

Improving User Involvement through a Model-Driven

Requirements Approach

José Matías Rivero, Esteban Robles Luna, Julián Grigera, Gustavo Rossi

LIFIA
Facultad de Informática – Universidad Nacional de La Plata

La Plata, Buenos Aires, Argentina
{mrivero, erobles, jgrigera, gustavo}@lifia.info.unlp.edu.ar

Abstract—Model-Driven Web Engineering (MDWE)

methodologies have proven to be a mature way of developing web

applications, dramatically increasing productivity during

development. However, after more than a decade of evolution,

the artifacts and processes used to gather requirements have not

changed substantially. At the same time, the capacity of quickly

adapting to emergent domain-specific requirements (a feature

that became popular with the massive adoption of agile

approaches) has become hard to achieve in these methodologies.

In this context, in order to implement this kind of refined

requirements as fast as possible, changes are usually applied

directly to the generated application, losing the abstraction and

its inherent productivity provided by the Model-Driven process.

Another way of implementing this kind of changes is by

extending the modeling language, but this implies a high effort

and, again, a consequent productivity loss. In this paper we

propose a model-driven development approach called MockRE

that captures requirements using User Interface prototypes

(mockups) that end-users can understand completely. The

process and tooling presented here allows end-users to express

requirements annotating the mockups with textual descriptions,

and also generating a running application in the same way that

MDWE environments do. Developers may later use these initial

specifications placed by end-users as valuable model concepts

that can be refined through direct coding in a non-intrusive way.

Through this strategy, MockRE intends to make a more

extensive reuse of end-users specifications throughout the whole

developing process.

Index Terms—model-based requirements engineering; model-

driven development, mockups, agile

I. INTRODUCTION

Model-Driven Web Engineering methodologies like
WebML [1], UWE [2], OO-H [3] or OOHDM [4] have
proposed an alternative, more productive way of building Web
Applications, using models to describe their features and
obtaining a final application through automatic code
generation. These methodologies have effectively defined a
less error prone development process while, at the same time,
they have adapted their languages or metamodels to the

current trends in the Web field (e.g. RIA features, business
models, interaction patterns, etc.). However, they have not
shown drastic improvements in the requirements gathering
stage, neglecting new industry standard techniques like paper
or digital mockups. In this context, for instance, WebML,
UWE and OOHDME propose using Use Cases [2], [4], and
OOHDME in particular added navigational specifications by
using User-Interaction Diagrams or Scenarios [5].

Though these artifacts may be enough to capture the basic
requirements of a Web Application, they have two
disadvantages: (1) they use technical jargon (e.g. pre-
conditions, post-conditions, flows, states, etc.), which is not
easily understood by end-users and (2) the translation of these
artifacts to models requires manual intervention of developers
in a semi-automatic (when posible) derivation process. While
the former can lead to misguided requirements that end-users
are unable to correct, the latter can lead to well-known human
errors in the translation process. As a side effect of this last
problem, not having a clear and direct transformation between
the requirements artifacts and the modeling concepts
potentially threatens requirements traceability.

On the other hand, agile methodologies propose to reduce
the requirements gathering stage by using short requirements
specifications (e.g. User Stories [6]). In addition, combining
User Stories together with user interface mockups has become
a common trend in the industry [7] to gather presentation and
interaction requirements that cannot be captured with
standalone Stories. Since mockups represent an intermediate
language between end-users and developers [8], they work
both as way of describing concrete requirements for end-users
and as a technical UI descriptions for developers. In [7] we
presented a technique to annotate User-Interface models,
helping the binding between requirements descriptions and
concrete implementations (UI widgets), thus enabling
requirements traceability during development.

To summarize, MDWE methods have not changed the
artifacts used to capture requirements, leading to
misunderstandings in the modeling stage that can harm the
potential productivity increment that models use can provide.

978-1-4799-0946-9/13/$31.00 c© 2013 IEEE MoDRE 2013, Rio de Janeiro, Brasil20

Agile approaches, on the other hand, make more emphasis in
ensuring that requirements are correctly captured by using
mockups and showing quick prototypes to end-users as fast as
possible; as a result, they can adapt more easily to changes and
detailed requirements through direct coding. However, the
direct coding practice also leads to repetitive tasks (like
coding CRUD operations [9]) and human errors.

