
User Interface Patterns for Hypermedia Applications

Gustavo Rossi
LIFIA-Universidad Nacional de La

Plata, UNLM and Conicet
Calle 50 y 115, La Plata, Buenos

Aires, Argentina
(54 221) 4236585

gustavo @ sol.info.unlp.edu.ar

Daniel Schwabe
Depto Inform&tica, PUC-Rio

Rua Marques de Sao Vicente, 225,
Rio de Janeiro, Brasil
2nd line of address
(55 21) 512 2299

schwabe @ inf.puc-rio.br

Fernando Lyardet
LIFIA-Universidad Nacional de La

Plata
Calle 50 y 115, La Plata, Buenos

Aires, Argentina
(54 221) 4 236585

fer@ sol.info.unlp.edu.ar

ABSTRACT
Designing high quality visual interfaces for hypermedia
applications is difficult; it involves organizing different kinds of
interface objects (for example those triggering navigation),
prevent the user from cognitive overhead, etc. Unfortunately,
interface design methods do not capture design decisions or
rationale, so it is hard to record and convey interface design
expertise.

In this paper, we introduce interface patterns for hypermedia
applications as a concept for reusing interface designs. The
structure of this paper is as follows: first, we introduce the context
in which these patterns were discovered and we give a rationale
for their use. Then we present some simple but effective patterns
using a standard template. We finally discuss some further issues
on the use of interface patterns in hypermedia applications.

Keywords
Hypermedia Applications, Design Patterns, Interface Patterns.

1. INTRODUCTION AND BACKGROUND

During the last four years we have been developing hypermedia
applications (in CD-ROM and in the Web) using the Object-
Oriented Hypermedia Design Method (OOHDM). OOHDM
comprises four different activities, conceptual modeling,
navigation design, abstract interface design and implementation.

OOHDM explicitly separates navigation from user interface
design; this means that design decisions related with the
navigational topology of the application are (in a broader sense)
independent respect to those regarding interface issues (See for
example [12,13]). Separating navigational from user interface
design allows us to define different interfaces for the same
navigation structure and maximize modularity.

Permission to make digital or hand copie of all or part of this
work for personal or classroom use is granted without fee provi-
ded that copies are not made or distributed for profit or commer-
cial advantage, and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post or.
servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.
AV12000, Palermo, Italy.

© 2000 ACM 1-58113-252-2/00/0005..$5.00

OOHDM provides primitives for specifying the interface su-ucture
and behavior. Those primitives are based on Abstract Data Views
(ADVs) [4]. ADVs allow the designer to describe the static aspect
of the interface as an aggregation of objects; the relationships with
the underlying application objects are described using
Configuration Diagrams [3] and the dynamic aspects are specified
using ADV-charts, a dialect of Statecharts [2]. Althouglh we think
that the ADV model is very attractive for formally describing the
interface of a broad range of hypermedia (and multimedia
applications), we found that many design decisions remain
undocumented or hidden in code. In many cases, besides, simple
interface behaviors require complex diagrams that tend to obscure
the design. We believe that interface patterns are a good way to
solve both problems.
Patterns have their roots in architecture [1] and they have been
used in software design, in particular object-oriented software for
some years now [5]. Patterns record design experience by
describing recurrent problems and good and proven solutions.
Patterns describe both problems and solutions in an abstract way
so that they can be "instantiated" in many different situations.

Patterns complement design methods as they show solutions that
go beyond the use of primitives of a method. In the case of user
interface design, patterns are an attractive way of structuring
guidelines in such a way that they can be applied systematically.
Recently we introduced navigational and interface patterns for
hypermedia applications [9]. Navigational patterns are similar to
Alexander's patterns. They describe the organizauon of a
navigable space, the roads you can follow to reach different
homes, the kind of orientation signs you will find, the short cuts,
etc. They are also similar to object-oriented patterns as they show
"advanced" solutions that go beyond the simple nodes-and-links
metaphor. For example the Set-based Navigation pattern [10]
explains when it is important to implement links among members
of a set (e.g.: books of an author) allowing to traverse the set
sequentially; meanwhile, Nodes in Context [10] focuses the
problem that arises when the same object may belong to different
sets.
Interface patterns, meanwhile, show how to organize the interface
(both in structure and behavior of its parts) in order to make it
more understandable and usable. Though it is clear that some
interface design decisions will be related with the application's
navigational topology, in this paper we try to explain interface
patterns without focusing on navigation.

