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ABSTRACT 
The particle-particle method for N-Body problems is one 

of the most commonly used methods in computer driven 

physics simulation. These algorithms are, in general, very 

simple to design and code, and highly parallelizable. In 

this article, we present the most important approaches for 

the application of the three performance improvement 

areas on these algorithms when executed on high 

performance computing (HPC) clusters: 1) sequential 

optimization (a single core in a node of the cluster), 

2) shared memory parallelism (in a single node with 

multiple CPUs available, just like a multiprocessor), and 

3) distributed memory parallelism (in the whole cluster). 

For each one of the improvement areas we present the 

employed techniques and the obtained performance gain. 

Also, we will show how some (sequential/classical) code 

optimizations are almost essential for obtaining at least 

acceptable parallel performance and scalability. 

 

KEY WORDS 

High Performance Computing, Source code optimization, 

Parallel Computing, Cluster Computing, N-Body/Particle 

Simulation. 

 

 

1. Introduction 
 

The particle-particle (PP) method for N-Body problems is 

simple as well as highly parallelizable. Also, it provides a 

representative test bed for analyzing performance impacts 

of optimization and parallelization approaches on 

applications performance and scalability in large scale 

simulation contexts. We will explore the three basic 

performance improvement methods for N-Body problems 

using cluster computing: 

 Sequential Code Optimization 

 Intra-Node Parallelism using shared memory 

 Multi-Node Parallelism using message passing 

 

The N-bodies problem has been one of the biggest 

challenges for mathematiciansfor the last centuries[6]. A 

purely numerical solution that turns to a result in a linear 

number of operations for any N, any time lapse, and 

taking the possibility of collisions into account has not yet 

been found. Therefore, the only way to approximate to a 

real solution is to use a differential method with tiny time 

slices along with computational processing  

 

In this article, we use a gravitational calculation problem 

where all bodies with mass are attracted to each other. 

Also, each body is considered a small particle unable to 

collide with each other.The force applied to a particular 

body in a particular moment depends on the masses and 

distances of the other bodies relative to him, as shown in 

Eq. (1). 
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Where G is the gravitational constant, mi and mj are the 

masses of bodies i and j, and ri and rj are the three-

dimensional vectors describing the positions of each 

one.The PP method for this kind of problems is one of the 

simplest to design and code. We use itto calculate the total 

gravitational force applied to each particle and then apply 

that force as a constant to calculate the changes in 

acceleration, velocity, and position of the body using a 

time differential. After all these changes are applied for 

each body, the simulation time increases with the value of 

the time differential, and a new step is executed. 

 

These simulations diverge from the real case as the 

simulation steps are executed because they take each 

force as a constant during the time differential. Knowing 

that forces in nature vary constantly, these may be 

different from the simulated lapse of the time differential, 

where they are considered as constants. There are other 

simulation methods, different ways of simulation error 

control, and numerical optimizations [3][13][5], but we 

are going to use the basic method for the analysis of 

different optimization and parallelization approaches. 

 

Clusters of computers have become standard for scientific 

parallel computing since many years ago. In these 

platforms, there are several choices for optimization and 

parallelization. Our objective is the analysis and, more 



specifically, the quantification of possible performance 

gains at three levels: sequential (one core) source code 

optimization, multiprocessing or shared memory (one 

node), and multicomputing (the cluster) or distributed 

memory parallel computing . 

 

Results and quantified improvement for original and 

optimized codes for each environment will be shown as 

they are presented, as well as a comparison of 

methods.The definition of cluster that we are using in this 

article refers to a set of computers interconnected by a 

standard local area or high-speed network. This includes a 

wide range of possibilities: from commercial or scientific 

supercomputers belonging to the TOP500 Supercomputer 

listto home-made clusters with PCs and a wireless router. 

Each individual computer in the cluster will be referred to 

as a node.  

