
Information and Software Technology 56 (2014) 670–687
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Mockup-Driven Development: Providing agile support for Model-Driven
Web Engineering
http://dx.doi.org/10.1016/j.infsof.2014.01.011
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: LIFIA, Facultad de Informática, UNLP, Calle 50 y 120,
La Plata, Buenos Aires, Argentina. Tel.: +54 92215082703.

E-mail addresses: mrivero@lifia.info.unlp.edu.ar (J.M. Rivero), julian.grigera@
lifia.info.unlp.edu.ar (J. Grigera), gustavo@lifia.info.unlp.edu.ar (G. Rossi), erobles@
lifia.info.unlp.edu.ar (E. Robles Luna), fmontero@dsi.uclm.es (F. Montero), martin.
gaedke@informatik.tu-chemnitz.de (M. Gaedke).
José Matías Rivero a,b,⇑, Julián Grigera a, Gustavo Rossi a,b, Esteban Robles Luna a,c, Francisco Montero d,
Martin Gaedke e

a LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
b Research institute, Conicet, Argentina
c Research institute, CIC, Buenos Aires, Argentina
d LoUISE Research Group, UCLM, Albacete, Spain
e Chemnitz University of Technology, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 December 2012
Received in revised form 21 January 2014
Accepted 22 January 2014
Available online 29 January 2014

Keywords:
Mockups
User-Interface
Agile
Web Engineering
MDD
Context: Agile software development approaches are currently becoming the industry standard for Web
Application development. On the other hand, Model-Driven Web Engineering (MDWE) methodologies
are known to improve productivity when building this kind of applications. However, current MDWE
methodologies tend to ignore important aspects of Web Applications development supported by agile
processes, such as constant customer feedback or early design of user interfaces.
Objective: In this paper we analyze the difficulties of supporting agile features in MDWE methodologies.
Then, we propose an approach that eases the incorporation of well-known agile practices to MDWE.
Method: We propose using User Interface prototypes (usually known as mockups) as a way to start the
modeling process in the context of a mixed agile-MDWE process. To assist this process, we defined a
lightweight metamodel that allows modeling features over mockups, interacting with end-users and gen-
erating MDWE models. Then, we conducted a statistical evaluation of both approaches (traditional vs.
mockup-based modeling).
Results: First we comment on how agile features can be added to MDWE processes using mockups. Then,
we show by means of a quantitative study that the proposed approach is faster, less error-prone and still
as complete as traditional MDWE processes.
Conclusion: The use of mockups to guide the MDWE process helps in the reduction of the development
cycle as well as in the incorporation of agile practices in the model-driven workflow. Complete MDWE
models can be built and generated by using lightweight modeling over User Interface mockups, and this
process suggests being more efficient, in terms of errors and effort, than traditional modeling in MDWE.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction building a domain model, (2) defining a hypertext model and (3)
In the last years, Model-Driven Web Engineering (MDWE)
approaches like WebML [1], UWE [2] or OOHDM [3] have become
mature solutions for developing Web Applications. These method-
ologies apply Model-Driven Development (MDD) concepts to cap-
ture high-level Web Applications concepts into models and use
these models to derive applications automatically. The classic
MDWE development process consists of three steps [4]: (1)
defining the application’s look and feel. The result of the process
is a set of models that can generate the final Web Application
through code generation.

While standard MDWE processes improve productivity, they tend to
leave User Interface aspects to the end of the development cycle [5]. As
a consequence, customers only see their Web Application in action after
a complete iteration and, at this point, they may encounter new require-
ments which may entail a full application rework. Changes in the UI
may not only affect the application’s presentation, interaction and
usability aspects, but also the business logic [6,7], and in the context
of MDWE, this may entail potential changes in the models at all three
levels. In addition, while using high-level languages facilitates the
requirements transformation to working software, the hard dependen-
cies between each modeling step usually slows down the process.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.01.011&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.01.011
mailto:mrivero@lifia.info.unlp.edu.ar
mailto:julian.grigera@lifia.info.unlp.edu.ar
mailto:julian.grigera@lifia.info.unlp.edu.ar
mailto:gustavo@lifia.info.unlp.edu.ar
mailto:erobles@lifia.info.unlp.edu.ar
mailto:erobles@lifia.info.unlp.edu.ar
mailto:fmontero@dsi.uclm.es
mailto:martin.gaedke@informatik.tu-chemnitz.de
mailto:martin.gaedke@informatik.tu-chemnitz.de
http://dx.doi.org/10.1016/j.infsof.2014.01.011
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 671
In order to solve this problem we have researched many of the
emerging issues in agile development approaches, especially in the
requirements engineering field [8]. In this context, user interface
prototypes (usually known as mockups or wireframes), have proven
to boost efficiency when capturing requirements of Web Applica-
tions [6]. One of their advantages is that they are technically valu-
able for developers and, at the same time, fully understandable by
end-users [9]. In the approach we present detailed mockups (ini-
tially originated from User Stories [10]) are used to capture most
requirements. We propose using mockups to specify software con-
cepts using high-level models, breaking the linear MDWE work-
flow into small non-linear cycles in which end-users can actively
participate. Then, instead of discarding mockups (as most agile ap-
proaches do [11,12]), we transform them into platform-indepen-
dent UI specifications, and incrementally enrich them to later
obtain a set of domain, navigation and presentation models –
which can be also iteratively enriched. In this way, mockups serve
both as an early requirements gathering tool and as a dedicated
starting point for the model derivation process.

The resulting process is primarily based on models, but avoids
the waterfall-like structure of classic MDWE methodologies. Build-
ing the initial mockups is the only mandatory step to start model-
ing, but since anyway mockups are used as requirement artifacts,
this does not represent an additional overhead on the process.
Once defined, requirements can be quickly modeled over mockups,
reducing the requirement-to-software-artifact translation effort.
As we show in the paper, this process fits well in agile methodol-
ogies like Scrum [13] and, at the same time, makes use of the
well-known MDWE infrastructure to avoid reinventing the wheel.
In face of the broad spectrum of Web Applications types, we
decided to focus our approach on data-intensive ones (i.e., applica-
tions whose main purpose is presenting large amount of data to their
users [1], as WebML [14] does), tackling mainly functional require-
ments. Nevertheless, some non-functional aspects like usability
and presentation quality can be evaluated directly using mockups
throughout the modeling cycle.

The main contributions of this work are: (1) showing how the
traditional MDWE workflow can be improved to allow a less struc-
tured specification of concerns, adding agility to the whole process
and (2) proposing a metamodel to specify data-intensive Web
Applications concepts over user interface prototypes, and derive
fully functional MDWE models. We also present a validation to
show how the proposed process reduces the development effort
in the context of a real-world example.

The paper is structured as follows: in Section 2 we present some
background to the approach, in Section 3 we briefly describe an
example application that we refer to throughout the paper. In Sec-
tion 4 we describe our approach in detail and then in Section 5 we
detail how it is architected and implemented. In Section 6 we share
the results of our field experiences, and in Section 7 we comment
related work. Finally, in Section 8 we draw some conclusions and
present our future work on this field.
1 Balsamiq Mockups – http://www.balsamiq.com/products/mockups, accessed: 07-
Sep-2012.

2 Pencil Project – http://pencil.evolus.vn, accessed: 07-Sep-2012.
3 Website Wireframes: Mockingbird – https://gomockingbird.com, accessed: 07-

Sep-2013.
4 MockFlow – Online Wireframe Tool – http://www.mockflow.com, accessed: 07-

Sep-2013.
2. Background

Digital UI mockup tools are becoming a very popular way of
rapidly drafting user interfaces. Their main purpose is to help in
discussing UI specifications with end-users, and also to discover
and define non-UI requirements in a language that is more familiar
to them, as opposed to plain textual specifications [7,9]. In addi-
tion, UI mockups work not only as requirements artifacts, but also
as general requirements elicitation helpers [15]. Ricca et al. present
statistical studies that show how mockups improve requirements
gathering in comparison to traditional textual methods, without
implying an additional effort in the process [6]. Also, mockups have
been proposed as a successful tool to capture and register fluid
requirements [16] – those that are usually expressed orally or
informally and are an implicit (and usually lost) part of the elicita-
tion process. The importance of capturing additional information
or requirements specifications associated to user interface proto-
types (which is addressed in this work) is also commented on
the work of Ravid and Berry [7].

User Interface prototyping and modeling is an extensively stud-
ied field. A plethora of UI modeling methodologies and environ-
ments exist [17,18]. UI prototyping tools have quickly emerged
in the last years for both desktop (like Balsamiq1 or Pencil2) and
Web platforms (like Mockingbird3 or MockFlow4). In this context,
the DENIM tool [19] shows an interesting variation of the common
plain mockup tools, offering interface sketching in different concep-
tual levels and widget drawing by hand. However, these tools are
rather focused on building UI sketches bound to be disposed after
requirements gathering, or on defining user interfaces in a top-down
fashion to generate running applications. In the context of our work,
we propose to use mid to high-fidelity UI mockups [20,21], built
either with the mentioned tools or by designers in plain HTML. Then
we propose to keep them, using their structure as a foundation to
specify features like content, navigation or business logic.

Model-Driven Web Engineering (MDWE) approaches like Web-
ML, UWE or OOHDM have a long track proposing improvements in
the Web Development field. The main motivation of MDWE is to
define the essential aspects of the Web Application using a high le-
vel language and then generating the running Web Application
automatically, thus promoting more productivity. Similarly, in this
approach developers spend their time specifying semantically rel-
evant aspects instead of coding, avoiding coding errors.