136

We have mined many pattems that show recurrent design
problems and their solutions both while building the application's
navigational architecture and when defining its user interface [7,
8, 9, 10]. In this paper, we present some patterns related to the
design of user interfaces for hypermedia applications (in particular
Web applications).

To put the patterns in context we must briefly explain which is the
product of navigational design in hypermedia applications. During
this activity, we obtain a set of nodes (that contain multimedia
information and anchors) and links that connect them. The user
interface design activity aims at defining how nodes are perceived;
this involves defining the interface of their attributes and anchors.
One of the forces that constantly appear in all interface patterns is
that we may have many different kinds of information items in a
node, which may also have different purposes. We must organize
those items in a scarce perceivable space, make them
understandable, avoid cognitive overhead, etc.

We next introduce some of our hypermedia interface patterns.
Although these patterns are not intended to define a pattern
language like the one in [1], they cover most design decisions
related with architectural aspects of the interface.

We use a template that combines the original Alexandrian style
with the template in [5]. For the sake of conciseness, we have
simplified the template; we emphasize the problem with a
motivation that includes the forces behind the pattern, and the
solution.

We also include some known uses of each pattern to stress the
idea that patterns must be proven, well-known solutions. The idea
of our patterns is to formalize these solutions adding a brief
rationale on the context in which they are applied.

The order in which the patterns are presented gives a simple
guideline for their use in concrete applications. Information on
Demand helps to decide which node attributes to show,
Information-Interaction Coupling and Decoupling, show how to
organize interface objects according to their role (input or output
objects) and Behavioral Grouping organizes them by
functionality. Finally, Behavior Anticipation and Process
Feedback explain how to make the user aware of the intent of an
interface object and its behavior. This order is obviously not
mandatory, as these patterns do not comprise a language. We next
present some of them

2. INFORMATION ON D E M A N D

2.1 Intent
How to organize the interface in such a way that we can make
perceivable all the information in a node taking into account both
aesthetic and cognitive aspects?

2.2 Motivation
We usually find ourselves struggling to decide how to show the
attributes and anchors in a node. Unfortunately, the screen is
usually smaller than what we need and many times we cannot
make use of other media (such as simultaneously playing an audio
tape and showing an image) either for technological or cognitive
reasons. Suppose for example an application on Paintings. We
may want to show different attributes of a Painting such as
painter's name, year, museum, technical description, etc., but this

is difficult to achieve if we want to maximize the space we
dedicate to the picture itself.

This problem appears when a node has an amount of information
to be perceived by the reader that does not fit in one screen, or
that may distract the user's attention (for example, an audio
recording). Furthermore, scrolling may be often not acceptable
because the reader doesn't get an overall view about what he will
find in that node. He will have to scroll all the way down to see if
there is something that interests him or not.

It may be tempting to partition the node by using different pages
for presenting the information, and defining links among these
new nodes. This is also problematic because in our attempt to
match design with an implementation issue, we may pollute the
overall application's navigational structure. The user may get the
impression of dealing with multiple entities, becoming
disoriented, while in fact he is accessing another part of the same
conceptual entity. We next summarize the forces behind the
pattern:

• A node has an amount of information to be perceived by the
reader that does not fit together in one screen, or may distract the
user's attention (for example, an audio recording).

• Scrolling is often not acceptable because the reader doesn't get
an overall view about what he will find in that node. Besides, he
will have to scroll all the way down to see if there is something
that interests him or not;

Partitioning the node into separate windows is not acceptable,
since it is equivalent of replacing a node by a sub-network. This
decision should not be driven by interface constraints.

