
PERFORMANCE COMPARISON OF PARALLEL PROGRAMMING
PARADIGMS ON A MULTICORE CLUSTER
Enzo Rucci, Franco Chichizola, Marcelo Naiouf and Armando De Giusti∗

Institute of Research in Computer Science LIDI (III-LIDI)
National University of La Plata

La Plata, Buenos Aires, Argentina
{erucci,francoch,mnaiouf,degiusti}@lidi.info.unlp.edu,ar

ABSTRACT
Currently, most supercomputers are multicore clusters.
This type of architectures is said to be hybrid, because they
combine distributed memory with shared memory. Tradi-
tional parallel programming paradigms (message passing
and shared memory) cannot be naturally adapted to the
hardware features offered by these architectures. A par-
allel paradigm that combines message passing with shared
memory is expected to better exploit them. Therefore, in
this paper the performance of two parallel programming
paradigms (message passing and combination of message
passing with shared memory) is analyzed for multicore
clusters. The study case used is the construction of phy-
logenetic trees by means of the Neighbor-Joining method.
Finally, conclusions and future research lines are presented.

KEY WORDS
parallel programming, hybrid programming, multicore
cluster, performance comparison, Neighbor-Joining
method.

1 Introduction

The study of distributed and parallel systems is one of the
most active research lines in computer science nowadays
[1, 2]. In particular, the use of multiprocessor architectures
configured in clusters, multiclusters, grids and clouds, sup-
ported by networks with different characteristics and topo-
logies, has become general, not only for the development of
parallel algorithms but also for the execution of processes
that require intensive computation and the provision of con-
current web services [3, 4, 5, 6].

The energy consumption and heat generation prob-
lems that appear when the speed of a processor is escalated
are the reasons of the development of the multicores pro-
cessors. This type of processor is formed by the integration
of two or more computational cores within the same chip.
Even though these cores are simpler and slower, when com-
bined they allow enhancing the global performance of the
processor while making an efficient use of energy [7, 8].

The incorporation of this type of processors to con-

∗CONICET Main Researcher

ventional clusters gives birth to an architecture that com-
bines shared and distributed memory, known as multicore
cluster [9, 10]. In this type of architectures, communic-
ations between processing units are heterogeneous [11]
and can be classified in two groups: inter-node and intra-
node. Inter-node communications are between cores that
are in different nodes and they communicate by exchanging
messages through the interconnection network. Intra-node
communications are between cores that are within the same
node and they communicate through the different memory
levels of the node.

Parallel programming paradigms differ in the way
tasks communicate and synchronize. Traditionally, there
were two main programming paradigms for parallel archi-
tectures: shared memory and message passing. In shared
memory architectures, such as multicores, the most widely
used paradigm is shared memory. In it, tasks communic-
ate and synchronize by reading and writing variables in a
shared address space. OpenMP is the most widely used lib-
rary to program shared memory [12]. Message passing is
the most commonly chosen paradigm for distributed archi-
tectures, such as traditional clusters. In it, each task has its
own address space and task communication and synchron-
ization is done by exchanging messages. MPI is the most
widely used library to program under this paradigm [13].

Multicore clusters are hybrid architectures that com-
bine distributed memory with shared memory, so neither of
the previous paradigms naturally adapts to all hardware fea-
tures in these architectures. For this reason, the scientific
community has a great interest in analyzing hybrid parallel
programming paradigms that allow communications both
through message passing and shared memory. A parallel
paradigm that uses shared memory for intra-node commu-
nications and message passing for inter-node communic-
ations would be expected to better leverage the features
offered by multicore clusters [14].

In this paper, the performance of two parallel al-
gorithms designed for the same application but using differ-
ent programming paradigms is compared over a multicore
cluster. The application selected as study case is the con-
struction of phylogenetic trees by means of the Neighbor-
Joining method, and it was selected based on its computa-
tional complexity (O(n3)). The rest of the paper is organ-
ized as follows: in Section 2, related works are described.