We already proposed a technique and tool [22] to include digi-
tal User Interface mockups in a Model-Driven process, transform-
ing them into valuable UI specifications that can be used to
generate code for several platforms and technologies. By using this
background, we also introduced the idea of annotating the
obtained models to specify MDWE concepts over the original
mockups and then generate final models both for UWE and WebML
methodologies [5,23]. In this work, we propose to unify all
the methods and tools proposed, describing a detailed UI
Mockup-Driven process to develop Web Applications.

3. Photo Stock: an example application

In order to explain all the stages in the approach, we will use a
Photo Stock website as a sample Web Application. The Photo Stock
Web Application was designed analyzing several similar websites,
which typically enable users to upload original pictures, sort them
in categories/folders and optionally sell their publication permis-
sion. Besides these basic functionalities, the application provides
the user with a personal blog to post contents related to their pho-
tography portfolio or production and it also offers forums where it
can participate in discussions.

In the first meeting with our customers, we got some User Sto-
ries for a first iteration:

� User Story 1. As a User, I want to create, delete and change the
name of folders so that I can store and manage my photos.

http://www.balsamiq.com/products/mockups
http://pencil.evolus.vn
https://gomockingbird.com
http://www.mockflow.com


672 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
� User Story 2. As a User, I want to upload new photos to an exist-
ing folder.
� User Story 3. As a User, I want to publish a new post in my per-

sonal blog.

In the next sections we will show how the different steps in the
methodology are executed in order to satisfy some of these User
Stories.
4. The MockupDD process

As we previously mentioned, our approach starts by building UI
mockups; thus, we decided to call it MockupDD (standing for
Mockup-Driven Development). Although our approach supports
different kinds of mockups, like those created with digital tools
(Fig. 1a), throughout our example we will use HTML mockups
(Fig. 1b), since they are closer to what end-users see in the final
application, and also because they are natively supported in our
tooling. In this section we present a general description of the ap-
proach (Section 4.1), the different ways to get the UI mockups and
their underlying model representation (Section 4.2), how these
mockups can be interactively enriched through atomic specifica-
tions (Section 4.3), how these atomic specifications are disambig-
uated in a semi-automatically way to derive MDWE models
(Sections 4.4 and 4.5) and the underlying process that guides the
modeling (Section 4.6).
5 XAML Overview (WPF) – http://msdn.microsoft.com/en-us/library/
ms752059.aspx, accessed 07-Sep-2013.

6 XUL | Mozilla Developer Network – https://developer.mozilla.org/en/docs/XUL,
accessed 07-Sep-2013.
4.1. The process in a nutshell

The MockupDD process starts with a quick requirements gath-
ering stage, which results in a set of User Stories to be fulfilled.
Customers or end-users then build the mockups to represent User
Stories graphically (Fig. 2, step 1). Then, the development team
captures the main concepts in these mockups in a Structural User
Interface (SUI) model, preserving the mapping between both.

Once all the User Stories are represented with mockups and
then mapped to SUI models (Fig. 2, step 2), the requirements are
specified in the form of tags. To do this, the development team
works together with the stakeholders to interpret the semantics
in the User Stories and mockups, and tag the mockups with anno-
tations that represent these semantics. Since the SUI model pre-
serves the mapping from the original mockup source, tags can be
seen as applied over the initial mockups, but they are in fact linked
to SUI elements. This permits keeping a tool-independent enrich-
ment strategy (since SUI models do not depend on any platform,
tool or UI technology) and, at the same time, allows application
of the specifications intuitively over the initial mockups in their
original graphical representation, facilitating requirements trace-
ability and understanding by end-users.

We will show in Section 4.3 how the tags are used in an
unstructured way to help specifying concepts and features itera-
tively. The result of this step (Fig. 2, step 3) is a completely en-
riched (tagged) SUI Model. At this point, stakeholders can
immediately run a demo to test that requirements were correctly
captured and met (Fig. 2, step 4a). All steps, from mockup building
to the running demo can be applied in an incremental way, until all
the requirements for the iteration are met or larger requirements
(entailing longer implementation times) are found. If the new
functionalities involve altering the mockups, the process should
start from step 1, creating new mockups or refining existing ones,
enriching them and then generating a new running demo of the
application. On the other hand, if newly discovered requirements
do not require changes in the UI, the process can start from step
3, enriching existing mockups until the requirements are fulfilled.
Both cases involve crucial interaction and communication between
the development team and customers or end-users to assert that
the resulting product is working as expected.

The whole iteration finishes with the generation of models from
the tagged SUI and the further derivation of the final application
(Fig. 2, step 4b). Specifications can be finally refined with tool sup-
port to make design and modeling decisions unnoticed during the
interaction with customers. Fig. 3 summarizes the actors involved
in each step of the MockupDD process and their responsibilities.

4.2. Step 1 and Step 2: mockup construction and processing

The MockupDD process starts by building UI mockups. The
number of mockups needed in each iteration depends on how
the interaction steps are distributed amongst the Web Applica-
tion’s navigation nodes. Also, several User Stories can share one
or more mockups since they can involve crosscutting
functionalities.

To formalize the user interface structure, we use the SUI
metamodel [5], whose core structure can be observed in Fig. 4a.
The SUI metamodel in MockupDD is very similar to popular
UI description languages and standards like UsiXML [24], XAML5

or XUL6. It defines a Widget abstract class; widgets may be
SimpleWidgets (atomic) or CompositeWidgets (container widgets),
and they are grouped in navigational units (Pages). However, instead
of only defining a UI structure, the SUI metamodel is designed to
support the specification of an extensible and customizable set of
features using UI elements through tags, which will be explained
in the following section.

In Fig. 5 we show some mockups built for the User Story 1 of the
Photo Stock website example. A SUI model instance has been ex-
tracted from those mockups after their creation, referencing and
mapping the main parts of the application’s UI – i.e., the widgets
that are important from the point of view of the Story. In the mock-
ups shown in Fig. 5, the highlighting is not part of the mockup, but
a visual decoration added by the interactive tool to denote the wid-
gets already mapped to underlying SUI elements.

Once we have highlighted and mapped all the relevant widgets
according to the User Story concepts, we move onto the specifica-
tion of features on these widgets.

4.3. Step 3: Features specification

In order to enrich mockups (in this step, SUI models) with differ-
ent kinds of specifications, we introduce the concept of tag. A tag is
an atomic enrichment composed by a name and zero or more textual
parameters (e.g. Tag(Param1, Param2, . . . ParamN). Every tag type
can be applied only over a subset of SUI widgets. Also, every tag can
define a custom syntax for each parameter, extending its semantics
as much as needed. Tags are grouped in tag sets in order to isolate
specific concerns like navigation or data-manipulation that can be
tackled separately in most cases. Through this separation, we avoid
the sequential dependencies between concerns specified during tra-
ditional MDWE modeling that delay the direct product testing by
customers or end-users – e.g., navigation features that cannot be
specified without a previous domain model. Fig. 6 describes all the
tags included in MockupDD specification, along with their seman-
tics, applicability and corresponding tag set. Tags semantics can be
used to discover and map requirements from end-users when dis-
cussing the UI structure, and also to specify how the final application
must behave. For instance, a Data(Folder) and Save(Folder)

(see Fig. 6) can be applied when an end-user or customer expresses

http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx
https://developer.mozilla.org/en/docs/XUL


(a) Mockup drawn using the Balsamiq tool 

(b) Mockup built using HTML 

Fig. 1. Sample mockup drawn using different approaches (tool vs. HTML).

J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 673
that a particular mockup should create an instance of a Folder

using the input fields contained in it. A Folder is a domain object that
was identified by end-users and, at the same time, mapped to a soft-
ware specification by developers using tags (a Folder entity or
class). In the same way, if another end-user states that right after
instantiating a Folder the application must show the updated lists
of folders, a Link(folders) tag can be added – where folders

is the name of the destination mockup. These two requirements
(the former related to data model and manipulation, and the latter
defining a navigation behavior) can be defined independently, in
any order and even as the result of requirements specified and dis-
covered over the mockups by different stakeholders.



Mockup Processing
(Custom mockups format)

Mockup files
(HTML / Custom format)

Mockup 
Construction
based on User 

Stories

SUI Model

Feature 
Specification

through SUI 
enrichments

Enriched SUI 
Model

Including:
- Navigation specs
- Content specs
- Content Management specs
- Business rules specs

Code 
Generation

Model 
Generation

MDWE Models
(e.g., WebML, UWE, etc.)

Running Web Application
Demo Sandbox Environment

Step 1
Step 2

Step 3

Step 4.a

Step 4.b

Relevant widget 
detection

(HTML mockups)

Fig. 2. The workflow of a MockupDD iteration, including technical steps.

Mockup 
Processing / 

Widget 
Detection

Mockup 
Construction

Feature 
Specification

Code 
Generation

End-users /
Customers

Decide mockup 
structure and 
content , or build 
mockups by 
themselves

Answer 
interaction and 
behavioural 
questions by 
developers

Test the running 
“demo” application 
and detect potentially 
missing or wrong 
features

Developers

Help to build 
mockups
and discover 
potentially new 
requirements 
through 
interaction with 
end-users or 
customers

Trigger mockup 
processing

Enrich mockups 
with specs that 
model (and 
further 
implements) 
customers or 
end-users 
requirements 

Trigger code 
generation

Run demo 
application

Fig. 3. Actors involved in every MockupDD process stage.

