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Abstract. We provide technical details for combining normal and a non-normal
logics for the notion of collective trust. Such combinations lead to different levels
of expressiveness of the system. We give a possible structure for a combined
model checker for one of the logic resulting from such combinations.

1 Motivation and Aims

Trust protection plays an important role in the law [15,21,18]. Such a protection is
often and typically related to the problem of providing tools to support legally valid in-
teractions between any kind of agents and/or to legally ground contractual transactions
[15,21]. Indeed, trust protection is strongly implemented especially when agents’ be-
liefs seem reasonable or when trustees’ behaviour induces trusters’ reliance. However,
in multi-lateral agreement it is often the case that such reliance is mutual and this fact
is relevant for trust protection. In particular, if agent x breaks group trust with regard to
A, trust deception must be checked against the fact that x was supposed by the others to
intend A, and x believed so.

Any computer application providing tools for detecting collective trust deception in
the legal domain should require to develop

– a sound and rigorous formal analysis of the notion of collective trust,
– reasoning methods for computing when collective trust emerges and occurs in an

arbitrarily large group of agents.

This general aim of this paper is to contribute to the above two research issues by signif-
icantly extending [19]’s results. In [19] Smith and Rotolo adopted [8]’s cognitive model
of individual trust in terms of necessary mental ingredients which settle under what cir-
cumstances an agent x trusts another agent y with regard to an action or state-of-affairs,
i.e. under which beliefs and goals an agent delegates a task to another agent. Using
this characterization of individual trust, these authors provided a logical reconstruction
of different types of collective trust, which for example emerge in groups with multi-
lateral agreement, or which are the glue for grounding in solidum obligations raising
from a “common front” of agents (for example, each member of the front can behave,
in principle, as creditor or debtor of the whole). These collective cognitive states were
characterized in [19] within a multi-modal logic based on [3]’s axiomatization for col-
lective beliefs and intentions combined with a non-normal modal logic for the operator
Does for agency. Such a combination was based on the following assumptions:
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Observation 1 (Expressiveness of the system). A formula like DoesiA means that
“agent i brings it about that A ”. In this setting, the Does modalities are always ap-
plied to atomic propositional constants representing single behavioural actions, as in
e.g. Doesx PayBill (which is meant to stand for “agent x pays the bill”). In the theory
under study, normal operators interact with the Does modality in a restricted one-way
manner: agents’ actions always appear as innermost operators within well-formed for-
mulas, as in e.g. Bely(Doesx PayBill) (which is meant to stand for “the agent y believes
that agent x pays the bill"). This means that no modality can occur in the scope of Does.

Observation 2 (Semantics). [19, Definition 2] proposed for the above mentioned sys-
tem a semantics embedding standard multi-modal Kripke semantics for mental states
into a Scott-Montague (multi-relational) semantics for Does [11].

These combination and semantic embedding were assumed correct because Kripke
semantics can be seen as a special case of multi-relational semantics. Although the
referred concrete embedding appears to be straightforward in [19], it is worth pointing
out that some basic results such as completeness and decidability are not immediately
obvious and require some detailed technical machinery. This paper fills this gap by
showing a simple way to prove those results, and also describes a model checking al-
gorithm for that logic: the possibility of designing a model checker indicates that such
logic can provide a feasible interpretation for norm-governed multi-agent systems and
a method for computing collective trust.

The rest of the paper is organized as follows. Section 2 presents the main concepts of
[19] and the proposed logical system. Section 3 reorganizes the multi-relational model
in [19] as a particular combination of modal logics, which amounts to place the normal
logics on top of the non-normal logics. For doing this, we first obtain two restrictions
of the original logics. By exploiting results in regard to some techniques for combin-
ing logics, we prove that [19]’s system is complete and decidable. Hence, the sketch
for an appropriate model checker is also outlined. Section 5 presents an independent
combination of the normal and the non-normal counterparts of the base logics. This
combination leads to an ontology of pairs of state-of-affairs which allows a structural
basis for more expressiveness. For example, it is possible to write and test in the new
ontology formulas such as Doesi (Does j (Goal A )). Some brief conclusions end the
paper.

2 Background

There are situations where complex collective patterns are involved in social and le-
gal interaction. Suppose that three agents x, y and z agree that some goal A should be
jointly achieved. Some kind of coordination among them is of course required, but,
minimally, such a multi-lateral agreement at least implies that each agent trusts that the
others jointly intend to achieve A, and also believe in that. This simple agreement thus
presumes a relatively elaborated collective trust background.