 

The rest of this article is organized as follows: Section 2 

introduces the initial non optimized algorithm. The 

current hardware used for HPC which should be taken 

into account for optimizations as well as paralellization is 

briefly explained in Section 3. The most successful 

sequential optimizations are shown in Section 4. Section 5 

explains the parallelization for (shared memory) 

multiprocessing environments via OpenMP (i.e. with 

several threads of execution) and its relationship with 

memory access optimization. The parallelization for 

distributed memory environments, usually clusters, via 

MPI (Message Passing Interface) is introduced in Section 

6. Section 7 explains several details related to 

performance from the point of view of optimization and 

parallelization. Finally, Section 8 includes conclusions 

and further work. 

 

 

2. Initial Algorithm, the Departure Point 
 

The basic PP algorithm can be defined in pseudo-code as 

shown in Fig. 1, where  

 vec is an array of structures, and each structure (an 

array element) fully represents one of the bodies in 

the problem. 

 “Compute distance between i and j” implies using x, 

y, and z coordinates of bodies i and j.  

 apply_time_step(vec) is devoted to tasks like velocity 

and position updates as well as to properly advance 

the simulated time. 

 

The computing time (complexity) of this algorithm grows 

in quadratic order for every new body added to the 

simulation. From the point of view of the simulated time, 

the computing time grows linearly for each further time 

step of calculation. This means that if one time step of n 

bodies takes a certain amount of time, two time steps of 

the same number of bodies will take twice the time. A 

priori, no parallelism can be applied through different 

time steps since all of the data depend on the previous 

results. Therefore, we will focus on performance and 

parallelization enhancements within one time step, for a 

representativenumber of bodies. Here, a representative 

number is defined from the point of view of performance, 

i.e. one that fulfills the following: 

 Every data is on main memory, with no need to use 

out-of-core/swap/disk memory for storage. 

 The whole data does not fit in cache memory, so 

performance is not automatically optimized by every 

access being supplied by cache at any level/s (L1, L2, 

or, eventually, L3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Pseudo-code of the Basic N-Body Simulation. 

 

As explained above, Fig. 1 shows in bold face the code to 

be analyzed and optimized from the point of view of 

performance. Every floating point operation is related to 

one of the two tasks identified, respectively, as 

 Compute distance between bodies i and j. 

 Update acceleration of i (taking into account the 

influence of body j). 

And Fig. 2 shows the pseudo-code of computations 

required for computing the distance between i and j, 

 

 

 

 

 

 

 

Figure 2: Computing Distance Between Bodies i and j. 

 

according to Eq. (1) above, where 

 d_[x/y/z] are the distances in each of the three 

corresponding dimensions. 

 sqrt() is the function used for computing the square 

root of a number. 

 ab_dc is the cube of the absolute distance between 

bodies i and j. 

At the same level of abstraction of Fig. 2, Fig. 3 shows the 

the pseudo-code of computations required for updating 

the acceleration of i (taking into account the influence 

ofbody j), where 

 vec[i].a_[x/y/z] represents the acceleration in each of 

the three corresponding dimensions of body i. 

initialize_bodies_data(vec) 

For each time step Do 

For each i in vecDo 

 For each j in vec Do 

       If (i j) Then 

          Compute distance between i and j 

          Update acceleration of i 

       End If 

   End For 

End For 

apply_time_step(vec) 

End For     

d_x = vec[j].x – vec[i].x 

d_y = vec[j].y – vec[i].y 

d_z = vec[j].z – vec[i].z 

ab_dc = (sqrt(d_x
2
 + d_y

2
 + d_z

2
))

3
 



 vec[i].m represents the mass of body i. 

 Δt and G are the time step and gravitational constant 

respectively. 

 

 

 

 

 

 

Figure 3: Acceleration Update of Body i. 

 

There are some immediate optimizations as well as other 

more elaborate ones. However, the specific figure of 

performance effect will depend on the hardware. Thus, 

the next section will introduce the hardware on which we 

are going to experiment with and measure performance.  

 

 

3. Computing Hardware, and Clusters 

 

Clusters are used for parallel processing since many years 

ago, due to their very good cost/performance ratio [11]. 

