
Elicitation and Conversion of Hidden Objects and
Restrictions in a Database Schema

Laura C. Rivero
I N T I A - U.N.Centro

LINTI - U.N.La Plata
B.A. Argentina

Phone: +54 2293 440363

Irivero@exa.unicen.edu.ar

Jorge H. Doom
I N T I A - U.N.Centm

B.A. Argentina
Phone: +54 2293 440363

jdoom@exa.unicen.edu.ar

Viviana E. Ferraggine
I N T I A - U.N.Centro

B.A. Argentina
Phone: +54 2293 440363

vferra@exa.unicen.edu.ar

ABSTRACT
Mapping a database schema from one model into another, with a
higher semantic capacity, is a current research subject with
application in several development fields, such as schema
integration and translation, migration from l e g a ~ systems and
revngineering of poor quality or no-longer accurate data models.
Inclusion dependencies are one of the most important concepts in
relational databases and they are the key to perform some
reengineering of database schemas. Referential integrity
restrictions (fir), a particular case of an inclusion conslraint,
requires that the set of distinct values occurring in some specified
column, simple or composite (foreign key), must be a subset of
the set of distinct primary key values drawn from the same
domain. Pure inclusion dependencies (id), however, may apply
between other pairs of attributes also (alternate keys or non-keys).
Database schemas containing ids frequently reveal the presence of
hidden objects and misrepresented relationships and, as a
consequence, incree,se the effort to develop program applications
and maintain the integrity. This work presents a heuristics for the
conversion of schemas with ids into equivalent schemas with only
firs. In case some irreducible ids remain, a semantic interpretation
oftbeir necessity and maintenance is given.

Keywords
Database conceptual schema
dependencies, denormalization.

reengineering, pure inclusion

1. INTRODUCTION
In many organizations, there are databases that have evolved over
the last years. In those systems, the exact understanding of data
has been often lost or it is no longer accurate thus restraining their
effective utilization by the organization because of the poor
semantic quality of the schemas. In other circumstances some
dependencies were been detected or foreseen at design time and
then they were forgotten or misrepresented.

The reengineering of available software systems is absolutely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on se~ers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2OO2, Madrid, Spain
Copyright 2002 ACM 1-58113-445 -2-2/02/03...$5.00.

necessary in these situations. Software tools, guides, heuristics,
etc. could make an important difference in the process of quality
improvement.

Conceptual schemas of actual databases holding these design
flaws f i~uent ly contain non-key-based inclusion dependencies
which reveal the presence of hidden objects and obscure
intcrobjeet depandencies.

As it can be read in [4], "... referential integrity is a special case
o f inclusion dependencies. These constraints require that the set of
distinct values occurring in some specified column, simple or
composite, must be a subset of the values occurring in some other
specified column (simple or composite, respectively). In the case
o f referential integrity, the set of distinct foreign key values
should be a subset o f the set of primary key values drawn from the
same domain."

Formally, an inclusion dependancy (id) is an expression
Rt[X]~R~[Z]:(a,[3,I.k,~). Rt and Rr are relation names (possibly
the same); ~['X] and I~[Z] are named the inclusion dependency
left and fight sides respectively. X and Z are lists of compatible
atlributes. ~ [3, ttt and I~ are the referential actions for insertions
(into R4), deletions (from R~) and updates (over Ri and R ,
respectively). Referential actions are strategies to cope with
violations of referential integrity. The following actions have been
suggested: Cascade. Restrict, No Actior~ Set Default and Set Null.
When Z is the primary key of R , the id is key-based (also named
a referential integrity reslriction, r/r). In this case, X constitutes a
foreign key for R~. Thus a f ir is denoted as
Rj[FKd<<l~[K,]:(a,13,ttl, IJ,). Ki stands for a candidate key over R i
and FK/represents a foreign key for R~ [1], [4]. From now o n / d is
used only for the non-key-based inclusion dependencies and f ir
for the key-based ones.

Nevertheless, inclusion constraints can be defined over other pairs
of attributes or sets of attributes (e.g. non keys). When declared
and enforced, they may reflect business rules. However, they
frequently appear either implementing relationships between
misrepresented objects or revealing somehow undefined business
policies. Nonetheless, the schema can be restored moving it back
to a well-designed and supported scheme.

