
SEQUENTIAL OPTIMIZATION AND SHARED AND DISTRIBUTED MEMORY

PARALLELIZATION IN CLUSTERS: N-BODY/PARTICLE SIMULATION

Fernando G. Tinetti
1,2

, Sergio M. Martin
3

1
III-LIDI, Fac. de Informática, UNLP

Calle 50 y 120, 1900, La Plata, Argentina
2
Comisión de Inv. Científicas de la Prov. de Bs. As.

3
Universidad Nacional de La Matanza

Florencio Varela 1903 - San Justo, Argentina

 fernando@info.unlp.edu.ar, smartin@unlam.edu.ar

ABSTRACT
The particle-particle method for N-Body problems is one

of the most commonly used methods in computer driven

physics simulation. These algorithms are, in general, very

simple to design and code, and highly parallelizable. In

this article, we present the most important approaches for

the application of the three performance improvement

areas on these algorithms when executed on high

performance computing (HPC) clusters: 1) sequential

optimization (a single core in a node of the cluster),

2) shared memory parallelism (in a single node with

multiple CPUs available, just like a multiprocessor), and

3) distributed memory parallelism (in the whole cluster).

For each one of the improvement areas we present the

employed techniques and the obtained performance gain.

Also, we will show how some (sequential/classical) code

optimizations are almost essential for obtaining at least

acceptable parallel performance and scalability.

KEY WORDS

High Performance Computing, Source code optimization,

Parallel Computing, Cluster Computing, N-Body/Particle

Simulation.

1. Introduction

The particle-particle (PP) method for N-Body problems is

simple as well as highly parallelizable. Also, it provides a

representative test bed for analyzing performance impacts

of optimization and parallelization approaches on

applications performance and scalability in large scale

simulation contexts. We will explore the three basic

performance improvement methods for N-Body problems

using cluster computing:

 Sequential Code Optimization

 Intra-Node Parallelism using shared memory

 Multi-Node Parallelism using message passing

The N-bodies problem has been one of the biggest

challenges for mathematiciansfor the last centuries[6]. A

purely numerical solution that turns to a result in a linear

number of operations for any N, any time lapse, and

taking the possibility of collisions into account has not yet

been found. Therefore, the only way to approximate to a

real solution is to use a differential method with tiny time

slices along with computational processing

In this article, we use a gravitational calculation problem

where all bodies with mass are attracted to each other.

Also, each body is considered a small particle unable to

collide with each other.The force applied to a particular

body in a particular moment depends on the masses and

distances of the other bodies relative to him, as shown in

Eq. (1).

𝐹𝑖 = 𝐺
𝑚𝑖𝑚𝑗

 𝑟𝑗 − 𝑟𝑖
3 (

𝑛

𝑖≠𝑗

𝑟𝑗 − 𝑟𝑖)

(1)

Where G is the gravitational constant, mi and mj are the

masses of bodies i and j, and ri and rj are the three-

dimensional vectors describing the positions of each

one.The PP method for this kind of problems is one of the

simplest to design and code. We use itto calculate the total

gravitational force applied to each particle and then apply

that force as a constant to calculate the changes in

acceleration, velocity, and position of the body using a

time differential. After all these changes are applied for

each body, the simulation time increases with the value of

the time differential, and a new step is executed.

These simulations diverge from the real case as the

simulation steps are executed because they take each

force as a constant during the time differential. Knowing

that forces in nature vary constantly, these may be

different from the simulated lapse of the time differential,

where they are considered as constants. There are other

simulation methods, different ways of simulation error

control, and numerical optimizations [3][13][5], but we

are going to use the basic method for the analysis of

different optimization and parallelization approaches.

Clusters of computers have become standard for scientific

parallel computing since many years ago. In these

platforms, there are several choices for optimization and

parallelization. Our objective is the analysis and, more

specifically, the quantification of possible performance

gains at three levels: sequential (one core) source code

optimization, multiprocessing or shared memory (one

node), and multicomputing (the cluster) or distributed

memory parallel computing .

Results and quantified improvement for original and

optimized codes for each environment will be shown as

they are presented, as well as a comparison of

methods.The definition of cluster that we are using in this

article refers to a set of computers interconnected by a

standard local area or high-speed network. This includes a

wide range of possibilities: from commercial or scientific

supercomputers belonging to the TOP500 Supercomputer

listto home-made clusters with PCs and a wireless router.

