
Reuse of Spatial Concerns Based on Aspectual Requirements Analysis Patterns

Sara Silva1, João Araújo1, Armanda Rodrigues1, Matias Urbieta2, Ana Moreira1, Silvia Gordillo2, Gustavo Rossi2
1CITI/FCT, Universidade Nova de Lisboa

Caparica, Portugal

sarapmsilva@gmail.com, ja@di.fct.unl.pt, arodrigues, amm@di.fct.unl.pt
2Lifia, Facultad de Informática. UNLP, Argentina

{matias.urbieta, gordillo, gustavo}@lifia.info.unlp.edu.ar

Abstract—Web Geographic Information Systems (GIS) are

systems composed by software, hardware, spatial data and

computing operations, which aim to collect, model, store,

share, retrieve, manipulate and display geographically

referenced data. The development of online geospatial

applications is currently on the rise, but this type of application

often involves dealing with concerns (i.e., properties) which are

inherently volatile, implying a considerable effort for system

evolution. Nevertheless, geospatial concerns (e.g., temporarily

blocked streets), although changeable, are reusable. However,

lack of modularization in software artifacts (including system’s

models) can compromise reusability. In this context, the use of

requirements analysis patterns, enriched with aspect-oriented

modeling techniques, can support reusability and improve

modularity. In this paper, we introduce requirements analysis

patterns for geospatial concerns, to facilitate modularity in

GIS Web applications. These patterns are generated from the

domain analysis of Web GIS applications and described using

a template which is supported by a comprehensive tool,

enabling the completion of specific geospatial patterns.

Keywords: Web GIS; Analysis Patterns; Spatial Concerns;

Aspect-Oriented Modeling.

I. INTRODUCTION

According to [2], a Geographic Information System
(GIS) is a computer system that supports the use and
handling of geospatial data. GIS are mainly information
systems, which aim to collect, model, store, share, retrieve,
manipulate and display geographically referenced data. Web
GIS involves the online availability of Geospatial data, with
the associated tools.

Geospatial applications involve the temporary
availability of spatial concerns (i.e., properties), inherently
volatile, although recurring and, therefore, reusable (e.g.,
temporarily blocked streets). This implies a considerable
need for maintenance, not only of the respective information
structures, but also of its dynamic behavior. Also, the lack of
modularization can compromise flexibility and lead to reuse
problems.

Based on knowledge of the application domain, resulting
from preliminary domain analysis, the identification of
reusable (in our case, spatial) concerns (e.g., map adjustment
according to temporal conditions, geographic interfaces) will
facilitate Web GIS development. To help with this task at

early stages of software development, requirements analysis
patterns may be applied to spatial concerns. Analysis
patterns [4] are reusable specifications, used at early stages
of the development process. The reuse of these patterns and
their instantiation in a particular Web GIS application
analysis models will speed the development process.

We propose an approach to improve modularization
when modeling Web GIS during the requirements
specification. The aim of this work is thus to promote
requirements modularity and reusability and hence the
evolution of Web GIS applications. Nevertheless, the reuse
of spatial concerns depends on the availability of appropriate
modularization and composition mechanisms. It is important
to identify, not only spatial concerns, but also other concerns
which are related to these. Moreover, the transverse quality
of these concerns must be taken into account, as relevant
spatial concerns may crosscut various parts of a particular
application.

Aspect-Oriented Software Development (AOSD) is
characterized by allowing the identification, modularization
and composition of crosscutting properties (or concerns) [3].
One property is said to be crosscutting if it is tangled with
another property in a single module or if it is scattered in
several system modules. Aspect-orientation is a software
reuse paradigm and perfectly suits the specification of
patterns’ models, as it provides efficient mechanisms to
reuse and compose pattern’s models to a specific application.
In this work we adopt the MATA (Modeling Aspects Using
a Transformation Approach) [10], a technique for modeling
and composition of patterns based on graph transformations.

In summary, the aim of this work is to create an aspect-
oriented requirements analysis approach to model volatile
but reusable concerns in Web GIS, specifically geospatial
properties, based on analysis patterns. It is also important to
define these patterns using an appropriate template for
geospatial applications, whose solution models are specified
using aspect-oriented principles, enabling the systematic
reuse of spatial properties.