2.3 Solution
Present only a sub-set of the attributes, the most important ones,
and let the user control which further information is presented in
the screen, by providing him active interface objects (e.g.
buttons). The activation of those buttons will not trigger
navigation; they just cause different attributes of the same node to
be shown. This solution follows the "What you see is what you
need" principle.
There are some considerations to be taken into account: for
example we may use the same screen area to show different
attributes, we may even select some attributes and allow them to
appear together in the screen. When dealing with other kind of
media attributes we must analyze the situation carefully. For
example an audio recording does not use the screen; however it
may also distract the user's attention so it is wise to give the user
the chance to activate/deactivate it.

2.4 Known Uses
In Figure 1 we show an example of Information on Demand in the
context of Microsoft's Frank Lloyd Wright's CD. In this case the
textual explanation is superimposed on the building's image just
by moving the cursor on the former attribute.

In Figure 2, we show an example of the same pattern in the
WWW. The information presented to the user changes as the user
moves through the list of products. Notice that the user does not
need to navigate to a further page, neither he needs to scroll, as
information is shown "on demand".

It is interesting to comment here that this pattern has not been
very popular in the WWW as designers are not aware that they

137

can implement it easily, resulting in less connection time, better
implementations and smarter designs. Just compare this solution
with the "conventional" one based on navigation.

ptesentetl to tile user I a different interface objecl, it displays
......... "i all Ihe intotmalJon it c en t a i s i

Figure 1: Information on Demand in Frank L. Right's CD

Figure 2: Information on Demand in
www.microsoft.com/windows/. Whenever the user selects a

different product, the related information is displayed.

Finally, in Figure 3.a and 3.b we present the elegant "Le Louvre"
implementation. When the user selects the small text icon in the
bottom of the screen, the focus changes. While the painting is
shown in a smaller view on the right bottom, the center of the
screen is used for the textual explanation.

In this final example, the user may choose to see either a textual
explanation, a zoom on the painting and the scale (as compared
with a human being).

Figure 3.a: A painting in Le Louvre. The "default" view

Figure 3.b: Information on Demand in Le Louvre. The icons
on the bottom control the presentation of the painting.

3. INFORMATION-INTERACTION
DECOUPLING
3.1 Intent
Help the user understand how to manage the interaction with the
application. Differentiate the interaction controls from the
information

3.2 Motivation
When a node displays different types of contents or it is linked
with many other nodes, and if it supplies means of control
activation other than navigation in its interface, the user may
experience cognitive overhead. The examples before show clearly
this problem (See Figure 2). It is also well known that when too
many anchors are provided in a text, the reader is disu'acted and
may not understand their meaning. Forces are summarized below:

• A node's interface is usually composed of interface objects
displaying data (text or graphics) and objects providhlg control
activation (at least those triggering navigation).

• When different items of data are merged with menus or widgets
provided for user's control, the interaction becomes unclear.

• Hypermedia applications usually provide anchors to activate
links. However, when the data to be shown is dynamically
computed, anchors may have to be shown separately;

The information displayed usually changes with user interaction
(activated by fixed buttons) and it may be hard to see what has
changed after some control activation; it is again clearer when the
"fixed part" is separated from the "dynamic part".

3.3 Solution
Separate the input communication channel from the output
channel, by grouping both sets separately. Allow the "input
interaction group" to remain fixed while "the output group" may
react dynamically to the control activation. Within the output
group, it is also convenient to differentiate the "substantive
information" (i.e., content) from the "status information". This
solution usually improves the perception of a node's interface.
However, as we show in the next pattern, there are situations in
which we need a different solution.

3.4 Known Uses
In www.sigs.com/publications/subscriptions.html controls are
located on the right and bottom. In www.amtrak.com, navigation
controls are provided on the top and bottom; as a kind of

138

compromise, some of them are inserted in the text (See Figure 4).
The same use of this pattern can be found in many Web
Applications providing information about schedules, such as
www.airfrance.fr. In this case for example, the schedules are
presented in the center of the screen and navigation controls on
the left.

