
January 18, 2011 12:45 WSPC/117-IJSEKE - SPI-J111 0218-1940
S0218194010004979

International Journal of Software Engineering
and Knowledge Engineering
Vol. 20, No. 6 (2010) 809–842
c© World Scientific Publishing Company
DOI: 10.1142/S0218194010004979

TOWARDS COMPOSABLE LOCATION MODELS IN
UBIQUITOUS COMPUTING APPLICATIONS

ESTEBAN ROBLES LUNA∗, GUSTAVO ROSSI†
and SILVIA GORDILLO‡

LIFIA, Universidad Nacional de La Plata
La Plata, Buenos Aires (1900), Argentina

∗esteban.robles@lifia.info.unlp.edu.ar
†gustavo@lifia.info.unlp.edu.ar

†www.lifia.info.unlp.edu.ar/en/rossi.htm
‡gordillo@lifia.info.unlp.edu.ar

‡www.lifia.info.unlp.edu.ar/en/silvia.htm

Received 20 May 2008

Revised 1 October 2009
Accepted 25 October 2009

The state of the art in location models falls short to adapt to new requirements such as
composition and integration of maps. Composing and integrating maps are typical oper-
ations we want to apply when we deal with ubiquitous computing applications because
they evolve permanently (i.e. to add location information of new cities, buildings, means
of transport, etc.). We propose a novel approach that by abstracting some concepts such
as located objects and locations, can result in more flexible models, therefore allowing
dynamic composition and integration of maps. With this approach, it is also possible to
combine different location representations, making applications easier to extend.

Keywords: Location modeling; ubiquitous computing; GIS.

1. Introduction

Location modeling has attracted the interest of different areas in computer sci-
ence, since it is a key application aspect in those applications in which we need
either to track the user’s position or when application objects need to feature some
position (in relationship to the earth, to other objects or both). Geographic infor-
mation systems [1–5], location base services [6–8], context aware software [9, 10],
physical hypermedia [11–13] and ubiquitous computing [14–17] are some examples
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of application areas in which dealing with locations is important and therefore as
the applications are complex, having a high level and abstract view of locations
is a must.

Similarly to other modeling activities, location modeling involves defining how
locations are abstracted in an application, in order to be manipulated by application
objects, how they affect other application features or objects, how they are related
to each other, how operations related to locations are computed, etc. A particular
location model may simplify the way some operations are computed and may also
pose some constraints regarding which operations are meaningful or not. Some
location models might be completely abstract (e.g. symbolic models like [18, 19, 6])
while others might have strong relationships with our common understanding of
locations (this is the case of geometric and global geographic models).

In the particular case of ubiquitous computing, the inherent complexity of this
kind of software, which grows “organically” as explained in [20], has motivated an
important tenet of work to find adequate location models which support the variety
and the evolution of application requirements. For those ubiquitous applications
which are physically spread on multiple physical areas, the choice or development
of the location model is crucial.

Let us suppose that a company has developed an application that helps salesmen
travel among different cities. By using the cartography of the city where their clients
are located, the system provides information to give assistance during their trips.
As the salesmen need to move inside huge buildings or campuses, the company
decides to incorporate information, to help them move inside those areas. For this
new requirement, the company requests each customer a location model for its
buildings. This task is done by using customized tools the company has developed
so that each customer can give a map of some of their most important buildings.
With this new information, the application can eventually compute paths between
two different rooms of two different buildings.

In this scenario different kinds of location models appear, for example in terms of
indoor or outdoor models. Each of these models is represented using different infor-
mation structures, supports different operations and defines varied relationships.
For example, while in an indoor model it may be useful to organize the space using
a composition structure (e.g. a tree structure), this kind of relationship does not
appear in an outdoor model which uses a global reference system. We might want
to integrate a transport model for those salesmen who use public transport (such
as the metro); here we have another kind of composition problem, because once the
two models are integrated we should modify our path computing algorithms to take
into account the new means of transport.

In this context, an additional integration effort is needed in order to make models
compatible enough to work together, especially in those particular locations in which
we have to switch from one model to another one. For example, the “borders” of a
building like the location of the entrance door might be modified when we develop
the integrated model. This is because the door may have some information about
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how it is connected to the corridors of the building, but we also need to show how
it is connected to the outdoor part of the building. When integrating the location
model submitted by a client, we need to manipulate the model to add this semantic
to the location. For example, if the location of the entrance door is modeled as a
pair ((45, 50), #entranceD), where the first component is the geometric part and
the second one is symbolic, we need to express that the door is adjacent to the street
segment that pass next to the building. This new feature involves the manipulation
of the symbolic model, creating a link between two different symbolic locations.

While this integration problem has been recently studied [18, 19, 21–23], most
approaches can not avoid polluting the original model, making it difficult to support
further evolution or reuse.

In summary, when ubiquitous applications evolve, we face the following problems
regarding the integration of disparate location models:

• Expressing new physical relationships without modifying previous models. The
evolution of models forces us to integrate the location of an object to express new
relationships, e.g. the entrance door and the metro stations adjacencies. This
fact may imply working on previous models so that these relationships are taken
into account. Like in the entrance door example, the addition of the relationships
originated when we integrate these models should be completely decoupled from
the existing relationships.

• The way paths are computed should be easily changed when new relationships
appear. This means that, when we incorporate a new model like the metro model,
the decision of guiding the user to use the metro should be seamlessly incorporated
in the model without modifying the relationships between locations.

In this paper we present a novel approach for modeling locations which solves
the problems found when we integrate disparate location models. The approach
is materialized in a conceptual object-oriented framework in which we represent
different concepts related to locations.

The main contributions of this paper are:

• From a conceptual point of view, we show that location is a more general concept
than the way it is modeled (e.g. geometric figure, symbol, etc.). Our approach
proposes a way for decoupling the concept from how it is represented in a par-
ticular location model. Also, we propose an effective way for computing paths
between two located objects in disparate location models.

• From a design point of view, we show how to map these ideas into a concrete
object-oriented framework which we describe in a step by step way.