And the definition of clusters for parallel processing has 

been almost unchangeable since its definition [2][15] as a 

set of computers (nodes) which are interconnected by a 

network. There has been, of course, a natural evolution of 

the hardware involved in clusters: 

 Current nodes are mostly multi-core multiprocessors, 

and there are several Top500 computers (and among 

the top 10 range in the Top500) with attached GPU 

(Graphical Processing Units) [16]. 

 Current interconnection hardware ranges from very 

low cost Ethernet 100 Mb/s or 1Gb/s to Infiniband to 

custom made interconnection networks in the range 

of the top 10 or 50 supercomputers in the Top500 list. 

We will experiment on the most available and also lowest 

cost parallel computers. More specifically, we will obtain 

and analyze performance measurements on an Intel i5 

multi-core computer and on a cluster of dual quad-core 

Xeon processors. We will refer to these platforms as mc 

(since a computer with an Intel i5 is just a multi-core 

computer) and cluster respectively. Table 1 shows the 

characteristics of the mc platform, and Table 2 shows the 

characteristics of the cluster. 

 

Both platforms (mc and cluster) provide multiprocessing 

facilities, but only the cluster is able to be used for 

distributed memory parallel computing. As expected, the 

cluster is more scalable in terms of the number of 

processors (cores) and memory. As turns out from Table 1 

and Table 2, there are many similarities in a single node 

of most of the current HPC clusters: 

 Multiprocessing via multi-core, i.e. several cores with 

shared access to a single memory. 

 Memory hierarchy including several cache levels (at 

least L1 and L2) in the processor. 

 Single cores running at GHz frequency, including 

pipelining and floating point units and, most of the 

times, with superscalar capabilities. 

And these similarities are also found in clusters made up 

with AMD processors (e.g. those based on Opteron or 

Phenom processors). 

 

Table 1: mc Platform Characteristics 
 

Processor Intel i5-2310 

Cores/processor 4 

RAM 4 GB 

OS, gcc v. Linux 3.0.0, gcc 4.6.1 

# Nodes 1 

 

Table 2: Cluster Platform Characteristics 
 

Processor 2 x Intel Xeon E5405 per node 

Cores/processor 4 (8 cores per node) 

RAM/node 2 GB  

OS Linux 2.6.31, gcc 4.6.3 

# Nodes 4 

Network Ethernet 100 Mb/s 

 

 

4. Code Optimization 
 

Traditionally, sequential algorithm programmers had only 

to worry about optimizing their code in order to reduce 

runtime using well known techniques [4][14][8]. Also, 

many of the classical optimization techniques have 

influenced compiler design [1] and current (optimizing) 

compilers development. However, with the dawn of 

parallel computing, programmers had (and still have) to 

adapt to a whole new paradigm or, more specifically, now 

the code has to take into account the underlying parallel 

hardware. Furthermore, some optimization techniques 

may have impact on code parallelization. 

 

Taking into account that some of the optimizations are 

architecture-dependent doesnot necessarily make them 

less generally usable. Several node and cluster 

optimization and parallelization concepts can be applied 

on most of the algorithms running in production/scientific 

computers and clusters. We will go through several 

optimizations applied to the initial algorithm version in 

order to obtain the best possible sequential version, as 

shown in subsections below. 

 

4.1 Operator Strength Reduction 

 

The idea behind the operator strength reduction 

optimization is that some operators are more processor-

demanding than others. In particular, the division (/) 

operator tends to be more expensive than multiply (*) [7]. 

Fig. 3 above shows that there are three divisions in the 

initial version of the algorithm, where the divisor is 

always the same. These divisions can be changed to a less 

costly operation by multiplying by the corresponding 

inverse number, as shown in Fig. 4.  

 

vec[i].a_x+=d_x*Δt*G*vec[j].m / ab_dc 

vec[i].a_y+=d_y*Δt*G*vec[j].m / ab_dc 

vec[i].a_z+=d_z*Δt*G*vec[j].m / ab_dc 



 

 

 

 

 

 

Figure 4: / Replaced by *. 

 

According to Fig. 4, there is just one division and three 

multiplications. Thus, two divisions can be successfully 

replaced by three multiplications, which enhances 

performance. 