674 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
In Fig. 4b we depict how tags are formally structured, grouped and
applied over SUI Widgets from the MockupDD metamodel perspective.
As the figure shows, tag sets (TagSet class) are conformed by a list of
tags (Tag class), which in turn can have parameters (TagParameter
class). The TagApplication class represents the application of a
Tag over a particular Widget. Since one or more tags can be applied
over a single Widget, Widgets have a list of TagApplications. A
TagApplication simply references the Tag applied and the corre-
sponding actual values for the parameters required for it (a list of
TagApplicationParameter).

The detailed requirements expressed in the User Story 1 of the
example of the Photo Stock website can be implemented with the
application of the following tags (depicted in Fig. 7):

� The Data(Folder) tag applied over the Panel in Mockup2
indicates that it will edit or create instances of Folder.
� The Data(Folder.name) and Data(Folder.description)

tags, applied over different TextBoxes in Mockup2 (see
Fig. 7), imply that these textboxes will enable setting and
obtaining the values of the name and description attributes
of a Folder instance.
� The Save(Folder) tag, applied over the Submit button in
Mockup2, indicates that the default action for clicking it will
be storing (creating or updating) an instance of the Folder

being edited in the container Panel.
� The Data(Folder), Data(Folder.name) and Save(Folder)

tags in the lower Panel in Mockup1 have the same semantics
as the previously commented tags, implementing a quick folder
creation.
� The Data(Folder) in the upper Repetition (Mockup1) is

used to specify that it will show a list of Folder. In addition,
the description of the Folder will be shown in the internal
Label tagged with Data(Folder.description).
� The Delete(Folder) tag over the Link labeled Del indicates

that clicking it will trigger the deletion of the Folder associated
to the containment context (in this case, the row in the Folder
table).
� The Link(EditFolder) – visually covered by the Delete()

tag – and Transfer(Folder) tags applied over the Edit Link
specify that a click on it will produce a navigation to the Edit-
Folder page (Mockup2), transferring the Folder in the con-
tainment context as a parameter. Since Mockup2 already



SimpleWidget CompositeWidget

Button

text: String

Link

url: String

List Panel Page

title: String

MockupModel

Table

widgets1..*

Widget

id: String

... pages
1..*

Repetition

(a) Core SUI metamodel

TagApplication TagApplicationParameter

value: String

Widget

Tag TagParameter

value: String

tags * actualParameters *

tag parameter
formalParameters *

TagSet
tags *

(b) Tag metamodel

Fig. 4. The SUI Metamodel.

Fig. 5. Mockups built for User Story 1.

J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 675



Fig. 6. MockupDD’s main tag set description, semantics and applicability.

676 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
allows creating and storing instances of Folder, the Folder

passed as a parameter can be edited using the same UI. With
this last addition, the form in Mockup2 will allow the creation
of new Folders (when no Folder is passed as a parameter)
and also the edition of existing ones – when a Folder is passed
as a parameter.

While tags (and their implied concerns) can be applied in any
order, one tag can specify more than one concern; for instance,
the Data(Folder) tag associates not only a Panel to an instance
of Folder to show its data in the UI, but also specifies that a
Folder class exists in the domain model. In the same fashion,
Data(Folder.description) and Data(Folder.name) tags
bind individual UI widgets to instance variables values, and at
the same time specify the properties name and description for
the class Folder in the domain model.
4.4. Tags refinements

Tags are intended to be as conceptual as possible, following the
just barely good enough agile modeling practice [25]. They enable
specifying concepts in an incremental way, by refining their
parameters or combining their semantics when there are many
of them applied to the same widget, or related to the same mock-
up. We define an ambiguous tag as a tag not semantically complete
by itself, and that may have more than one valid semantic interpre-
tation. While quicker to apply, these tags do not have concrete
expressive value until they are reified. In some cases, this reifica-
tion can be automatically done using heuristics, for instance:
� The Data() tag (see Fig. 6), provides a basic Data(<type-

Name>) syntax. Also, this tag allows the form Data(<widge-

tId>:<typeName>) to specify the source widget
(<widgetId>) which will provide the data instance of type
<typeName> explicitly. If a list (named list1) and a panel
(named panel1) both tagged with Data(Folder) are found
in a common Page, then it is assumed that the latter shows
the data selected from the former and thus, the tag in it will
be changed from Data(Folder) to Data(list1:Folder).
� If two different Pages have the same Data(<typeName>) tag

applied over one of their internal widgets and a navigation is
expressed from one to another using the Link() tag, then a
Transfer(<typeName>) tag can be automatically added since
this navigation will potentially involve an object transfer as a
side effect in most cases. This may have been applied in
Mockup1 (Fig. 7), if the Transfer(Folder) tag had been
missing.

4.5. Step 4: code and model generation

Up to this point, we have presented tags as isolated and atomic
specifications with specific semantics. In this section we show how
they can be translated to MDWE elements and combined to specify
more complex design features.

Every iteration of the MockupDD process involves adding,
changing or removing tags. After tags have been completely de-
fined, we use model generators to obtain the corresponding MDWE
models. So far, we have defined and implemented generators for
UWE [23] and WebML [5], showing that (1) the tag metamodel
can be semantically rich as modern MDWE metamodels and (2)



Fig. 7. Mockups of Fig. 5 with MockupDD tags applied, describing the expecting behavior.

J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 677
code generation capabilities for existing methodologies can be
used, gaining the inherent productivity of code generation in Mod-
el-Driven methodologies.

In Fig. 8 we show how isolated tags can be derived into atomic
MDWE concepts for WebML and UWE – we only show a small sub-
set of MockupDD-to-MDWE transformations for space reasons.
Sometimes tags enable discovering and specifying elements at dif-
ferent design levels and designing models at the same time (for
example, a Class in content model and a WebML’s Index or
Query at the hypertext level).

When the tagging task is finished (and the ambiguous tags rei-
fied), we obtain a complete tagged SUI model. With this model we
are able to run an instant demo of the application, and generate
MDWE models. In both cases, the first step in the generation pro-
cess is to derive a Spec Model. This model is a more precise one that
helps reducing the translation effort to code or MDWE models. In
the Spec Model, the inner textual representation of the tags (e.g.,
class names for Data() tags, destination page names for Link()
tags, etc.) are represented through a set of linked Spec Objects.
Then, instead of processing, parsing and merging all the textual
information in tags once for every MDWE model generator (for in-
stance, UWE and WebML), they only have to iterate over the graph
of Spec Objects and generate the destination MDWE concepts.

In Fig. 9 we show a WebML model generated from the tagged
mockups of Fig. 7, using the MockupDD model generation features.
A WebML model like the one depicted in the figure is composed by
Pages and Units that allow showing and manipulating information
within Pages. More details about WebML concepts can be found in
[1].
4.6. MockupDD development process

So far, we have introduced the procedural and theoretical as-
pects of MockupDD. In this sub-section, we will briefly introduce
MockupDD’s development process, which is an adaptation of
Scrum [13]. Hence, for a better understanding of our process, we
will briefly describe the Scrum development process first.

The Scrum process (see Fig. 10a) starts with the construction of
a Product Backlog, which is a list of all the features that the
software product must have, prioritized by value delivered to
the customer. Then, the product is built iteratively in so-called
Sprints. Every Sprint starts with a planning meeting to develop a
detailed plan for the iteration in which the most important
features remaining in the Product Backlog are broken down into
tasks, forming the Sprint Backlog. Once this backlog is carefully
defined to take no more than a month, the development team
starts working on it. A short Daily Scrum Meeting is run every
workday to share the Sprint work progress and new problems
found during it. Finally, at the end of a Sprint, a potentially
shippable application is demonstrated to the Product Owner, then
the Product Backlog is reprioritized if needed and the goal for the
next Sprint is defined.

With MockupDD (Fig. 10b), the first step of a Scrum Sprint
follows the same strategy, except that the Sprint Backlog must
be expressed as a list of User Stories whose detail level should be
enough to be described in detail using mockups. Instead of using
direct coding, mockups are constructed to concretize the User Sto-
ries as detailed in Section 4.1. These mockups are then translated
into a SUI representation and tagged with the tool support. After



Button

Panel

Panel

Page

Page
Node(Album)

Link(Album)

Data(Album)

Query(SongQuery, Song)

Action(addAlbumToFavorites, Album)

<<navigationClass>>
Album

<<navigationClass>>
Album

<<navigationLink>>

Album

<<query>>
SongQuery

?
Song

Repetition
Data(Album)

<<menu>>
AlbumIndex

Album

<<processClass>>
AddAlbumToFavorites

MockupDD SUI UWE WebML

Fig. 8. Mapping from tagged SUIs elements to MDWE concepts.

Fig. 9. WebML model generated from the tagged mockups of Fig. 7.

678 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
mockups have been completely tagged, a demo of the running
application can be run to end-users or to the Product Owner to
show how the application is behaving with the modeling done so
far. Thus, instead of waiting for the end of the Sprint, stakeholders
can see a working prototype to assess whether the application is
behaving as expected.

4.7. Conclusions

The MockupDD approach, introduced throughout this section,
proposes a lightweight modeling process of Web Applications.
Using atomic tags and applying heuristics to infer new model
elements (or refine existing ones), MockupDD pursues an agile-
as-possible strategy. Modeling can be applied directly over the user
interface mockups as soon as new requirements are discovered.
Heuristics help to relate and refine all these model concepts
(e.g., inferring data relationships or object transference between
pages) in order to generate models as complete as possible in a
semi-automatic fashion. To summarize, the main advantages and
motivation of using the MockupDD in comparison to traditional
MDWE are the following:

1. It removes the negative, static dependencies that frequently
exist between models of different concerns – e.g. content,
hypertext and presentation.