Key-based inclusion dependencies can be dcclaratively defined
(FOREIGN KEY ... REFERENCES ...) and enforced by most
current database systems. Moreover, even though systems in
compliant with this standard provide the FOREIGN KEY clause,
they do not support all possible referential actions. Referential
actions for insertions and updates over the left table arc Restrict

463

by default in all DBMSs. On the other hand, non-key inclusion
dependencies, when they have been recognized, are usually
defined with CHECK statements or triggers. Since ida cannot be
defined in the same way rir~ are, their presence frequently
promote an extra effort for the development of application
programs and integrity maintenance.

Low quality designs having ida are common, thus it is necessary
to transform those hard-to-maintain denormalized schemes into
schemas with only key-based references, preserving the same
information content.

This research work is devoted to give support to the reengineering
of the actual system recovering the specification o f the implicit
(not explicitly declared) and explicit (declared via the DDL)
structures and conslraints of the persistent data of information
systems. In this proposal, the configurations of the left and right
sides o f the inclusion dependencies are considered, at first, ~om a
syntactic viewpoint.

After that, a set of hypotheses related to the presence of non-key
inclusion dependencies is developed, highlighting their possible
origin from a semantic point or" view. Next, a heuristics based on
these hypotheses is presented.

It allows the conversion o f the conceptual schema into a
normalized one by showing omitted objects and hidden
relationships. Non-key inclusion dependencies are converted into
key-based inclusion dependencies until a point o f irreducibility is
reached. To conclude, the context conditions that specify whether
the remaining non-key inclusion dependencies (rids) can be
ignored or maintained are established and an alternstive
declarative specification o f ride is given.

To obtain a better conceptual schema two main phases must be
completed:

a) Get the hidden, poorly specified knowledge recorded in the
database, highlighting embedded and omitted objects and
missing interobject relationships.

b) Augment the base o f metadata with new and reformulated
relation-schemes and la~ansformed constraints with the
obtained knowledge.

Figure 1 shows this process. The top box corresponds to the first
phase and the following two to the second phase.

It should be noticed that a database design "strictly" adhering to a
design methodology only produces referential integrity
restrictions, but an ad-hoc refinement o f the logical design
without concerning the corresponding conceptual design usually
leads to the modeling of non-key inclusion dependencies. While
simple schemes may be treated with a few transformation rules,
complex designs need formal or semiformal methods to carry out
the conversion process.

Traditionally, database dependencies have been considered to be
part o f the dam model, however, in a scenario such as the ones
described at the beginning o f this section, they may (and
frequently must) also be retrieved from the extensional data_ From
now on it is supposed that those non-key based functional
dependencies revealing the presence o f hidden objects in the right
table have been detected, and that the whole schema has some
degree nf normalization.

[

DETECTION OF HIDDEN
OBJECTS AND

MISREPRESENTED

TRANSFORMATION OF THE]
RELATION- SCHEMAS___...J

TRANSFORMATION OF THE

INTEGRITY CONSTRAINT SET

ENRICHMENT OF THE
METADATABASE

v

r ~

Figure I . Improvement o f the Metadatabase.

2. R E F E R E N T I A L I N T E G R I T Y

Referential integrity is one of the most important concepts in
databases. The study of the left and fight terms o f referential
constraints helps to comprehend all issues o f this subject. There
are five possible placements o f a set of attributes in relation with
the key in a table. Being Z such set of attributes, sch(R) the set o f
all attributes o f R, and K the primary key of R, the five placements
are (Figure 2): I) Z = K; II) Z ¢'~ K -- 12~, i.e. Z -= X, being X a
subset o f non-key attributes; III) Z r- K i.e. Z ~ X ' being X ' a
proper subset o f K; IV) Z ~ K i.e. Z - K ~ X; and finally V) Z

~ ~ , Z -K ~ ~ and K - Z # ~ . , i.e. Z -- X ~-7 X ' . Then it
follows that there are 25 possible pairs <Rt[Zt], R,[Z~]> (Table 1).
Those cases numbered i to 5 in Table 1 correspond to referential
integrity restrictions. Referential constraints o f type IV and V -
i.e. with the leR term of type IV or V - are not typical and they do
not appear in a normalized schema but in an ad-hoc refinement o f
it. Al l these cases have been developed in [7], [14], [15]. The
remaining cases correspond to ida. The study o f these latter cases
is the subject of this paper, though it is worth mentioning that
cases 16 to 25 arc less frequent than the rest l. lit [l l] there is a
complete analysis o f the update anomalies and the trouble o f
integrity maintenance in the presence of denormalized tables o f
those types in the right hand side o f ida. Notice that for the study
o f referential integrity restrictions the left term must be analyzed
whereas the study o f inclusion dependencies must be focused on
the right term.