 

4.2 Constants and Loop Invariants 

 

The computations included in the inner loop of Fig. 1 

define the hidden constant of the algorithm quadratic 

order of operations. Furthermore, the inner loop (as 

shown in Fig. 2, Fig. 3, and Fig. 4) includes repeated 

calculations involving constants and, also, loop invariants: 

 Constants: the time differential (Δt) and, also, the 

gravitational constant (G). 

 Loop invariants (variables whose content won’t 

change, at least during the execution of the step): the 

body’s mass (vec[j].Mass), and the inverse of the 

cubic distance (Dist_3). 

Constant and loop invariants can be processed out of the 

loop or in an optimized manner. Note that some of these 

optimizations are can be easily carried out by almost 

every modern compiler while others may require complex 

interprocedural optimization (IPO) heuristics/techniques. 

Fig. 5 shows one of the most immediate source code 

optimizations for the code in Fig. 4 above, where 

 dtG should be initialized with Δt*G. 

 dtG * vec[j].m is computed just once and used three 

times by using comm.  

Note that the last optimization is a common subexpression 

elimination (CSE) that is already used from Fig. 2 by 

computing the values of d_x, d_y, and d_z just once, and 

referencing those values where needed. 

 

 

 

 

 

 

 

 

Figure 5: Optimization at the Inner Loop. 

 

There are two further optimizations regarding constant 

values, loop invariants, and subexpression elimination: 

 vec[j].m is set and constant for each body, so it is 

possible to precompute (outside the inner loop) dtGm 

as an array as dtGm[j] = dtG * vec[j].m 

 Inside the inner loop, instead of computing df as 

shown in Fig. 5 and using the precomputed array 

dtGM as explained before, a further optimization is 

possible, by directly computing  

comp = dtGm[j] / ab_dc 

vec[i].a_x+=d_x* comp 

vec[i].a_y+=d_y*comp 

vec[i].a_z+=d_z* comp 

 

And now it is possible to verify that some of these 

optimizations are not simple enough for an optimizing 

compiler.  

 

4.3 Cache Temporal Locality Considerations 

 

The algorithm updates the body acceleration according to 

its relationship with all of the others (except itself) by 

carrying out the operations described above. Then, given 

two bodies {a,b}, it is possible to compute two update 

operations: a’ = upd(a,b), and b’ = upd(b,a). From a cache 

temporal locality point of view, this would avoid many 

cache misses because all the operations involving the 

same data pair will be executed. Note that, even though 

the required iterations would be reduced to a half, the 

number of instructions per iteration would be duplicated. 

A priori, there is no reduction in the number of operations 

but there is an increasing cache hit ratio.  However, given 

that more operations are carried out in every iteration, 

there would be more opportunities for other performance 

optimization techniques to be applied on more data (e.g. 

further possibilities for subexpression eliminations). Thus, 

the inner loop of the algorithm shown in pseudocode in 

Fig. 1 can be replaced by the loop given in Fig. 6, where  

 The inner loop now starts at i+1, since each iteration 

implies two updates, shown with comments “update 

i” and “update j”. 

 dtGm[i] = Δt*G * vec[j].misprecomputed. i.e. 

computed before the outer loop (e.g. immediately 

before the outer loop, where every constant and the 

body vector have the values needed for computing 

the values of dtGm. 

 It is worth mentioning that d_x, d_y, d_z, and ab_dc 

are used for computing both, update i and update j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Inner loop for N-Body Computations. 

df = 1/ab_dc 

vec[i].a_x+=d_x*Δt*G*vec[j].m * df 

vec[i].a_y+=d_y*Δt*G*vec[j].m * df 

vec[i].a_z+=d_z*Δt*G*vec[j].m * df 

df = 1/ab_dc 

comm = dtG * vec[j].m 

vec[i].a_x+=d_x* comm * df 

vec[i].a_y+=d_y*comm* df 

vec[i].a_z+=d_z* comm * df 

For each j (starting from i + 1) in vec Do 

d_x = vec[j].x – vec[i].x 

d_y = vec[j].y – vec[i].y 

d_z = vec[j].z – vec[i].z 

ab_dc = (sqrt(d_x
2
 + d_y

2
 + d_z

2
))