2. Requirements captured using mockups can be modeled directly
over them, avoiding the necessity of intermediate requirements
artifacts – such as Use Cases.

3. After capturing and modeling requirements on-the-fly, a demo
of the modeled application can be run to test whether it was
correctly specified.

These advantages help shortening the MDWE development cy-
cles, fulfilling important agile principles like [. . .] satisfy the cus-
tomer through early and continuous delivery of valuable software or
Deliver working software frequently [. . .] with a preference to the
shorter timescale.

5. Tooling and implementation

5.1. Tooling support

Almost every step of the MockupDD methodology (depicted in
Fig. 2) is assisted with specific tooling. Below we list different tools
supporting the MockupDD methodology:

� Mockup-to-HTML tool: Introduced in [5], this tool enables to
process mockup files built with custom tools like Balsamiq or
Pencil, and generate both the underlying HTML representation
and the SUI associated with it (Mockup Processing step in
Fig. 2). Thus, it avoids writing the HTML from scratch from
the mockups, making Step 1 sensibly quicker if tool-based
mockups are used.
� Interactive Tagging Tool: On the one hand, this tool is used for

creating a SUI model from an HTML structure (Relevant widget



30 days

24 h

Sprint Backlog SprintProduct Backlog Working increment 
of the software

Mockup 
Construction
based on User 

Stories

Feature 
Specification

through SUI 
enrichments

Code 
Generation

Model 
Generation

Demo 
running with 
final users

Scrum Agile 
Process

MockupDD 
Process

24 h

30 days

(a)

(b)

Fig. 10. Workflow of the Scrum process vs. the MockupDD one.

Fig. 11. Screenshot of the Interactive Tagging Tool.

J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 679
detection step in Fig. 2). As we show in Fig. 11, the tool allows
importing the HTML source and interactively marking the ele-
ments that will form the SUI model in an iterative and interac-
tive way. After the HTML and SUI model are completed and
correctly mapped, this tool also enables applying behavior
enrichments (Feature Specification step in Fig. 2) with tags, using
the HTML as a modeling frontend. For this purpose, the tool can
work in two different modes: widget discovering (to build the
SUI) and widget tagging (to apply tags over already mapped
widgets).
� Demo Sandbox Environment: Once the enrichments are enough

to satisfy the requirements tackled on a given iteration, this tool
enables to quickly generate a version that can be tested by end-
users. This tool does not depend on the underlying MDWE
methodology; neither does it require any application deploy-
ment to emulate the final running application, using a sandbox
to enrich the static HTML files with the behavior expressed by
the enrichments.

The Interactive Tagging Tool and the Demo Sandbox Environ-
ment perform the most important tasks. The Interactive Tagging
Tool also provides the tag disambiguation and refinements sugges-
tions and can trigger the application demo running or the MDWE
model generation as well.



7 MockupDD SUI XSD Schema – http://agilemdd.lifia.info.unlp.edu.ar/mockupdd/
sui.xsd, accessed 07-May-2013.

680 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
5.2. Implementation aspects

SUI models must be built and mapped over the original ele-
ments in the mockup source. From a technical point of view, if
HTML mockups are used, this mapping is preserved with an XPath
expression obtained from the source element and attached to the
corresponding SUI object. If a supported mockup tool is used in-
stead (like Balsamiq or Pencil), an id is computed from the mockup
source code and associated to the SUI object; this id is generated in
a way that can unequivocally identify the mapped element – for in-
stance, in the Balsamiq case is obtained concatenating the mockup
name and the element’s unique name.

The Interactive Tagging Tool consists of a Web Application that
enriches the static HTML mockup with the behavior required to
highlight and mark HTML (DOM) elements. It provides an API on
the server-side that allows creating new SUI elements to be
mapped over the DOM, or to apply tags over already mapped
elements. Since the user explicitly relates concrete HTML elements
to SUI model concepts, the mapping between them can be easily
done by linking the HTML’s XPath to its corresponding SUI
element.

When working with mockups built using supported mockup
tools, the use of the Mockup Processing Engine (MPE) automatically
generates an instance of the SUI. The MPE is embedded into the
Mockup-to-HTML tool and is composed by a set of chained individ-
ual processing components; the most important processing com-
ponents that are traversed starting form a plain mockup source
file input and finishing with a full-fledged SUI model are the
following:

1. Widget Parser: This processor takes the mockup source files as
input and identifies all the individual widgets in it. The output
is an unsorted but uniform list of widgets, grouped by mockup.
Since the mockup source format is specific for each tool, there is
a different parser for every tool supported.

2. Containment Detector: This processor takes the unsorted widget
list from the Widget Parser and discovers the containment rela-
tionships between them. Since most digital mockup tools repre-
sent mockups as a simple list of widgets with specific
coordinates, width and height, this processor allows discovering
the mockup’s hierarchical structure.

3. Layout Inferer: This processor takes the hierarchized widget list
from the Containment Detector and analyzes the internal graph-
ical distribution of every CompositeWidget to infer a specific
layout type and the widgets distribution according to it. The
layout inference processing is done by applying heuristics over
the widgets’ graphical disposition in two steps: (1) analyzing
the widgets distribution to establish the optimal layout and
(2) determining the disposition of each widget according to
the chosen layout. While this processing is not relevant from
the feature modeling approach discussed in this work – hence,
not included in the SUI metamodel description – having a
detailed layout configuration is mandatory for deriving a proper
HTML visual structure. Extra details about layout modeling and
inference can be found in [5].

Regarding the SUI metamodel representation (see Fig. 4), while
UML Stereotypes can be used to introduce the concept of tagging
Widgets in equivalent way, we decided to model tags and their
application as separate classes in order to map exactly the imple-
mentation of the set of tools developed for MockupDD. At the same
time, through this decision we are preserving the same expressive
level than using stereotypes but omitting UML features that in
practice are not directly supported by common Object-Oriented
languages like Java or C#. In addition, the used metamodel repre-
sentation maps closer different alternative representations of the
SUI metamodel, as an XSD schema7 already introduced to serialize
SUI instances.

Regarding the tag processing and refining, an Inferer is used to
analyze the ambiguous tags and propose potential solutions to
the modelers. If more than one solution of improvement is found
for a tag, then a popup menu is shown in the Interactive Tagging
Tool over the tag to be improved showing all its variants. On the
other hand, if only one solution or improvement is detected for a
tag, it is done automatically.

Regarding the Demo Sandbox Environment, it presents the
HTML mockups and executes a set of client-side enrichments per
tag (according to their semantics) to let the end-users interact with
a prototype of the final application. The Sandbox emulates some
aspects of the application (for instance, client–server communica-
tion) in order to avoid the time-consuming building and deploy-
ment stages, thus quickly providing testable versions of the
application on-the-fly with the tags introduced so far.
6. Evaluation

In order to evaluate the MockupDD approach and its tool sup-
port we carried out an experiment. We used the Goal–Question–
Metric (GQM) method [26] to drive our evaluation, which repre-
sents a systematic approach for tailoring and integrating goals to
models of the software processes, products and quality perspec-
tives of interest, based upon the specific needs of the project and
the organization. GQM defines a certain goal, refines this goal into
questions, and specifies metrics that should provide the informa-
tion to answers these questions. Next, we describe information re-
lated to our evaluation, from planning to interpretation stage.

6.1. Planning stage: goal

The GQM model starts top-down with the definition of an expli-
cit measurement goal. The primary purpose of the evaluation was
to make a quantitative comparison of the MockupDD method vs.
the traditional pure MDWE modeling process to evaluate the
improvements that the approach can provide in terms of effective-
ness and efficiency. Table 1 shows the main goal of our evaluation.

Achieving these measurements goals would yield a better
understanding of effectiveness and efficiency of the MockupDD
approach.

6.2. Definition stage: questions and metrics

The experiment does not include an evaluation of the advanta-
ges of using mockups through the development process, since this
has been already assessed in detail by Ricca et al. [6].

The following research questions were considered in our
evaluation:

� Question 1. Do MockupDD tags provide the semantics required
to represent and implement data-intensive applications with
effectiveness – i.e., in an accurate and complete way?
� Question 2. Does MockupDD generate MDWE models with effi-

ciency, i.e. less effort and less error incidence, instead of build-
ing them from scratch using a MDWE language and its
accompanying design method?

In order to provide evidence related to these questions, differ-
ent metrics were selected, collected and interpreted. The metrics
defined are based in WebML models we used for checking and

http://agilemdd.lifia.info.unlp.edu.ar/mockupdd/sui.xsd
http://agilemdd.lifia.info.unlp.edu.ar/mockupdd/sui.xsd


Table 1
Main goal of our experiment.