: ~ ~ : ~ .,:~ ~,~.~ ~ < 3 . . ~ . ~ ',

~.: ~ . ~ ~ ~~ ~.o--.~:~ .~ ~...~ ~.~'~,~.~ ~.~.

:. , ~ . ~ ~;~

' 7 ~:' " " ~ % i . ~ - ~ ~ ~ ~.~.

~ ~ :.- ~..:.......,:: .~

: I
i
t

' II
|
|

, III !
i

' IV
,,
' V

Figure 2: Placements o f s set o f a t t r ibu tes in re la t ion with the
key

This assertion is founded on a study o f several real cases,
pertaining to different organizations and enterprises.

464

Table 1. Different types of general inclusion dependencies.

R i g h t
Term

L e f t
Term
!) Key

(K)

II) Non Key
(x)

1) Key
(K)

1=

K < < K

2 1

X < < K

I1) Non Key
00

6.
K G X

71
X ~ X

IH) Par t of a Key
(x')

11.
K G X '

12.
X ~ X '

IV) Key + Non
Key

O¢u x)

16.
K G K u X

17.
X G K u X

V) Part of a Key
+ Non Key
ix u x ')

21.
K ~ X u X '

22.
X G X u X '

m) Part of a Key 3. g. 13. lg, 23.
(X') X' <<K X ' G X X' G X ' X' G K u X X' G X u X '

IV) Key + Non Key 4. 9. 14. 19. 14.
(K u X) K u X < < K K u X G X K u X G X ' K u X G K u X K u X G X u X '

V) Part of a Key + 5. 10. 15. 20. 25.
Non Key X u X ' < < K X u X ' G X X u X ' G X ' X u X ' G K u X X u X ' c : X u X '
(X u X')

2.1 Right Relation Structure
As the analysis of ids must be focused on the right relation, in this
section all possible types are considered. Types I, II and III are
completely developed and exemplified. The remaining cases refer
to the previous ones. Since the right term can be seen as the
virtual join of two tables through a rir type ' t ' , from now on it will
be named "fight term of type ' t ' ". R4 and P~ are respectively the
left and the right term of the referential conslralnt. Z, is the set of
referencing attributes in I~; I~ is Rr primaw key. 11, comes from
Ra and I ~ which in turn stand for the virtual components of R;;
Kf] and I ~ arc the keys of Rf] and R~ respectively; X'n is a
proper subset of I~t; Xrt is a set of secondary attributes in l~t.
Referential actions are not relevant for the following analysis.

Cases 6. to 10. can be later on grouped into two subcases: a) the
non-key attributes are an alternative key and b) the non-key
attributes are not an alternative key. Subcase a) has been
completely developed in [10] and it will be not treated in this
work.

i) Right term o f Tree I (cases 1 to 5 in Table I; firs are
syntactically included in this case):

lds may look like rirs but perhaps they are not. Consider the
relations (primary keys are underlined) EMPLOYEE fEmulovee-
i_~ Employee-name, Technical-Degree, Area-of-Expertise) and
SUPERVISOR (Emvlovee-id. Responsibility); and the id
SUPERVISOR [Employce-id] G EMPLOYEE [Employee-id].

Suppose Technical-Degree and Area-of-Expertise are inapplicable
attributes, since they are 'not null' only when an employee is a
Technical one. Intuitively, this ca.sc may be redesigned as
EMPLOYEE (Emnlovee-icL Employee-name);
TECHNICAL-EMPLOYEE (Emolovee-id. Technical-Degree,
Area.of-Expertise) and SUPERVISOR fEmvloyee-id,
Responsibility).