3
 

 

compi = dtGm[j] / ab_dc      /* update i */ 

    vec[i].a_x+=d_x * compi 

vec[i].a_y+=d_y* compi 

vec[i].a_z+=d_z * compi 

 

compj = dtGm[i] / ab_dc     /* update j */ 

vec[j].a_x -=d_x * compj 

vec[j].a_y -=d_y*compj 

vec[j].a_z -=d_z * compj 

End For 



 

4.4 Performance Optimization Results 

 

Several experiments have been carried out in order to 

provide a quantitative view of the optimization techniques 

described above. We have taken a value for the number of 

bodies so that 

 The data involved for calculations does not fit into 

any level of cache. 

 The runtime is only a few hours long, so that we can 

run several experiments for testing. The initial 

runtime is near 3 hours.  

Table 3 shows the performance obtained by implementing 

the optimizations described so far. For every run, the 

optimization level of the compiler has been set to -O3, 

and performance is given in MFlop/s. 

 

Table 3: Sequential Experiments Performance (MFlop/s) 
 

 mc cluster node 

-O3  1115 810 

-O3 + all  2679 1859 

 

 

5. Shared Memory Parallelization: OpenMP 
 

OpenMP[10] allows for a very simple implementation of 

intra-node shared memory parallelism by only adding a 

few compiler directives. There is, however, an important 

detail: every thread should have a local copy of the 

bodies’ vector, and the final results consolidation should 

be done within a critical region. The local copy of the 

vector prevents data races in the acceleration updates. 

Fig. 7 shows the #pragma omp added to the code,where 

schedule static prevents unbalanced workload.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: OpenMP Parallelization 

 

Fig. 8 shows schematically the threaded execution using 

the OpenMP terminology. Even when the parallelization 

is straightforward and there are minimum synchronization 

points, the performance is not acceptable.Table 4 shows 

the performance values for 2, 4, and 8 cores in a cluster 

node (mc values are similar) in terms of Mflop/s and 

efficiency. Clearly, the scalability is far from 

optimal.Given the simple algorithm and our 

parallelization via independent data, there is an almost 

direct candidate for performance penalization as the 

number of simultaneous threads increases: memory 

contention. Thus, instead of changing the parallel 

approach we enhance memory accesses. 

 

Initialize Bodies 

Vector

Compute Thread 1 

Iterations

Apply Step()

Compute Thread 0 

Iterations

Compute Thread k 

Iterations

Main Thread
Thread 1 Thread k

Critical Region

Consolidate_ 

Results()

Main Process

Main Node  
Figure 8: OpenMP Parallel Runtime. 

 

Table 4: First OpenMP Version Performance in a Node 
 

Cores 2 4 8 

Mflop/s 2582 4403 7536 

Efficiency 0.69 0.59 0.51 

 

More specifically, we implemented a tiled version of the 

sequential algorithm. Table 5 and Table 6 show the 

performance values in mc and in a cluster node 

respectively for the tiled implementation. 

 

Table 5: Tiled Performance in mc 
 

Cores 1 2 4 

Mflop/s 2806 5477 10604 

Efficiency 1.0 0.98 0.94 

 

Table 6: Tiled Performance in a Cluster Node 
 

Cores 1 2 4 8 

Mflop/s 1963 3815 7625 15232 

Efficiency 1.0 0.97 0.97 0.97 

 

The tiled implementation of the sequential algorithm has 

shown very interesting properties: 

 Provides only a few Mflop/s more than the previous 

optimized version (compare single core performance 

in Table 5 and Table 6 with values in Table 3). 

 Every new variable needed for the tile optimization 

(e.g. block size) is local to the thread in the OpenMP 

version. This reduces parallelization complexity. 

 Clearly, scalability is enhanced (seeTable 4). 