Collective trust and the corresponding delegation of tasks can be weak or strong
[8]: weak delegation means that there are delegation situations which do not suppose
any agreement, deal or promise at all, nor which yield to rights; strong delegation are
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the basis for promises, commitments and conventions. Since these forms of delegation
support different degrees of trust intensity, different corresponding types of collective
trust—joint trust, reliance, and collective trust—were introduced in [19] and can be
illustrated as follows:

Example 1 (Joint trust). Suppose that agent y is at the bus stop, and there is a group G
of people standing not at the bus stop but close to y, expecting that y will raise her hand
and stop the bus.

Example 2 (Reliance). It is Mary’s birthday. Her co-workers give some money to y,
another co-worker who is going downtown, relying on y for the search and purchase of
a gift. Everyone trusts that y will do so.

Example 3 (Collective trust). Student bands build up street-puppets filled with fire-
works, which are to be burned on New Year’s day. Each band builds its chosen puppet-
of-the-year from scratch. The town administration institutionalized a competition and
settled an award for the best figure. Bands’ custom establishes that figures ought to be
watched and protected day and night, this because a very common practice is to burn
other bands’ figures before the New Year’s day by sending one band member (a sabo-
teur). The consequence of successful sabotages is the exclusion of opponents from the
competition. Assume the student band G entrusts its member s to burn H’s puppet.

Accordingly, joint trust simply consists in the fact that all individuals in a group trust
another agent for achieving their goal, reliance requires some mutual intentional coor-
dination within the group, and collective trust assumes that the group is aware of such
a coordinating effort to achieve a goal.

The following subsection outlines [19]’s logical framework, which will be our start-
ing point for the subsequent sections.

2.1 The Logical Framework

The multi-modal language of [19] works with a finite set of agents A = {x,y,z, ...} and
a countable set of atomic propositional sentences usually denoted by P = {p,q,r, ...}.
Complex expressions are formed syntactically from these in the usual inductive way
using ⊥ (false) and � (true), standard Boolean connectives, and the unary modalities
we describe next.

The operator Goalx A is used to mean that “agent x has goal A ”, where A is a
proposition. Propositions reflect particular state-of-affairs, as in [3]. Intx A is meant to
stand for “agent x has the intention to make A true”. Intentions within the area of Co-
operative Problem Solving (CPS) are viewed as inspiration for goal-directed activities.
The doxastic (or epistemic) modality Belx A represents that “agent x has the belief that
A ”. The Doesx A operator is to be understood in the same sense given in Elgesem’s
account to represent successful agency, i.e. “x brings it about that A ” [5]. To simplify
technicalities, the logic in [19] assumes that in expressions like Doesx A no modal
operators occur in the scope of Does; therefore A denotes any behavioral action con-
cerning a conduct, such as withdrawal, inform, purchase, payment, etc. We will assume
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the same restriction for Section 3, and we will eliminate it in Section 5 for regaining
expressiveness.

As classically established [3], Goal is a Kn operator, while Int and Bel are, respec-
tively, KDn and KD45n. The logic of Does, instead, is non-normal, it is closed un-
der logical equivalence and amounts to the following schemata [5,11]: Doesx A →
A ,(Doesx A ∧ Doesx B)→ Doesx(A ∧B), ¬Doesx�, and ¬Doesx⊥.

Remark 1. The main difference between [19]’s logic (let us call it F) and [3]’s system is
that F embeds Does and introduces new (non-primitive) operators defined on the basis
of the [3]’s ones. First, F defines the single-agent trust operator Trust (an agent x trusts
another agent y with respect to a state of affairs φ ) as follows:

Trustyxφ ≡ Goalxφ ∧BelxDoesyφ ∧ Intx(Doesyφ ∧¬Doesxφ)∧GoalxIntyφ ∧BelxIntyφ (1)

If G is a group of agents, the other derived operators of [19] are introduced to capture
joint trust, reliance, and collective trust, respectively (see Examples 1, 2, and 3):

JTrustGy A ≡ (
∧

i∈G

TrustiyA) (2)

RelGy A ≡ JTrustGy A∧MIntG(JTrustGy A) (3)

CTrustGs A ≡ RelGs A∧CBelG(RelGs A) (4)

where the axiomatizations for MInt (mutual intention) and CBel (common belief) are
those proposed in [3]:

MIntGA ≡ (
∧

i∈G Inti(A∧MIntGA)) CBelGA ≡ (
∧

i∈G Beli(A∧CBelGA))

3 Combining the Logics by Modalization/Temporalization

In this section we show how to characterize the logic of [19] as the combination of
the component logics (the logic of Does and the normal component of [19]’s system)
using the so-called temporalization/modalization techniques.