Consider the diagram in Figure 3. If 1~ is a view of P~I and IL2,
the relationship between 1~ and I~ through Employee-id looks like
a fir, but it could mask a new constraint. R~ holds two different
objects, avoiding any stgcific reference to one of them. The
designer has no choice when referencing either a single employee

or a technical one as the structure only allows references to the
unified table.

• 1 , I : , ' I i
. " - 1 - - i ' D ' !

I I<,~ I i

L |

Figure 3. Right term of type 1

Consequently, the reslriction SUPERVISOR [Employec-id] ___
EMPLOYEE [Employec-id] is seen as a fir, but when "only
technical employees may become supervisors", that restriction is
not a fir. The only way the designer could preserve the semantics
of the data would be by inlloducing an artificial business rule.
Thus, if any employee may become a supervisor, the following
constraints must be specified: TECHNICAL-
EMPLOYEE[Employee-id]<<EMPLOYEE[Employee-id] and
SUPERVISOR[Employee-id]<<EMPLOYEE[Empleyee-id].

However, if the reference must be only based on technical
employees, the correct referential constraints are TECHNICAL-
EMPLOYEE [Employ¢o-id] << EMPLOYEE [Employec-id] and

SUPERVISOR [Employee-id] << TECHNICAL-EMPLOYEE
[Employee-id].

Since embedded objects come from the referencing table in the
unified P~ case I is slightly different from the following four cases
where embedding objects play this role.

ii) Rieht term o f Tm~e I! (cases 6 to 10 in Table 1).

Consider the relations (primary keys are underlined) PROJECT
fProiecr#. Project-name, Department-name, Start-date) and
BUDGET (Proceeding. Deparunent-name, Amount); and the id
BUDGET [Dcpartmcot-namc] _ PROJECT [Department-name].
In this design, the omitted class of entities is DEPARTMENT.
This case is depicted in Figure 4.

In this case, - which design did the designer intend? I f (s)he
wanted to reference DEPARTMENT, the hidden object should be

465

directly modeled. The resulting redesigned schema is: PROJECT
fProiect#. Project-name, DeparUnent-name, Start-date); BUDGET
(Proeecdin~. Department-name, Amount) and DEPARTMENT
(Department-name).

I i
: 7 ~ i

I' 1 I I *'ll
; Ti ;-1 ! f I ii
: L-I--L -: ~ ~ I I , , . i ~

::> I : i J, i

Figure 4. Right term of type I I

Moreover, replacing the original id with the following rirs
modifies the set o f restrictions:

BUDGET [Department-name] << DEPARTMENT[Department-
name] and PROJECT [Department-name] << DEPARTMENT
[Department-name].

On the contrary, if the designer wanted to establish that "only
those departments having projects" have a budget, the
transformation of the set of relations is the same but it is necessary
to represent the restriction in quotation marks as the following rid:
DEPARTMENT [Department-name] c: PROJECT [Department-
n a m e] .

This is actually a hidden business rule (a domain constraint).
From the last two restrictions, it comes out that
PROJECT.Department-name and DEPARTMENT.Department-
name always have the same values.

iii) The right term comes from a unification of type 1II (cases 11 to
15 in Table 1).

Consider the relations (keys are underlined) DELEGATE-
STUDENT (Student#) and ATTENDANCE (Course#, Student#,
Mark): and the id DELEGATE-STUDENT [Student#]
ATFENDANCE [Student#].

This id points that there is a missing entity o f the real world:
STUDENT. The diagram in Figure 5 shows this problem.

Again, two original designs may be possible in relation with the
designer intention. I f the requirement was just to establish the
semantic link among DELEGATE-STUDENT, ATTENDANCE
and STUDENT, then the references should have been the
following: DELEGATE-STUDENT [Student#] << STUDENT
[Student#] and ATTENDANCE [Student#] << STUDENT
Student#].

a~ r . "!.
I I

, i ° , . ; , , 1 ' ' ..I...,. , , _~> I i • I!

Iz'.+-,I If
Odfi~diato ~. ! I

L . -J

Figure 5. Right term of type IH

On the other hand, if the designer actually wanted to specify a
constraint such as "only those students with a Mark in at least a
course may be delegates", the following reference should be
added: STUDENT [Student#] _~ ATTENDANCE [Student#].