Analyze the: Delivered web product and development process
For the purpose

of:
Understanding the MockupDD approach

With respect to: Effectiveness and efficiency of the MockupDD approach
From the

viewpoint of:
The project team

In the context
of:

Web development environment with simulated clients and
users (a Photo Stock website application was developed)

J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 681
comparing whether the MockupDD approach has the same expres-
sive level and allows generating the same kind of models, but with
more effectiveness and efficiency. The experiment participants
worked with WebML and MockupDD in order to gather quantita-
tive information of both approaches. The metrics defined were
the following:

� Metric 1. Coverage Ratio (CR). Percentage of WebML model
elements that can be generated from tags to specify the desired
semantics. It provides a measure of modeling effectiveness.
� Metric 2. Time Spent on Correcting Errors (TSCE). Errors are

particular situations where experiment participants did not
complete the modeling successfully and a new specification
must be considered. TSCE metric is computed by analyzing
MDWE models generated through a MockupDD tagging against
models built manually and checking failures (such as missing
elements and semantic errors). Both approaches (MockupDD
vs. MDWE) are compared to define which one performed better
and with fewer errors. This provides a measure of modeling
efficiency.
� Metric 3. Completion Rate/Mean Time-on-task (CRMT). This

metric summarizes the relationship between the time taken
for modeling the same application in both MockupDD and man-
ual MDWE. This gives us a better understanding on how much
faster developers can build MDWE models with MockupDD in
comparison to manual modeling. Like TSCE, it provides a mea-
sure of modeling efficiency.
6.3. Data collection stage: method

6.3.1. Participants
In order to collect the statistical information for the evaluation,

we organized 10 academic development groups, each one com-
posed of three modelers; five groups of participants worked using
MockupDD (Experiment groups) and the remaining five groups
used WebML (Control groups) with its supporting tool, WebRatio.8

The participants were advanced undergraduate students of Com-
puter Science and were familiar with Web Engineering methods
and WebML. Both groups worked in different laboratory sessions
and were able to work practically day-by-day with potential users
and clients within both processes. Clients and users were simulated
in the evaluation process by assistant professors of Computer Sci-
ence from University of La Plata. In this context, they used natural
language, User Stories and mockups to refine requirements specifica-
tions. They also provided technical recommendations or suggestions
by using only User Stories; that is, expressed requirements derived
from interaction patterns [27].

While clients were available the same amount of time for both
groups (Control and Experiment), we noted that participants
belonging to the Control groups interacted in a more spaced man-
ner in comparison to participants of the Experiment groups. We
8 WebRatio – http://webratio.com/, accessed 07-May-2013.
empirically attribute this to the use of the traditional, waterfall-
like MDWE workflow.

6.3.2. Apparatus
MockupDD and WebML approaches were considered in this

test. We chose the WebRatio solution because it is a mature, fully
model-driven setting and it has been used in several industrial-
scale projects.9 In general terms, our validation approach consisted
in using MockupDD to generate WebML models and then, check
whether MockupDD improves the modeling process instead of build-
ing WebML models directly.

Experiment groups applied the previously commented Mock-
upDD Scrum adaptation, dividing the whole development in three
Sprints of 1 week of duration each one. In each Sprint, a subset of
the presented mockups were refined and tagged. On the other
hand, Control groups worked in a more traditional MDWE way,
without a structured process behind.

6.3.3. Procedure
The validation was divided in two different stages. In both

stages, the participants were asked to build models to implement
the previously introduced Photo Stock website application. In both
cases, a set of detailed mockups and User Stories of the application
to be modeled was given to all the participants. The set of mockups
and User Stories was the same for all the participants within the
experiment.

The first stage of the validation, aimed at answering Question 1,
involved the manual building of WebML models and checking if
MockupDD was able to express the same concepts that were pres-
ent in them, thus assessing its semantic feasibility. We gave the set
of mockups and Stories describing the application to every partic-
ipant of Control groups and asked them to build a WebML model
that implements the functionality described.

On the other hand, all subjects of Experiment groups received
an initial MockupDD training session in which an instructor ex-
plained the approach (prototyping, tagging, and related tools).

The summarized tasks selected for the evaluation were:

� To generate unique credentials to access to the MockupDD tool-
ing for every participant.
� To instruct participants of the Experiment groups in the Mock-

upDD process (introducing tool usage and concepts such tags,
SUI, etc.)
� To ask all participants to develop a simple data-driven applica-

tion (we chose the mentioned Photo Stock website) using the
assigned methodology (WebML or MockupDD depending on
the group).
� To ask all participants to keep track of the identified shortcom-

ings, time spent and type of errors in modeling tasks in detail.

To increase the motivation on the subjects, the instructor ex-
plained to them that the web development in the experiment
would be similar to their final projects at the end of the term.

6.4. Interpretation stage: results and discussion

The first objective of the experiment was to assess the effective-
ness of MockupDD by calculating a value for Metric 1 (Coverage
Ratio, CR). In Fig. 12, a graphical summary of the CR in one of that
WebML models can be observed. In that figure, every Data Unit and
Link (WebML concepts) is graphically covered by its originating tag
(i.e., the tag that causes its creation during the model generation
9 WebRatio Success Stories – http://www.webratio.com/portal/content/en/success-
stories, accessed 07-May-2013.

http://webratio.com/
http://www.webratio.com/portal/content/en/success-stories
http://www.webratio.com/portal/content/en/success-stories


Fig. 12. Tag coverage of a WebML model.

682 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
process). As the figure shows, tags cover almost all of the elements.
In addition, in some case one tag can generate more than one Web-
ML element; for instance, a Data() tag including data navigation
generates both the underlying Data Unit and its internal selector
in order to navigate to the related instance. Also, some elements
like Entry Units are generated from underlying mockup elements
(e.g., input forms) and since MockupDD does not use connections
to express simple business logic, CRUD-related Units and their
links (usually between 2 and 3 in average) are generated automat-
ically from only one tag.

The results of the detailed analysis showed that the only fea-
ture/model elements that cannot be automatically generated were
the Selectors of the Units where the Query() tag was used. For
every WebML model built by a participant, the CR was calculated
and then averaged to obtain a single value for Metric 1. The results
showed that the average CR for WebML models was between 5.44%
Table 2
Estimated factor used to evaluate the time spent on correcting errors.

Error type Criticality
factor

Description

Extra Unit 1.25 The modeler used a Unit that can be
modeling effort

Missing Unit 1.5 A Unit is missing, causing a missing
More complex Unit 1.1 A simpler Unit (one that can be insta
Missing/wrong attribute in

Unit
1.1 The modeler missed or provided an i

Missing link/transfer 1.1 The modeler missed a link or object
and 14.14% with a confidence of 98%. In addition, as a result of the
analysis, we concluded that the only elements that cannot be cov-
ered by MockupDD were WebML Query Units and Units with ad-
vanced functionalities which semantics are part of our future
work – like AJAX behavior and improvements in data listing
through Data() tags. Because of this result and the fact that exe-
cutable queries can be freely expressed in MockupDD through a
Query() tag (for instance in plain SQL language) but not exactly
derived to WebML concepts, we can conclude that the MockupDD
approach is effective in terms of the tagging coverage, thus
answering positively to Question 1.

To study the efficiency criteria we established a set of error
scale points that are listed in Table 2. The table assigns an error
score to every error type according to the estimated time that have
to be spent onto correct it. Thus, the score also represents the
semantic importance of the error, i.e., how much it causes the model
omitted or grouped using a single, more semantic one, thus representing more

feature in the application
ntiated with less effort and configuration) can be used
nadequate configuration attribute in a Unit

transfer to another Page



J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 683
to differ semantically from the same concept expressed in an ideal
WebML model or how much extra effort it requires adapting it to
its ideal representation. For wrong or missing element errors, the
score assigned is based on the amount of time saved by omitting
the instantiation of the Unit (Missing Unit error), something related
to it (Missing link/transfer error) or a part of it (Missing/wrong attri-
bute in Unit). The experiment organization team calculated and
agreed these values proportionally considering the modeling time
required in each case, starting from the least costly elements. The
calculations were made observing the usual modeling behavior of
the participants and by the personal experience of the team. Final-
ly, while the introduction of additional WebML Units (Extra Unit er-
ror) does not imply that some functional requirement is not met in
the application, it adds development time that is not directly valu-
able from the end-user point of view, thus delaying the implemen-
tation without providing any perceivable added value. In these
cases (Extra Unit error), we decided to use a similar score that for
the Missing Unit case but, since the end-user is getting a complete
final application anyway, we only computed a half of the original
value. Using this scoring approach, a perfectly matching model
(comparing to an ideal WebML model) will have a error score of
zero, since no time has to be spent correcting it. Any other model
that differs from the ideal one will have a positive score, denoting
the amount of proportional time required to correct this model or
adding WebML components that do not meet an explicit end-user
requirement.

We used the mentioned score to analyze the performance of
both groups in terms of the quality of the WebML models obtained.
To accomplish this task, we required an ideal WebML model that
we could use as a reference to compare models obtained in both
cases and analyze their quality. For this purpose, a control WebML
model was carefully built step-by-step by all the members of the
experiment organization team, checking that each concept used
in it was the fastest-to-build amongst all the possible alternatives.
For instance, when showing a list of data present in multiple inter-
related entities, both a WebML Query and an Index can be used.
However, the former takes longer to be built since it requires a full
SQL-like query to be written while the latter only needs to specify
(a) Summary of the TSCE Score co

(b) TSCE Score per mockup (WebML)

Fig. 13. WebML vs. MockupDD average error
the root entity and the relationships that have to be crossed to nav-
igate to the interrelated classes. Since the experiment organization
team members have more than 5 years of experience in WebML
modeling and even more in the MDWE field, we assumed that
the obtained model is the one that can be built the quickest to
meet the requirements of the Photo Stock website. Moreover, since
mockups restrict the type and structure of the Pages in the WebML
model, practical experience demonstrated that most of the design
doubts when building such model were related to choosing which
specific type of Unit to use (e.g. Query vs. Index, Multidata Unit vs.
Index, etc.).