Before reorganizing the logic of [19] in this way, we recall some background knowl-
edge. As is well-known, Scott-Montague semantics is a generalization of the traditional
Kripke semantics [12]. Instead of a collection of worlds connected to a given world w
through a relation R, consider a set of collections of worlds connected to w. These col-
lections are the neighbourhoods of w. Formally, a Scott-Montague frame is an ordered
pair 〈W,N〉 where W is a set of worlds and N is a function assigning to each w in W
a set of subsets of W (the neighbourhoods of w). A Scott-Montague model is a triple
〈W,N,V 〉 where 〈W,N〉 is a Scott-Montague frame and V is a valuation function defined
as for Kripke frames, except for �A : it is true at w iff the set of elements of W where
A is true is one of the sets in N(w); i.e., iff it is a neighbourhood of w.

Let us bring in the structure discussed in [19]. It is a multi-relational frame of the
form [11]:
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F= 〈A,W,{Bi}i∈A,{Gi}i∈A,{Ii}i∈A,{Di}i∈A〉
where:

– A is the finite set of agents;
– W is a set of situations, or points, or possible worlds;
– {Bi}i∈A is a set of accessibility relations wrt Bel, which are transitive, euclidean

and serial;
– {Gi}i∈A is a set of accessibility relations wrt Goal, (standard Kn semantics);
– {Ii}i∈A is a set of accessibility relations wrt Int, which are serial; and
– {Di}i∈A is a family of sets of accessibility relations Di wrt Does, which are point-

wise closed under intersection, reflexive and serial [11].

A model based on F is in its turn of the form 〈F,V 〉, where V is the corresponding
valuation function ([19, Definition 2]). Notice that [11] proved that Scott-Montague
and multi-relational semantics are equivalent for the propositional case, so they can be
interchangeably used.

Put this way, it is easy to identify two overlapping “nets" of relations over the same
set W . The first net (or multi-graph) corresponds to “wires" for normal operators, the
second net corresponds to the accessibility relations for the Doesi modalities 1.

Following, we can assert two facts based on Definition 4.24 and Theorem 4.22 in
[2] (which respectively settle how to construct a canonical model for a normal logic,
and state that a normal modal logic is strongly complete with respect to its canonical
model). First, that the modal similarity type built up from the normal modalities above
has a canonical model; second, that this logic is complete w.r.t. its canonical model. Let
us call N the logic with signature (Bel, Int, Goal) above (the normal modalities); hence
N is a normal multi-modal multi-agent logic, which is complete (this proof is available
in [1], we also sketch it in the Appendix).

Taking into account Observation 1 and what was stated regarding N, and according
to the definition of temporalization given by Finger and Gabbay [9], (see also [10]) the
system in [19] can be seen as a combination of logics where the normal modal machin-
ery is placed on top of the non-normal logic. The non-normal equipment is in its turn
multi-modal, as there is one Doesi modality for each agent i. Indeed, [9]’s techniques
were originally designed for temporalizing logics and are a special case of the modaliza-
tion ones [6], which simply use the same intuition with the aim of externally applying
any (even non-normal) modal logic to any generic logic system2. The advantage of
this approach is that the resulting logic obtained from the combination is complete and
decidable if both its components are, too.

Let us develop this insight.

1 This definition does not include the Obl modality for obligations. Obl was originally incorpo-
rated in F for dealing with the deontic connotation of an operator of the theory [19, sec. 4]. We
will omit it in what follows to keep the set of modalities manageable. We come back to Obl
later with the purpose to showing further possibilities for combining logics (Section 6).

2 It has been very recently proved that modalization/temporalization techniques used in this pa-
per are simple instances of non-iterated asymmetric importing and fibring techniques [17,16].
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Consider F as a split into an outer normal multi-modal frame, and inner Scott-
Montague frames.

Provided this rearrangement, the intuition behind the valuation of formulas within
the system is the following. When we evaluate normal operators (e.g. we parse a for-
mula) we navigate through the outer Kripke model. When a Doesi formula at any given
point w is to be evaluated, we navigate through a Scott-Montague model.

The following subsection presents the technical aspects of the temporaliza-
tion/modalization.