In Section 3, the Neighbour-Joining method is explained,
together with sequential an the parallel algorithms used. In
Section 4, the experimental work carried out is described,
whereas in Section 5, the results obtained are presented and
analyzed. Finally, in Section 6 the conclusions and future
lines of work are presentend.

2 Related Works

There are numerous works that analyze and compare par-
allel programming paradigms for multicore clusters. To
mention but a few, in [15], [16] and [17] there are compar-
isons between message passing and combinations of mes-
sage passing with shared memory. Results vary depending
on the characteristics of the problem solved, the algorithms
used and the features of the hardware architecture used as
support; which makes research in this area even more sig-
nificant.

3 Neighbor-Joining Method

Studies carried out on molecular mechanisms of organisms
suggest that all organisms in the planet have a common pre-
decessor. Then, any set of species would be related, which
is called Phylogeny. In general, this relation can be repres-
ented by means of a phylogenetic tree. The task of Phylo-
geny is to infer the previous tree based on observations of
the existing organisms [18].

The Neighbor-Joining method (NJ) is based on dis-
tance matrixes and is widely used by biotechnologists and
molecular biologists due to its efficiency and temporal
complexity order. In recent years, it has become very pop-
ular through its use in the ClustalW algorithm [19], one
of the most widely used tools for multiple sequence align-
ment. The NJ algorithm was originally developed by Saitou
and Nei in 1987 [20]. One year later, Studier and Kep-
pler [21] would review the algorithm and incorporate an
improvement that allows reducing the temporal complexity
from O(n5) to O(n3).

The Neighbor-Joining method starts with a star-
shaped tree. In each step, the pair of nodes that is closest to
each other are selected and connected through a new, inner
node. Then, the distances from this new node to the rest
of the nodes in the tree are calculated. The algorithm ends
when there are only two nodes that are not connected [18].

Algorithm 1 details the pseudo-code of the Neighbor-
Joining method and Figure 1 shows an example of the
building process of a phylogenetic tree using the Neighbor-
Joining method for a 4x4 distance matrix.

3.1 Sequential Neghbor-Joining Algorithm

The algorithm starts with a distance matrix between pairs
of sequences of N×N denotaded as d, N being the number
of sequences. Since this is a symmetric matrix, there is no
need to store it in full, but only the lower triangular matrix

Algorithm 1 Pseudo-code of the Neighbor-Joining
method.
Initialization:
L = S.

Iteration:
Pick the pair i,j for which normalized distance Di,j is min-

imum, where

Di,j = di,j − (ri + rj)

and ri is the divergence of node i, where

ri =
1

[L]− 2
×

∑
kεL

di,k

Define a new node k and assign dk,s = ½(di,s+ dj,s– di,j),
for all s in L.

Add k to S with distance edges di,k = ½(di,j + ri – rj),
dj,k = di,j – di,k, connecting k to i and j, respectively.
Remove i and j from L and add k.

Termination:
When L is formed by two leaves i and j, add the pending

edge between i and j with distance di,j .

or the upper triangular matrix can be stored (in this case,
the former is chosen).

In each iteration of the main loop, the pair i, j for
which Di,j is minimal has to be found. The normalized dis-
tance matrix D is not stored, but the value of each position
is calculated in each iteration. Node divergences are com-
puted in a one-dimensional arrangement before starting the
main loop, and are updated in each iteration of the loop,
rather than calculating them every time they are required.

For the list of active nodes L, a one-dimensional flag
arrangement is used; the flags indicate which nodes have
been selected and which have not.

Algorithm 2 details the pseudo-code of the sequential
algorithm.

3.2 Parallel Neighbor-Joining Algorithm

The algorithm was parallelized using different parallel pro-
gramming paradigms (message passing and combination
of message passing and shared memory). Before going
into an in-depth review of the solution developed, certain
aspects of the Neighbor-Joining algorithm should be ana-
lyzed, since these might explain why an efficient parallel
solution is difficult to obtain.