. , = , I

T ¢ l l n Scheau les

~-- I . ~ "]
. . . . i " 1 , I

Figure 4: Information Interaction decoupling in Amtrak.com.
Most navigation controls are outside the information area,

4. INFORMATION-INTERACTION
COUPLING

4.1 Intent
Help the user understand how to interact with the application.
Make evident those controls that are related with information
items

4.2 Motivation
When control of navigation or other functionality is highly
dependent on particular nodes' content, separating the control
from the content (as in Information-Interaction decoupling) may
provoke reader's disorientation. Moreover, when dealing with
dynamic media, such as audio or video, interface objects to play,
pause or stop the media should not be decoupled from the
corresponding media. Some of the forces behind this pattern are
similar to the ones in Information Interaction decoupling. We
next list them:

• A node's interface is usually composed of widgets displaying
data and widgets providing control activation.

• Hypermedia applications usually provide anchors to activate
links; many times these anchors depend on a particular content (a
part of a map for example)

Many times, we need to provide interface objects to activate or
trigger certain functionality (playing a media, initiating a query,
etc). The situation may be even worse when many of these objects
must appear in the same screen (for example different options in a
query, different books to add to a shopping basket, etc)

4.3 Solution
Provide control interface objects close to the data that is related
with the corresponding functionality. Try to use this solution with
those objects providing controls for dynamic media or some
specific functionality. This pattern shows a different solution with
respect to the previous one (Information-Interaction decoupling)
by considering the different forces that act on the problem. It is

also interesting to note that these two pattems have a subtle
intersection with Behavioral Grouping. This is a nice example of
relationships among patterns

4.4 Known uses
In www.autoweb.com/loancalc.htm the different 'compute'
buttons are located beside each possible calculation; the same
organization can be found in http://www.sun.com/index.java.html
(with its 'search' and 'expand' buttons). In the Amtrak.com
example in Figure 4, we can see the application of this pattern
together with the previous one; notice that the interface object to
trigger the getSchedule query is located close to the form.

5. BEHAVIORAL GROUPING

5.1 Intent
Help the user recognize different types of controls in the interface
so that he can easily understand them

5.2 Motivation
A problem we usually face when building the interface

of a hypermedia application is how to organize control objects
(such as anchors, buttons, etc.) to produce a meaningful interface.
In a typical application there are different kinds of active interface
objects: those that provide "general" navigation functionality,
such as the "back" or "contents" buttons, anchors for returning to
indexes, objects that provide navigation inside a context; objects
that control the interface, etc. Even if we decide to decouple the
information contents from the interaction controls, it may happen
that we have much different kind of interaction activities and we
should organize them. As said before, the forces in this pattern
(listed below) partially overlap with the forces in the two previous
patterns:

• A node's interface may have many different kinds of control
objects, providing different functionality associated with possibly
unrelated kinds of tasks.

• The variety of functions and diversity of tasks to be supported
does not allow solutions based on simple conventions such as "the
back button is always at the right".

Control objects should not interfere with the "substantive"
information being displayed.

5.3 Solution
Group control interface objects according to their functionality.
For each group, define uniform interfaces to enhance
comprehension. Typical groups in hypermedia applications may
be: global navigation controls (back, contents, history, etc),
anchors for related nodes ("See also" and other relationships with
more "semantics"), interface controls (buttons implementing
Information on Demand for example), other application
functionality nor directly related with hypermedia, etc.

5.4 Known uses
In Figure 5, showing the hotmail.com site, there are

three different groups of control objects: those associated with the
current mailbox, those related with the email account (at the left
above) and those that provide general navigation (at the left
below). In Figure 3.a (Le Louvre application) there are three
groups: on the left bottom those controlling what appears in the

139

interface, on the right bottom general controls and on the fight
anchors for related nodes (biography, painter, etc).

6.4 Known uses
In Figure 6, we show an example from the lvlicrosoft

Atlas Encarta97. Each time the user positions the cursor over an
interface element, a tool tip pops up with an explanation about the
effect of activating the control. Similar examples are awtilable on
the web. Some web-sites site uses standard GUI ToolTips and
JavaScript combination to show information :~uch as
http://www.nervemag.com/(the ToolTip appears at the bottom of
the page). Another example using only JavaScript can be: found in
www.mercedes.com homepage (also in Figure 6).