Using the control WebML model, we computed Metric 2 (Time
Spent on Correcting Errors, TSCE) for the manually built WebML
models and for models generated from the tagged mockups. We
used Cliff’s Delta [28] metric to measure the effect size of applying
MockupDD in the development process. We chose that measure
because it allows computing the amount of difference between
two groups in a non-parametric way – in this case, without refer-
ring to concrete time spent in modeling. The result of the Cliff’s
Delta computation returned a value of -0.07 which implies a slight
improvement regarding time in correcting errors in favor of Mock-
upDD. In addition to this metric, we averaged the TSCE per page/
mockup to analyze where MockupDD performed better than Web-
ML and vice versa. The partial results are depicted in Fig. 13a. In
this figure we also show box plots with the error score distribution
for WebML (Fig. 13b) and MockupDD (Fig. 13c). Because of this, we
can conclude that the MockupDD approach did not introduce new
errors in the modeling in comparison to WebML, and also showed a
slight efficiency improvement in terms of defining correct models
from scratch. In addition, we observed that participants who built
models directly with WebML were more prone to commit errors
with a higher score, while those that used MockupDD tended to
commit less valuable errors.

For Metric 3 (Completion Rate/Mean Time-on-task, CRMT), we
assessed the time spent by all the individuals during the modeling
tasks; that is, initial instruction and tagging in the MockupDD case
and direct WebML model building in the context of WebML. When
participants worked, we asked them to carefully take account of
(c) TSCE Score pe

score and error difference per mockup.



684 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
the time spent in the modeling as a key issue in their work. As in
the previous case, we computed the Cliff’s Delta to measure the ef-
fect size of applying MockupDD in comparison to WebML, this
time in relationship to the time required to obtain models. The re-
sults of the Cliff’s Delta computation were �0.89, which implies
that MockupDD time measures were significantly less in average
than the ones taken in the WebML case. We also included a graph-
ical comparison of the averaged time spent in every step in Fig. 14.

Having positive results for Metric 2 (TSCE) and Metric 3 (CRMT),
we can conclude that Question 2 can be also answered positively.
Having answered positively to the defined questions through the
detailed metrics we can conclude that in general terms the Mock-
upDD approach offers a faster and less error-prone model building
strategy in comparison to classic MDWE workflow.

6.5. Threats to validity and limitations

We comment here on some aspects that can represent threats
to the results obtained, and were taken into account in our work
path. In addition, we describe how we intended to mitigate their
impact on the results. The threats considered were:

1. Small subset of test applications. In our validation we tested
MockupDD only with one common data-intensive application.
Although data-intensive applications are characterized by sim-
ilarities regarding the complexity of their structure and behav-
ior, we are making experiments with different data-intensive
applications to have a bigger statistical data set. On the other
hand, we analyzed several classic and well-known examples
of data-intensive websites (for instance, the ones bundled with
WebRatio tool) and chose one similar and also less known for
modelers, thus obtaining results of a typical and representative
application in the field.

2. Participants’ industrial experience. While the participants in
the experiment had a clear and deep understanding of Web
development and modeling, they had poor industrial experi-
ence in general. Including participants with industrial experi-
ence can lead to a more mature understanding of the real
benefits of MockupDD vs. traditional Web modeling. While it
is not fully comparable with industrial experience, to mitigate
the impact of this threat, we selected students that participated
in the development of at least two Web Applications in the
academy already.

3. Domain familiarity. Several data-intensive applications exam-
ples are widespread and well known (e.g., E-Commerce sites).
Experiment participants can have an initial knowledge of the
domain and business logic that can influence the application
modeling under both approaches compared in our validation.
In order to avoid that issue, we asked questions about the Photo
Stock application domain to check whether it was completely
new for all the participants involved in the experiment.

4. Errors in the control WebML model. The WebML control
model is a key artifact to compute some of the metrics in the
evaluation. If a simpler control model can be defined, then the
error score computed for the models built by hand vs. those
Plain 
WebML

MockupDD

Tagging

0.4

Time distribution in WebML and MockupDD processe
experiment

Time (Hours)
0

Instruction

Fig. 14. Experiment t
generated by MockupDD in comparison to the WebML control
model can result unfavorable for MockupDD. As we explained
before, to reduce this potential threat, the control WebML
model was carefully built by a team of professionals with at
least 5 years of experience in the WebML language and even
more in the MDWE field.

5. Error score. The error score computed to compare WebML
models built by participants to the control WebML model was
defined and agreed by the experiment organization team
according to the estimated proportional time required to deal
with every error (e.g., adding new WebML concepts, changing
their attributes, etc.). However, errors in this score may lead
to failures in model evaluation, for instance, considering models
built by hand more costly than those generated through the
MockupDD tooling. To mitigate this threat, the experiment
team verified that correcting errors made in the models built
by hand would take longer to be corrected than those generated
using MockupDD after the execution of the experiment
sessions.

6.6. Lessons learned

In our experiment we quantified and validated the benefits of
MockupDD regarding Web Application modeling and generation.
However, we have not mentioned yet how the participants be-
haved in the context of this agile and MDD combined process. In
this subsection we will comment different situations observed in
practice during the MockupDD experiment modeling sessions.
We compare them with modeling behaviors witnessed during
the traditional MDWE working sessions in the same context. The
main motivation for this section is to capture the part of the expe-
rience that could not be specifically quantified in relation to agile
features and practices observed in the process – something that
we commented in the previous section.

1. Learn the language through modeling. While participants
learned and practiced WebML modeling with WebRatio
through specific courses that took from 2 to 3 months long,
MockupDD was introduced with a small instruction session
lasting less than an hour. Then, modelers learned the remaining
aspects of MockupDD during the modeling, using the user inter-
face metaphors present in mockups to understand the seman-
tics and rules of the language constructs (tags). Thus, we
assessed that MockupDD was easier to learn on-the-fly while
modeling.

2. Frequency of modeler/developer feedback. In MockupDD,
generating a running application was at the click of a button.
As a result, running prototypes were generated more often
when using it than in the WebRatio case. This implied a less
spaced interaction between end-users and modelers in the
MockupDD case. It is important to note that WebRatio already
has a generate feature that enables to derive, build, deploy
and then run the application being modeled. In this case, run-
ning prototypes were also used but, since starting the updated
application required more effort (e.g. restarting a web server,
Modeling

s in the first iteration taken from the evaluation 
4.19 8.5

ime distribution.



J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 685
updating database structure, etc.), it was less frequent. In many
cases, the members of the experiment organization team were
able to correct misinterpretations in requirements gathered as
soon as noticed in the running demo. Thus, the experience
showed that instead of discussing requirements orally or textu-
ally, the application itself was used more often to discuss the
current development version in comparison to the WebML case.
At the same time, the fluent interaction clearly showed who the
more active developers were in every group in the MockupDD
case.

3. Explicit doubts from developers. We noted that direct ques-
tions made to end-users when modeling over the visual meta-
phors in mockups (MockupDD) were more frequent than
when modeling just observing them (WebML/WebRatio).

4. Modeling the big picture. We noted that MockupDD modelers
tended to model in a more iterative or shallow way, i.e. in rounds
or stages in which they enrich every mockup partially with
some features. On the other hand, WebML modelers were more
prone to model pages in depth, building every page completely
before moving onto the next one.

From the observed summary, points (2) and (3) helped us to
empirically assess that MockupDD is closer to satisfy some of the
agile principles in comparison to classic MDWE. In general, we
found that some of the principles in the Agile Manifesto10 were
easier to accomplish when using MockupDD because of the advanta-
ges provided by the more frequent interaction between developers
and end-users. Since we evaluated only one application in detail
and used (through automatic model generation) only one technolog-
ical stack, it was not possible to assess agile features related to team
work practice visible in long periods of time like Continuous attention
to technical excellence and good design enhances agility, The best archi-
tectures, requirements, and designs emerge from self-organizing teams
or at regular intervals, the team reflects on how to become more effec-
tive [. . .].

Because of these initial behaviors observed in the MockupDD
case, in the future we plan to take metrics related to modeling
practice in situ to measure the practices noted with more detail
and more accurately.
7. Related work

In the model-driven development field, prototype or structural
user interface models have been linked to other metamodels with-
in different approaches. All modern MDWE methodologies con-
sider detailed user interface definition in the last stages of their
lineal processes: WebML provides templates to render its units,
UWE specifies a custom presentation UML profile for the same pur-
pose and OOHDM uses Abstract Data Views. In addition, there have
been defined MDD processes non-strictly related to the Web do-
main in which presentation specifications have been tackled as a
final step, sometimes using mockups. An example of such process
is detailed in [29], in which business and data artifact models rep-
resent the starting requirements specifications, enabling to gener-
ate user interface mockups from them afterwards. MockupDD
differs from all these approaches promoting the use of UI specifica-
tions from the first stages of the modeling process, thus using them
as initial, detailed requirement artifacts to discuss and assess how
the application should look and behave in a language that is under-
standable by end-users.