• From an implementation point of view, we show how to reuse the relationships
between domain objects as location information. For example, a relationship
between a building and a room in a domain model could be considered as an
inclusion relationship at the location level.
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The rest of this paper is organized as follows: In Sec. 2, we present the basic char-
acteristics of location models and briefly present the main idea of our approach. In
Sec. 3 we describe our approach in more detail explaining: how we model locations
and how previous models are adapted. In Sec. 4 we show how to plug models. Sec-
tion 5 describes the way we can reuse some relationships between domain objects
to express physical relationships. Section 6 explains some implementation details
on how operations and paths are computed. Section 7 discusses some related work;
in Sec. 8 we conclude and present some further work.

2. Basic Concepts

2.1. Location models

The decision of which location model will be used in a location-sensitive application
is one of the key aspects before the development stage. The purpose of a location
model is to give a computational representation of real-world locations. The most
common examples are the geometric and symbolic models [18] which define an easy
way of modeling locations.

In the first case, locations are modeled as geometric figures on a Cartesian plane.
Each figure is a composition of one or many of the three primitives that the model
provides: point, polyline and polygon. Suppose that we are modeling the locations
of the 2nd floor of a building (Fig. 1). In this model, the location of each room is
modeled as a rectangle. We also model the locations of corridors since we need to find
paths between different places that may cross them and the elevator because we can
switch between the floors of the building when we use it. Notice that the fact that
two rectangles touch on one side doesn’t tell us that they are adjacent in the sense
that one person can go from one to the other directly. So, for expressing adjacency
in this context, we may chose between using a symbolic model or polluting the

Fig. 1. 2nd floor of a building modeled with geometric figures.
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model by adding some semantic information to figures. This last approach is used
in GIS applications by storing semantic information in dbf files that complement
their shape files [24].

Symbolic models provide an alternative way for modeling configurable loca-
tions. We are able to define the semantic of the operations either by extension or by
comprehension. A location is modeled as a symbol that may be linked to other sym-
bols. Different links provide different relationships that define the semantic of the
operations. For the 2nd floor example, we model the locations of each room, the ele-
vator and the corridor as symbols #r1, #r2, #e, #c1. Relationships are defined by
different types of links providing information for computing the operations (Fig. 2).
The main drawback of symbolic models is that in general, the relationships between
locations have to be manually configured and for huge models this is complicated to
handle. Other approaches use symbols with well defined semantic so that operations
are defined by comprehension over the set of symbols [19].

As Leonhardt shows in his thesis [18], each model has advantages and disadvan-
tages. While geometric models are preferred when we want to compute distances and
directions, symbolic ones offer a configurable way of expressing some relationships
that do not clearly emerge in geometric models, e.g. adjacency. While these models
are the basic ones for representing locations, there are also proposals to combine
them in the form of pair [18], so that we can have the advantages of both. Although
these approaches improve some characteristics of the base models, they fall short
when we need to integrate them. Adding new relationships force a modification on
previous models therefore producing tangled components.

Fig. 2. 2nd floor of a building modeled with symbols.

2.2. Composition and integration problems

The composition and integration of locations models is not a simple task, especially
if we take into account the incompatibilities that basic models have with each other.
For instance, let us suppose that we have a particular location modeled as a symbol
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and we have another one modeled as a geometric figure, we may wonder how we
compute the distance between this two locations.

This problem emerges from the interaction between different models. For exam-
ple, assume that we want to integrate the location models of a building and the
streets of a city on the salesman example (Sec. 1). For the sake of understanding
we ignore the integration and composition of geometric models because it has been
already studied in the GIS domain, and solved using transformations.

Let us suppose that we have an extended version of the 2nd floor model where
we add some objects like: floors, elevators, stairs segments and their relationships.
Also, we suppose that the streets of the city are modeled using a symbolic model.
Composing these models involves the creation of links between the symbols. In this
case, the composition would be expressed by the addition of a new link that states
the inclusion relationship between the building and the city. This cannot be easily
done with these models because they are expressed using two different instances
of a symbolic model and we can only add links between symbols inside the same
model. Symbols must therefore be migrated to a common model, and then the link
could be created. This leads to a new problem: the symbol’s name conflicts should
be solved after the migration process.

The integration between these models faces the same problem. We need to add
a new relationship between the location of the entrance door and the street segment
nearby the building. This cannot be done if the locations are in different instances
of a symbolic model, so if we want to connect these locations we need them to be in
the same model. To sum up, composing and integrating symbolic models produce
the grown of a huge monolithic model that contains all the symbolic locations.

The scenario would be somewhat different if the streets segments were mod-
eled like geometric figures and the building was modeled with symbols. In this
case, we would assume that we have some information of the streets such as which
are the segments of the streets and how they are connected. In GIS systems, this
information is usually stored on dbf files associated to the shape files where the geo-
metric figures are stored. The composition and integration between these models
will involve the creation of new relationships between the locations. For composing
geometric and symbolic models we face the problem that the inclusion operation is
defined differently: in the first one it is formally defined as an operation (for two
specific figures we cannot change the result of the operation), and in the second
one is defined by connections between the links which may involve a look up on a
table or collection. One solution for this problem is adding new tables to define rela-
tionships between geometric figures and symbols. So we may express the inclusion
relationship between a figure and a symbol by adding a new entry on the table. On
the other hand, in order to obtain integration some adjacency relationships have
to be added. These kinds of relationships are defined in a similar way for both
cases. In geometric models, big tables that express that two locations are adjacent
are defined. These tables can be considered similar to a big set of relationships
in the symbolic model. So, integration would involve the creation of a new table
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for expressing the adjacency relationship between the locations, which is a simple
solution.

Both approaches lack from being a homogeneous solution and try to fill a huge
gap between geometric and symbolic models on how operations are defined. The
solution of adding tables for expressing relationships does not scale if we add a new
kind of location like a hybrid one [19, 18] which uses both types of locations. This
will oblige us to rethink the solution each time we add new kinds of locations to fill
the gap that location models have to express some kinds of relationships.

We next outline the basic ideas of our approach to solve the previously mentioned
problems.