As a result, neither MDWE nor agile approaches can, at
the same time, use requirements artifacts that: (1) are easy to
understand by end-users, (2) are capable of being fully traced
in the final application, (3) allow to generate automatic
runnable prototypes from its definition and (4) enables the
incorporation of manual code in addition to the behavior
generated from models through code-generation (for detail
requirement specification) without breaking the models and
threatening the traceability between the artifacts and the
implementation.

In this paper we propose a development approach that
supports these features in order to apply the agile principle of
“Working software is the primary measure of progress”. Since
this approach relies heavily on mockups to gather
requirements and specify features, we will call it Mockup-
Based Requirements Engineering or MockRE for short. The
rest of the paper is structured as following: in Section II we
discuss some background to the topics discussed in this work;
in Section III we introduce the MockRE approach both
procedurally and technically, and in Section IV we summarize
the content of the paper and also include some further work
that we are pursuing.

II. BACKGROUND

Model-Driven Web Engineering (MDWE) methods have
evolved greatly during the last 2 decades, and they have
shown how the development of Web Applications can be

improved using code generation and high-level models instead
of direct coding. Some of the more remarkable methodologies
are WebML [1], UWE [2], OO-H [3] an OOHDM [4]. In a
similar way, model-based methodologies oriented to define
interaction requirements intend to define and express how
end-users interact with the application. One of these
methodologies is WebSpec [10], which expresses user
interaction using states (called interactions), transitions, pre-
conditions and post-conditions. MoLIC [11], another
interaction modeling technique, proposes to model interaction
representing a turn-taking between user and designer, forming
conversation threads with structures of topics and subtopics.
In [12], stereotyped UWE activity diagrams are used to
capture and model Computer-Human Interaction and non-
interactive operations in order to generate content, navigation,
presentation and process models. Without this support, this
kind of MDWE models must be built linearly, leaving
presentation and detailed interaction details to the end of the
development, with the consequent risks.

User Interface mockups have become an interesting and
useful tool in requirements elicitation, since they act as an
intermediate language between end-users and developers [8].
Also, their adoption in development processes (especially in
the requirements gathering phase) are evident through the
plethora of tools that appeared during the last years like
Balsamiq1, Pencil2, Mockingird3 and MockFlow4, among
many others. Mockups, used together with User Stories, have
proven to be useful in agile approaches to early assess
usability issues, concretize requirements and also make cost
estimations more precise [13], [14]. Apart from User Stories,

1 Balsamiq Mockups - http://www.balsamiq.com/products/mockups -

Accessed: 27-Apr-2013.
2 Pencil Project - http://pencil.evolus.vn/ - Accessed: 27-Apr-2013
3 Mockingbird - https://gomockingbird.com/ - Accessed: 27-Apr-2013
4 MockFlow - http://www.mockflow.com/ - Accessed: 27-Apr-2013

Fig. 1. Overview of the Scrum-adapted MockRE process.

21

mockups have been also used with Use Cases [15]. In
addition, statistical studies have been conducted showing that
mockups provide general improvements in the development
process without imposing high costs to it [16].

In the Model-Driven context, User Interface sketches were
used as a basis or to provide improvements in the modeling
process. In [17], task models are created from annotated
sketches. Also, in [8] mockups are used as a foundation to
specify interaction requirements in a storyboard-like manner.
The WebSpec approach [10] relies on mockups to specify
interaction requirements. In addition, UI sketches assembled
in a form-like fashion have been used to interact with end-
users and generate content models [18].

In our previous work [7], [19] we propose to annotate
mockups built with popular tools to quickly obtain content,
navigation and presentation models, trying to break the classic
linear modeling structure in MDWE approaches and, at the
same time, pursuing a better end-user integration in the
process using mockups as common language. However, in
these papers, mockup annotations and tooling strategies were
too technical for end-users to do the modeling or any part of it
– except for mockup building. Also, since we relied in existing
MDWE approaches like UWE and WebML, the approach was
limited to the development infrastructure of those
methodologies, which focus in specifying common patterns in
Web Applications to improve the productivity during their
development, but not tackling detailed requirements related to
domain-specific businesslogic as in most applications. In this
work we propose to tackle both aspects: on the one hand, we
use a textual annotation tool that allows end-users to annotate
HTML mockups interactively through wizards when
necessary, without requiring any technological knowledge. On
the other hand, we propose a code-based and non-intrusive
way of describing and implementing detailed interaction,
without requiring changes in any language or infrastructure.
The main motivation of this approach is to reuse requirements
initially expressed by end-users throughout the whole
developent process, thus facilitating requirements traceability
and also taking advantage of the productivity of code
generation from specifications that Model-Driven
methodologies provide.