Again, the expression in quotation marks stands for a hidden
business rule.

iv) Right term of types I V o r V (cases 16 to 20, and 21 to 25 in
Table 1, respectively)

Once more, it is impossible to know which relation the designer
wanted to reference. I f the designer's intention was to reference
R~, the proper set o f relations and restrictions should be
reformulated in a similar way as in the previous case. On the other
h~r,d, if the restriction "Pq references just only those instances in
Zr (Zr ~a I~ ~ X'r and Zr J X ' r ~ Xn respectively) "'2 has to be
maintained, it must be specified via a rid, again as in the previous
C 8 . ~ S .

Notice that through the analysis o f the possible origin o f Rr, the
normalized design can be figured out. However, it is insufficient
because the designer's intention must be guessed. In other words,
syntactic aspects guide the conversion but, previously, the
designer must elucidate the semantic aspects.

3. M E A N I N G AND O R I G I N OF T H E
E M B E D D E D O B J E C T S
The purpose of the enrichment process is to obtain improved
descriptions o f the relevant objects, through the incorporation o f
the semantics supplied by their relationships with other objects.
As the entities were not properly designed in the schema, the
relationships among them and other objects were also
misrepresented. Hence, refiecting on all possible origins o f the
hidden objects allows for the precise definition o f the nature o f the
connections among them. With basis on the study o f several real
cases, the following different origins can be identified:

1. Intentionally embedded object: it appears when R~ is a virtual
view of tables through firs of type I to V. The presence o f a
referential constraint of type IV always produces iris [7],
[15].

2. Dropped object: in this ease, the subset o f referenced
attributes also includes an identifier and descriptive attributes
which stand for an embedded object. However, its origin is
not an intentional virtual join but a poor design.

3. Intentionally dropped object: this kind is similar to the
previous one but only its identifiers represent the embedded
object.

4. Duplicated data: this is a special situation o f Case 1. The
relation I~ is a view of virtual components obtained via
projections, selections and joins through a referential
integrity restriction o f one o f the types I to V [14], [15].

Cases 2, 3 and 4 are syntactically included in Case 1. However,
they have been highlighted as they hold semantic differences.

An obvious question immediately arises at this point: if the
problem is related to deuormalized schemes, - why do not just
normalize them? In different contexts, this question has different
answers depending on how well the schema is currently
understood. In a fully documented and well-designed database
schema the best solution is to normalize it, reaching the higher
level o f normalization allowed by performance and storage

2 Again, Xr is a subset o f sch(Rr)-Kr and X ' r is a proper subset o f
Kr

466

considerations 3. However, when the user cannot afford the
response time required by queries including join operations, (s)he
has the alternative to denormalize the schema.

In a poorly understood database schema, the heuristics described
in Section 4 eases the discovery of implicit knowledge. Notice
that the complete determination of the semantic aspects is required
in order to reach decisions related to the schema reengineering
process.

4. I M P R O V E M E N T O F T H E

M E T A D A T A B A S E
This section presents a heuristics to convert the real schema into
one with a higher semantic level. Let the original relational

schema be R=<R,D>, being R=(Rj, R2 P~} and D=(FD, ID,
NR} the set of relations and the set of constraints respectively.
FD, ID and NR are the sets of functinnal dependencies, inclusion
dependencies and null restrictions respectively. A functional
dependency held in Ri is expressed as: I~:X-)Y. l f X is the key of
Ri, the functional dependency is a primary one. Otherwise, it is a
sccundary one. The schema of a relation Rt is the set of its
attributes and it is expressed as sch(l~. In what follows, consider
the references detailed in Table 2.

Particularly ID ffi (...; RU[ZU] ~ P~[7~]; ...} j =1, 2 and FD =
{ I~:K,~sch(R4)-KI; P~:I~ -) sch(l~)-Ir~; P~: Z~-)X2; . . .} ' In
cases II to V, the last one is a secondary functional dependency.
In case I this dependency reveals that)(2 is a set of inapplicable
attributes. Let the enhanced schema be defined as R ° =<R',D%
with its components similarly expressed as before. Once the
missing entities have been detected and their classes identified,

the following steps permit the schema reengineering"

1. For each hidden or omitted entity detected, create a new
relation (NEW). Define its identifier as the right term of the
id (K~w ~ Zr). Consider all descriptive attributes for the
hidden object (if there is any) as descriptive at~ibutes in
NEW, and drop them from I~. Thus sch(NEW) --- Z,, X2.
From now on R'r denotes Rr without X2 attributes.