Each individual computer in the cluster will be referred to

as a node.

The rest of this article is organized as follows: Section 2

introduces the initial non optimized algorithm. The

current hardware used for HPC which should be taken

into account for optimizations as well as paralellization is

briefly explained in Section 3. The most successful

sequential optimizations are shown in Section 4. Section 5

explains the parallelization for (shared memory)

multiprocessing environments via OpenMP (i.e. with

several threads of execution) and its relationship with

memory access optimization. The parallelization for

distributed memory environments, usually clusters, via

MPI (Message Passing Interface) is introduced in Section

6. Section 7 explains several details related to

performance from the point of view of optimization and

parallelization. Finally, Section 8 includes conclusions

and further work.

2. Initial Algorithm, the Departure Point

The basic PP algorithm can be defined in pseudo-code as

shown in Fig. 1, where

 vec is an array of structures, and each structure (an

array element) fully represents one of the bodies in

the problem.

 “Compute distance between i and j” implies using x,

y, and z coordinates of bodies i and j.

 apply_time_step(vec) is devoted to tasks like velocity

and position updates as well as to properly advance

the simulated time.

The computing time (complexity) of this algorithm grows

in quadratic order for every new body added to the

simulation. From the point of view of the simulated time,

the computing time grows linearly for each further time

step of calculation. This means that if one time step of n

bodies takes a certain amount of time, two time steps of

the same number of bodies will take twice the time. A

priori, no parallelism can be applied through different

time steps since all of the data depend on the previous

results. Therefore, we will focus on performance and

parallelization enhancements within one time step, for a

representativenumber of bodies. Here, a representative

number is defined from the point of view of performance,

i.e. one that fulfills the following:

 Every data is on main memory, with no need to use

out-of-core/swap/disk memory for storage.

 The whole data does not fit in cache memory, so

performance is not automatically optimized by every

access being supplied by cache at any level/s (L1, L2,

or, eventually, L3).

Figure 1: Pseudo-code of the Basic N-Body Simulation.

As explained above, Fig. 1 shows in bold face the code to

be analyzed and optimized from the point of view of

performance. Every floating point operation is related to

one of the two tasks identified, respectively, as

 Compute distance between bodies i and j.

 Update acceleration of i (taking into account the

influence of body j).

And Fig. 2 shows the pseudo-code of computations

required for computing the distance between i and j,

Figure 2: Computing Distance Between Bodies i and j.

according to Eq. (1) above, where

 d_[x/y/z] are the distances in each of the three

corresponding dimensions.

 sqrt() is the function used for computing the square

root of a number.

 ab_dc is the cube of the absolute distance between

bodies i and j.

At the same level of abstraction of Fig. 2, Fig. 3 shows the

the pseudo-code of computations required for updating

the acceleration of i (taking into account the influence

ofbody j), where

 vec[i].a_[x/y/z] represents the acceleration in each of

the three corresponding dimensions of body i.

initialize_bodies_data(vec)

For each time step Do

For each i in vecDo

 For each j in vec Do

 If (i j) Then

 Compute distance between i and j

 Update acceleration of i

 End If

 End For

End For

apply_time_step(vec)

End For

d_x = vec[j].x – vec[i].x

d_y = vec[j].y – vec[i].y

d_z = vec[j].z – vec[i].z

ab_dc = (sqrt(d_x
2
 + d_y

2
 + d_z

2
))

3

 vec[i].m represents the mass of body i.

 Δt and G are the time step and gravitational constant

respectively.

Figure 3: Acceleration Update of Body i.

There are some immediate optimizations as well as other

more elaborate ones. However, the specific figure of

performance effect will depend on the hardware. Thus,

the next section will introduce the hardware on which we

are going to experiment with and measure performance.

3. Computing Hardware, and Clusters

Clusters are used for parallel processing since many years

ago, due to their very good cost/performance ratio [11].

And the definition of clusters for parallel processing has

been almost unchangeable since its definition [2][15] as a

set of computers (nodes) which are interconnected by a

network. There has been, of course, a natural evolution of

the hardware involved in clusters:

 Current nodes are mostly multi-core multiprocessors,

and there are several Top500 computers (and among

the top 10 range in the Top500) with attached GPU

(Graphical Processing Units) [16].