The remaining of this paper is organized as follows.
Section 2 describes spatial concerns and the MATA
approach. Section 3 presents the proposed requirements
analysis pattern template. Section 4 applies the pattern to a
spatial concern. Section 5 describes the tool support and
section 6 discusses the evaluation of the approach. Section 7

978-1-4577-1938-7/12/$26.00 ©2011 IEEE

depicts some related work. Section 8 draws some
conclusions and points directions for future work.

II. BACKGROUND

A. Spatial Concerns

The use of GIS implies the handling of large volumes of
data which are visually integrated in a spatial framework and
which, at the same time, need the availability of efficient and
adapted data manipulation operations. The highly
dimensional operation of GIS data involves the development
of complex applications, where relevant concerns may
crosscut various parts of a particular application.

The availability of map APIs, enabling the development
of geospatial components for existing web services (e.g.,
Google, Flickr, Facebook, etc.) along with the popularization
of the use of Global Positioning Services (GPS), has led to
the growing numbers of Location-Based Applications on the
Internet. The web context adds an additional difficulty to the
development of GIS applications: requirements volatility [9].
These requirements are directly related to the spatial needs
behind Web GIS users. They can be identified by the use of a
spatial concerns catalogue, in association with the conception
of an approach for modeling spatial concerns using aspects
in Web GIS applications [7]. This catalogue is currently
under development and the results of the work presented in
this paper will be added to it.

Mainly, typical spatial concerns can be separated in five
categories, described as follows.

Spatial Business Objects: To enhance applications by
adding a spatial mapping and representation to business
objects (e.g., a bus service management system can be
improved by providing real-time bus locations).

Rich Spatial Data: Enriching a geographic object with
additional (not geo-referenced) information (e.g. adding a
video to a specific location on a map).

Spatially-Constrained Behavior: Change or modify the
behavior of an object according to its actual location (e.g.
pricing and taxing processes may change with objects’
locations).

Map adjustments: To extend or restrict the available
spatial information according to the application’s constraints
(e.g. certain parts of a map may be, according to temporal or
permanent restrictions, unavailable or useless for specific
operations).

Geographic Interfaces: To modify (or upgrade) the user
interface of geographic objects. Though this is not strictly a
spatial concern, it is clear that the previously described
concerns may introduce changes in the application’s user
interface, specifically in the representation of geographic
objects (e.g., to introduce a particular symbolization to make
the user aware that a road cannot be used during a particular
period of the day).

By addressing these types of (spatial) concerns we aim to
identify the situations in which they may be present in web
applications and to develop and approach to handle them

early on in the development process, specifically during
requirements specification.

B. MATA

The MATA [10] aspect-oriented modeling approach is
based on UML, allowing aspects composition using, for
example, class diagrams, sequence diagrams and state
diagrams. Here we focus on MATA to model aspectual
classes by using and adapting class diagrams. To specify
aspectual classes, some stereotypes are used to define
composition rules: <<create>>, which states that the
element will be created in the base model; and <<delete>>,
which states that the element will be deleted of the base
model; <<context>>, which states that the element will not
be affected by the other two stereotypes. Only <<create>>
will be used in this paper.

Variables in MATA are prefixed by a vertical bar “|”,
meaning that “|X” will match any model element with the
same type of X. After specifying both kinds of models, base
and aspectual, a pattern matching is made between them.
This means that the MATA tool tries to establish a
connection between elements of each model, always
respecting the composition rules defined in the aspectual
model. The resulting composed model includes the elements
of both models, according to the rules defined. MATA
allows more composition combinations than other existing
aspect-oriented modeling tools.

III. ASPECTUAL REQUIREMENTS ANALYSIS PATTERN

TEMPLATE

The template used to define requirements analysis
patterns – Table I – is based on the one proposed in [8], but
adopts MATA aspectual notation for the modeling part. The
motivation to define and use a new pattern template instead
of adopting an existing one (e.g., [4]) is that neither do the
current templates support composition mechanisms nor do
they provide more detailed models such as variability models
[6]. Our analysis pattern template is depicted in Table I.