Figure 5: An example of "Behavioral grouping" from the
Hotmail.com site

6. BEHAVIOR ANTICIPATION
6.1 Intent
Show the user the effect or consequence of activating an interface
object

6.2 Motivation
Many times, when building an interface, it is necessary to
combine different interface elements such as buttons, hot-words,
media controls or even custom-designed controls. It is usual to
find readers wondering what will happen after activating a
control, and what is the exact consequence of the action he will
perform. Notice that even when we group interface objects using
Behavioral Grouping, we still need to help the user understand
the meaning of each object. Forces are summarized below:

• Many different kinds of active objects may have to be
provided to the user.

• The reader may be confused about which object to select

• Even if we provide good icons, they may be not enough to
give the user a feeling of what will happen when he selects
that option.

We must not distract the user's attention that must be focused on
the application's content.

6.3 Solution
Provide feedback about the effect of activating each interface
element. Choose the kind of feedback to be non-ambiguous and
complete: different cursor shapes, highlighting, small text-based
explanations called "tool tips". In addition, these elements can be
combined with sound and animations.
If we are using the Behavioral Grouping interface pattern, we can
select different kinds of feedback according the kind of behavior
provided. For example, when the interface controls refer to a
particular media such as animation, we could use a small status
field for that family.

Figure 6: Examples of "Behavior Anticipation". Notice the
information displayed as the mouse moves over the different

components of the interface.

7. PROCESS FEED-BACK
7.1 Intent
Keep the user informed about the status of the interaction in such
a way that he knows what to expect

7.2 Motivation
When the user interacts with a hypermedia application, it may
happen that an interface action (clicking a button for example)
results in a non-atomic operation. For example contacting another
machine (in the case of WWW browsers), getting information
from a database or loading animations are non-atomic operations.
In such cases the user may feel that he did not choose the correct
option or that he made a mistake or even that the sys~tem is not

140

working. The situation may get worse if the user, as he is loosing
patience, selects the same or other option again. In this case, he
will unknowingly queue these selections, causing an unpredictable
behavior when they are dequeued. Following are the most
important forces behind this pattern:

• Some navigational or interface behaviors may be non-atomic.

• The user may become impatient when he does not know what is
happening.

• A non-atomic behavior may fail after it began.

7.3 Solution
Provide a continuous perceivable feedback about the status of the
operation that is being performed. For non-atomic operations give
information about the beginning, progression and ending of the
operation. The type of feed-back depends both on the user's
profile and on the kind of interaction performed. For example,
while for many hypermedia applications (like Microsoft's Art
Gallery or Ancient Lands) a single hourglass cursor may be
enough, in WWW applications the type of feedback required may
be far more elaborated. The icon on the top right of both Netscape
Navigator and MS Internet Explorer play animations while
processing is being done and information about the status of
connection is also shown. While in Web browsers some Process
feedback is directly provided by the browser, in most hypermedia
development environments, the author can either change the
cursor or define a status area to provide the feedback.

7.4 Known Uses
In Web Browsers like Netscape, process feedback is provided to
show the status of the http connection when the user navigates to
another web page. In most CD-ROM applications, the kind of
process feedback is usually limited to changing the cursor icon. In
www.expedia.com when we querying the flight or cars database
(an operation that may take time), the user receives a short
message saying that they are processing the query. In
www.hotmail.com the process of logging out is non-atomic and
the site provides a detailed description for each step.

8. DISCUSSION AND CONCLUDING
REMARKS
In this paper, we have introduced hypermedia interface patterns as
a powerful mechanism for recording, conveying and reusing
design experience while building hypermedia applications. We
have been mining these patterns during some years and have
found them recurrently in many applications and domains. We
have also used them in many applications. When designers are
aware of successful solutions, they improve their designs. For
example, using the Interface on Demand interface pattern not only
improves comprehension (by presenting the most important items
and letting the user control which information is presented). The
global navigation architecture is also improved, as the designer
does not need to define new nodes artificially.

Using design patterns in software design is a new and
hot trend that has achieved an interesting degree of success in
object-oriented applications. There are collective efforts for using
patterns also in the field of human computer interaction, see for

example [6]. Discovering, formalizing and using patterns during
interface design is an appealing approach that, however, needs
further formalization.