 Current interconnection hardware ranges from very

low cost Ethernet 100 Mb/s or 1Gb/s to Infiniband to

custom made interconnection networks in the range

of the top 10 or 50 supercomputers in the Top500 list.

We will experiment on the most available and also lowest

cost parallel computers. More specifically, we will obtain

and analyze performance measurements on an Intel i5

multi-core computer and on a cluster of dual quad-core

Xeon processors. We will refer to these platforms as mc

(since a computer with an Intel i5 is just a multi-core

computer) and cluster respectively. Table 1 shows the

characteristics of the mc platform, and Table 2 shows the

characteristics of the cluster.

Both platforms (mc and cluster) provide multiprocessing

facilities, but only the cluster is able to be used for

distributed memory parallel computing. As expected, the

cluster is more scalable in terms of the number of

processors (cores) and memory. As turns out from Table 1

and Table 2, there are many similarities in a single node

of most of the current HPC clusters:

 Multiprocessing via multi-core, i.e. several cores with

shared access to a single memory.

 Memory hierarchy including several cache levels (at

least L1 and L2) in the processor.

 Single cores running at GHz frequency, including

pipelining and floating point units and, most of the

times, with superscalar capabilities.

And these similarities are also found in clusters made up

with AMD processors (e.g. those based on Opteron or

Phenom processors).

Table 1: mc Platform Characteristics

Processor Intel i5-2310

Cores/processor 4

RAM 4 GB

OS, gcc v. Linux 3.0.0, gcc 4.6.1

Nodes 1

Table 2: Cluster Platform Characteristics

Processor 2 x Intel Xeon E5405 per node

Cores/processor 4 (8 cores per node)

RAM/node 2 GB

OS Linux 2.6.31, gcc 4.6.3

Nodes 4

Network Ethernet 100 Mb/s

4. Code Optimization

Traditionally, sequential algorithm programmers had only

to worry about optimizing their code in order to reduce

runtime using well known techniques [4][14][8]. Also,

many of the classical optimization techniques have

influenced compiler design [1] and current (optimizing)

compilers development. However, with the dawn of

parallel computing, programmers had (and still have) to

adapt to a whole new paradigm or, more specifically, now

the code has to take into account the underlying parallel

hardware. Furthermore, some optimization techniques

may have impact on code parallelization.

Taking into account that some of the optimizations are

architecture-dependent doesnot necessarily make them

less generally usable. Several node and cluster

optimization and parallelization concepts can be applied

on most of the algorithms running in production/scientific

computers and clusters. We will go through several

optimizations applied to the initial algorithm version in

order to obtain the best possible sequential version, as

shown in subsections below.

4.1 Operator Strength Reduction

The idea behind the operator strength reduction

optimization is that some operators are more processor-

demanding than others. In particular, the division (/)

operator tends to be more expensive than multiply (*) [7].

Fig. 3 above shows that there are three divisions in the

initial version of the algorithm, where the divisor is

always the same. These divisions can be changed to a less

costly operation by multiplying by the corresponding

inverse number, as shown in Fig. 4.

vec[i].a_x+=d_x*Δt*G*vec[j].m / ab_dc

vec[i].a_y+=d_y*Δt*G*vec[j].m / ab_dc

vec[i].a_z+=d_z*Δt*G*vec[j].m / ab_dc

Figure 4: / Replaced by *.

According to Fig. 4, there is just one division and three

multiplications. Thus, two divisions can be successfully

replaced by three multiplications, which enhances

performance.

4.2 Constants and Loop Invariants

The computations included in the inner loop of Fig. 1

define the hidden constant of the algorithm quadratic

order of operations. Furthermore, the inner loop (as

shown in Fig. 2, Fig. 3, and Fig. 4) includes repeated

calculations involving constants and, also, loop invariants:

 Constants: the time differential (Δt) and, also, the

gravitational constant (G).

 Loop invariants (variables whose content won’t

change, at least during the execution of the step): the

body’s mass (vec[j].Mass), and the inverse of the

cubic distance (Dist_3).

Constant and loop invariants can be processed out of the

loop or in an optimized manner. Note that some of these

optimizations are can be easily carried out by almost

every modern compiler while others may require complex

interprocedural optimization (IPO) heuristics/techniques.

Fig. 5 shows one of the most immediate source code

optimizations for the code in Fig. 4 above, where

 dtG should be initialized with Δt*G.

 dtG * vec[j].m is computed just once and used three

times by using comm.