2. Relocate all ida whose left term is the set of attributes
identifying the missing object in NEW (i.e. Rq[Zji] ~ R~[Z~]
") ' ") ~i[Zq] << NEW[Kt~w], j =1, 2). In case I, 0nly
when this constraint is a hidden business rule~ otherwise:
RIj [Zlj]<<g'r[gr]-

3. Include a new rir, R',[Zr] << NEW[KN~w] in ID'. In case I,
only if NEW and R'~ relationshin is i:1 mandatory

4. Add a rid NEW[Km~w] ~ R',[Z,] to ID" only when this
constraint is a hidden business rule. Always in case I.

The application of these steps results in: R ~ = R ~ {NEW; R ' , } -
(P~}. For cases II-V, I D ' - - ID ~{R'~[Zr]<<NEW[KN~w])
~{lhi[Z~] << NEW[K~w]}j=I,2 - {R,[Z,j] ~ RJZJ)j=],2,....
For the case pointed in 4. I D ' = ID ~{R' , [ZJ<<NEW[K~w];

3 Even more, it replicates the values of the attributes involved in
the join, thus causing a serious integrity danger. If an update is
performed, all copies must be updated, so the cost of this
manipulation may grow significantly

4 Without loss of generality, schemas with only one denormalized
Rf are considered.

NEW[KNEw] _c R',[Zr]} u[R,i[Zji] << NEW[Km~w])j=I,2 -
{P, qj[Z~] _ R~[Zr]}j=I,2 FD " = FD ~ {NEW:KNh-W ") X2} -
{P,,:t~ -~ x2, ~ : z , -~ x2}.

For the case I, ID ® and FD ~ can be obtained in a similar way.
Figures 6 and ? show this heuristics schematically.

In order to make the examples informally developed in section 2.1
clearer, the second one is reconsidered. The relations are
PROJECT (ProiecM. Project-name, Department-name, Start-year)
and BUDGET (Proceeding#. Deparlment-name, Amount). The
referential resWictiun is BUDGET [Department-name] G
PROJECT [Department-name]. Then Z~ 9 X --
PROJECT.Department-name; Xt = PROJECT.Project-name,
PROJECT. Start-year and X2 = ~ .

Table 2: ach(Rr) components. Z, is the referenced attribute
(simple or composite). X ' and X" are proper disjoint subsets of
1 ~ X, X] and X2 are disjoint subsets o f s eh(l~) - K,. X] and X z

may be empty.

TYPE

I

II

I I I

IV

V

Seh(aJ
NON-KEY TTRIBUTES K, z~

X t u X 2 I~ lq.

X u X ~ u X 2 I~ X

X t u X 2 X' ~ X " X'

X ~ J X l ~ -)X2 Kr K r ~ X

X u X ~ u X 2 X' u X " X ' ~ X

Step 1) These id indicate DEPARTMENT as the real world
missing entity (NEW), then R" -- {BUDGET, PROJECT,
DEPARTMENT}.

Step 2) The id must be reformulated as the following rir:

BUDGET[DeparUnent-name]<< DEPARTMENT [Department-
naine]
Step 3) The following rir must be added to ID':

PROJECT[Department-name]<<DEPARTMENT [Department-
name]

Step 4) At this point, two scenarios may be possible. I f the
requirement is just to establish the semantic link among
BUDGET, DEPARTMENT, and PROJECT, then the
reengineedng process is done. In contrast, if the designer actually
wants to specify a constraint such as "only those departments with
at least a project may have a budget", the next rid must be
included into ID': DEPARTMENT [Department-name] _
PROJECT[Department-name] (dotted arrow).

4 .1 M a t e r i a l i z a t i o n o f rids
The expression in quotation marks in the previous section is just a
particular case o f a business rule: a domain constraint. This
restriction consols the values of one attribute in a relation against
the elements of a set defined by intension. Update operations may
change this set. A l]-uly conceptual implementation should
calculate the permitted vaiucs before using them, although
performance reasons naturally suggest that a better solution
should be to build this set incrementally. It is a pragmatically wise
approach i f the dcsigncr does not consider this set as a real table.