3.1 Modalization: Syntax and Semantics

Take the logic in [19]. Call N the restriction of F to its normal part, and call Does the
restriction of F to its non-normal part. We can safely assume that Does is a propositional
logic [11]. According to the methodology in [10], we partition the set of formulas in
Does into two subsets: Boolean formulas, BDoes, and monolithic formulas, MDoes. A
formula A belongs to BDoes if its outermost operator is a Boolean connective (e.g.
Doesx A ∧Doesx B); otherwise it belongs to MDoes (e.g. Doesx A ). It is clear that
there is no intersection among the set of modalities of N and Does. Call N(Does) the
modalization of Does by means of N.

N(Does): Syntax Let LDoes denote the language of the logic of agency (with no normal
modalities and without their syntax formation rules), and LN denote the language of N
(without the Does modality and its syntax formation rule). The language LN(Does) of
N(Does)—over the set of proposition letters P—is obtained by replacing the formation
rule of sentences in LN that says “every proposition letter in P is a formula” by the
formation rule:

every monolithic f ormula in LDoes is a f ormula

As pointed out in [9], this replacement can be matched with a process called “fuzzling”
or layering: formulas in the base system can be substituted for atoms of the top system.

To formally outline the semantics for the modalization, we need a reframing of mod-
els based on F in terms of the restricted models.

A modalized model for N(Does) has the structure:

〈A,W,{Bi}i∈A,{Gi}i∈A,{Ii}i∈A,V
′,{di}〉

where:

– A is a finite set of agents;
– W is a set of points, or possible worlds;
– {Bi}i∈A is a set of accessibility relations wrt Bel, which are transitive, euclidean
and serial;

– {Gi}i∈A is a set of accessibility relations wrt Goal;
– {Ii}i∈A is a set of accessibility relations wrt Int, which are serial;
– V ′ is the valuation function V restricted to the normal operators, defined as
follows:
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1. standard Boolean conditions;
2. V ′(w,Beli A ) = 1 iff ∀v ∈W (if wBiv then V ′(v,A ) = 1);
3. V ′(w,Goali A ) = 1 iff ∀v ∈W (if wGiv then V ′(v,A ) = 1);
4. V ′(w, Inti A ) = 1 iff ∀v ∈W (if wIiv then V ′(v,A ) = 1); and

– each di is a total function mapping, for each world w in W , for each agent i, into a
multi-relational model of the form:

η = 〈W,Di,�〉
where:

– W is the (same, original) set of worlds,
– Di is a family of sets of accessibility relations �i wrt agency regarding agent i,
which are pointwise closed under intersection, reflexive and serial [11],

– � is V restricted to the non-normal operators. That is, the valuation function for
agency that says that Doesi A holds in w if and only if the set of worlds where A
is true is one of the neighborhoods of w. Formally:

1. standard Boolean conditions;
2. �(w,Doesi A ) = 1 iff ∃�i ∈ Di such that ∀u(w�iu iff �(u,A ) = 1).

Let us call K LDoes the set of models for LDoes, then di: W → K LDoes.
The above semantics instantiates the construction criteria of Definition 4.2 in

[9] and their generalization in [6], and so corresponds to a case of temporaliza-
tion/modalization.

N(Does): Semantics Given a model M, given w ∈W , given V ′ valuation function in M,
and given functions di, the semantics for N(Does) is obtained by replacing the clause
for N that says

M,w |= p iff p ∈V ′(w),whenever p ∈ P

with the clause:

M,w |= A iff di(w) |= A ,whenever A ∈ MDoes.

Note here that A has the form Doesi B, as A is a monolithic formula.
Once a formula has entered the “Does component” it cannot come back to the top

level [10]. Accordingly, we cannot test the validity of statements such as Doesi(Goal j A )
(which can be seen as capturing a form of persuasion: “agent i makes agent j have A as
a goal"). We address a possible solution to this drawback in Section 5.

Notice also that we combine the logics in a rather plain way: there are no bridge
axioms nor intricate interactions among modal operators. Therefore, soundness and
completeness results are applicable as follows. Fix a finite number of agents to pre-
vent possible infiniteness of the system. For the normal operators, apply the results in
[1](see Appendix); for the logics of agency, apply [11]. The following theorem holds
[6, Theorem 3]:

Theorem 1 (Temporalization/Modalization: Transfer of Complete Logics). If N
and Does are complete logics, so is N(Does).

Hence, N(Does) is complete, too.
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4 Computing Collective Trust

Any possible computation model for collective trust requires that the underlying logic
is at least decidable. In this section we exploit the following result [6, Theorem 4]:

Theorem 2 (Temporalization/Modalization: Transfer of Decidable Logics). If N
and Does are complete and decidable, so is N(Does).

Hence, we show that the logic N(Does) is also decidable by simply proving that the
component logics (Does and N) are decidable. On account of this result, an algorithm
for model checking is subsequently outlined.