We are now working in two directions with respect to
formalizing hypermedia interface patterns. First, we are improving
our ADV notation incorporating some interface pattern as higher
level primitives. For example, when we specify an interface that
involves some instantiation of the Information on Demand
pattern, the specification involves some (perhaps complex) state
changes in the set of perceivable objects that obscures it. Even in
a simple example (like the one in Figure 1) we may end with a
cluttered diagram. It should be better if we could simply state that
some information appears on demand and that the controlling
object is some specific one. In this way, we may obtain a more
concise specification without loosing formality. Unfortunately,
other patterns (e.g. Behavioral Grouping) are not easy to formalize
using this approach though we are looking for better ways to
document them. One alternative would be, for example, grouping
the diagrammatic elements in the way recommended by the
pattern. We are also adapting our design approach to the set of
primitives provided by the UML (Unified Modeling Language)
[14] by extending the notation using stereotypes. In this way we
would end with a standardize notation that incorporates interface
patterns in a natural way.

Another critical aspect is how to use patterns as active
guidelines during the hypermedia development process. It is clear
that patterns are unconsciously used by expert designers by.
"matching" new problems with well-known situations that they
faced in the past. (See [11]). We believe that the creation of a
catalogue of interface patterns will act as a catalyst in the same
way that patterns in [5] encouraged the object-oriented
community to begin reflecting on their designs. In this sense, the
user interface community has an important background that surely
contains dozens of patterns that have not been mined yet. Even
though this paper only deals with interface patterns for a sub-set
of applications (hypermedia) and not necessarily "advanced"
interfaces it may serve as a basis for further discussion in this area

9. R E F E R E N C E S
[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson,

I.Fiksdahl-King e S. Angel: "A Pattern Language". Oxford
University Press, New York 1977

[2] L.M.F. Carneiro, M.H. Coffin, D.D. Cowan, and C.J.P
Lncena: "ADVCharts: a Visual Formalism for Highly
Interactive Systems", Software Engineering in Human-
Computer Interaction, Cambridge University Press, 1994.

[3]

[4]

D. Coleman; F. Hayes; S. Bear, "Introducing Objectcharts or
How to use Statecharts in Object-Oriented Design", IEEE
Transactions on Software Engineering, 18(1), 9-18, January
1992.

D. D. Cowan; C. J. P.Lucena, "Abstract Data Views, An
Interface Specification Concept to Enhance Design for
Reuse", IEEE Transactions on Software Engineering, Vol.21,
No.3, March 1995.

141

[5] E. Gamma, R. Helm, R. Johnson and J. Vlissides: ."Design
Patterns. Elements of Reusable Object Oriented Software.",
Addison Wesley, 1995.

[6]http://www.pliant.org/personal/Tom Erickson/lnteractionPatte
rns.html

[7] F. Lyardet, G. Rossi, D. Schwabe. "Patterns for Adding Search
Capabilities to Web Information Systems", Proceedings of
EuroPLoP'99. Bad-Irsee, Germany, July 1999. IEEE
Computer Society Press.

[8] G. Rossi, A. Garrido, S. Carvalho: "Patterns for object-
oriented hypermedia applications". In Pattern Languages of
Programs II, Addison Wesley, 1996.

[9] G. Rossi, D. Schwabe and A. Garrido : Design Reuse in
Hypermedia Design Applications Development Proceedings
of ACM International Conference on Hypertext
(Hypertext'97), Southampton, UK, 1997, ACM Press.

[10] G. Rossi, D. Schwabe and F. Lyardet: "Patterns for designing
navigable information spaces". Pattern Languages of
Programs IV, Addisson Wesley, 1999.

[11] G. Rossi, D. Schwabe, F. Lyardet: "Integrating Pat1:erns into
the Hypermedia Development Process". The New Review of
Hypermedia and Multimedia, December 1999.

[12]D. Schwabe, G. Rossi and S. Barbosa: "Systematic
Hypermedia Design with OOHDM". Proceedings of the ACM
International Conference on Hypertext (Hypertext'96),
Washington, March 1996.

[13] D. Schwabe, G. Rossi: "An object-oriented approach to web-
based application design". Theory and Practice of object
Systems (TAPOS), October 1998.

[14] In http://www.rational.com/uml/index.jtmpl

142