III. THE MOCKRE APPROACH

In this section we describe the MockRE approach in detail.
In the first sub-section we provide general details of the
MockRE development process. In the following sub-section,
we describe how the approach intends to improve
requirements gathering and feature specification by integrating
the end-user more intensively in such tasks and using
mockups as an understandable language. Finally, in the last
sub-section we describe how the generated specifications from
end-users can be refined to generate functional working
prototypes while developers can easily and quickly extend the
generated prototype in a non-intrusive and reusable way either
tuning model concepts properties or using direct coding
through an external API.

A. Overview of the Process

Since we want to apply agile practices that are meant to
quickly generate runnable applications and thus reduce the
risks during the development, we have chosen the Scrum [20]
agile process as a template since it is one of the most used in
industry5. The Scrum process starts with the construction of a
Product Backlog, which is a list of all the features that the
software product must have, prioritized by value delivered to
the customer. Then, the product is built iteratively in Sprints.
Every Sprint starts with a planning meeting to develop a
detailed plan for the iteration in which the most important
features remaining in the Product Backlog (a subset of the
backlog) are broken down into tasks, forming the Sprint
Backlog. Once this backlog is carefully defined to take no
more than one month of work long, the development team
starts to solve all the issues detailed in it. A short Daily Scrum
Meeting is done every workday to share the Sprint work
progress and new problems found during it. Finally, at the end
of a Sprint, a potentially shippable application is demonstrated
to the Product Owner and a Product Backlog reprioritization is
done if needed, while the goal for the next Sprint is defined.

In our modified MockRE Scrum process (see Fig. 1),
every item in the Sprint Backlog has to be related to a set of
one or more mockups (built by developers with end-user
presence or by end-users themselves) that defines it visually
with some level of detail. Once mockups have been built for
all the Backlog items, end-users annotate the mockups
(assisted by developers if necessary) using an interactive tool
that helps them to give semantics to visual elements. Since
visual elements present in mockups are perfectly understood
by end-users (that are accustomed to interact with Web User
Interfaces) they can use the requirements specification tool by
themselves. Though not evident for end-users, in this so-called
end-user mode, the tool assists to specify data, navigation, and
business logic requirements (among others) through a click-
through interface, interactive menus and very simple wizards
to fill extra data when necessary. Finally, end-users can switch
the tool to demo runtime mode, which allows them to test an
interactive version of the mockups (a runnable application) as
the tool executes the annotated requirements from the tagged
mockups.

Developers can refine the requirements specifications
generated by end-users in order to better match their desires,
using the tool’s developer mode. Since some features are
technically complex for end-users (e.g., RIA behavior, data
operations like associations, etc.), they are omitted in the
previous step and can be only refined by developers. The
developer mode provided by the tool allows the incorporation
of manual fine-tuning of model properties in order to
implement the refined requirements if possible. Then, the
application can be run again through the demo runtime to
show how it should behave in direct presence of end-users.

5 7th Annual State of Agile Development Survey, VersionOne –

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-

Development-Survey.pdf - Accessed: 27-Apr-2013

22

Finally, since the requirements specifications language is
formed by a limited set of constructs and concepts (as any
metamodel in the context of a Model-Driven approach), their
semantics have limits in some specific cases (e.g., defining

custom business logic or special interaction patterns). Then,
following the agile code-based spirit to generate working
software as fast as possible, developers can refine the
specifications with custom code. However, changing the
generated code of the generated demo application through the

Fig. 2. An example HTML mockup of an invoicing web application.

TABLE I. SUBSET OF THE TEXTUAL ANNOTATIONS PROVIDED BY THE LANGUAGE.

Annotation syntax Semantics Can be placed over

a/an <item-type> The underlying element shows or

allows to edit an object of type

<item-type>.

Composite elements (e.g, non-empty

<div>s or <form>s

a list of <item-type> The underlying element shows or

allows to edit a list of objects of type

<item-type>.

Composite elements (e.g, non-empty

<div>s or <form>s

<item-type>'s <property> The underlying elements shows or

allows to edit the property

<property> of type
<item-type>.