4.1 Decidability

The logic for Does was proved in [11] to enjoy the finite model property and to be
decidable. What about the logic N?

Also proving that N is decidable is not hard. Indeed, on account of [4], proving that N
enjoys the finite model property trivially follows. Let us adjust the following definition
introduced in [4]:

Definition 1 ([4]). A set of formulas Σ closed for subformulas is closed if it satisfies
the following properties:

1. if CBelGφ ∈ Σ then EBelG(φ ∧CBelGφ) ∈ Σ
2. if EBelGφ ∈ Σ then {Beliφ |i ∈ G} ⊆ Σ
3. if MIntGφ ∈ Σ then EIntG(φ ∧MIntGφ) ∈ Σ
4. if EIntGφ ∈ Σ then {Intiφ |i ∈ G} ⊆ Σ
5. if JTrustGy φ ∈ Σ then {Trustiyφ |i ∈ G}
6. if RelGy φ ∈ Σ then (JTrustGy φ ∧MIntG(JTrustGy φ)) ∈ Σ
7. if CTrustGs φ inΣ then (RelGs φ ∧CBelG(RelGs φ)) ∈ Σ .

Since we omit in N the operator Does, JTrust is defined here in terms of individual
beliefs, intentions and goals. Rel is the mutual intention of JTrust, and CTrust is the
common belief of Rel. On account of this simple observation, we can exactly proceed
as done in [4] and establish the following result:

Lemma 1 ([4]). Given a model

M = 〈W,{Bi|i ∈ A},{Gi|i ∈ A},{Ii|i ∈ A},Val〉
let Σ be a closed set of formulas and

M f
Σ = 〈W f ,{B f

i |i ∈ A},{G f
i |i ∈ A},{I f

i |i ∈ A,},Val f 〉
be defined as follows:

– W f =W/≡Σ
f , Val f (a, [w]) =Val(a,w);

– B f
i = {([w], [v]) |∀Beliφ ∈ Σ , M ,w |= Beliφ ⇒ M ,v |= φ , ∀Xiφ ∈ Σ , M ,w |=

Xiφ ⇔ M ,v |= Xiφ where X ∈ {Bel,Goal, Int}};
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– G f
i = {([w], [v]) |∀Goaliφ ∈ Σ , M ,w |= Goaliφ ⇒M ,v |= φ , ∀Intiφ ∈ Σ , M ,w |=

Intiφ ⇒ M ,v |= φ};
– I f

i = {([w], [v]) |∀Intiφ ∈ Σ , M ,w |= Intiφ ⇒ M ,v |= φ}.

The model M f
Σ thus defined is a filtration of M through Σ .

From Lemma 1, it is an almost standard result to prove that the logic has the final
model property and its satisfiability problem is decidable [4]. Due to the same reasons
discussed in [4], also for each satisfiable formula φ of the logic N we can build a sat-
isfying model of at most the size O(2|φ |), which however indicates that the following
model checking algorithm has an exponential time complexity.

4.2 Model Checking

A model checker is a program that solves the model checking problem. The global
model checking problem for N(Does) consists in checking whether, given a formula ϕ ,
and given M model for N(Does), there exists a w ∈W such that M,w |= ϕ . We follow
the modal model checker construction of [10]. Let ϕ be a formula and let MMLDoes(ϕ)
be the set of maximal monolithic subformulas of ϕ belonging to LDoes. Let ϕ ′ be the
N-formula obtained by replacing every subformula α ∈ MMLDoes(ϕ) by a new propo-
sition letter pα . Below are the sketches of the model-checkers needed to solve the modal
checking problem for N(Does)3:

Function MCN(Does)((A,W,Bi,Gi, Ii,V ′,{di}),ϕ)
input: a modalized model M and a formula ϕ ∈ LN(Does)

compute MMLDoes(ϕ)
f or every α ∈ MMLDoes(ϕ)

i := identi f y the agent involved in α
f or every w ∈W

i f (MCDoes(di(w),α) = true) then
V ′(w) :=V ′(w)

⋃{pα} /* f uzzling*/

build up ϕ ′ /* systematically replace variables generated above */
return MCN((A,W,Bi,Gi, Ii,V ′,{di}),ϕ ′);/*calls to the normal checker*/