2.3. Our approach in a nutshell

As previously mentioned, location models are computational representation of loca-
tions. The decision of which model we chose for a particular application is not triv-
ial, and in the case of ubiquitous applications which evolve permanently, things get
harder since these models have to interoperate.

State-of-the-art models provide several ways of modeling locations. We can
model a location as a point because it is easy to compute Euclidian distances and/or
directions or we can chose a symbol to compute paths because they clearly express
the adjacency relationship with links. Although there are more models than basic
ones [18, 25, 26, 19] they all use some common concepts.

The located object concept [27] is used to talk about the objects that have a
location. Usually, located objects are grouped on maps that have a specific pur-
pose, e.g. group all the located objects inside a building. State-of-the-art models
also use the location concept but they don’t agree on how it is defined. For the
purpose of this paper we assume that a location is used to express the relationships
that a located object has with its physical environment. For example, if the loca-
tion of the building is modeled as a point, it allows us to compute the distance,
direction, and inclusion relationships with other objects with the same type of
location.

All models provide the same conceptual approach for representing locations.
They use the location and located object concepts posing the restriction that a
located object can only have one location: point, symbol or hybrid (Fig. 3). We
can talk about a located objects layer containing all the located objects that we
use to compute location operations. These objects reference an element in the loca-
tion layer that represents the physical relationships that the object has with its
environment.

These models are somehow strict because they force the object in the loca-
tion layer to express the whole set of relationships with one element represent-
ing the location. The objects in that layer are points and symbols that as we
previously saw fall short to express the whole set of relationships that a located
object may have.
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Fig. 3. Standard approach for modeling locations.

Instead of thinking about models so strictly, we can think about them as different
ways of representing some relationships a location has. Some models are better to
express some kind of relationships than others. Going back to the example, the
location of the entrance door can be represented differently if we are modeling the
map of the building geometrically or if we are showing the relationships between
the door and the streets of the city (Fig. 4). In this last case we would prefer to
represent the location symbolically, so that the adjacency relationship between the
door and the street segment would be expressed easily as a link.

Our approach is based on the fact that these models (e.g. geometric, sym-
bolic, etc.) only express a subset of the relationships that a location has with its
environment.

Locations are not easy to extend when we need to express new relationships
if we modeled them either as a geometric figure or as a symbol. For example, the
entrance door or the building could be first represented by a symbol to express the
adjacencies with the located objects inside the building, but when we integrate this
with the streets model we want to compute distances to located objects such as
streets which are on a different model.

Fig. 4. The location of the entrance door using multiple representations.
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Fig. 5. An outline of our approach for modeling locations.

Clearly, we need to use symbols and geometric figures at the same time. This
pushes the idea of having an abstract location which can be multiple represented
with points, symbols, etc. This idea introduces a new layer for abstracting the
location pushing down the geometric and symbolic elements (Fig. 5). From now
on, we will call representations for those elements that can represent a location,
allowing us to express some physical relationships. Examples of representations are
points and symbols. With this approach, expressing new relationships is as simple
as adding representations that can provide the information for computing them.

To sum up, the evolution of models pushes the introduction of new relationships
between the objects. Relationships are expressed using points or symbols but new
ways of expressing relationships may appear. Depending on our needs, the way we
model the location of an object may vary. With our approach, a representation such
as a point or a symbol denotes a way of expressing some relationships of a location.
Abstracting the location allows us the late introduction of new relationships that
it has with its environment. By adding new representations we are enriching the
location with new relationships.

In conclusion, our approach is based on decoupling locations from how they are
represented on a particular model. In this way, the entrance door of the building can
be represented in multiple ways; allowing to express in the future new relationships
that do not emerge from previous models. In the following section we show how we
used an object-oriented approach to put our ideas to work.

3. Composable Location Models

3.1. Abstracting locations

As previously mentioned, the core of our approach consists in adding a new layer
between the located objects and the way we represent their locations. This strategic
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Fig. 6. Adding semantic representations to our approach.

decision gives us the flexibility to define new ways of representing a location; for
example if somebody has represented a location as a URL [25, 26], we can easily
accommodate this new representation in our model (Fig. 6). Also, we can dynam-
ically express new relationships on an existing location. For example, the entrance
door of the building was first modeled as a symbol. Then, a new requirement for
computing distances with the streets of the city appeared. With our model, express-
ing this relationship is simple; we just need to add a geometric representation to its
location.

To illustrate these ideas we use the application example described in the intro-
duction (Sec. 1). The application is intended to help salesmen to find their ways
to clients. For the sake of comprehension we assume that the model of the appli-
cation has been described using UML. In Fig. 7 we show the simplified model of
the application comprising the main application classes according to the previous
requirements.

In the model of Fig. 7, we can add and remove buildings from a particular
customer and define appointments with contacts of the companies on specific rooms.

Fig. 7. Simplified model of the company system.
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Suppose that we aim to extend this model to incorporate location information.
Particularly, we intend to have the location of the customer’s buildings, their rooms
and our salesman’s locations so that we can guide them on those places. Some
new objects may also appear: corridors for computing paths inside the buildings;
elevators, stairs and floors to physically describe the most important objects of the
building. Notice that these objects are not in our base model, so we should add
them in order to express these relationships.

In our domain model, there are classes like Building and Room to which we want
to attach new behaviors realizing the new responsibility of knowing their location,
(they are now located objects). We have several approaches for adding this responsi-
bility. The simplest solution is to incorporate the location into these classes with an
instance variable and proper accessors (as shown in Fig. 8). This solution has some
drawbacks: it couples the domain model with particular location information and it
replicates code if we want to implement a message that computes a location oper-
ation. For instance, the distance message computes the physical distance between
two located objects. Its signature is: distance(anotherLocatedObject) and its imple-
mentation is return this.getLocation().distance(aLocatedObject.getLocation()) which
would be replicated on each class. A better solution is to provide a generic wrap-
per [28] to enhance the behavior of the objects with their new location aspect. The
LocatedObject class will be responsible of the behavior related to locations and to
delegate to its subject all the sent messages that it does not understand. We can
change an object’s location by sending the setLocation(aLocation) message (Fig. 9).