Simple elements (e.g, <input> or

 with text content).

saves the <item-type> The already defined <item-type>

will be saved when clicking on this

element

Action triggering element (e.g. <button>,

<a>, etc.)

deletes the <item-type> The already defined <item-type>

will be deleted when clicking on this

element

Action triggering element (e.g. <button>,

<a>, etc.)

navigates to <mockup-name> A navigation to mockup named

<mockup-name> will be triggered

when clicking on this element

Action triggering element (e.g. <button>,

<a>, etc.)

23

aforementioned tool can lead to inconsistencies between
specifications and the code that implements them. In this
context, a code regeneration can simply erase the
improvements that developers wrote by hand, implying big
losses in productivity. Then, instead of changing the generated
code, developers can just inject the desired behavior by calling
a specific API on every requirements specification initially
done by end-users, following the Strategy Design Pattern [21].
Details of how this is accomplished will be mentioned later.

To exemplify the approach, throughout the paper we will
use an invoicing Web Application example, since it is a very

common and well understood domain and, at the same time,
usually requires custom business logic, which is not always
easy to model in pure MDWE environments. While the
Product Backlog of such an application can be very extensive,
one potential Sprint Backlog of the development process can
be conformed by two basic User Stories:

US1. As a User, I want to create a new invoice.

US2. As a User, I want to list and edit my invoices.

(a)

(b)

Fig. 3. Screenshots of the tool during an annotation session (end-user mode).

24

Following with the MockRE Scrum process, mockups for
both Stories have to be defined. For space reasons, we only
show mockups for US1 (see Fig. 2), in which prototypes of
the user interface that allows creating a new invoice is
depicted. An additional mockup can be defined to list the
invoices and, using the one already defined in Fig. 2 to edit
existing invoices, mockups for US2 will be enough to
implemented the functionality of the Story.

It is important to note that mockups can be translated to
HTML format (if necessary) using an already developed
Mockup-to-HTML tool [7] or by hand. Since a styled HTML
presentation of the Web Application has to be constructed
soon or later within the web development process, this does
not impose an additional cost to the development. On the
contrary, if tool-dependent mockups are used (like those that
can be built using Pencil or Balsamiq), a first version of the
HTML structure can be generated using the tool described in
[7]. Once all the HTML mockups have been built and
associated to the corresponding Stories, the requirements
specification stage can begin.

B. End-user Requirements Specifications using Mockups

Since mockups have been built with presence and
acceptance of end-users, they can be used by them to specify
initial requirements directly - or with developers’ assistance if
necessary. In any case, an important feature that the approach
proposes is to use a textual description language that can be
easily understood by end-users and, at the same time, easy to
parse.

The language we proposed enriches mockup components
(at this stage, HTML elements) with textual annotations,
specifying interaction and data requirements. Instead of using
a storyboard-based strategy (describing how the end-user
interacts with the application), MockRE uses a widget-centric
approach describing the role and features of every individual
widget. However, an interaction storyboard can be easily
inferred by observing the annotations.

The placement of a new annotation using the tool is done
through the following steps:

1. One mockup of the Sprint Backlog is shown to the
end-user, allowing him or her to highlight the
important mockup components - from the interaction
or behavioral point of view, i.e., the things that are
involved in user interaction and/or can change
dynamically depending on the user behavior or
underlying data.

2. The end-user clicks on the component identified.

3. A menu is shown, detailing all the potential
annotations that can be placed over the mockup
component, depending on its type and the annotations
already introduced.

4. Depending of the annotation type, one or more extra
parameters are required through a special form or
wizard presented to the end-user.

Some of the sentences of the MockRE textual language
are listed in Table I. It is important to note that a demo of the
application using the demo runtime feature of the tool can be
executed by the end-user at any moment during the
requirement specification process. A screenshot of the tool in
the middle of an annotation process can be observed in Fig. 3.
In that figure, the status of the original HTML mockup of Fig.
2 is shown during an end-user annotation session (Fig. 3.a).
Also, an annotated HTML mockup showing a list of invoices
(Fig. 3.b) that can potentially fulfill the remaining
requirements expressed in US2 is depicted.