Note that the last optimization is a common subexpression

elimination (CSE) that is already used from Fig. 2 by

computing the values of d_x, d_y, and d_z just once, and

referencing those values where needed.

Figure 5: Optimization at the Inner Loop.

There are two further optimizations regarding constant

values, loop invariants, and subexpression elimination:

 vec[j].m is set and constant for each body, so it is

possible to precompute (outside the inner loop) dtGm

as an array as dtGm[j] = dtG * vec[j].m

 Inside the inner loop, instead of computing df as

shown in Fig. 5 and using the precomputed array

dtGM as explained before, a further optimization is

possible, by directly computing

comp = dtGm[j] / ab_dc

vec[i].a_x+=d_x* comp

vec[i].a_y+=d_y*comp

vec[i].a_z+=d_z* comp

And now it is possible to verify that some of these

optimizations are not simple enough for an optimizing

compiler.

4.3 Cache Temporal Locality Considerations

The algorithm updates the body acceleration according to

its relationship with all of the others (except itself) by

carrying out the operations described above. Then, given

two bodies {a,b}, it is possible to compute two update

operations: a’ = upd(a,b), and b’ = upd(b,a). From a cache

temporal locality point of view, this would avoid many

cache misses because all the operations involving the

same data pair will be executed. Note that, even though

the required iterations would be reduced to a half, the

number of instructions per iteration would be duplicated.

A priori, there is no reduction in the number of operations

but there is an increasing cache hit ratio. However, given

that more operations are carried out in every iteration,

there would be more opportunities for other performance

optimization techniques to be applied on more data (e.g.

further possibilities for subexpression eliminations). Thus,

the inner loop of the algorithm shown in pseudocode in

Fig. 1 can be replaced by the loop given in Fig. 6, where

 The inner loop now starts at i+1, since each iteration

implies two updates, shown with comments “update

i” and “update j”.

 dtGm[i] = Δt*G * vec[j].misprecomputed. i.e.

computed before the outer loop (e.g. immediately

before the outer loop, where every constant and the

body vector have the values needed for computing

the values of dtGm.

 It is worth mentioning that d_x, d_y, d_z, and ab_dc

are used for computing both, update i and update j.

Figure 6: Inner loop for N-Body Computations.

df = 1/ab_dc

vec[i].a_x+=d_x*Δt*G*vec[j].m * df

vec[i].a_y+=d_y*Δt*G*vec[j].m * df

vec[i].a_z+=d_z*Δt*G*vec[j].m * df

df = 1/ab_dc

comm = dtG * vec[j].m

vec[i].a_x+=d_x* comm * df

vec[i].a_y+=d_y*comm* df

vec[i].a_z+=d_z* comm * df

For each j (starting from i + 1) in vec Do

d_x = vec[j].x – vec[i].x

d_y = vec[j].y – vec[i].y

d_z = vec[j].z – vec[i].z

ab_dc = (sqrt(d_x
2
 + d_y

2
 + d_z

2
))

3

compi = dtGm[j] / ab_dc /* update i */

 vec[i].a_x+=d_x * compi

vec[i].a_y+=d_y* compi

vec[i].a_z+=d_z * compi

compj = dtGm[i] / ab_dc /* update j */

vec[j].a_x -=d_x * compj

vec[j].a_y -=d_y*compj

vec[j].a_z -=d_z * compj

End For

4.4 Performance Optimization Results

Several experiments have been carried out in order to

provide a quantitative view of the optimization techniques

described above. We have taken a value for the number of

bodies so that

 The data involved for calculations does not fit into

any level of cache.

 The runtime is only a few hours long, so that we can

run several experiments for testing. The initial

runtime is near 3 hours.

Table 3 shows the performance obtained by implementing

the optimizations described so far. For every run, the

optimization level of the compiler has been set to -O3,

and performance is given in MFlop/s.

Table 3: Sequential Experiments Performance (MFlop/s)

 mc cluster node

-O3 1115 810

-O3 + all 2679 1859

5. Shared Memory Parallelization: OpenMP

OpenMP[10] allows for a very simple implementation of

intra-node shared memory parallelism by only adding a

few compiler directives. There is, however, an important

detail: every thread should have a local copy of the

bodies’ vector, and the final results consolidation should

be done within a critical region. The local copy of the

vector prevents data races in the acceleration updates.