Located objects have a location in order to compute location operations. This
concept is modeled with the class PhysicalLocation. We differentiate between two
kinds of locations: an UnknownPhysicalLocation and a ConcretePhysicalLocation.
The first one is used as a Null object [29] to express the lack of knowledge of the
location of a located object. The second is used as a location that has at least
one representation to compute their operations. This kind of location uses their
representations to compute operations (Sec. 6).

Fig. 8. Model polluted with location information.
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Fig. 9. Generic wrapper to capture the location aspect of an object.

For realizing representations like points and symbols we use a Representation
base class and apply some well known design patterns [28]. This class provides a
protocol that subclasses must implement in order to provide the necessary func-
tionality to locations. It also defines coercing and compatible checking so that sub-
classes only need to implement the way in which they operate with each other.
Some of these operations are implemented using the template method pattern [28].
We also define a RepresentationSystem base class with the purpose of grouping the
representations that belong to the same set. This class works in the same way as
a geometric plane or the set that contains the symbols, specifying which repre-
sentations are compatible to operate. For example, on a symbolic representation
system, two representations can operate if they belong to the same representation
system. This matches the concept definition of when we can operate between two
symbols (Sec. 2.2).

In an OO environment relationships between objects may express physical rela-
tionships. For example, the relationship between Building and Room classes in Fig. 9
shows an inclusion relationship (inheritance). Also, the adjacency and inclusion rela-
tionships between corridors, rooms and buildings may be reflected at the OO level.
To reuse these OO relationships as physical relationships with the lowest cost we
introduce the usage of Domain Representations (Sec. 5) as a simple and customized
solution.

Finally, a Map class is used to group a set of related located objects. Map
provides a set of useful behaviors to add, remove and search located objects on
the map. A complete diagram of these classes and their relationships can be
seen in Fig. 10.

With this abstract view of the most important classes of the approach we can
proceed with our exemplar domain model. As we previously mentioned, object
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Fig. 10. Located object, location, representation and map concepts.

instances from classes like Building, Room and Saleman will be wrapped with the
LocatedObject instances. Our customers can now create maps that express the most
important physical relationships between the objects of their buildings. In order to
build their maps, they may use a tool to edit the map on a UI which generates
the object model. This helps somebody without programming skills to create maps
without dealing with the objects behind. An example of one of the maps generated
by a tool could be seen on the simplified object diagram of Fig. 11. Notice that
some classes (Floor, Corridor, Elevator) were added to the model because they are
necessary to compute paths between some located objects. For example, when we

Fig. 11. A simplified object diagram of a building’s map.
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compute paths between rooms we would like to know which corridors we will have
to go through. Notice that these objects are not at the same level of abstraction as
the domain objects since they do not have any responsibility on the domain of the
application. They belong to the “location” level because they were added just for
the purpose of computing paths and giving visual feedback to the user.

3.2. Basic representations

Geometric figures and symbols offer a convenient way for representing locations,
because their semantics are clear and they are easy to specify. Representations give
us a way for expressing relationships between locations and as previously mentioned,
they are defined abstractly in the Representation base class. We will illustrate our
approach with these two common ways of representing locations, showing how they
are modeled by extending the base classes of our conceptual framework.

3.2.1. Dealing with symbols

When using symbols, we can choose between defining their relationships by com-
prehension or by extension. The first option is generally coupled to a particular
model, so this option is not taken into account in our model, despite it being easy
to add one of them. For instance, we can define the symbolic location of the rooms
and floors of the building with symbols such as: #1, #101, #102, and #205. The
operations are defined by comprehension over the set of symbols:

• Inclusion: s1 includes s2 iff s1 length = 1 AND s2 length = 3 AND substring
(s1,1) = substring(s2,1).

• Adjacency: s1 isAdjacentTo s2 iff abs(s1 asInteger - s2 asInteger) = 1.

For instance, #1 includes #101 will answer true, but #1 includes #205 and
#101 includes #221 will answer false. And for the adjacency #101 isAdjacentTo
#102 will answer true, however #1 isAdjacentTo #205 and #101 isAdjacentTo
#221 will answer false.

The second option is more flexible and besides it is easy to implement tools for
creating symbols and manipulating their relationships. We model this type of repre-
sentation with the ExtensionalRepresentation class. This class extends the Represen-
tation base class provided by our framework; as its name suggests, the relationships
between symbols are defined by knowledge relations in the object model. This class
provides a suitable protocol to configure the relationship between symbols providing
methods for defining the inclusion, adjacency and distance relationships. We have
also defined the representation system that is used to give a context where symbols
are defined. The ExtensionalRepresentationSystem class is responsible for creating
the instances of the ExtensionalRepresentation class avoiding name conflicts as it
keeps track of the symbols that have been created. A class diagram of this type of
representation is shown in Fig. 12. An example of the use of these representations
will be shown in Sec. 3.3.
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Fig. 12. Symbolic representations.

3.2.2. Representing geometric figures

Points, polygons and polylines are the other usual type of representation for loca-
tions. These geometrical objects have some common behaviors: they all have a
bounding box and, if a geometric transformation is defined, they can be converted
to an equivalent element on other plane. For these reasons we define a base class
called GeometricRepresentation from which Point, Polygon and Polyline classes are
derived. Each subclass is responsible of knowing how to compute its own bounding
box and how to operate with other geometric figures. The GeometricRepresenta-
tionSystem is responsible for creating these basic representations (Fig. 13).

Transformations such as translation, rotation and scaling are taken into account
in our conceptual framework. These transformations allow us to transform a geomet-
ric figure on one plane to an equivalent one on the other. They are useful when we

Fig. 13. Geometric representations.
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Fig. 14. Geometric transformations.

want to model geometric figures relative to a different origin. Transformations are
modeled on the transformation hierarchy. ScaleTransformation, TranslationTrans-
formation and RotationTransformation are the classes that model these concepts
(Fig. 14). We provide a NullTransformation class for those geometric representa-
tion systems that are not relative to others i.e. a representation on one of this
representation systems can’t be converted to an equivalent on another.