In order to avoid technical jargon as much as possible,
when then end-user clicks on a relevant component identified
(step 2), a menu is presented in which the different
annotations are grouped in questions like What is this
element? or What does this element do? (see Fig. 3.a). Also,
since end-user may not be familiar with the containment
structures present in the HTML mockups, the tool uses
heuristics to infer the correct component when the end-user

Fig. 4. Excerpt of the MockRE metamodel, showing its data, action and validation features.

25

choses an annotation that is not applicable over the selected
element. For instance, if the user choses to apply the a/an
<item-type> annotation over a textbox (an <input>
HTML tag), then the highlighted element is transferred to the
surrounding composite tag (e.g, <div> or)

C. Introducing Refinements Through Modeling

While annotations seem to be only textual descriptions
created with tool assistance by end-users, they are in fact
graphical projections of an underlying formal requirements
specification model created in the back. The requirement
metamodel that we defined for MockRE is depicted in Fig. 4.
When working in end-user mode, creating a new annotation
with the tool implies the creation of their projected model
elements with some of their attributes completed by end-users
through a wizard. Also, technical values regarding to model
elements that are not easily understood by end-user are set to a
default or calculated value using heuristics. Some of these
values also are converted between its original and end-user
friendly representation - for instance, converting camel case to
spaces and vice versa. After end-user completes the first
requirements specification step (creating a first version of the
requirements model), developers (using the tool in developer
mode) can do a model fine tuning to match the original
requirements in detail - see the screenshot depicted in Fig. 5).

The MockRE metamodel, partially described in Fig. 4, has
a MockRE model (MockREModel) as the main concept, which
contains a set of RequirementFeatures. Every
RequirementsFeature is a requirements specification
according to a particular concern or aspect, and has to be
mapped to a UI element through a location expression –
elementLocationExpression attribute. For instance,
when modeling Web Applications, XPath6 expressions can be
used for such purpose, while when developing desktop
applications a widget id can be used instead. From a different
perspective, every RequirementsFeature is a developer-
related concept that can be projected through a textual
annotation, friendly for end-users. For instance, when a user
places the saves the invoice item (see Fig. 3.a)
annotation, in fact is creating a SaveFeature instance in the
underlying MockRE model and associating it to a
DataClassFeature with class = InvoiceItem. How
some of the MockRE model elements are generated from the
structured annotations is shown in Table II.

The most important features are DataFeatures
(DataClassFeatures and DataAttributeFeatures) that
describe data structures and relationships, and
ActionFeatures that specify actions that have to be taken
when interacting with the UI. Among DataFeatures,
DataClassFeatures denote that the associated UI elements
over which they are applied are related to a specific type of
domain object – parameterized by the className property.
Thus, the associated element shows or allows editing one or

6 XML Path Language (XPath) Version 1.0 -

http://www.w3.org/TR/xpath/ - Accessed: 27-Apr-2013

more attributes of this kind of object. From the end-user point
of view, this feature corresponds to a recognizable business
object manipulated daily and can be easily specified with
a/an <item-type> and a list of <item-type>
annotations. On the other hand, DataAttributeFeature
binds a concrete attribute of the object already mapped.
Regarding ActionFeatures, they are divided among those
that are related to data operations like CRUD
(DataActionFeatures) and those that are associated to
other interaction behaviors like navigation
(NavigationFeatures). DataActionFeatures are related
to DataFeatures in order to fulfill the required data
operations. While more types and subtypes of
RequirementsFeatures currently exist in the metamodel,
we only focused in some of them for space reasons in order to
give a big picture of the approach.

As an example, the mockup shown in Fig. 3.a depicts the
invoicing application mockup of Fig. 2 in which the invoice
and invoice item objects have been identified and
associated by an annotation placed directly by an end-user.
After the annotation step, the end-user can run the application
by itself and see how it works, which implies that every
annotation will add some explicit behavioral semantics to the
former static HTML mockup. For instance, the a/an

invoice annotation and the invoice's <property>
annotations allows mapping all the data related to a new
Invoice to the UI components that shows and allows to edit
them . The a list of invoice item populates the list of
InvoiceItems (note the automatic spaces to camel case
conversion) to be related in the Invoice to be created. A new
InvoiceItem will be created when clicking in the button
annotated with saves the invoice item, gathering the
required data using the annotated field invoice item's
price. Also, after clicking in that button, the invoice item list
will be updated automatically. Finally, the a/an invoice
and saves the invoice annotations specify that, when
clicking on the Save button, a new Invoice with all the
collected data from the UI, including the InvoiceLines and
the individual Invoice property values like the invoice's
price will be created. It is important to note that, since the
annotations establish a declarative binding between UI
elements and the business objects, the same interface can be
used both to create a new invoice and to edit an existing one –
requiring only an object transfer within a navigation, which is
a concept out of the scope of this paper for space reasons.