The description of a pattern requires a meaningful name.
Then, it is necessary to describe what problem the proposed
pattern seeks to solve and explain the context in which it
commonly appears namely what kind of situations it is
relevant to. After introducing the purpose of the pattern, its
functional and non-functional (NF) requirements are
described, followed by the specification of the dependencies
between them and the actors that take action on the problem.

After specifying the requirements, the next step is to
build the structural and behavioral models. The structural
modeling consists of describing: which features should be
present in the solution, represented in a feature diagram
highlighting the variability of the pattern; and which classes
will be needed to implement the solution, represented by a
MATA (or aspectual) class diagram, which will identify
concrete and variable classes and their relationships.
Variable classes are the ones that need to be instantiated
when composing with the base classes of an application.
Therefore, the aspectual class diagram will describe the
pattern structure, and the examples will show the
composition of the base structure with the aspectual one.

The following step is behavioral modeling, describing the
behavior that the solution must have, or what activities will
be required to solve the problem. The behavioral modeling
will be done through a sequence diagram, also supported by
AOSD methodologies, to facilitate the modularization. More
specifically, we used scenarios and aspectual composition,
realized through the mechanisms offered by MATA [10].
Thus, the sequence diagram will describe the aspect that
represents the pattern behavior, and the examples will show
the composition of the base scenario with the aspectual
scenario, as illustrated in the previous section. Once the
modeling is completed, we describe the consequences of the
pattern’s application, i.e., its strengths and limitations.

Some events that would likely trigger the pattern are also
specified. Some examples of applications of the pattern
should also be provided. To describe these examples,
features, class and sequence diagrams are configured for a
particular application. The examples must include diagrams
for the base and composed scenarios.

Also, an analysis is made in order to identify possible
relationships between this pattern and other patterns, which
results in a list of related patterns. At the end of this process,
a detailed description of the pattern is provided, which can
be reused in other applications.

TABLE I. ANALYSIS PATTERN TEMPLATE

Field Description

Name Pattern name identifier.

Problem
Describes the problem that the
pattern intends to address.

Context
Describes the environment in
which the problem and solution
apply.

Requirements

Functional List of functional requirements.

Non-Functional List of NF requirements.

Dependencies
List of dependencies between
functional and NF requirements.

Actors List of actors.

Events List
Identifies some examples of
events that trigger the pattern.

Modeling

Struc
ture

Feature
Model

Shows optional and mandatory
features of the pattern.

Class
Diagram

Shows the pattern’s classes and
relationships

Beha
vior

Sequence
Diagram

Shows the dynamic behavior of
the pattern.

Consequences
Advantages and disadvantages of
the pattern’s application.

Examples

Features Diagram Examples using these models that
illustrate the context of the
pattern, as it is applied and any
necessary amendments to the
initial context.

Class Diagram

Sequence
Diagram

List of related patterns.
List of already defined patterns
related to the proposed one.

IV. PATTERN DEFINITION

One of the aims of this work is to identify spatial
properties in Web GIS applications, described using analysis
patterns. The Geo-reference Entity pattern was one pattern
identified in this work, and it is presented below. The NF
requirements (and the respective dependencies) plus the
behavioral models are not shown here due to lack of space.

Name: Geo-referenced Entity

Problem: Many web applications were not designed with
the intention of providing geospatial characteristics.
However, to support spatial behavior, some of the entities
composing these applications will need geo-referencing.

Context: This problem applies to systems that involved,
initially, no geospatial features, but which can benefit from
them. For example, an application for a bus company that
offers bus routes may be improved by providing users with
buses’ locations in real time. The application will also
benefit from the availability of more accurate and timely
information, which may involve bus routes’ geographic
mapping. The assumptions taken are that the applications’
entities are either static (do not move in space, for example,
a garage) or mobile (may move during the execution of the
application, for example, a bus or a person). A static entity
is associated with a location, while a mobile entity may be
associated with several locations, during the execution of
the application. It is also assumed that a mobile entity holds
a main location (which can be home, an office, a garage)
but, as it moves, it may become associated with a secondary
location. This secondary location may be obtained from the
analysis of the entity’s schedule and requested from static
entities, referenced in the schedule. This means that a bus
may be located at a bus stop, which is a static location, or on
route to the next stop and, at this time, its location is the
street it is traversing, which is also a static location.