Several model-driven approaches started to consider using UI
specifications in the initial steps of their processes. In the context
10 Principles Behind the Agile Manifesto – http://agilemanifesto.org/principles.html,
last accessed 23-Aug-2013.
of the OO-Method, Panach et al. propose gathering interaction
requirements from UI sketches [30], creating structural task mod-
els from them, using the ConcurTaskTrees [31] formalism. Efforts
were also made to integrate UI specifications into requirement lan-
guages, such as RSL (Requirements Specification Language) [9]. In
this work, a general UI model was used to specify the kind of do-
main objects the User Interface should manage and how they are
manipulated using a non-linear storyboard metamodel – i.e. a
metamodel that expresses the type of interaction done within
the UI but not the specific order in which the steps are executed,
as in [30]. Instead of focusing on the generation of task models like
in [30], the methodology proposed here is oriented to generate
runnable data-intensive Web Applications as WebML does. Web-
Spec [32], a visual domain-specific language designed to capture
interaction requirements, uses formal descriptions like precondi-
tions and logical assertions to specify how the user interface must
behave during every User Story. Thus, it is more oriented to de-
tailed interaction requirements (i.e. how the application should be-
have) instead of defining the kind of domain objects that should be
manipulated and how. MockupDD is oriented and restricted to
these last features in order to generate a running application that
can be tested by end-users as quick as possible.

Different forms of user interface specifications were used in the
context of agile and model-driven approaches. On one hand, mock-
ups have been successfully used in agile processes; in [11], differ-
ent experiences of using UI mockups in the context of agile
processes are commented. The results of the survey conducted in
this work showed that mockups are essential to assure usability
and also represent a valuable addition to User Stories to describe
requirements. In this context, they also help to estimate the effec-
tive development cost of each Story [12]. The same conclusions
were drawn in [33], where developers admit giving more relevance
to mockups than to User Stories associated to them. However, in
common agile settings mockups are used only as a requirement
artifact and developers have to code all the application by hand
just observing them. In this work we have shown how digital
mockups can be reused throughout the development process in
the context of a user-centered MDWE development methodology.

Recently, the idea of starting the development of web applica-
tions from HTML content and then wiring the different aspects of
it through languages (like CSS already does for presentation) was
proposed [34]. In comparison to MockupDD, this approach is more
related on the technical aspects of building Web Applications using
HTML mockups than using mockups themselves as a requirement
artifact. However, it shares with MockupDD the focus on tackling
the application behavior first in the development process.

Another common practice is to link mockups to more tradi-
tional software artifacts like UML Use Cases [35], where the
authors obtain mixed models and use them to derive prototypes
that even become updated whenever requirements change, in a
round-trip way. In this way, Kulak et al. have also used UI require-
ment tools combined with Use Cases [36]. In addition, Cohn [10]
proposes incorporating UI mockups with User Stories in an Agile
Development context. Annotating informal mockups is another ap-
proach frequently used in the context of requirements gathering
[16,37]. In [38], mockups with different fidelity levels are linked
to users, tasks and interaction models. This approach also proposes
to evaluate UI mockups using annotations. The idea of discovering
content models from form-based user interface prototypes has also
been discussed [39]. However, all the approaches commented pre-
viously are developer-oriented and focused on requirements refin-
ing or generating only a part of an application – for instance, data
models. MockupDD proposes to generate the whole final applica-
tion (as in common MDWE approaches) placing annotations over
mockups that are technically valuable for developers and also sim-
ply enough for end users to understand.

http://agilemanifesto.org/principles.html


686 J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687
Several Model-Driven approaches for defining and generating
User Interfaces exist. One of the most remarkable approaches in
the field is UsiXML [24]. The UsiXML approach supports the def-
inition of User Interfaces independently of their device, platform
and modality, defining 4 different levels of abstraction from tasks
models to Concrete User Interface (CUI) specifications. In this
work, we use a unique UI language and abstraction level (the
SUI) to represent UIs and we use it as a foundation to define dif-
ferent concerns and aspects. Our approach is closer to the idea of
generating UI prototypes from high-level languages that have
also been discussed in [40]. In this work, the authors present a
domain specific language (DSL) to specify the content of user
interfaces that are structured following a global menu pattern.
Concrete implementations of UI mockups are generated and the
approach follows an iterative process between developers and
customers until the final prototype application is obtained. While
MockupDD is also oriented to generate the Web Application too,
instead of starting with an abstract or general view of the it (like
a global menu), it starts the development process with mockups,
which represent the concrete and expected view of what the
end-users require.

Within the existing methods for software design, User-Centered
Design (UCD) [41] is intended to incorporate user’s perspective
into the software development process in order to achieve a usable
system. A key principle of UCD is, among others, the prototyping
activities [42]. The prototyping approach has been promoted as a
primary solution to manage and even spur design changes during
system development. Prototyping methods move from low to
medium fidelity [43]: paper sketches, storyboards, Pictive, scripted
simulations and so on, each getting slightly more sophisticated. In
this context, MockupDD proposes to use graphical mid-fidelity
prototypes to start and guide the modeling of Web Applications,
as we already described.

Regarding our previous work, we already introduced the idea of
generating MDWE models from user interface mockups both for
the UWE [2] and for WebML [1,5] approaches. Using both ap-
proaches as a basis, here we have outlined a unified process to iter-
atively discover features and build models for MDWE
methodologies in general through an UI prototype enrichment
strategy that can be used in the context of agile processes. While
in [5] we briefly introduce the presented approach, in this paper
we describe it in detail,

1. introducing a more exhaustive set of high-level web
specifications,

2. showing its general applicability in the MDWE field using both
UWE and WebML methodologies,

3. detailing how it can facilitate the introduction of agile features
in MDWE and also how can be directly used within well-known
agile processes,

4. introducing a Demo Sandbox Environment that enables end-
users to test how the application will behave in production in
any moment during the modeling and

5. including a validation experiment that showed the quantitative
and qualitative improvements that the approach can provide in
the context of the development of a concrete Web Application.

8. Conclusions and future work

In this paper we presented MockupDD, a model-driven ap-
proach that combines traditional model-driven practices with
some features of agile software development approaches. Since
a great deal of work has already been done in the MDWE area,
we have oriented our approach not as yet another model driven
approach, but as an agilizer of existing MDWE proposals, and also
as a requirements gathering approach oriented to data-intensive
Web Applications.

We have shown through an evaluation that, in comparison to
traditional MDWE approaches, MockupDD reduces the errors and
effort in model building, reusing the already defined MDWE
architecture and tooling. In addition to the concrete validation re-
sults, we observed that MockupDD allows introducing agile fea-
tures to the modeling process thanks to: (1) the use or
mockups that improves the requirements gathering in compari-
son with textual methods [6] and also facilitates communication
between customers and developers, and (2) the atomic modeling
strategy provided by tags and the demo generation features to
show the application modeled so-far to end-users at any particu-
lar moment during the development process.

Despite the fact that part of the process involves features dis-
covering from user interfaces, MockupDD is mostly a forward ap-
proach rather than a reverse engineering one. Except for the
heuristics used in tagging assistance and automatic model import-
ing or generation, the rest of the stages involve designer skills and
irreplaceable human intervention. User interface mockups are used
as a technique to discuss and formally capture requirements that
can be expressed in modern MDWE methodologies.

We have shown that mockups are completely reused in the ap-
proach in the following way:

1. If detailed HTML mockups representing the definitive presenta-
tion for the application are built, they are completely reused,
importing them into the Interactive Tagging Tool.

2. If digital tool-based mockups are used, they can be derived to an
HTML representation and then imported into the tool. In this
case, the automatically generated frontend can be refined until
obtaining the final presentation structure.

Regarding the current and future work in the approach, we plan
to continue testing and validating it through the development of
applications like the one commented in this paper. In addition,
we are continuously analyzing and improving the proposed tag
sets in the context of real Web Application developments in order
to improve them by making them clearer, more consistent and
complete. The addition of several features through pluggable tag
sets like RIA behavior, social, geographical and security-oriented
are also being studied.

Supporting many MDWE approaches is also an important task
we are taking into account, since it assures that the methodology
is applicable to the model-driven Web Engineering field in general,
and not only over a subset of methodologies. Furthermore, we are
building a catalogue of well-known user interface patterns using
the current tag set in order to prove its applicability and generality.

Outside the MDWE field, mockup tagging can be used to gen-
erate different types of specifications that are not directly related
to UI concepts. We are investigating different features that can be
specified using the graphical metaphors expressed in mockups
that are related to non-visible behaviors like transactionality,
APIs composition or concurrency. When mockups are used to eli-
cit interaction requirements of an application, this kind of tags
can aid to discover and specify (and in some cases generate auto-
matically) parts of applications that are not necessary visible to
customers or end-users.

Related to this work, the WebSpec approach [32] allows
describing how user interfaces must behave using a detailed lan-
guage. We are also working in a MockupDD-to-WebSpec translator
that eases the task of defining common WebSpec constructions
using tags that are easy to apply. Finally, we are extending our tool
to provide code generation capabilities for common Web technol-
ogies and architectures.



J.M. Rivero et al. / Information and Software Technology 56 (2014) 670–687 687
Acknowledgments

This project is partially supported by the PROALAR DAAD –
MINCYT project DA/11/11.

References

[1] S. Ceri, P. Fraternali, M. Matera, Conceptual modeling of data-intensive Web
applications, IEEE Internet Comput. 6 (2002).

[2] N. Koch, A. Knapp, G. Zhang, H. Baumeister, UML-Based Web Engineering,
Springer, London, 2008.

[3] G. Rossi, O. Pastor, D. Schwabe, L. Olsina, Modeling and implementing web
applications using OOHDM, in: G. Rossi, O. Pastor, D. Schwabe, L. Olsina (Eds.),
Web Eng. Model. Implement. Web Appl., Springer London, London, 2008, pp.
109–155.