In terms of the MockRE model underlying the annotated
mockup in Fig. 3.a, the a/an invoice and a list of
invoice item annotations are formally represented by two
DataClassFeature elements, being both related by the
sourceFeature association - see Fig. 4). However, end-
users are not obliged to provide a name to that association, so
a generic one is used (see the a list of association in
Table I). While providing this name may be irrelevant for end-
users, for developers this association name is very important
from the data modeling point of view, since more than a
relationship between the same types of elements can occur.

26

Then, in the second modeling stage, developers can complete
the relationship name (adding an association on the dataPath
property in the DataClassFeature with class =
InvoiceItem using the tool in developer mode (see Fig. 5).
The same applies for all the data type introduced through the
dataType attribute in every property annotation, which
default to String when annotated in end-user mode. In this
stage, developers can also specify ids for the MockRE model
elements to access and refine their implementation, as is
explained in the following sub-section – see the id attribute in
RequirementsFeature class depicted in Fig. 4.

From the implementation point of view, every annotation
type (and metamodel concept) has a corresponding so-called
feature class in the implementation platform. For every
annotation, at demo runtime the parameterized feature class is
instantiated into a feature object and ran. Every feature object
enriches the UI in order to fulfill their semantics from the
implementation point of view (i.e., changing the DOM,
attaching events, etc.). Thus, the code generation required to

run the application in demo mode consist only in instantiating
and running the corresponding feature objects.

D. Refinements Introduction using Code

After testing the application through the demo runtime
provided by the tool, the end-user can discover extra
requirements that are not actually modeled or implemented.
Some of these requirements are considered by MockRE and
thus can be added through new annotations or direct additions
to the underlying MockRE model. However, in real
applications with minimal business rules and a relatively
complex domain model, it is not realistic to assume that all the
requirements can be tackled using MockRE concepts.
Following with the previous example, the end-user may
simply ask (through a new User Story) for checking that the
Invoice must have at least one line before being effectively
created. Since a lot of this kind of business-related validations
can be done depending of their specific domain, it is
impossible to define a language to cope with all of them.

Fig. 5. Screenshot of the tool during an annotation refinement session (developer mode).

mockreEngine.getFeature('saveInvoice ').on('before ', function(invoice) {
 if (invoice.lines.length == 0) then {

alert('The invoice must have at least one line ');
return false;

}

return true;

});

Listing 1. Code stub showing how a feature object behavior can be enriched through manual coding using its API.

27

One of the main reasons to encapsulate the semantics in
feature objects (as aforementioned in the previous sub-section)
is to preserve the model concepts abstraction in the
implementation, so as to avoid generating scattered code to
implement annotations behavior. Such way of code generation
structure imposes several constraints and limitations when has
to be refined: (1) since behavior code is scattered and mixed
around the application, it is harder to be interpreted by
developers, (2) after having made the refinements, a code re-
generation can simply erase them and (3) it can introduce the
Shotgun Surgery [22] bad smell in the final implementation,
since repetitive and scattered code may potentially be
generated. To quickly add additional refinements to the
generated implementation avoiding these issues, every feature
object encapsulates the behavior that it adds to the static
mockup and provides a custom API that allow redefining part
of it, following an approach similar to the Strategy Design
Pattern [21]. For instance, a SaveFeature object provides
before and after hooks, which allow executing operations
before it tries to persist an object and after it has been
persisted. With the proposed approach, in a few lines of code
and using JavaScript as a destination platform, a function can
be hooked to the before event, doing the aforementioned
extra validation and canceling the Invoice persistence if
necessary – see Listing 1.

From the implementation point of view, a version of the
framework has to be implemented for every well-known web
technology – currently, we have implemented a functional
proof of concept version in JavaScript. This framework, in the
context of the Model-Driven terminology is part of a Domain
Framework [23]. Developers can reference the feature objects
through the provided id (using tool in developer mode) to
further get them in the code and add the desired hooks – in
Listing 1, this is accomplished within the
mockreEngine.getFeature('saveInvoice') line. If in
this or the next iteration the end-user decides to regenerate the
demo application to see it running after doing one or more
changes in the annotations, since the generated code only
consist in instantiations of the corresponding feature objects,
the rest of the added behavior is preserved automatically. The
code in Listing 1 shows how the non-empty invoice validation
aforementioned is implemented.