3.3. Using representations

Geometric and symbolic representation systems are modeled with classes that
extend the Representation and RepresentationSystem base classes. These types of
representations are the ones the tool uses to create the building map. As previously
seen, we have modeled the floors, rooms and corridors of the buildings. In Fig. 11
we presented a simplified version of the map in an object diagram describing all the
objects without their representations. With the information discussed in the previ-
ous subsection, we can now complete the diagram (shown in Fig. 15) based on the
map of the 2nd floor of the building (Fig. 1). To keep the diagram small, we omit
located objects, the map and the corresponding domain objects. We use a naming
convention for location objects: e.g. buildingLocation refers to the Location object
referenced by the LocatedObject object which wraps a Building object. The diagram
shows the location of several objects such as the elevator, rooms and the corridor.
Some locations such as the elevator and the rooms are represented by a symbol and
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Fig. 15. Extended version of a building’s map with representations.

a geometric figure. Others like the floor and the building are just represented by a
symbol with inclusion relationships.

4. Towards Pluggable Location Models

In our previous example we explained the need for integrating different maps; par-
ticularly we mentioned that our customer could provide us with a map of their
buildings and we may want to integrate it with the streets’ map. The integration of
maps is important because we can build bigger and more complex maps by plugging
little ones.

The streets’ map contains the streets of the city and how they are connected.
The map is useful for calculating directions. A simplified object-oriented model,
containing only 4 classes: City, Street, StreetSegment and Corner are presented
in Fig. 16. Class City represents a container for the streets. Street knows all the
segments that it contains. A StreetSegment corresponds to a piece of street between
corners and a Corner is a point where the streets segments join.

The building is nearby the center of the city. It is crossed by two important
streets and surrounded by a number of buildings. To model this area we have
instantiated several objects to model the streets’ map. A simplified version of the
map is shown in Fig. 17.

We now show how to integrate and compose the maps. Both tasks are performed
by adding new representations to the existing locations. In the first case, we need
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Fig. 16. Class diagram representing a simplified city.

Fig. 17. Simplified version of the object diagram for the streets’ map.

to express a new relationship between the door and the nearby street segment. The
relationship should indicate the adjacency between the door and the nearby street
segment. We express this relationship with the use of symbolic representations. We
need to create two new representations and link them with the use of an adjacency
link. Then, the locations of both objects need to be modified with the right sym-
bols. For this task we need to instantiate a new object for representing the entrance
door of the building, its corresponding located object and location instances. The
objects and links created as a consequence of the integration of the maps are shown
in Fig. 18.

The composition between both maps is easier to achieve. We need to express
that the city contains the building (and transitivity all the objects that the building
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Fig. 18. Integration of streets and building maps.

contains). As we previously showed in Fig. 17, the city was not considered as a
located object on the streets map. We need to add a located object that wraps
the City object with its location represented by a polygon. We chose to represent
the location of the building as a point because it allows expressing the inclusion
relationship between the city and the building. The locations of both objects are
now modified by the incorporation of the new representations and the streets map
is modified by the inclusion of the city located object (Fig. 19).

Fig. 19. Composition of streets and building maps.
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Summarizing, our model allows extending the relationships of the existing
located objects. Integrating or composing models is fairly simple: we need to define
the representations needed to express the new relationships and then add them to
the existing locations.

5. Domain Representations

Domain and application models help to understand an application domain without
delving into its details. For example, the streets domain model (Fig. 16) could have
been created without considering that the model will be used for location purposes
in the future. However, sometimes, the model may expose some relationships that
can be useful at the location level. For example, the relationship between the corners
and the street segments can be used to express the adjacency relationship at the
location level. The rule for this relationship is the following: if a street segment joins
a corner then the street segment is adjacent to the corner and if a street segment
starts from a corner then the corner is adjacent to the street segment. If we follow
this rule then we can move along the streets segments of the city using it.

The adjacency relationship defined by the previous rule could be defined with
symbolic representations. This kind of representations is easy to configure for this
rule. However, if we do not pay special attention to the evolution of the model, we
can obtain an inconsistency between the objects in the model with the links on the
symbolic representation system. This approach is inappropriate for two reasons: we
have to duplicate the effort each time we add streets to the model because we need
to update the symbols, and it tends to generate inconsistencies regarding to the
manipulation of the symbols.

Notice that the concept of representation also applies to this scenario because
we can use domain objects and their relationships to represent physical relation-
ships between locations. In this case, the classes Corner and StreetSegment and
their relationships define an adjacency relationship at the location level. The idea
behind domain representations is to reuse the relationships that may emerge from
the domain model with the less possible effort, helping us not to duplicate the
effort of maintaining both models: domain and location model. In our framework
this requirement can be easily achieved as we aim to express new relationships
from preexistent objects. For this, we define a new kind of representation called
DomainRepresentation. Our framework contains two new subclasses of classes Rep-
resentation and RepresentationSystem to implement this behavior. The Domain-
Representation class will have a subject which will be the domain object that it’s
adapting (Fig. 20).

When a DomainRepresentation object receives a message like isAdjacentTo it
adapts it to the right message at the domain level returning the value after its com-
putation (Fig. 21). The DomainRepresentationSystem acts like a factory for creating
DomainRepresentation instances. This class should be configured with the appro-
priate behavior that a DomainRepresentation should adapt over the domain model.
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Fig. 20. Domain representations class diagram.

Fig. 21. A sequence diagram of how a domain representation resolves the isAdjacentTo message.

Going back to the street segments and corners example, let’s now define the rules
using a Smalltalk notation. The first rule states that a street segment is adjacent
to its incident corner. The configuration for this rule is:

domainRS := DomainRepresentationSystem new. ruleConfiguration :=

DomainConfiguration

appliesTo: [:object | object isStreetSegment ]

isAdjacentTo: [:aSS :object | aSS getTo = object ]

includes: [:aSS :object | false ]

distance: [:aSS :object | Infinity positive ].

domainRS addConfiguration: ruleConfiguration.
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The second rule stats that a corner is adjacent to their street segments that have
origin on it. We state this rule as:

ruleConfiguration := DomainConfiguration

appliesTo: [:object | object isCorner ]

isAdjacentTo: [:corner :object | corner startSegments

includes: object]
includes: [:corner :object | false ]

distance: [:corner :object | Infinity positive ].

domainRS addConfiguration: ruleConfiguration.