First, it should be noted that for each iteration of the
main loop, a new node is added to the distance matrix, but
those from the two originating nodes are removed. This
means that, in a parallel solution, the work carried out by
each task in each iteration decreases as the iterations of the
main loop progress. Also, in distributed environments, the
distances of the new nodes must be distributed among all
processes forming the solution.



Figure 1. Building process of a phylogenetic tree using the
Neighbor-Joining method for a 4x4 distance matrix.

The search for the pair of nodes whose distance is
minimal represents the most expensive part of the main
loop from a computational standpoint. Taking into account
that the distance matrix is triangular, distributing the work
required for the search process by assigning the same num-
ber of rows to each task could result into idle time, since
not all rows have the same number of cells. Since idle time
negatively affects the performance of an algorithm, it must
be removed or, if this is not possible, minimized. For this
reason, the workload distribution strategy must be chosen
trying to make it as equitable as possible for all tasks.

3.2.1 Message Passing as Parallel Programming
Paradigm

This solution uses a master-slave model of P processes as
parallelization strategy. The distances of each newly cre-
ated node are distributed among all processes following
a circular order (the node to which it is assigned is the
owner). Algorithm 3 details the pseudo-code of the par-
allel algorithm.

3.2.2 Combination of Message Passing and Shared
Memory as Parallel Programming Paradigm

This solution is based on the one described in Section 3.2.1,
but unlike it, each process generates T threads when com-
putation begins. Then, the iterations belonging to different
process loops are distributed among the threads that have
been generated.

Algorithm 2 Pseudo-code of the sequential algorithm.

1. L = S.

2. foreach di,j in d do

3. Update ri.

4. Update rj.

5. end foreach

6. for h in 1 to N-2

7. foreach di,j in d do

8. Calculate Di,j.

9. Calculate minimum Di,j.

10. end foreach

11. Create node k connecting nodes i and j.

12. S = S + {k}.

13. Calculate di,k and dj,k.

14. L = L – {i,j} + {k}.

15. foreach s in L do

16. Calculate dk,s.

17. Update rk.

18. Update rs.

19. end foreach

20. end for

21. Group both remaining nodes in L.

4 Experimental Work

4.1 Architecture Used

Tests were carried out on a cluster of Blade multicores
with four blades and two quad core Intel Xeon e5405 2.0
GHz processors each[22, 23]. Each blade has 10 Gb RAM
memory (shared between both processors) and 2 x 6Mb
L2 cache for each pair of cores. The operating system is
GNU/Linux Fedora 12 (64 bits).

4.2 Algorithms Used

The algorithms used in this work were developed using C
language (gcc compiler version 4.4.2) with the OpenMPI
(mpicc compiler version 1.4.3) library for message passing
and OpenMP for thread management. The algorithms are
detailed below:



Algorithm 3 Pseudo-code of the parallel Neighbor-Joining
algorithm.

1. The master process divides distance matrix d into
P portions and distributed P-1 among the slaves.
Each process keeps approximately ((N)×(N-1)/2P)
elements from distance matrix d.

2. Each process calculates the partial divergences of the
nodes it has, broadcasts them to the other processes,
and update its divergence vector based on the partial
divergences received from the other processes.

3. for h in 1 to N-2 do

4. Each process calculates its local minimum Di,j .

5. The master process collects all local minimums, cal-
culates the global minimum Di,j and broadcasts it to
the other processes.

6. The master process creates a new node k and adds it
to S.

7. The owner process of node k calculates di,kand dj,k.
Each remaining process accumulates in a data struc-
ture the distances to the pair of nodes i,j it has and
then sends it to the owner of node k.

8. The owner process of node k calculates the distances
from it to the rest of the nodes and updates the diver-
gence vector.

9. The owner process of node k broadcasts to the other
processes the updated divergence vector.

10. Each process removes nodes i and j from their own L
and add k.

11. end for

• MP: this algorithm is based on the solution described
in Section 3.2.1, where P is the number of cores used.

• HY: this algorithm is based on the solution described
in Section 3.2.2, where P is the number of blades used
and T is the number of cores in each blade.