Fig. 7 shows the #pragma omp added to the code,where

schedule static prevents unbalanced workload.

Figure 7: OpenMP Parallelization

Fig. 8 shows schematically the threaded execution using

the OpenMP terminology. Even when the parallelization

is straightforward and there are minimum synchronization

points, the performance is not acceptable.Table 4 shows

the performance values for 2, 4, and 8 cores in a cluster

node (mc values are similar) in terms of Mflop/s and

efficiency. Clearly, the scalability is far from

optimal.Given the simple algorithm and our

parallelization via independent data, there is an almost

direct candidate for performance penalization as the

number of simultaneous threads increases: memory

contention. Thus, instead of changing the parallel

approach we enhance memory accesses.

Initialize Bodies

Vector

Compute Thread 1

Iterations

Apply Step()

Compute Thread 0

Iterations

Compute Thread k

Iterations

Main Thread
Thread 1 Thread k

Critical Region

Consolidate_

Results()

Main Process

Main Node
Figure 8: OpenMP Parallel Runtime.

Table 4: First OpenMP Version Performance in a Node

Cores 2 4 8

Mflop/s 2582 4403 7536

Efficiency 0.69 0.59 0.51

More specifically, we implemented a tiled version of the

sequential algorithm. Table 5 and Table 6 show the

performance values in mc and in a cluster node

respectively for the tiled implementation.

Table 5: Tiled Performance in mc

Cores 1 2 4

Mflop/s 2806 5477 10604

Efficiency 1.0 0.98 0.94

Table 6: Tiled Performance in a Cluster Node

Cores 1 2 4 8

Mflop/s 1963 3815 7625 15232

Efficiency 1.0 0.97 0.97 0.97

The tiled implementation of the sequential algorithm has

shown very interesting properties:

 Provides only a few Mflop/s more than the previous

optimized version (compare single core performance

in Table 5 and Table 6 with values in Table 3).

 Every new variable needed for the tile optimization

(e.g. block size) is local to the thread in the OpenMP

version. This reduces parallelization complexity.

 Clearly, scalability is enhanced (seeTable 4).

6. Distributed Memory Parallelization: MPI

MPI (Message Passing Interface) [9] provides many

communication functions for distributed memory parallel

computing.Also, MPI usually implies to recode at least

some portions of the program so that different processes

#pragma omp parallel private(…) shared(…)

Copy body vector

#pragma omp for schedule(static, 1)

For each i in vecDo

For each j (starting from i + 1) in vec Do

 …

 End For

End For

#pragma omp critical

Consolidateresults

carry out a fraction of the total workload. A parallel

program with MPI can take advantage of multiple

computing (CPUs/cores) resources in a multicore

computer as well as in a cluster of multicore computers.

From this point of view, MPI provides a uniform (referred

to as homogenous) view of parallel processing regardless

of running on shared or distributed memory parallel

hardware. Fig. 9 shows how processes are organized for

parallel computing the N-Body simulation. Most of the

code is borrowed from the OpenMP version, since there is

a very low data dependency in computations. It is worth

noting that it is not always possible to maintain the source

code almost equal from sequential to an MPI parallel

implementation.

Figure 9: MPI Parallelization

As shown in Fig. 9, all processes are involved in two main

communications: one for receiving the data (bodies’

information) to be updated and one after the data has been

updated. Both communications define a very constrained

synchronization, since a simulation step cannot start in

advance, i.e. before the previous step has been completed.

Data distribution from process with rank (or id) 0 is made

through a classical collective communication primitive: a

broadcast message. Processes have been organized as

master-workers, which is very usual in the context of

distributed memory parallel programs. There are some

optimizations specifically related to communications

which have not been implemented, such as:

 Reducing communications to the variable data in the

bodies array. The whole vector is always transferred

among computers (some information such as the

body masses are constant).

 Reducing communications to receive at process 0

only the updated data. Again, the whole array of

bodies is transferred.

These optimizations can be made if the experiments show

unacceptable performance penalties.

The performance (in Mflop/s and efficiency) obtained by

the MPI version on mc using 2 and 4 cores is shown in

Table 7. Note that performance values are almost the

same as those obtained with OpenMP (shown in Table 5).

Table 8 shows corresponding values on the cluster. Note

that for 2, 4, and 8 cores only one node is used, while for

16 and 32 cores we use 2 and 4 nodes (the whole cluster).

