

 

Fig. 4. Best parallel times. a. Configuration 1 b. Configuration 2. 

During the tests carried out, it was observed that there is no optimum LW value – it 

depends on the dynamic distribution of the state space. For example, if the processors 

have a tendency to run out of work, a smaller value of LW will be more suitable, so 

that the processors that are selected as donors can answer the request from the idle 

processor.  

With the purpose of analyzing the suitability of the heuristic H4 for the 4-(N
2
-1) 

Puzzle, each initial board was run with the two objectives that were closest as regards 

the initial disorder so as to calculate the number of steps required to reach the 

solution. The two remaining objectives were discarded because their initial disorder is 

above the number of steps corresponding to the solutions of the other two objectives.  

The results obtained were classified based on: 



▪ Successful: the objective selected with the heuristic H4 is reached in a lower 

number of steps. There was a 67% rate of Successful results. 

▪ Unsuccessful: the objective discarded by the heuristic H4 is reached in a lower 

number of steps. There was an 8% rate of Unsuccessful results. 

▪ The cases for which H4 indicates that both objectives are equivalent were not 

considered. These cases represent 25% of the results and are not significant, 

since the maximum error in the number of steps between the two objectives is 

N-1 steps. 

8   Conclusions and future lines of work 

A generalization (4(N
2
-1) Puzzle) of the (N

2
-1) Puzzle has been defined, particularly 

useful for some cases of robot movement planning. 

Four heuristics that can be used both to predict the best reachable objective and to 

estimate the number of steps required to reach a “solution” state from a given 

configuration have been analyzed.  

An analysis of the parallel solution for the (N
2
-1) Puzzle on clusters has been 

presented, incorporating the implementation of variations of the classic heuristic. The 

advantages of using these variations for the sequential and the parallel algorithms has 

been analyzed, and speedup, efficiency and superlinearity factors have been analyzed 

for various cluster configurations, various problem dimensions, and various initial 

states. 

One research line that is currently being studied is the migration of the algorithm to 

multicore and multicore cluster platforms. The strategy in this case would be taking 

into account those workers that are inside the same cluster node and having an only 

open and closed list for them. Another research line currently under study is the 

parallelization of the multiple-objective problem increasing to M the number of 

boards to solve. 
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