4 6 7

I f the designer persists in keeping such set as a table, different
implementations for this subject can be imagined. Obviously, ids
should bc disregarded due to the difficulties inherent to their
maintenance. General CHECK consWaints or simply programming
code driving the referential action needed to maintain that set in a
consistent state, are some of the ways to obtain the desired
behavior.

I-. I

Figure 6: Case I, conversion

I

I xl]
R'I

NEW (t)

Figure 7: Cases I I to V, conversion

The first case is the simplest one, As for the previous example, rite
constraint can be specified as:

CHECK (NOT EXISTS (SELECT Department-name FROM
DEPARTMENT WHERE Department-name NOT IN (SELECT
Deparlment-name FROM PROJECT))).

Generally, for eases II to V:

CHECK (NOT EXISTS (SELECT KNEw FROM NEW WHERE
NEW.Ksnw NOT IN (SELECT R,.Z, FROM It,))).

The second option requires the programming of the following
referential actions:

Insertions: an insertion over IL provokes an insertion in the table
NEW (insertions with Cascade as the referential action) if and
only if the value of the concerning attribute (or a set of them) is a
new one_ Insertions over the table NEW are prohibited in other
c a s e s .

Deletions: when the deleted tuple of l~ contains a last instance o f
the referred attribute it must provoke the deletion o f the tuple o f
table NEW containing the same value. Deletions over NEW are
prohibited in other cases.

Undates: as with deletions, this operation has a special semantics
because i1 must be understood in one o f two ways: i) it represents
the update of a particular R, tuple or ii) it represents the update of
the embedded object.

Notice that. in this scenario, table NEW can never be modified by
direct operations. In case I, this materialization is straightforward
because all restrictions can be specified as firs, even in the
situation explained in step 3 although the mutual reference must
be carefuUy treated.

When the declarative issues are not supported by the system or the
intended restrictions cannot be expressed deciaratively, triggers
are very useful in supporting data integrity in a database. Triggers
for referential integrity are an alternative to the use o f foreign key
constraints in commercial SQL92-relational products. Even so,
foreign key constraints or check constraints are normally
preferable to explicit triggers because they are declarative and
then easier to manage [61.

5. R E L A T E D W O R K
Th~ development o f methodologies end heuristics to address the
improvement o f the expressiveness in relational conceptual
schemas has been the subject of several research projects. Chapter
4 in [5] can be seen as a foundational analysis o f referential
integrity focusing only on key-based inclusion dependencies in a
relational environment. On the other hand, [2] is a seminar paper
on the theory o f key-based inclusion dependencies. It describes a
~-wo-step optimization strategy for relational schemes, taking into
account the referential actions for insertions and deletions.

Methodologies such as those introduced in [12], and [10], assume
that the original conceptual schemas are normalized, i.e. at least in
3NF (BCNF in [12]). In [12] a formal method to capture the
structural semantics of information systems is proposed. It can be
used to analyze the semantics o f existing relational databases and
to convert conventional relational schemes into object-oriented
database schemas. The method considers functional dependencies
and key-based inclusion dependencies. Castellanos [3] presents a
more general approach since not only 3NF cases are considered
but also certain kinds o f denormalized ones. It considers
inclusion dependencies under a general viewpoint. They are
analyzed according to a set o f 25 cases based on the composition
of their leR and right hand sides. This analysis is the basis for a
semi-automatic reengineering process that recognizes hidden
structures in an interopersbitity environment. In this work, the
problem is studied from a broader point o f view including all
Casteltanos" cases (1, 2, 3, 11, 12, 13, 6, 7, 8 case numbers).
Johanneson [101 developed a method that translates a schema in a
Uaditional relational data model into a conceptual schema. His
classification o f the right term does not consider conformations
such as "part-of-a-key+secondary-at1_ributes', "key+secondary-
attributes" and "part-of-a-key". [8] presents the analysis and
comparison of several techniques for the elicitation of hidden
structures and in [9] the authors treat the reconstruction o f the
DBMS-dependant (logical) schema, focusing on the reasonings
and processes through which hidden structures and constraints can
be elicited. In [14] and [151 the treatment of key-based inclusion
dependencies is analyzed, extending the results o f [121, [13] since
two pathological cases are characterized and included in the
analysis.