This approach has a clear advantage: it simplifies maintenance because we do
not need to duplicate the relationships that already exist in the domain model.
Thus, when a relationship changes at the domain level, the representation will
transparently reflect this because its operations are based on domain operations.

6. Putting Models to Work

6.1. Introduction

The idea of decoupling the location from how it is represented implies a new way of
modeling locations. Locations can be represented in multiple ways, offering different
implementations for expressing physical relationships. While at the representation
level it is clear, for example, if a rectangle contains a point, we have so far ignored
what happens at the location level. For example, two locations represented by a
symbol and a geometric figure (e.g. the building and the corridor) will respond yes
from a symbolic point of view to the question: do you include the corridor? But
it will say no from a geometric point of view. At the location level we need to
consolidate the result of the operation. For example, we may require that one of the
values computed by the representations to be true to answer true at the location
level. We are going to present different policies that are used in our framework to
consolidate the results obtained from the representation level.

Adjacency and distance are important relationships between located objects,
specially, when we want to compute paths between objects. In this section we will
present an effective way for computing paths on huge models using heuristic algo-
rithms. Our approach is based on using different heuristics while we move through
the graph.

In the following subsections we show how our framework deals with operation
computing, how we compute paths and as proof of concept we briefly describe an
application that uses location information based on our framework.

6.2. Operation resolution

Let us recall the map of the building shown in Fig. 15; it has several objects like
rooms, corridors and the building itself. Suppose that we need to compute the
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isAdjacentTo operation between room alpha and the corridor. The location of both
objects has multiple representations: a symbol and a geometric figure in both cases.
Computing the operation at the location level involves a specific processing at the
representation level: perform the same operation between their compatible repre-
sentations. In this case the symbols are compatible (they belong to the same rep-
resentation system) and geometric figures too. The operation performed between
symbols will answer “true”, because there is a link between them; however in the
geometric case it will return “false” because we do not have any information about
adjacencies on a table. Therefore, the operations between the representations give a
set of results: {true, false} that needs to be consolidated. The consolidation between
these results is done with a policy that determines which is the answer of the oper-
ation. If the policy is not specified we assume “any satisfied” policy or negation by
failure for boolean operations such as inclusion and adjacency. This means that, if
we cannot ensure that the operation is true, we answer false. In this case, one of
the results is true so the operation will answer true. As an example, we show in
Fig. 22 the classes we have added and the new operation defined in the protocol
of the LocatedObject class. A new message is added on the class so that we can
set which is the policy we will use. The framework contains implementations that
adjust to different situations. We have also implemented an AllSatisfiedPolicy and
AtLeastPolicy which are used to ensure that all the values are true to answer true,
and that at least a percent of the values are true to answer true respectively.

Notice that the approach we have followed is similar to what a chemist follows
to take a measure: it repeats the same experience and consolidates their results
according to some process. In the distance case for example, we can estimate a

Fig. 22. Operation policies class diagram.
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physical distance by taking many measures and averaging them. This is quite similar
to representations. Each time that a pair of representations computes a distance,
they give us a measure. Then, all measures can be averaged or filtered to obtain
the final result.

6.3. Path computing

Path computing is a key aspect of applications that use locations. With the approach
we have adopted, we can plug models by expressing the relationships that objects
have between each other. This task is done by creating representations that express
the new relationships among objects. Using this approach we can plug maps which
were conceived independently. Moreover, the composition is somewhat oblivious
to those maps. Maps may have many different objects so it’s just a matter of
software evolution to have millions of objects. Path computing in this scenario
is somewhat complicated and algorithms such as Dijkstra [30] cannot be naively
applied.

To overcome the problem of finding a path between an origin and a destination
we introduced the use of heuristic algorithms on our framework. This kind of search
algorithms has proven to be successful for huge graphs in the IA area [31] if the
heuristic function is admissible, that is, if it never overestimates the costs of reach-
ing the destination. In this area two of the most notable algorithms are Greedy
and A* [31]. The Greedy algorithm tries to obtain the locally optimal choice with
the hope of finding the global optimum. On the other hand, the A* algorithm is
similar to Greedy but it has two important differences: it takes into account the
distance already traveled from the origin to choose the next node and it uses the
mathematical distance function as part of the heuristic function.

These two advantages promote the usage of a slightly modified version of the
A* algorithm. This algorithm is based on a heuristic function h that is applied over
every node, in our graph of located objects. Those objects that are on the frontier
(that can be introduced in the visited nodes in the next state) are chosen based on
h. The object o with less value of h(o) is the one introduced in the visited nodes
set. This iteration is repeated until the node we want to reach is the one chosen or
if there are no more objects in the frontier set.

The modification we introduced to the A* algorithm is based on the usual heuris-
tics people use when wanting to travel from one place to another which is not close.
We need some guidance to correctly reach the destination place. Suppose one of our
salesmen wants to travel from a room in Madrid to another room in Paris using a
car. We are inside the building and we need some guides to get outside Madrid in
order to go to Paris. So, we ask the guard of the building how to go to Paris. He
tells us that we are far away from Paris, so first we need to go outside the building;
we do so. We get into the car and ask a police officer how to go to Paris. The police
officer tells us to go out of Madrid first. So he explains us how to go move through
the streets of the city. If we continue with this idea we end asking different people
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how to reach a specific located object. Each guider will help us to choose among
the possibilities we have to go to a specific place.

In our model, each located object knows a Guider that is able to provide the
heuristics when the algorithm is computed. The Guider is an interface that guiders
must implement to answer the heuristic value. As an example, let us look at the
building’s guider. In this case, we choose to implement the guider very simply.
This guider will have a set of located objects that he knows (Fig. 23) and a subset
of this set that we are going to consider as exit objects. The guider will help by
using his knowledge set: if the located object we want to reach is in this set, then
it will give the best heuristic (which will guide to the destination) to the nearest
located objects of the destination in the frontier set. If not, it will give the best
heuristic to the nearest located object in the exit set. This guider is useful for
indoor situations because, if the located objects are inside the building, then the
guider will know them. If not, the guider will guide it to one of the exit located
objects.