 

 

6. Distributed Memory Parallelization: MPI  
 

MPI (Message Passing Interface) [9] provides many 

communication functions for distributed memory parallel 

computing.Also, MPI usually implies to recode at least 

some portions of the program so that different processes 

#pragma omp parallel private(…) shared(…) 

Copy body vector 

#pragma omp for schedule(static, 1) 

For each i in vecDo 

For each j (starting from i + 1) in vec Do 

        … 

    End For 

End For 

#pragma omp critical 

Consolidateresults 

 



carry out a fraction of the total workload. A parallel 

program with MPI can take advantage of multiple 

computing (CPUs/cores) resources in a multicore 

computer as well as in a cluster of multicore computers. 

From this point of view, MPI provides a uniform (referred 

to as homogenous) view of parallel processing regardless 

of running on shared or distributed memory parallel 

hardware. Fig. 9 shows how processes are organized for 

parallel computing the N-Body simulation. Most of the 

code is borrowed from the OpenMP version, since there is 

a very low data dependency in computations. It is worth 

noting that it is not always possible to maintain the source 

code almost equal from sequential to an MPI parallel 

implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: MPI Parallelization 

 

As shown in Fig. 9, all processes are involved in two main 

communications: one for receiving the data (bodies’ 

information) to be updated and one after the data has been 

updated. Both communications define a very constrained 

synchronization, since a simulation step cannot start in 

advance, i.e. before the previous step has been completed. 

Data distribution from process with rank (or id) 0 is made 

through a classical collective communication primitive: a 

broadcast message. Processes have been organized as 

master-workers, which is very usual in the context of 

distributed memory parallel programs. There are some 

optimizations specifically related to communications 

which have not been implemented, such as:  

 Reducing communications to the variable data in the 

bodies array. The whole vector is always transferred 

among computers (some information such as the 

body masses are constant). 

 Reducing communications to receive at process 0 

only the updated data. Again, the whole array of 

bodies is transferred. 

These optimizations can be made if the experiments show 

unacceptable performance penalties. 

 

The performance (in Mflop/s and efficiency) obtained by 

the MPI version on mc using 2 and 4 cores is shown in 

Table 7. Note that performance values are almost the 

same as those obtained with OpenMP (shown in Table 5). 

Table 8 shows corresponding values on the cluster. Note 

that for 2, 4, and 8 cores only one node is used, while for 

16 and 32 cores we use 2 and 4 nodes (the whole cluster). 

We did not approach a hybrid parallel implementation 

(i.e. one with OpenMP intra-node and MPI inter-node 

parallelization) because of the very good performance 

obtained by the MPI parallel program.  

 

Table 7: MPI Parallel Code Performance in mc 
 

Cores 2 4 

Mflop/s 5384 10498 

Efficiency 0.96 0.94 

 

Table 8: MPI Parallel Code Performance in Cluster 
 

Cores 2 4 8 16 32 

Mflop/s 3921 7842 15670 31057 59805 

Efficiency 1 1 1 0.99 0.95 

 

As expected, as more nodes are used in the cluster, the 

performance is more penalized. However, the values 

obtained in the cluster show that the performance loss is 

very little in terms of scalability, e.g. 0.4% performance 

loss when doubling the number the number of nodes 

(from 2 to 4 nodes, i.e. 16 to 32 processes/cores).  

 

 

7. Further Comments on Performance and 

Parallelization 
 

Optimization techniques are usually well defined, but not 

always the compilers are able to identify and implement 

the best choices. As expected, compilers are conservative 

and do not always apply every possible optimization. This 

is confirmed once again with the results shown in this 

work. More specifically, Table 3 shows that source code 

optimizations obtain more than 142% and 151% of 

performance gain in mc and a cluster node respectively 

over that provided by a compiler.It is possible, however, 

that carefully selected compiler optimization switches 

provide better performance than that provided by -O3.  

 

Optimizations specifically focused on reducing the 

memory wall performance problem are almost a 

constraint for obtaining acceptable parallel performance. 

As shown in Table 4 performance is not acceptable even 

for a small number of cores and, specifically, scalability is 

explicitly affected if the code does not include tile 

optimizations. It is worth noting that the source code that 

provided the performance values of Table 4 already 

included a cache optimization, which was explained as 

cache temporal locality optimization. 