4.3 Tests Carried Out

Based on the features of the architecture, both algorithms
were tested using all the cores with different numbers of
nodes: two, three and four; this means that P = {16, 24,
32} for MP. In the case of HY, one process per node was
used; this means that P = {2, 3, 4} and T = {8}. Various
problem sizes were used: N = {4000, 6000, 8000, 10000,
12000, 14000, 16000}. Each particular test was run five
times, and the average execution time was calculated for
each of them.

5 Results

To assess the behavior of the algorithms developed when
escalating the problem and/or the architecture, the speedup
and efficiency of the tests carried out are analyzed [1, 3, 24].

The speedup metric is used to analyze the algorithm
performance in the parallel architecture as indicated in
Equation (1).

Speedup =
SequentialT ime

ParallelT ime
(1)

To assess how good the speedup obtained is, the effi-
ciency metric is calculated. Equation (2) indicates how to
calculate this metric, where p is the total number of cores
used.

Efficiency =
Speedup

p
(2)

Figure 2 shows the efficiency achieved by the al-
gorithms MP and HY when using two, three and four blades
of the architecture for different problem sizes (N). For read-
ability, only the results for N = {4000, 8000, 12000, 16000}
are shown.

Figure 2. Efficiency achieved by algorithms MP and HY
when using two, three and four blades of the architecture
for different problem sizes (N).

This chart shows that both algorithms increase their
efficiency as the size of the problem increases and, on the
other hand, as it is to be expected in most parallel systems,
the efficiency decreases when the total number of nodes
used increases. The efficiency levels obtained with both al-
gorithms are low due to the number of communication and
synchronization operations carried out and the idle time
that processes and threads might have. Despite this, it can
be seen that the best efficiency levels are obtained by HY.

The superiority of HY over MP can be analyzed in
detail in Figure 3, which shows the percentage of the rel-
ative difference between the efficiencies of both algorithms
(prd), calculated by means of Equation (3).

prd =
efficiency(HY )− efficiency(MP )

efficiency(MP )
×100 (3)



Figure 3. prd with two, three and four blades of the archi-
tecture for different problem sizes (N).

The chart in Figure 3 shows that HY is better than
MP in all cases, achieving improvement percentages higher
than 250%. It can also be seen that the improvement in-
creases with the number of nodes and that it decreases
when the size if the problem increases. The difference in
favor of HY is due to several factors:

• First, HY reduces latency and maximizes the band-
width of the interconnection network, since, by using
a single, multi-threaded process instead of multiple
processes for each node, it groups all task messages
corresponding to a node in a single, larger message.
It also removes competition for the network at node
level.

• Finally, since the distance matrix d is divided in less
parts and the work assigned to each of these portions
is distributed dynamically among the threads in each
process, HY achieves a more balanced work distribu-
tion versus the fully static strategy used by MP.

6 Conclusions and Future Works

In this paper, the performance of two parallel programming
paradigms (message passing and hybrid) was compared for
current cluster architectures, taking as study case the con-
struction of phylogenetic trees by means of the Neighbor-
Joining method. The algorithms were tested using vari-
ous work and architecture sizes. The results obtained show
that the hybrid parallelization better leverages the hardware
features offered by the support architecture, which in turn
yields a better performance.

Future lines of work include the development and op-
timization of hybrid solutions for other types of applica-
tions and their comparison with solutions based only on
message passing or shared memory.

References

[1] A. Grama, G. Karypis, V. Kumar, and A. Gupta, An
Introduction to Parallel Computing. Design and Ana-

lysis of Algorithms., 2nd ed. Addison Wesley, 2003.

[2] M. Ben-Ari, Principles of Concurrent and Distributed
Programming, 2nd ed. Addison Wesley, 2006.

[3] Z. Juhász, P. Kacsuk, and D. Kranzlmuller, Eds., Dis-
tributed and Parallel Systems: Cluster and Grid Com-
puting. Springer Science + Business Media Inc.,
2005.