Requirements
Functional
1. Geo-reference an application’s entity.
2. Check if the entity is static or mobile:
2.1. If static, obtain the geographic reference data.
2.2. If mobile obtain system time and entity’s schedule:
2.2.1. Obtain the details of the entity’s location.

Actors: User; Entities; System/Application.

Modeling: Structural

Feature Model: Fig. 1 illustrates a feature model [6] for
locating an entity without georeferencing. This model shows
the variable and mandatory features associate to the pattern.

Figure 1. Feature Model for Locate Entity

There must be a Locatable Entity which can be either a
Static Entity or a Mobile Entity. There must also, necessarily,
be a Location, and this has a Longitude and Latitude and

may or may not have an Altitude. Optionally, we can still
have a Schedule. When we have a Mobile Entity, there must
be at least one Static Entity and a Schedule. Besides
specifying the variability of the pattern, this model can be
used to help defining the class diagram as some features can
be mapped to domain classes.

Class Diagram: In the diagram in Fig. 2 we have six classes:
|Interface, |Control, |Locatable Entity, Schedule, |Main
Location and |Secondary Location. The class |Interface is
the intermediary between the user and |Control, and the
latter (the |Control class) is responsible for checking and
request the necessary data. The |Control class communicates
with the |Locatable Entity class. The |Locatable Entity has a
single Schedule, one |Main Location and can have several
|Secondary Location. One Schedule only belongs to one
Locatable Entity. Either one |Main Location as well as a
|Secondary Location can be of several |Locatable Entity.
Note that we defined those classes as variables (except
Schedule).

Note that the classes |Interface, |Control, and |Locatable
Entity must be matched against classes in the base class
diagram (in a particular application), for composition
purposes. The classes Schedule, |Main Location and
|Secondary Location comprehend the new classes that will be
added to the base class diagram (that is why they and their
related associations are defined with the stereotype
<<create>>). These classes must be instantiated with
concrete classes. The instantiation will be shown in the
Examples section.

Figure 2. Aspectual Class Diagram for locating an entity

Consequences: The application of this pattern will enable
the spatial location of an application’s entity, allowing that
this may be presented visually, for example, in a map.

Events List: Possible events are:
1. Fire breaks out in a building and you must find all

the occupants therein to ensure that everyone
leaves the building;

2. A bus company needs to inform its users, in real
time, of the location of a given bus.

Examples: Here we show the actual application of the
pattern models described above. This pattern can be applied
to static entities, i.e. entities that have always the same
location and in this case, this is simply stored in a database.
Moreover, the pattern can also be applied to mobile entities,
i.e. entities that change location according to certain
characteristics, such as an individual or a vehicle.

As an example, let us consider the application of this
pattern to the CLIP system (http://clip.unl.pt), a real
information system of courses and schedules of all students,

lecturers and other employees at Universidade Nova de
Lisboa.

In this system, individuals (e.g. lecturers and students)
and classes are considered mobile entities, while rooms and
offices are static. Let us look at an example of locating a
mobile entity.

Consider that an emergency happens. Consequently, we
need to convene a meeting of lecturers, but their locations
must be also resolved. Thus we want to Locate Spatially the
Lecturer entity – that is the application of the pattern. Below
we instantiate the feature model and the class diagram for
this particular situation.

Feature Model: Fig. 3 has the necessary characteristics to
locate a Lecturer. As you can see, you need an object of
class Lecturer, its Schedule and its Location, and the latter
must be composed of a Latitude and Longitude, and may
also include an Altitude. The Lecturer may also have an
Office and/or a Room. This means that, during working
hours, when a Lecturer is not teaching, his location should
be his Office. If s/he is teaching, the location should be
taken from the Schedule and in this case, it should be a
Room.