Function MCDoes(di(w),α)
input: a Scott-Montague model of structure η and
a maximal monolithic sub-formula α .
while there are neighbourhoods unchecked in di(w)

nk = set ni ∈ di(w) /*nk iterates on the set o f neighbourhoods*/
f or every w ∈ nk

i f α �∈ �(w) then return f alse
return true

3 To simplify the notation and have a more compact layout, we assume to work below in MCDoes
with equivalent Scott-Montague models for Does and not with multi-relational ones. This as-
sumption is non-problematic, since these semantics are equivalent.
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FunctionMCN((A,W,Bi,Gi, Ii,V ′,di),ϕ ′)
input: a model M= (A,W,Bi,Gi, Ii,V ′,di) and a formula ϕ ′
f or every w ∈W

i f check((A,w,Bi,Gi, Ii,V ′),ϕ ′)
return w

return f alse

Function check((A,w,Bi,Gi, Ii,V ′),α)
case on the f orm o f α

α = pα ′ :
i f pα ′ �∈V ′(w)

return f alse
α = ¬α ′ :

i f check((A,w,Bi,Gi, Ii,V ′),α ′)
return f alse

α = α1 ∧α2 :
i f not check((A,w,Bi,Gi, Ii,V ′),α1) or
or not check((A,w,Bi,Gi, Ii,V ′),α2)

return f alse
α = α1 ∨α2 :

i f not check((A,w,Bi,Gi, Ii,V ′),α1) and
and not check((A,w,Bi,Gi, Ii,V ′),α2)

return f alse
α = Beli(α ′) :

f or each v such that wBiv
i f not check((A,v,Bi,Gi, Ii,V ′),α ′)

return f alse
α = Goali(α ′) :

f or each v such that wGiv
i f not check((A,v,Bi,Gi, Ii,V ′),α ′)

return f alse
α = Inti(α ′) :

f or each v such that wIiv
i f not check((A,v,Bi,Gi, Ii,V ′),α ′)

return f alse
others : return f alse

return true

The procedures should be understood as follows. Given a modalized model and a for-
mula ϕ , MCN(Does) first computes the set MMLDoes(ϕ) of maximal monolithic sub-
formulas of ϕ . For each of these, the checker identifies which agent is carrying out
the action. Then, the checker establishes the worlds where that action has been carried
out successfully. For doing this, the MCDoes checker is called with the Scott-Montague
model di(w) as parameter (recall di has structure η). MCDoes is nothing but pseudo-code
for the valuation function �, it tests whether there is a neighborhood of w where α holds.
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If so, the new letter pα is added to V ′(w) to register such successful agency. Finally, be-
fore calling the normal model checker MCN, the new formula ϕ ′ is built without the
Does modalities; these have been replaced in the former fuzzling.

5 Independent Combination of Mental States and Actions

Doesi(Goal j A ) is a formula in which the normal modality appears within the scope of
a non-normal Does. Note that, according to Observation 1, we cannot express this for-
mula in the original system. An independent combination between a basic temporal and
a simple deontic logic for MAS has been recently depicted in [20]. That combination
puts together two normal modal logics: a temporal one and a deontic one.

Our aim now is to combine the normal and the non-normal counterparts of F to
get a new system where we can write and test the validity of formulas with arbitrarily
interleaved cognitive and agency modalities.

For doing this, let us take a look to F again. Consider it once more as a split into
two separate substructures: one gathering the normal logics, and another one gathering
the logics of agency. Again, there are two overlapping “nets” of relations identifiable
over the same set W . The former is a Kripke-style cognitive ontology where goals,
beliefs, intentions are interpreted, i.e., it captures internal (mental) motivational and
informational aspects of agents (also the deontic aspects of the system, but recall that
we do not explicitly consider them in this paper) the latter is a Scott-Montague structure
which captures the external, visible, behavioral side of agents.

Now to the combination. First, duplicate and add subscripts to the elements in W to
get one set of situations WN , and another set WD. Now build an ontology WN ×WD of
pairs (wN ,wD).

Combination: Syntax Let LN denote the language of N (the base logic restricted to the
normal operators), and LDoes denote the language of the logic of agency. The language
LN×Does is obtained by taking the union of the formation rules for the combination of
LNand LDoes. Unlike the case of LN(Does), Doesi(Goal j A ) and Goal j(Doesi A ) are
both formulas of LN×Does.

