

Modelling adaptations requirements in Web workflows

M. Urbieta
LIFIA, Facultad de Informática,

UNLP, La Plata, Argentina
murbieta@lifia.info.unlp.edu.ar

W. Retschitzegger
Department of Cooperative

Information Systems,
Johannes Kepler University Linz

werner.retschitzegger@jku.at

G. Rossi
LIFIA, Facultad de Informática,

UNLP, La Plata, Argentina
Conicet

gustavo@lifia.info.unlp.edu.ar

W. Schwinger
Department of Cooperative

Information Systems,
Johannes Kepler University Linz

wieland.schwinger@jku.ac.at

S. Gordillo
LIFIA, Facultad de Informática,

UNLP, La Plata, Argentina
CiCPBA

gordillo@lifia.info.unlp.edu.ar

E. Robles Luna
LIFIA, Facultad de Informática,

UNLP, La Plata, Argentina
esteban.robles@lifia.info.unlp.edu.ar

ABSTRACT
Workflows play a major role in nowadays business and therefore
its requirement elicitation must be accurate and clear for
achieving the closest solution to business’s needs. Due to Web
applications popularity, the Web is becoming the standard
platform for implementing business workflows. In this context,
Web applications and their workflows must be adapted to market
demands in such a way to minimize development effort. In this
work we present a model-driven approach for specifying Web
workflows adaptations using a Domain Specific Language for
Web application requirement called WebSpec. We present an
extension to WebSpec based on Pattern Specifications for dealing
with crosscutting workflow requirements by identifying tangled
and scattered behaviour and reducing inconsistencies early in the
requirement gathering phase. Using simple but illustrative
examples we show the expressive power of the approach.
Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]
H.4.1 [Information System Applications]: Office Automation -
Workflow Management.
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces - Web-based interaction

General Terms
Algorithms, Documentation, Performance, Design, Languages,
Theory, Verification.

Keywords
Requirements, adaptation, Model-driven paradigm, Web.

1. INTRODUCTION
Nowadays business must adapt to global trends in order to keep
users engaged; unplanned marketing campaigns, season
promotions (final season sales), crisis management[10], among
others business requirements are examples of unexpected
requirements that stress the whole applications’ infrastructure.

In this paper we focus on the problems posed by those
requirements that demand business processes to change according
to the users’ context. Depending on context variables like current
date, payment method, active market campaign, accessing device,
etc. the system may modify the underlying workflow model; this
may imply executing a slightly different workflow version which
support new requirements like discounts and free-shipping, or
introduces new workflow steps like new forms to be filled, etc. In
Web Applications these changes compromise several
applications’ tiers (model, navigation, and interface). When the
underlying workflow changes, user interfaces may, for example,
introduce a new form that will demand new view controller that
orchestrates form’s validation and workflow’s navigation, and
finally the business model must be modified for supporting new
form’s entities and fields.
As a motivation we use the checkout process in an e-commerce
site; in order to buy some items, the user must follow a simple
workflow comprising several steps such as selecting a product,
choosing the wrapping configuration (regular or special for
birthday), selecting the shipping address, and defining the
payment method, etc. Suppose an unforeseen event such as a
catastrophe happens that leads to a donation campaign. We may
require the introduction of a new donation step in the purchase
workflow, where users can choose between different pre-set
amounts of money to donate. This change will require at least a
set of modifications:
(i) implement a page that holds a donation form with its

corresponding fields;
(ii) the corresponding step must be placed in the workflow

and the workflow must be modified to be coherent;
(iii) new data needs to be stored and therefore we need to

add persistence machinery for these data; and
(iv) navigation functionality must be upgraded to let users

navigate to their donations for example.
In this case, the set of changes must be present only when the
catastrophe campaign is active, otherwise they make no sense. In
the mid-term we have an adaptation requirement (the existing of a
catastrophe and the donation campaign) which lead to a “context-
aware” workflow behaviour.
Additionally, the impact of the adaptation in the application may
not be simple; that is, the introduction of this adaptation may cross
other workflows such as ticket booking for a recital, product pre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iiWAS2012, 3-5 December, 2012, Bali, Indonesia.
Copyright 2012 ACM 978-1-4503-1306-3/12/12...$15.00.