Figure 3. Feature Diagram for locating a lecturer

Class Diagram: Fig. 4 illustrates the (base) class diagram
containing only the classes related to the objects relevant to
convene a meeting of lecturers. Thus, it will need CLIP
Interface, CLIP Control, Lecturer and Meeting classes.

Figure 4. Base Class Diagram for convening a lecturers’ meeting

Note that the aspectual class diagram in Fig. 2
complements this one by adding the classes necessary to
locate the lecturers.

Fig. 5 shows the class diagram that is the composition of
the base class diagram with the aspectual class diagram
shown in Fig. 2. So we have the aspect’s classes instantiated
and composed with the base classes. We thus instantiated
aspect classes |Interface with CLIP Interface, |Control with
CLIP Control, |Locatable Entity with Lecturer, |Main
Location with Office and |Secondary Location with Class
Room.

Figure 5. Composed Class Diagram

Related Patterns: Add temporal availability for spatial
entities, Presentation of spatial entities; Adjust the state of
entities (Add/Remove all or part of spatial entities).

V. PATTERN TOOL

The PatternTool tool was created to support this
template, allowing the creation of patterns using the Eclipse
environment. Fig. 6 presents the generic view of the tool.
The pallet of the tool is presented on the left hand side,
where all the fields needed to create a pattern can be added.
The fields are placed on the pallet in the order wherein they
must be placed in the template. The colors help to
understand when a field should be placed within another.
The Pattern Template field should be the first one to be

clicked, as it starts the creation of a new pattern. The
hierarchy of the fields of the template is represented by a
color scheme. For example, the fields to be filled within this
Pattern Template are icons with dark green color, such as
the Pattern’s Name field, Pattern's Requirements Analysis,
among others. When a field is placed within a field with a
Dark Green icon, its icon is Light Green, and finally, when a
field must be placed inside a field with a Light Green icon,
its icon color will be an even lighter green, as is the case of
the Features Diagram icon. To edit feature, class and
sequence diagrams, after inserting its compartment in the
template, an additional editor can be opened, which can be
used to build the diagram.

VI. EVALUATION

Here we discuss the evaluation for both the Pattern Tool
and the pattern description. We selected 15 subjects, all
students from our Faculty’s MSc on Informatics
Engineering. Only 2 had already finished the course and
were working in industry. All of them had courses on
analysis models. About 85% had a course on GIS.

The tool evaluation consisted of a set of questions about
language expressivity and syntax, tool usability and the
satisfaction level of the users. The pattern evaluation
involved questions about simplicity and clarity of the
description and the relevance of the pattern and of each of its
attributes.

A. Pattern Tool Evaluation

The evaluation results were positive: the users considered
the tool very useful and intuitive, easy to use and understand.
The results of the tool evaluation are discussed below.

1. How easily were the concepts identified in the tool?
The aim was to assess the quality of the concepts

representation. Concerning the representation, 10 out of 15

users thought it was "very easy" to identify the concepts,

while the remaining 5 considered it "easy".

2. What is your overall impression of the tool? The aim

was to evaluate whether users liked to use the tool. In

general, results were positive as 12 out of 15 users thought

the tool was "good", two rated it "very good" and one of

them considered it "average".

3. Do you consider that it was easy to migrate the

pattern from paper to the tool? The aim here was to

evaluate whether users felt lost while moving the pattern

from paper to the Pattern Tool. The results showed that 11

out of 15 users considered the migration "easy" and 4 others

considered it "very easy".

4. Do you consider the tool useful? The aim was to

evaluate whether users felt that the tool was useful. The

results were positive. They said that no other tool enabled

the creation of the pattern with such detail.

B. Pattern Description Evaluation

The results obtained were positive: the users felt that the
pattern described is quite relevant and useful; the description
was clear and simple, applicable to various areas and easy to
reuse. This evaluation is discussed below.

1. How do you rate the relevance of the pattern? The aim

was to evaluate whether users believed that the pattern was

important and could bring benefits for other applications.

Results showed that the pattern was considered important

and useful, as only 3 out of 15 users found relevance

"moderate”, 11 considered it "high" and 1, "very high".

2. Do you think this pattern can be reused in various

applications in different areas? The aim was to evaluate

whether users found the pattern well described and generic

enough to be applied to various areas and applications.