We did not approach a hybrid parallel implementation

(i.e. one with OpenMP intra-node and MPI inter-node

parallelization) because of the very good performance

obtained by the MPI parallel program.

Table 7: MPI Parallel Code Performance in mc

Cores 2 4

Mflop/s 5384 10498

Efficiency 0.96 0.94

Table 8: MPI Parallel Code Performance in Cluster

Cores 2 4 8 16 32

Mflop/s 3921 7842 15670 31057 59805

Efficiency 1 1 1 0.99 0.95

As expected, as more nodes are used in the cluster, the

performance is more penalized. However, the values

obtained in the cluster show that the performance loss is

very little in terms of scalability, e.g. 0.4% performance

loss when doubling the number the number of nodes

(from 2 to 4 nodes, i.e. 16 to 32 processes/cores).

7. Further Comments on Performance and

Parallelization

Optimization techniques are usually well defined, but not

always the compilers are able to identify and implement

the best choices. As expected, compilers are conservative

and do not always apply every possible optimization. This

is confirmed once again with the results shown in this

work. More specifically, Table 3 shows that source code

optimizations obtain more than 142% and 151% of

performance gain in mc and a cluster node respectively

over that provided by a compiler.It is possible, however,

that carefully selected compiler optimization switches

provide better performance than that provided by -O3.

Optimizations specifically focused on reducing the

memory wall performance problem are almost a

constraint for obtaining acceptable parallel performance.

As shown in Table 4 performance is not acceptable even

for a small number of cores and, specifically, scalability is

explicitly affected if the code does not include tile

optimizations. It is worth noting that the source code that

provided the performance values of Table 4 already

included a cache optimization, which was explained as

cache temporal locality optimization.

The OpenMP parallelization is made with some simple

changes to the sequential code. Interestingly, it shows

some issue(s) related to optimization that has a strong

influence (penalty) on performance. The so called

memory wall, defined as the (very large) difference in

Initialize Bodies
Vector

Compute Process 0
iterations

Apply Step()

Process
(rank = 0)

Broadcast Bodies
Vector

Process
(rank = i)

Receive Bodies
Vector

Send Partial
Results

Receive and

Consolidate Partial

Results

Compute Process k
iterations

performance among CPU and memory access, is made

proportionally worse when more CPUs (cores) share the

same memory subsystem. And the problem would be

aggravated if more cores share memory (with more cores

per processor or more processors sharing memory).

Table 5 show that even when tiling does not provide a

great improvement on performance related to the previous

code version, it produces an essential improvement on

performance in the context of parallel computing. And

this improvement is obtained regardless of the parallel

algorithm/implementation (OpenMP or MPI).

The MPI parallel algorithm obtains almost optimum

performance even in the context of a shared memory

parallel hardware (for which it was not necessarily

defined). Unfortunately, this optimum result is not

possible to be expected in every application or source

code algorithm implementation. N-Body simulation is

particularly well suited for parallel computing and many

(most of) the problems are not so easily parallelizable.

However, it has been shown in other contexts [12] that an

MPI parallelization can be as good as an OpenMP parallel

program. Thus, the programmer should check (experiment

with) the MPI program before deciding to implement a so

called hybrid approach to parallelization.

Finally, Fig. 10 and Fig. 11 show the performance

improvements obtained from an original application going

through (standard/sequential) optimizations and, also,

different approaches to parallel computing. Distributed

memory parallelization is still (a priori) the most scalable

one, since multiprocessors have strong limitations in the

number of CPUs (cores) sharing a single memory

subsystem.

Figure 10: Summary of Performance Improvements (mc)

Performance values shown in Fig. 10 for mc are

comparable with values in Fig. 11 for the cluster up to 4

processes (for MPI) or threads (for OpenMP). As

expected, mc provides better performance intra-node

(greater MHz, enhanced memory access). However, there

are not many installed clusters based on i5 or i7 to make a

general comparison, and, also, using a large number of

processors (tens and hundreds of nodes).

Figure 11: Summary of Performance Improvements

(cluster)

8. Conclusions and Further Work

The PP method of N-Body problems holds high potential

for sequential optimizations and parallel approaches.

Fig. 11 above shows experimental support and data for

the previous claim. Even when compilers make an

excellent job in implementing optimizations, some

optimizations have to be applied directly on the source

code. Or, at least, the (scientific) programmer should be

able to experiment and measure different source code

optimizations on the source code.