[4] M. Wimmer, A. Schauerhuber, H. Kargl, On the integration of web modeling
languages: preliminary results and future challenges, in: Proc. 3rd Int. Work.
Model. Web Eng., 2007.

[5] J.M. Rivero, G. Rossi, J. Grigera, E.R. Luna, A. Navarro, From interface mockups
to web application models, in: 12th Int. Conf. Web Inf. Syst. Eng., Sydney, New
South Wales, Australia, 2011, pp. 257–264.

[6] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio, E. Astesiano, On the
effectiveness of screen mockups in requirements engineering, in: 2010 ACM-
IEEE Int. Symp. Empir. Softw. Eng. Meas., ACM Press, New York, NY, USA, 2010.

[7] A. Ravid, D.M. Berry, A method for extracting and stating software
requirements that a user interface prototype contains, Requir. Eng. 5 (2000)
225–241.

[8] L. Cao, B. Ramesh, Agile requirements engineering practices: an empirical
study, IEEE Softw. 25 (2008) 60–67.

[9] K.S. Mukasa, H. Kaindl, An integration of requirements and user interface
specifications, in: 6th IEEE Int. Requir. Eng. Conf., IEEE Computer Society,
Barcelona, Catalunya, Spain, 2008, pp. 327–328.

[10] M. Cohn, User Stories Applied: For Agile Software Development, Addison-
Wesley, 2004.

[11] J. Ferreira, J. Noble, R. Biddle, Agile development iterations and UI design, in:
Agil. 2007 Conf., IEEE Computer Society, Washington, DC, 2007, pp. 50–58.

[12] A. Martin, R. Biddle, J. Noble, The XP customer role in practice. three studies,
in: Agil. Dev. Conf., IEEE Computer Society, Salt Lake City, Utah, USA, 2004, pp.
42–54.

[13] J. Sutherland, K. Schwaber, The Scrum Papers: Nuts, Bolts, and Origins of an
Agile Process (n.d.).

[14] S. Ceri, P. Fraternali, A. Bongio, Web Modeling Language (WebML): a modeling
language for designing Web sites, Comput. Networks. 33 (2000) 137–157.

[15] A. Rashid, D. Meder, J. Wiesenberger, A. Behm, Visual requirement
specification in end-user participation, in: First Int. Work. Multimed. Requir.
Eng., IEEE Computer Society, Minnneapolis, MN, USA, 2006, pp. 6–6.

[16] K. Schneider, Generating fast feedback in requirements elicitation, in: Proc.
13th Int. Work. Conf. Requir. Eng. Found. Softw. Qual., 2007, pp. 160–174.

[17] P.P. da Silva, User interface declarative models and development
environments: a survey, Lect. Notes Comput. Sci. 2001 (1946) 207–226.

[18] J. Guerrero-Garcia, J.M. Gonzalez-Calleros, J. Vanderdonckt, J. Munoz-Arteaga,
A theoretical survey of user interface description languages: preliminary
results, in: Proc. 2009 Lat. Am. Web Congr., IEEE, 2009, pp. 36–43.

[19] J. Lin, M.W. Newman, J.I. Hong, J.A. Landay, DENIM: finding a tighter fit
between tools and practice for Web site design, 2000, pp. 510–517.

[20] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, A. Vera, Breaking the fidelity
barrier, in: SIGCHI Conf. Hum. Factors Comput. Syst. – CHI ’06, ACM Press, New
York, NY, USA, 2006, p. 1233.

[21] D. Engelberg, A. Seffa, A Framework for rapid mid-fidelity prototyping of web
sites, in: IFIP 17th World Comput. Congr. – TC13 Stream Usability Gaining a
Compet. Edge, Montreal, Quebec, Canada, 2002, pp. 203–215.
[22] J.M. Rivero, G. Rossi, J. Grigera, J. Burella, E. Robles Luna, S. Gordillo, From
mockups to user interface models: an extensible model driven approach, in:
ICWE’10 Proc. 10th Int. Conf. Curr. Trends Web Eng., Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 13–24.

[23] J.M. Rivero, J. Grigera, G. Rossi, E.R. Luna, N. Koch, Towards agile model-driven
web engineering, Lect. Notes Bus. Inf. Process. 107 (2012) 142–155.

[24] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, V. López-Jaquero,
USIXML: A language supporting multi-path development of user interfaces, in:
R. Bastide, P. Palanque, J. Roth (Eds.), Eng. Hum. Comput. Interact. Interact.
Syst. Jt. Work. Conf. EHCI-DSVIS 2004, Springer, Berlin Heidelberg, Hamburg,
Germany, 2005, pp. 200–220.

[25] S.W. Ambler, Agile model driven development is good enough, IEEE Softw. 20
(2003) 71–73.

[26] V. Basili, G. Caldiera, D. Rombach, The Goal Question Metric approach, 1994.
[27] M. van Welie, G. van der Veer, Pattern languages in interaction design:

structure and organization, in: Proc. Interact ’03, 2003, pp. 527–534.
[28] G. Macbeth, E. Razumiejczyk, R.D. Ledesma, Cliff’s delta calculator: a non-

parametric effect size program for two groups of observations, Univ. Psychol.
10 (2011) 545–555.

[29] N. Sukaviriya, V. Sinha, T. Ramachandra, S. Mani, Model-driven approach for
managing human interface design life cycle, in: Proc. 10th Int. Conf. Model
Driven Eng. Lang. Syst. Model. 2007, Nashville, USA, 2007, pp. 226–240.

[30] J.I. Panach, S. España, I. Pederiva, O. Pastor, Capturing interaction requirements
in a model transformation technology based on MDA, J. UCS. 14 (2008) 1480–
1495.

[31] F. Paternò, ConcurTaskTrees: an engineered notation for task models, in: D.
Diaper, N. Stanton (Eds.), Handb. Task Anal. Human-Computer Interact,
Lawrence Erlbaum Associates, Manwah, 2003, pp. 483–503.

[32] E. Robles Luna, G. Rossi, I. Garrigós, WebSpec: a visual language for specifying
interaction and navigation requirements in web applications, Requir. Eng. 16
(2011) 297–321.

[33] H. Ton, A strategy for balancing business value and story size, in: Agil. 2007
Conf., IEEE Computer Society, Washington, DC, USA, 2007, pp. 279–284.

[34] E. Benson, Mockup driven web development, in: Proc. 22nd Int. Conf. World
Wide Web Companion, International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, Rio de Janeiro, Brazil,
2013, pp. 337–341.

[35] A. Homrighausen, H.-W. Six, M. Winter, Round-trip prototyping based on
integrated functional and user interface requirements specifications, Requir.
Eng. 7 (2002) 34–45.

[36] D. Kulak, E. Guiney, Use Cases: Requirements in Context, Addison-Wesley,
2004.

[37] J.M. Moore, Communicating requirements using end-user GUI constructions
with argumentation, in: 18th IEEE Int. Conf. Autom. Softw. Eng., IEEE
Computer Society, Montreal, Quebec, Canada, 2003, pp. 360–363.

[38] T. Memmel, H. Reiterer, Model-based and prototyping-driven user interface
specification to support collaboration and creativity, J. Univers. Comput. Sci. 14
(2008) 3217–3235.

[39] R. Ramdoyal, A. Cleve, J.-L. Hainaut, Reverse engineering user interfaces for
interactive database conceptual analysis, in: B. Pernici (Ed.), 22th Int. Conf.
Adv. Inf. Syst. Eng., Springer, Berlin, Heidelberg, Hammamet, Tunisia, 2010, pp.
332–347.

[40] J. Zhang, K. Läufer, Z. Gong, Mockup-supported web requirements engineering,
in: 2003 Int. Conf. Internet Comput., Las Vegas, Nevada, USA, 2003, pp. 684–
687.

[41] Ergonomics of human-system interaction – Part 210: Human-centred design
for interactive systems (n.d.).

[42] M. Maguire, Methods to support human-centred design, Int. J. Hum. Comput.
Stud. 55 (2001) 587–634.

[43] T.Z. Warfel, Prototyping: a practitioner’s guide, Rosenfeld Media (2009).

http://refhub.elsevier.com/S0950-5849(14)00022-6/h0005
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0005
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0010
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0010
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0010
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0015
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0035
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0035
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0035
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0040
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0050
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0070
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0070
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0085
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0085
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0115
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0125
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0140
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0150
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0155
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0160
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0175
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0180
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0190
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0195
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0210
http://refhub.elsevier.com/S0950-5849(14)00022-6/h0215

	Mockup-Driven Development: Providing agile support for Model-Driven Web Engineering
	1 Introduction
	2 Background
	3 Photo Stock: an example application
	4 The MockupDD process
	4.1 The process in a nutshell
	4.2 Step 1 and Step 2: mockup construction and processing
	4.3 Step 3: Features specification
	4.4 Tags refinements
	4.5 Step 4: code and model generation
	4.6 MockupDD development process
	4.7 Conclusions

	5 Tooling and implementation
	5.1 Tooling support
	5.2 Implementation aspects

	6 Evaluation
	6.1 Planning stage: goal
	6.2 Definition stage: questions and metrics
	6.3 Data collection stage: method
	6.3.1 Participants
	6.3.2 Apparatus
	6.3.3 Procedure

	6.4 Interpretation stage: results and discussion
	6.5 Threats to validity and limitations
	6.6 Lessons learned

	7 Related work
	8 Conclusions and future work
	Acknowledgments
	References