Results showed that all users found this to be true.

3. Do you think that GIS applications can benefit from

this pattern? All users believed that the pattern can bring

benefits when used in GIS applications.

4. How do you rate the clarity and simplicity of the

definition of the pattern? The aim was to verify that the

definition of the pattern was written in a simple and clear

way. The answers of users were very positive, since 13 out

of 15 users classified clarity and simplicity in the pattern as

"good" and the remaining two thought it was "very good".

C. Evaluation Threats

Having an evaluation in the industrial/business
environment would give a different perspective to the
evaluation of the tool and the pattern description. However,
the users who evaluated both the tool and the description of
the pattern knew the most recent technologies, which does
not always happen in a business environment.

The evaluation was performed with only 15 users, but
although the statistical significance is reduced, the results are
indicative of the acceptance of the approach evaluated.

Figure 6. Generic view of the PatternTool

VII. RELATED WORK

Oliveira et al. [7] presented an AOSD approach to
identify, modularize and compose crosscutting concerns,
more precisely spatial concerns, in Web GIS applications.
The identification of requirements is achieved through a
thorough knowledge of the Web GIS domain, obtained by
domain analysis techniques. Nevertheless, it did not consider
reusing requirements analysis patterns.

Gordillo et al. [5] developed a technique for modeling
object-oriented GIS where, from the basic geographic model,
spatial characteristics are added to each object in a dynamic
and transparent way. This technique relied on object-oriented
methodologies to obtain reusable, modular and modifiable
software, as well as objects that encapsulate knowledge. This
work focused on design and did not address modularization
of crosscutting concerns.

In [1] a catalogue of common functionalities for defining
a basic Web GIS application is proposed. However, the
description of the functionalities is not as detailed as the
approach presented in this paper.

VIII. CONCLUSION

In this paper, Web GIS applications were examined to
identify some of their volatile but reusable spatial concerns,
since these applications are characterized by the constant
change of requirements. Thus, an aspectual analysis pattern
template was defined and applied to the modeling of spatial
concerns patterns. One of the advantages of the template is
the use of the MATA notation, which provides efficient
mechanisms for modeling and composing static and

behavioral elements of a pattern. Some work is still under
development, which includes the analysis of additional
patterns and tool improvement.

ACKNOWLEDGMENT

We want to thank, for the financial support for this work,
CITI – PEst-OE/EEI/UI0527/2011, CITI/FCT/UNL.

REFERENCES

[1] Digital Earth Summit on Geoinformatics: Tools for Global Change
Research. Int. Journal of Digital Earth, 1:1, 2008, pp. 171-173.

[2] S. Dragicevic, “The Potential of Web-based GIS”, Journal of
Geographic Systems, Springer, vol. 6, 2004, pp. 79-81.

[3] E. Filman, T. Elrad, S. Clarke and M. Aksit, “Aspect-Oriented
Software Development”, Addison-Wesley, 2005.

[4] M. Fowler, “Analysis Patterns - Reusable Object Models”, Addison
Wesley, 1997.

[5] S. Gordillo, F. Balaguer, C. Mostaccio, F. Neves, “Developing GIS
Applications with Objects: A Design Patterns Approach”,
GeoInformática, vol. 3:1, 1999, pp. 7-32.

[6] K. Kang, S. Cohen, J. Hess, W. Nowak, S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study”, Technical
Report: CMU/SEI-90-TR-021, Pittsburgh, USA, 1990.

[7] A. Oliveira, M. Urbieta, J. Araújo, A. Rodrigues, A. Moreira, S.
Gordillo, G. Rossi, “Improving the Quality of Web-GIS Modularity
Using Aspects”, QUATIC, Portugal, 2010, pp. 132-141

[8] M. Pantoquilho, R. Raminhos and J. Araújo, “Analysis Patterns
Specifications: Filling the Gaps”, Viking PLoP, Norway, 2003.

[9] I. Sommerville, Software Enfgineering, Addison Wesley, 2010.

[10] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, J. Araújo,
MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation, Transactions on AOSD, vol. 6,
2009, pp. 191-237.