As previously mentioned we have chosen to travel by car. In path computing
there are some aspects that may change the ways paths are computed. These aspects
are subjective because it is the user who decides if he wants to walk, use the public
metro, etc., at the moment of the path computing. For example, in the universe of
located objects, we may find some cases where a street segment is adjacent to other

Fig. 23. Path computing.
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objects that model walking paths. Why should not we choose among these objects
to be intermediate objects in a path? The answer in this situation is that we want
to travel by car, not walking; thus we need some policy that users may configure in
order to define their preferences for path computing. For this aim we introduce a
path computing policy. This policy gives us another heuristic that is used together
with the one the guider computes. Therefore, the Guider computes the heuristic
using a PathComputingPolicy. Each time he computes a heuristic, he adds it with
the one the PathComputingPolicy has computed.

Continuing with our example, let us suppose that we have areas which are con-
sidered “dangerous” and we want to skip them in our trip from Madrid to Paris.
Also, we would like to use highways and avenues whenever possible. To do so, we
implement a CompoundPathComputingPolicy which is a composite of PathComput-
ingPolicy that computes the heuristic by adding the heuristics of its children so that
both: dangerous areas and highways can be considered at the same time. To skip
dangerous areas we implement a SkipAreasPathComputingPolicy which basically
contains a set of polygon areas, if a located object is included in one of these areas
then the heuristic is Infinity otherwise is the physical distance between the object
and the destination:

>>value: anO to: destinationO partialPath: path

^(self areas anySatisfy:[:area | area includes: anO])

ifTrue:[Infinity positive]

ifFalse:[anO distance: destinationO]

In the same way we implement a WeightPathComputingPolicy that weights the
physical distance between the current located object (CLO) and the destination
based on the class. For instance, if the CLO is a Highway then we multiply the
distance by 0.9, if CLO is an Avenue then we leave the distance as usual, otherwise
we multiply by 1.2:

wpcp := WeightPathComputingPolicy new.

wpcp addConfigurationFor: Highway weight:[:distance | distance*0.9].

wpcp addConfigurationFor: Highway weight:[:distance | distance].

wpcp addOtherwiseConfiguration:[:distance | distance * 1.2].

The implementation is shown as follows:

>>value: anO to: destinationO partialPath: path

|configuration|

configuration := self configurations at: anO class.

ifAbsent:[^self otherwiseBlock value:(anO distance: destinationO)].

^configuration value: (anO distance: destinationO).
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Finally, the configuration of the CompoundPathComputingPolicy is shown next:

pathComputingPolicy := CompoundPathComputingPolicy new.

pathComputingPolicy addPolicy: wpcp.

pathComputingPolicy addPolicy: (SkipAreasPathComputingPolicy areas:

areas)

Although we show a rather statically implementation of a PathComputingPolicy
we can implement a more dynamically version that takes into account traffic reports
to skip traffic jams.

6.4. Implementation and proof of concept

We have implemented this framework based on the idea of decoupling locations from
how they are represented using the Visualworks 7.4 NC Smalltalk environment [32].
We took this implementation decision because Smalltalk provides a good platform
for testing pure oriented object solutions. Particularly, we have used blocks to imple-
ment domain representations. A more “conventional” object-oriented solution, such
as using Java, would need some modifications in the corresponding class-hierarchy.

On top of the basic implementation we have developed some applications as a
proof of concept for this approach. We will detail the one which uses the same kind
of problem we have used as an example in the previous sections. The application’s
purpose is to give assistance to the attendees of a conference. The conference is held
in a city but spread in multiple buildings. We already have the streets maps of the
city. Also, the conference committee has developed a map for each of the building
where the conference takes place. They give details about the corridors, rooms and
the schedule for the conference. In the application the attendee (user) can request
to compute paths between rooms on different buildings. Also it can take a look at
a resume of the talk he is assisting. The sensing aspect of the application, which
gives the location of the attendee, is simulated with a set of panels (Fig. 24). We
assume that the mobile device has the capacity of sensing GPS and beacon signals.

With little effort, we connect the maps detailing which objects on the “frontier”
of the buildings are connected with the street segments. As an example we show
how we connect one of the buildings with the streets map. In this case we chose
to determine a geometrically represented zone of the building to be the exit zone.
This zone is next to the entrance door and is near to a street segment that passes
by the building. So, from our point of view, we can consider them adjacent and we
represent this relationship adding two new symbols to the locations of the objects
in the same way we have done with the example (Fig. 18). Also, the building is
configured with the guider we have suggested in the path computing section. The
guider knows as an exit point the exit zone of the building which gives the necessary
information for path computing.

To compose the building location in the streets map we use the same simple
strategy used in the example. We chose to represent these locations with points
that describe the position of the building in the streets map.
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Fig. 24. Example look of the application.

As the conference is physically spread into multiple buildings we need to give
assistance to the attendees on how to move from one room to the other. Suppose
one of the attendees is located inside of one of the buildings and he wants to attend
to a talk which will take place in a room on another building. The application allows
selecting one of the talks and requesting a path to the place where it will take place.
The path is shown as a polyline that guides the attendee to his next talk (Fig. 25).

Fig. 25. Path computing from physically spread rooms.
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Fig. 26. View of the path to reach the destination room.

When the attendee gets out of the building, the application automatically notice
the GPS signal and changes the location of the user to the right map keeping the
computed path so that the user gets feedback of his location and the path he has
to travel (Fig. 26).

7. Related Work

Location modeling has attracted the attention of many areas in computer science as
it use is a key concern for context aware, location aware and location base services.
In each of these areas there have been many efforts to develop different models to
easily handle new requirements. These models can be classified into two sets:

• Ad-hoc models which try to solve particular problems of the application that was
under development.

• Abstracted models that are built in the form of framework allowing developers
to instantiate and extend them.