Combination: Semantics Assume that we have two structures: (A, WN , {Bi}, {Gi},
{Ii}, V ′,) and (A,WD,{Di},�), where to respectively test the validity of the normal
modalities and the non-normal (Does) modalities. The former is a Kripke model; the
latter a Scott-Montague model. Interpret LN×Does formulas over a combined model

C= (A,WN ×WD,{Bi}i∈A,{Gi}i∈A,{Ii}i∈A,{Di}i∈A,�),

where:

– A is the set of agents;
– WN ×WD is a set of pairs of situations;
– {Bi}i∈A,{Gi}i∈A,{Ii}i∈A are the accessibility relations for the normal operators

(with semantics as in Section 3);
– {Di}i∈A are the accessibility relations for the agency operators; and
– � : WN ×WD → Pow(P) is a function assigning to each pair in WN ×WD the set of

proposition letters in P which are true.
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The definition of a formula in LN×Does being satisfied in a model C at state (wN ,wD)
amounts to:

C,(wN ,wD) |= Beli A iff ∀vN ∈WN(if wNBivN then C,(vN ,wD) |= A ).

C,(wN ,wD) |= Goali A iff ∀vN ∈WN(if wNGivN then C,(vN ,wD) |= A ).

C,(wN ,wD) |= Inti A iff ∀vN ∈WN(if wNIivN then C,(vN ,wD) |= A ).

C,(wN ,wD) |= Doesi A iff there exists a neighborhood n of wD such that

∀v ∈ n (C,(wN ,v) |= A ).

A scan through the combined structure is done according to which operator is being
tested. Normal operators move along the first component (wN), and non-normal
operators move along the second component of the current world (wD).

Example 4 (Persuasion). The formula Doesi(Goal j A ) can be seen as a form of per-
suasion, meaning that agent i makes agent j have A as goal. How do we test the validity
of such a formula in a world (wN ,wD)? The movements along the multi-graph are de-
termined by C,(wN ,wD) |= Doesi (Goal j A ) iff ∃ neighbourhood ni of wD such that
∀vk ∈ ni (C,(wN ,vk) |= Goal j A ), which amounts to test ∀vk ∈ ni (iff ∀uN ∈ WN (if
wNG juN then C,(uN ,vk) |= A )).

6 Summary an Future Work

In this paper we have offered technical details for combining normal and a non-normal
logics for modeling the notion of collective trust and for proving the completeness and
decidability for the logic resulting form such a combination. Such combinations lead to
different levels of expressiveness of the system by using temporalization and modaliza-
tion techniques. On account of decidability results, we gave a possible structure for a
combined model checker.

Let us consider three research issues for future work.

The Obl modality. We dealt with some of the modalities underlying the trust theory
in [19]. In that work, a deontic connotation for the concept of collective trust is devel-
oped. Lawful support to collective trust is guaranteed in the theory with the schema:
(CTrustGy A ) → OblG(Doesy A ), which is devised with a view to reflect the lawful
force of trust, relativized to groups. The schema is to be understood as a standard of
(good faith) behavior that can be identified with reference to social or group norms, to
correctness, or reasonableness: if the group trusts agent y with respect to A , agent y is
obliged to carry out A .

For capturing this deontic connotation of CTrust, we must consider deontic modali-
ties such as Obl and OblG. Obl is the deontic operator for generic obligations, meaning
“it is obligatory that” [18,14], and OblG is a relativized obligation operator which is
meant to stand for “it is obligatory in the interest of G that” (see e.g. [13]). If these
deontic modalities have the usual accepted KD and KDn semantics, this extension is al-
most trivial: it is sufficient to add appropriate accessibility relations to the frames for N.
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Things can get more complex if we characterize the deontic operators in weaker (non-
normal) systems and apply combination techniques with more than just one non-normal
modal logic [7].

Complexity. The proposed logic, though decidable, is EXPTIME complete. [4] proposed
some methods for reducing this complexity, such as bounding modal depth of formulas
and bounding the number of propositional atoms. It is an interesting research issue to
check if these techniques can be useful also in the present framework.

Further combinations. Theoretically speaking, the very idea of reasoning about time
should extend the current framework. For example, a basic temporalization amounts to
place the temporal machinery on top of the modalized system, just in the same spirit we
placed the normal machinery on top of the non-normal one. Consider the model (T,<
,g, t0). The outer frame (T,<) corresponds to the temporal evolution of the system; t0
in T is the initial point in time. The system evolves through time in the sense that new
groups and generic/individual beliefs, intentions, trust relations, obligations are settled
while some others become obsolete. In its turn, g is the total function that brings in a
model M for each point in time.

A Completeness Proof for N

In this appendix, a completeness proof is sketched for the restriction N. The method
used is often applied in modal logic for proving completeness with respect to finite
models; is in turn inspired by the completeness proofs of mutual intentions shown by
Dunin-Keplicz and Verbrugge in [3]. In fact, we adapt that to N, and apply Definition
4.24 and Theorem 4.22 described in [2]; these respectively settle how to construct a
canonical model for a normal logic, and state that a normal modal logic is strongly
complete with respect to its canonical model.