Finally, in [i l I there is a complete analysis of the redundancy
;-roblem and the preservation o f integrity in presence o f ids
interacting with functional dependencies.

6. C O N C L U S I O N S AND F U R T H E R W O R K
This work extends previous results analyzing referential
restrictions whose right sides are denormalised tables, i.e.
particular views. The possible origins of embedded objects in the
right side of these restrictions have been highlighted and
described. Next, a heuristics for the complete reengincering o f
conventional relational schemas holding non-key inclusion

468

dependencies is detailed. Whenever an irreducible remaining id is
detected, the contextual conditions for its maintenance are
established, leading to the definition of a specific business rule.
These special cases of masked business rules have been
completely analyzed and a new conceptual perspective of its need
Was giveR.

Since the right terms are seen as denormalized tables, the first step
of the proposed heuristics promotes the normalization by
transferring the descriptive attributes to table NEW.

The concepts developed in this chapter are useful and portable to
SQL3-based systems and object-oriented databases, since the poor
quality problem in conceptual schemas may also be present in
those systems too. These ideas are also relevant for other areas
such as federat~ databases, database migration, and
reengineering of legacy systems.

Currently, this work is being extended with the inference of the
referential actions of the initial ids into the firs and rids. The
design and implementation of an interactive computerized tool to
facilitate the designer to obtain a better quality schema, with basis
on the heuristics, will be faced in the near future.

7. REFERENCES
[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations on

Databases. Addison Wesley Publ. Co. (1995)

[2] Casanova, M., Tucherman, L., Furtado, A., Braga, A.:
Optimization of Relational Schemes Containing Inclusion
Dependencies. Proceedings of 15 VLDB Conference.
Amsterdam. (1989) 317-325

[3] Castellanos, M.G.: A Methodology for Semantically
Enriching lnteroperable Databases. Proceedings of I 1 th.
British National Conference on Databases, Kcele (1993)

[4] Codd, E.: The Relational Model for Database Management.
Version 2. Addison Wesley Publ.Co (1990)

[5] Date, C.: Updating Views. Relational Databases, Selected
Writings. Addison Wesley. Reprinted with corrections
(1989)

[6] Date, C.: An Introduction to Database Systems. Addison
Wesley (2000)

[7] Doom, J., Riwro, L.: Normalization of Non-BCNF Relations
Integrity Constraints. Proceedings XII International
Conference of Systems Engineering~ ICSE-97, Coventry,
UK. (1997) 217-222

[8] Henrard, J., Hainant, J.-L..: Data Dependency Elicitation in
Database Reverse Engineering. Published CSMR 2001.
Lisbon. Portugal. March 2001.

[9] Henmrd, J., Hainaut, J.-L.; Hick, J.-M.; Roland, D.;
Englebert, V.: Data Structure Extraction in Database Reverse
Engineering. Proceedings of REIS'99 Workshop. Paris,
November 1999. Research paper RP-99-007. Institut
d'Informatique. University of Nemur.

[10] Johanneson, P.: A Method for Transforming Relational
Schemas into Conceptual Schemas. IEEE Trans. on Software
Eng. (1994) 190-201

[11] Levene, M., Vincent, M.: Justification for Inclusion
Dependency Normal Form. IEEE TKDE Vol 12 (2).
March/April (2000) 281-29 !

[12]Markowitz, V., Makowsky, J.: Identifying extended entity-
relationship object structures in relational schemas. IEEE
Trans. on Software Eng. 16, 8, (1990) 777-790

[13] Markowitz, V.: Referential Integrity Revisited: an Object-
oriented Perspective. Proceedings of the 16th VLDB
Conference. Brisbane. Australia (1990)

r14] RJvero, L., Doom, J.: Integridad Referential y
Aetualizaciones ell Relaciones Desnormalizadas. In
Proceedings of XIV Conferencia Latinoamericana de
Inform~tica- CLEf Panel 98. Quite, Ecuador (1998) 911-
921

[15] Rivero, L., Doom, J.: Managing Referential Integrity and
Non Key-based Dependencies in a Denormalized Context.
Proceedings of 2000 IRMA International Conference.
Anchorage, Alaska (2000) 883-886

469