We concentrate on the second set of models which have captured the conceptual
ideas behind some of the solutions of ad-hoc implementations. The semi symbolic
model [18] introduced by Leonardh was developed to get the advantages of geomet-
ric and symbolic models. Each location is modeled as a pair (geometric, symbol).
The geometric information is used to compute physical distances between locations
and the symbolic is used to compute relationships between locations such as inclu-
sion and adjacency. This model was one of the firsts that introduced the idea of
combining more than one model to fully model a location. Our research shows that
it is better to decouple the location from how it is represented in a particular model,
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such as the geometric or the symbolic ones. The semi-symbolic model forces to do
a modification if we want to represent new relationships between the locations. In
our work this can be easily handled by adding a new representation that gives the
semantic of the new relationship. Also, our work is not constrained to these types of
models (geometric, symbolic). We can take advantage of reusing the domain model
to express physical relationships between different located objects.

Semantic locations in the form of URLs [25, 26] are mapped from different
information sources such as bar codes, GPS points and beacon signals to an URL.
This mapping helps to provide a unique access to the same location. The application
running at the URL could provide location services for the area in which the user
is located, although the application does not know exactly the location of the user.
This approach introduces the notion of mapping information to a single object.
Each time we map a new piece of information to the same URL we are enhancing
the previous information we have mapped. Although the model provides a mapping
from sensed data to the URL, it does not provide and inverse mapping from the
URL to the representations as the mapping will give many representations. This
model becomes similar to our work as it deals with geometric and beacon signals as
representations of the same location. Also, it introduces the mapping to a unique
concept which allows enhancing the location each time we represent it on a different
representation system. In our work, we allow multiple representations for the same
location so each representation expresses some of the relationships between the
environment and the location. We also allow a knowledge relationship between the
location and the representations because the location computes its operations using
the representations, so a location must know how it is represented.

The hybrid location model [19] is similar to the semi symbolic approach. This
model merges a symbolic location that expresses a containment relationship with
optionally geometric information. Each location (named ali) is represented by a
path in the form of: a/b/c where the character “/” represents the containment
relationship. A complete location is modeled like ali://a/b/c#(0, 1). The ali:// is
the way we access this type of locations. Then a/b/c is the symbolic hierarchy and
the information beyond character “#” is the geometric shape of the location. The
model exposes a collection of functions that can be applied over alis such as: distance
(ali, ali) and contains (ali, ali). The model is similar to the semi symbolic approach
of Leonarth as it tries to use the advantages of each existing model. The ali:// and
the way the location is represented, shows the intention of modeling the location
with a URI. This fact helps the model to be unambiguous when it tries to express a
location. The same idea of representing the location with multiple models is adopted
in our work. In this way, we combine many of the benefits of working with geometric
and symbolic locations. The key difference between the hybrid model and our work
is that the hybrid model constraints the way location can be represented to symbolic
and geometric ones. Our work focuses on multiple representing the same location
but not restricted to geometric and symbolic ones. In Sec. 5 we showed how to take
advantage of the domain model to enhance the location concern of the application.
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The realms and states model [33] formalizes the approach introduced by the
semi-symbolic approach. A location is modeled as a state on a particular realm.
A realm can be seen as a set where their elements are states. States are related with
raw geometric information for positioning purposes. The symbolic part of the model
is obtained by the relationships that the realms has. For example, we can define a
containment relationship between a state X in the realm 1 and the realm 2 and thus
a state in the realm 2 inherits the property of been contained on X. This model
guarantees some properties as it is formally conceived but it is constrained to raw
locations and the realm, state concept. We use another approach distinguishing
that a location serves as a way of expressing the relationships that a particular
place has with its environment. As the possible relationships are infinite, the model
decouples the location from how it is represented on a particular model. This helps
the model to be easily extended with other representations while the application
is running. By adding new representations we enrich the physical semantics of the
location.

To summarize, our model distinguishes a location as a first class object that
could be represented in many ways. The way we represent a location can be (but it is
not restricted to): geometric shapes, symbols and even domain objects. Decoupling
these concepts helps the model to be dynamically enriched with other representa-
tions of the same location. A location that was firstly conceived as the point (12,
24) on a Cartesian plane is enriched when we add an adjacency relationship with
a symbol. This approach helps people to establish different relationships with the
use of representation systems. Plugging these representations to locations enriches
the previous locations without modifying the located objects.

8. Concluding Remarks and Further Work

In this paper we have presented a novel approach for dealing with the integration
and composition problems found when using different location models in ubiquitous
applications. We showed that the approach has several advantages:

• It abstracts the location concept in such a way that multiple representations are
possible for a particular location (using for example, geometric figures, symbols,
urls, etc.).

• It is easy to extend the relationships which arise when integrating and composing
different models, by adding new representations to existing locations.

• It allows accommodating other types of representations such us domain represen-
tations helping to reuse domain relationships.

In this paper we have discussed several further problems which are summarized
below.

Having multiple representations for a single location poses the necessity of
consolidating the results obtained when operating with them. For this purpose
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we proposed the usage of different policies and an architectural solution to deal
with them modularly; these policies performed very well in the applications we
developed.

Composing and integrating models implies that a huge number of objects might
exhibit location properties; therefore the need for path computing algorithms that
perform acceptably is a must. We presented a modified version of the A* algorithm
that behaves correctly with the introduction of the guider concept.

We are working in two different fields in order to extend and improve the pre-
sented approach. We are analyzing the introduction of probabilistic information in
each of the representations in order to deal with vague information. This addition
must be taken into account by the computing policies to get a real benefit. As an
example, we can have the location of a person represented by a point (GPS signal)
and by an ellipse (GSM signal) with different probabilities depending on the sig-
nal quality. If we want to compute the operation distance, we could use a policy
that only takes into account those representations with a probability higher than
0.5. This example illustrates the necessity of developing new policies that take into
account the probability of representations.

We are also integrating our framework into a more general architecture for
building ubiquitous applications in two domains: physical hypermedia [11–13] and
location-based services [6, 7]. The challenge in this integration lies in the fact that
both domains pose their own challenges to the way locations are managed. The sep-
aration between located object, location and representation provides a good grain
of hooks to plug the components needed to deal with locations with other objects
in the architecture.
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