We have to prove that, supposing that N �� ϕ , there is a model MN and a w ∈ MN
such that MN,w �|= ϕ . The proof has four steps:

Step 1: Closure Construct a finite set of formulas Φ called the closure of ϕ . Φ contains
ϕ and all its sub-formulas, plus certain other formulas that are needed in Step 4 below
to show than an appropriate valuation falsifying ϕ at a certain world can be defined.
The set Φ is also closed under single negations.

The closure of ϕ with respect to N is the minimal set Φ of N-formulas such that, for
every agent, the following hold (see also Definition 1):

1. ϕ ∈ Φ .
2. If ψ ∈ Φ and χ is a sub-formula of ψ , then χ ∈ Φ;
3. If ψ ∈ Φ and Φ itself is not a negation, then ¬ψ ∈Ψ ;
4. If MIntG(ψ) ∈ Φ then EIntG(ψ ∧MIntG(ψ)) ∈ Φ;
5. If EIntG(ψ) ∈ Φ then Intiψ ∈ Φ for all i ∈ G;
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6. ¬Inti ⊥∈ Φ for all i ≤ m;
7. If CBelG(ψ) ∈ Φ then EBelG(ψ ∧CBelG(ψ)) ∈ Φ;
8. If EBelG(ψ) ∈ Φ then Beli,ψ ∈ Φ for all i ∈ G;
9. ¬Beli ⊥∈ Φ for all i ≤ m;

10. ¬Goali ⊥∈ Φ for all i ≤ m.

It should be clean that for every formula φ , Φ is a finite set of formulas (recall that the
language in [19] includes: MInt, EInt, EBel).

Step 2: Canonical model. To construct a canonical model we need to define the worlds
and relations between them. Each of these worlds are maximally N-consistent sets. To
build this sets, we apply the Lindenbaum Lemma (which is proved in Lemma 4.17 [2])
over Φ step 1, as follows:

Let Φ be the closure of φ with respect to N. If Γ ⊆ Φ is N-consistent, then there is
a set Γ ′ ⊇ Γ which is maximally N-consistent in Φ .

Step 3: Build a canonical model using Definition 4.24 [2]. . This model will turn out
to contain a world where ¬ψ holds. Let Mϕ =< Sφ ,π , I1, ..., Im,B1, ...,Bm,G1, ...,Gm >
be the Kripke model defined as follows:

– As domain of states, one state sΓ is defined for each maximally N-consistent Γ ⊆
Φ . Note that, because Φ is finite, there are only finitely many states. Formally,
we defined CONΦ = {Γ |Γ is maximally N-consistent in Φ} and Sϕ = {sΓ |Γ ∈
CONΦ}.

– To make a truth assignment π , we want to conform to the propositional atoms that
are contained in the maximally consistent sets corresponding to each world. Thus
we define π(sΓ )(p) = 1 if and only if p ∈ Γ . Note that this makes all propositional
atoms that do not occur in ϕ false in every world of the model.

– The corresponding relations are defined as follows:

Ii = {(sΓ ,s�)|ψ ∈� f or all ψ such that Inti(ψ) ∈ Γ }
Bi = {(sΓ ,s�)|ψ ∈� f or all ψ such that Beli(ψ) ∈ Γ }
Gi = {(sΓ ,s�)|ψ ∈� f or all ψ such that Goali(ψ) ∈ Γ }

It will turn out that with this definition we get Mϕ ,sΓ |= p iff p ∈ Γ for propositional
atoms p.

Step 4: Completeness of N. If N �� ϕ then there is a model M and a w such that M,w �|=
ϕ . Proof: Suppose N �� ϕ . Take Mϕ as in step 3. Note that there is a formula χ logically
equivalent to ¬ϕ that is an element of Φ; if ψ does not start with a negation, χ is the
formula ¬ϕ itself. Now, using the Lindenbaum Lemma, there is a maximally consistent
set Γ ⊆ Φ such that χ ∈ Γ . By the Finite Truth Lemma, if Γ ∈ CONφ then for all
ψ ∈ Φ it holds that Mϕ ,sΓ |= ψ iff ψ ∈ Γ . Thus, this implies that Mϕ ,sΓ |= χ , thus
Mϕ ,sΓ �|= ϕ . Details of the Finite Truth Lemma proof are left to the reader (see [3] and
[2], Lemma 4.21).
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