[4] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy,
L. Torczon, and A. White, The Sourcebook of Parallel
Computing. Morgan Kauffman, 2003.

[5] M. D. Stefano, Distributed data management for Grid
Computing. John Wiley & Sons Inc, 2005.

[6] M. Miller, Web-Based applications that change the
way you work and collaborate online. Que, 2009.

[7] AMD. (2009) Evolución de la tecnolo-
gía de múltiple núcleo. [Online]. Avail-
able: http://multicore. amd.com/es-ES/AMD-Multi-
Core/resources/Technology-Evolution

[8] T. Burger. Intel Multi-Core Processors: Quick Refer-
ence Guide.

[9] L. Chai, Q. Gago, and D. K. Panda, “Understanding
the impact of multi-core architecture in cluster com-
puting: A case study with intel dual-core system,” in
Proceedings of the IEEE International Symposium on
Cluster Computing and the Grid., 2007.

[10] M. McCool, “Scalable programming models for
massively multicore processors,” in Proceeding of the
IEEE, 2012.

[11] C. Zhang, X. Yuan, and A. Srinivasan, “Processor
affinity and mpi performance on smp-cmp clusters,”
in IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IP-
DPSW), 2010.

[12] (2012) OpenMP.org. [Online]. Available:
http://openmp.org/wp/

[13] (2012) The Message Passing Inter-
face (MPI) standard. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/

[14] N. Drosinos and N. Koziris, “Performance compar-
ison of pure mpi vs hybrid mpi-openmp paralleliza-
tion models on smp clusters,” in 18th International
Parallel and Distributed Processing Symposium (IP-
DPS’04) - Papers, 2004.

[15] E. Rucci, A. De Giusti, F. Chichizola, M. Naiouf,
and L. De Giusti, “DNA sequence alignment: hybrid
parallel programming on a multicore cluster,” in Re-
cent Advances in Computers, Communications, Ap-
plied Social Science and Mathematics, N. Mastora-
kis, V. Mladenov, B. Lepadatescu, H. R. Karimi, and



C. G. Helmis, Eds., vol. 1, no. 1. WSEAS Press,
September 2011, pp. 183–190.

[16] F. Leibovich, L. De Giusti, and M. Naiouf, “Paral-
lel algorithms on clusters of multicores: Comparing
message passing vs hybrid programming,” in Pro-
ceedings of the 2011 International Conference on
Parallel and Distributed processing Techniques and
Applications (PDPTA2011), 2011.

[17] X. Wu and V. Taylor, “Performance Characteristics of
Hybrid MPI/OpenMP Implementations of NAS Par-
allel Benchmarks SP and BT on Large-scale Mul-
ticore Clusters,” The Computer Journal, vol. 55, pp.
154–167, 2012.

[18] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchinson,
Biological Sequence Analysis. Probabilistic models of
proteins and nucleic acids., 7th ed. Cambridge Uni-
versity Press, 2002.

[19] ClustalW and Clustal X Multiple Se-
quence Alignment. [Online]. Available:
http://www.clustal.org/clustal2/

[20] N. Saitou and M. Nei, “The neighbor-joining method:
a new method for reconstructing phylogenetic trees,”
Mol. Biol. Evol., vol. 4, pp. 406–425, 1987.

[21] J. A. Studier and K. J. Keppler, “A note on the
neighbour-joining algorithm of saitou and nei,” Mol.
Biol. Evol., vol. 5, pp. 729–731, 1988.

[22] HP. HP BladeSystem. [Online]. Available:
http://h18004.www1.hp.com/products/blades/compon
ents/c-class.html

[23] ——. HP BladeSystem c-Class
architecture. [Online]. Available:
http://h20000.www2.hp.com/bc/docs/support/Support
Manual/c00810839/c00810839.pdf

[24] B. Wilkinson and M. Allen, Parallel Programming.
Techniques and Applications Using Networked Work-
stations and Parallel Computers., 2nd ed. Prentice
Hall, 2005.