Parallelization for shared memory parallel hardware is

expected to be both, the most simple and less scalable

parallel approach to a given code. However, when

reached the limit on the scale of parallel computing,

shared memory parallelization provides good (or, at least,

a minimum) previous insight to distributed memory

parallelization. A parallel approach initially oriented

towards a distributed memory parallel platform can be

perfectly appropriate for a shared memory platform.

Parallelization for distributed memory hardware is not

necessarily always a problem, but it is not immediate.

Some recoding seems to be necessary, even for the PP

method, which is particularly simple to parallelize. As

parallelization started (in this work) in the context of a

shared memory environment, we already had some

experience at the time of the MPI implementation.

Initially, the parallel approach should be analyzed on

clusters with a large number of nodes (tens, hundreds, and

thousands). Unfortunately, clusters with a large number of

nodes are mainly devoted to production environments, but

it would be highly beneficial if some fraction of the time

they could be used for research. Further investigations

should focus on the optimization of the Runge-Kutta and

Euler integration methods running on HPC clusters since

their implementation may reduce the high levels of

scalability required to justify network and communication

overheads.

References

[1]A. V. Aho, M. S. Lam, R.Sethi, J. D. Ullman,

Compilers: Principles, Techniques, and Tools, 2nd

Edition, Prentice Hall, 2006.

[2] T. Anderson, D. Culler, D. Patterson, and the NOW

Team, “A Case for Networks ofWorkstations: NOW”,

IEEE Micro, Feb. 1995.

[3]U. Ascher, L. Petzold, Computer methods for ordinary

differential equations and differential-algebraic equations

(Philadelphia, PA: SIAM, Society for Industrial and

Applied Mathematics, 1998).

[4] J. Bilmes, K. Asanovic, C. Chin, J. Demmel,

“Optimizing matrix multiply usingphipac: a portable,

high-performance, ansi c coding methodology”,

Proceedings of theInternational Conference on

Supercomputing, Vienna, Austria, July 1997, ACM

SIGARC.

[5]G. J. Cooper, R. Vignesvaran, On the use of parallel

processors for implicit Runge-Kutta methods, Computing,

51(2), 1993, 135-150.

[6]F. Diacu, The solution of the n-body problem, The

Mathematical Intelligencer, 18(3), 1996, 66-70.

[7]T. Granlund, P. L. Montgomery, “Division by invariant

integers using multiplication”, ACM SIGPLAN Notices,

Volume 29 Issue 6, June 1994, ACM New York, NY,

USA

[8]R. Hyde, Write Great Code, Volume 2: Thinking Low-

Level, Writing High-Level, No Starch Press, 2006.

[9]MPI Forum, “MPI: a message-passing interface

standard”, International Journal ofSupercomputer

Applications, 8 (3/4), pp. 165-416, 1994.

[10]OpenMP Architecture Review Board, OpenMP

Application Program Interface - Version 3.1, July

2011.Available athttp://openmp.org/wp/

[11] F. G. Tinetti, Parallel Computing in Local

AreaNetworks, 2004, PhD Thesis, Universidad Autónoma

de Barcelona, Spain, available at

http://phdthesis.webs.com/

[12] F. G. Tinetti, G.Wolfmann,"Parallelization Analysis

on Clusters of Multicore Nodes using Shared and

Distributed Memory Parallel Computing Models", Proc.

2009 World Congress on Computer Science and

Information Engineering, IEEE Computer Society, March

31 - April 2, 2009, Los Angeles/Anaheim, USA, ISBN

978-0-7695-3507-4/08, pp. 466-470.

[13]V. Venkatakrishnan, H. D. Simon, T. J. Barth, A

MIMD implementation of a parallel Euler solver for

unstructured grids, The Journal of Supercomputing, 6(2),

1992, 117-137.

[14] R. Whaley, J. Dongarra, “Automatically Tuned

Linear Algebra Software”,Proceedings of the SC98

Conference, Orlando, FL, IEEE Publications, November,

1998.

[15]B. Wilkinson, M. Allen, Parallel Programming:

Techniques and Applications Using Networked

Workstations and Parallel Computers, 2nd Edition,

Prentice Hall, 2004.

[16] Top500 Supercomputing Sites, http://www.top500

.org