It is important to note that, since we exemplified the
approach using the JavaScript language executed in the
context of a web browser, all the detailed behavior that can be
added is limited to the client-side of the Web Application.
This imposes limitations to the kind of operations that can be
done when adding behavior using manual coding, forcing in
the worst case to create special API methods in the server-side
that can be invoked from the client-side to accomplish actions
involving server behavior – like, for instance, integrating with
other services or APIs. However, when using the MockRE
API to refine requirements in the context of a server-side
environment (for instance, under JEE), the developer team is
free to make use of all the computational power of the Web
Application backend to enrich the original requirements with

advanced operations like executing distributed transactions,
integrating with other APIs as aforementiond, etc.

IV. CONCLUSIONS AND FURTHER WORK

In this paper we introduced the MockRE process, a
requirements gathering and Model-Driven methodology
centered on end-users. MockRE uses user interface mockups
both to allow end-users to start the requirements and modeling
specification from mockups and also to facilitate their
interaction with the development team. We exemplified the
approach with the development of a core part of a common
invoicing application. The mockups used in the example can
be easily built by end-users using common tools and can be
translated by hand or semi automatically to HTML by
developers. We show how, instead of starting fulfilling the
concrete requirements expressed in potential User Stories
associated to mockups for a given iteration through direct
coding, MockRE proposes that end-users annotate the static
mockup using a wizard-like tool in which they can express the
role of every visible object in the UI. Since end-users are
familiar to the visual metaphors present in the interface, they
can do great part of the work by themselves and test the
modeled application at any point of the specification task,

TABLE II. MOCKRE END-USER ANNOTATIONS AND THEIR METAMODEL

REPRESENTATION

End-user annotation MockRE metamodel representation

a/an <item-type> DataClassFeature, with

className = <item-type> and

isList = false

a list of <item-

type>
DataClassFeature, with

className = <item-type> and

isList = true

<item-type>'s
<property>

DataAttributeFeature, with

attributeName = <property>,

related to a DataClassFeature
with
className = <item-type>

through the attributes
association

saves the <item-

type>
SaveFeature associated to the

corresponding

DataClassFeature that specifies

the object to be saved

deletes the <item-

type>
DeleteFeature associated to the

corresponding

DataClassFeature that specifies

the object to be deleted

navigates to

<mockup-name>
NavigationFeature with

mockupName = <mockup-name>

28

through the demo runtime feature provided by the tooling. If
the application does not work as expected, developers can
refine the annotations, or introduce detailed code behavior
without breaking the model abstraction and preserving the
inherent productivity of the Model-Driven process and also
maintaining the original requirements specifications placed by
end-users.

Regarding the future work, we are working on extending
the semantics of the annotations and their underlying
metamodel representations. As can be observed in the partial
metamodel description included in this paper, every different
concern included in it (data specifications, data manipulation
actions, data validation, etc.) is defined as a class hierarchy in
which subclasses may be related to other concepts. Thus, new
classes, their end-user friendly representation in the tool, and
finally their added semantics (when running a demo) are being
implemented. Among the most important, we are considering
user interface manipulation, RIA features, and visual API
integrations (like social and maps widgets).

Porting the execution framework introduced in this work
to different modern Web technologies like JEE and ASP.NET
represents another interesting path of work. At the same time,
since the use of client-side behavior through JavaScript and
the new HTML5 standard is increasing notably, we are
making emphasis on polishing the current application running
framework to ease support for the development under these
technologies. In this context, we are working on providing
data connectors to switch from demo-purpose data storage to
production ones, improving the performance of the demo
runtime (for instance, using HTML templating instead of
DOM manipulation) and adding support for most well-known
JavaScript libraries and frameworks.

Finally, we are evaluating the approach with several real-
world applications in order to assess its feasibility and check
their direct advantages in comparison to traditional code-based
agile methodologies using mockups.

V. REFERENCES

[1] S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling Language

(WebML): a modeling language for designing Web sites,”

Computer Networks, vol. 33, no. 1–6, pp. 137–157, Jun. 2000.