 

The OpenMP parallelization is made with some simple 

changes to the sequential code. Interestingly, it shows 

some issue(s) related to optimization that has a strong 

influence (penalty) on performance. The so called 

memory wall, defined as the (very large) difference in 

Initialize Bodies  
Vector 

Compute Process 0 
iterations 

Apply Step() 

Process 
( rank =  0 ) 

Broadcast Bodies  
Vector 

Process  
( rank =  i) 

Receive Bodies  
Vector 

Send Partial  
Results 

Receive and  

Consolidate Partial  

Results 

Compute Process k 
iterations 



performance among CPU and memory access, is made 

proportionally worse when more CPUs (cores) share the 

same memory subsystem. And the problem would be 

aggravated if more cores share memory (with more cores 

per processor or more processors sharing memory). 

Table 5 show that even when tiling does not provide a 

great improvement on performance related to the previous 

code version, it produces an essential improvement on 

performance in the context of parallel computing. And 

this improvement is obtained regardless of the parallel 

algorithm/implementation (OpenMP or MPI).  

 

The MPI parallel algorithm obtains almost optimum 

performance even in the context of a shared memory 

parallel hardware (for which it was not necessarily 

defined). Unfortunately, this optimum result is not 

possible to be expected in every application or source 

code algorithm implementation. N-Body simulation is 

particularly well suited for parallel computing and many 

(most of) the problems are not so easily parallelizable. 

However, it has been shown in other contexts [12] that an 

MPI parallelization can be as good as an OpenMP parallel 

program. Thus, the programmer should check (experiment 

with) the MPI program before deciding to implement a so 

called hybrid approach to parallelization.  

 

Finally, Fig. 10 and Fig. 11 show the performance 

improvements obtained from an original application going 

through (standard/sequential) optimizations and, also, 

different approaches to parallel computing. Distributed 

memory parallelization is still (a priori) the most scalable 

one, since multiprocessors have strong limitations in the 

number of CPUs (cores) sharing a single memory 

subsystem. 

 

 
 

Figure 10: Summary of Performance Improvements (mc) 

 

Performance values shown in Fig. 10 for mc are 

comparable with values in Fig. 11 for the cluster up to 4 

processes (for MPI) or threads (for OpenMP). As 

expected, mc provides better performance intra-node 

(greater MHz, enhanced memory access). However, there 

are not many installed clusters based on i5 or i7 to make a 

general comparison, and, also, using a large number of 

processors (tens and hundreds of nodes).  

 

 
 

Figure 11: Summary of Performance Improvements 

(cluster) 

 

8. Conclusions and Further Work 
 

The PP method of N-Body problems holds high potential 

for sequential optimizations and parallel approaches. 

Fig. 11 above shows experimental support and data for 

the previous claim. Even when compilers make an 

excellent job in implementing optimizations, some 

optimizations have to be applied directly on the source 

code. Or, at least, the (scientific) programmer should be 

able to experiment and measure different source code 

optimizations on the source code.  

 

Parallelization for shared memory parallel hardware is 

expected to be both, the most simple and less scalable 

parallel approach to a given code. However, when 

reached the limit on the scale of parallel computing, 

shared memory parallelization provides good (or, at least, 

a minimum) previous insight to distributed memory 

parallelization. A parallel approach initially oriented 

towards a distributed memory parallel platform can be 

perfectly appropriate for a shared memory platform.  

 

Parallelization for distributed memory hardware is not 

necessarily always a problem, but it is not immediate. 

Some recoding seems to be necessary, even for the PP 

method, which is particularly simple to parallelize. As 

parallelization started (in this work) in the context of a 

shared memory environment, we already had some 

experience at the time of the MPI implementation. 

 

Initially, the parallel approach should be analyzed on 

clusters with a large number of nodes (tens, hundreds, and 

thousands). Unfortunately, clusters with a large number of 

nodes are mainly devoted to production environments, but 

it would be highly beneficial if some fraction of the time 

they could be used for research. Further investigations 

should focus on the optimization of the Runge-Kutta and 



Euler integration methods running on HPC clusters since 

their implementation may reduce the high levels of 

scalability required to justify network and communication 

overheads.   
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