[2] N. Koch, A. Knapp, G. Zhang, and H. Baumeister, Uml-Based Web

Engineering. London: Springer, 2008, pp. 157–191.

[3] J. Gómez and C. Cachero, “OO-H Method: extending UML to

model web interfaces,” in Information modeling for Internet

applications, P. van Bommel, Ed. Idea Group Inc (IGI), 2003, pp.

144–173.

[4] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, “Modeling and

Implementing Web Applications using OOHDM,” in Web

Engineering: Modelling and Implementing Web Applications, G.

Rossi, O. Pastor, D. Schwabe, and L. Olsina, Eds. London: Springer

London, 2008, pp. 109–155.

[5] P. Vilain, D. Schwabe, and C. S. de Souza, “A diagrammatic tool

for representing user interaction in UML,” pp. 133–147, Oct. 2000.

[6] M. Cohn, User stories applied: for agile software development.

Addison-Wesley, 2004, p. 268.

[7] J. M. Rivero, G. Rossi, J. Grigera, E. R. Luna, and A. Navarro,

“From interface mockups to web application models,” in 12th

International Conference on Web Information System Engineering,

2011, pp. 257–264.

[8] K. S. Mukasa and H. Kaindl, “An Integration of Requirements and

User Interface Specifications,” in 6th IEEE International

Requirements Engineering Conference, 2008, pp. 327–328.

[9] M. Fowler and K. Beck, Refactoring: improving the design of

existing code. Addison-Wesley, 1999, p. 431.

[10] E. Robles Luna, G. Rossi, and I. Garrigós, “WebSpec: a visual

language for specifying interaction and navigation requirements in

web applications,” Requirements Engineering, vol. 16, no. 4, pp.

297–321, Jun. 2011.

[11] U. B. Sangiorgi and S. D. J. Barbosa, “MoLIC Designer: Towards

Computational Support to HCI Design with MoLIC,” in

Proceedings of the 1st ACM SIGCHI symposium on Engineering

interactive computing systems - EICS ’09, 2009, p. 303.

[12] N. Koch and S. Kozuruba, “Requirements Models as First Class

Entities in Model-Driven Web Engineering,” Current Trends in

Web Engineering, vol. 7703, pp. 158–169, 2012.

[13] J. Ferreira, J. Noble, and R. Biddle, “Agile Development Iterations

and UI Design.,” in AGILE 2007 Conference, 2007, pp. 50–58.

[14] A. Martin, R. Biddle, and J. Noble, “The XP Customer Role in

Practice: Three Studies.,” in Agile Development Conference, 2004,

pp. 42–54.

[15] A. Homrighausen, H.-W. Six, and M. Winter, “Round-Trip

Prototyping Based on Integrated Functional and User Interface

Requirements Specifications,” Requirements Engineering, vol. 7,

no. 1, pp. 34–45, 2002.

[16] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, and E. Astesiano,

“On the effectiveness of screen mockups in requirements

engineering,” in 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement, 2010.

[17] J. I. Panach, S. España, I. Pederiva, and O. Pastor, “Capturing

Interaction Requirements in a Model Transformation Technology

Based on MDA.,” J. UCS, vol. 14, no. 9, pp. 1480–1495, 2008.

[18] R. Ramdoyal, A. Cleve, and J.-L. Hainaut, “Reverse Engineering

User Interfaces for Interactive Database Conceptual Analysis,” in

22th International Conference in Advanced Information Systems

Engineering, 2010, pp. 332–347.

[19] J. M. Rivero, J. Grigera, G. Rossi, E. R. Luna, and N. Koch,

“Towards Agile Model-Driven Web Engineering,” Lecture Notes in

Business Information Processing, vol. 107, pp. 142–155, 2012.

[20] J. Sutherland and K. Schwaber, “The Scrum Papers: Nuts, Bolts,

and Origins of an Agile Process.” [Online]. Available:

http://assets.scrumfoundation.com/downloads/2/scrumpapers.pdf?1

285932052. [Accessed: 09-Dec-2012].

[21] E. Gamma, Design patterns: elements of reusable object-oriented

software. Addison-Wesley, 1995, p. 395.

[22] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,

Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional, 1999, p. 464.

[23] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling

Full Code Generation. Wiley-IEEE Computer Society, 2008.

29