72

order, etc. Therefore, the way in which the adaptation
requirements (AR from now on) are modelled is critical to assure
that they correctly implemented.
To make matter worse, the incoming of new context-aware
requirements that crosscut several workflows make the situation
more complex since different business domains are compromised
by the same set of workflow requirements. In the background of
an Austrian highway control agency (ASFINAG), an agent (user)
follows a workflow that specifies how to react to different
situation that needs special treatment such as the existence of
roadwork, traffic jam or fog on road. In this context, the workflow
lets she decide whether to suggest an alternative path based on
highway’s status that can be taken in the nearest exit. On the other
side, in an Austrian train control agency (LINZAG), a different
workflow takes care of any train accident in order to inform
passengers to walk in direction to closest location where they will
be quickly assisted. Things complicates when both independent
workflows face a critical situation at the same time but none of
them is aware of the existence of the other workflow and how to
proceed taking into account the whole context-situation. In Figure
1, a sequence of events corresponding to different transportation
systems is depicted. In this example, in a foggy day (point 6)
where there is a roadwork (point 1), the agent in charge of the
highway management suggests to take an alternative path (point
3). If there is a train accident over suggested road, we face a
deadlock because the highway agent suggests drivers to take an
alternative path but it is blocked by a train accident. From the
other viewpoint, train’s passengers receive an inaccurate
suggestion that recommends walking in direction of the jammed
highway being impossible to receive a quick assistance as
expected. In this case, the lack of context awareness support
doesn’t allow systems to provide a solution to a problem that is its
reason for existing.
Unfortunately, workflows are not modelled to support this kind of
situations; adaptations arrive once the workflow has been
released.
When new concerns are unforeseen and unpredictable like Crisis
Management or Volatile requirements[11], these requirements are
usually introduced in an ad-hoc way. The inadequate
implementation of these changes may lead to a decay of software
quality compromising application maintenance, stability, and
complexity, and finally the application’s budget.
In this paper we extend our previous work[18] presenting a
model-driven approach for analysing and modelling workflow
changes in Web adaptations in the early stage of requirement
gathering. The main contribution is a model-driven approach for
dealing with base and AR. It is based on a clear separation of
concerns applied in the early phase of the software development
process. The approach allows defining symmetrically both base
and AR; later these models are used for implementing test suites
that assess the final application behaviour. This work
complements [18] with some novel contributions: a set of
improvements on the WebSpec language, a supporting tool for
Pattern Specification based models and a detailed description of
the weaving process.
The rest of the paper is structured as follows: in Section 2, we
discuss some related work; in Section 3, we present some
background themes; in Section 4 we present our model-driven
approach for modelling workflow changes in Web Application; in
Section 5, we introduce an extension for WebSpec that uses
Pattern Specification and stereotypes; in Section 6, we present a
catalogue of common adaptations present in Web workflows; in

Section 7, we present a brief description of current supporting
tool; and finally in Section 8 we conclude and discuss some
further work we are pursuing.

Figure 1. Workflows’ deadlock schema

2. RELATED WORK
Adams [1] et al. presents the soviet “Activity Theory" as a driver
for a more flexible and better directed workflow support. A subset
of the main theory´s principles highlights the need of context
awareness in each possible workflow action execution. The
authors propose a set of criteria as requirements of Workflow
Management Systems (WfMSs). One criteria, “adaptation by
reflection” promotes flexible, dynamic and evolving workflows.
In this case, systems must record derivations (exceptional flows in
the workflow definition) capturing their reasons and resolution
that later can become part of the next workflow instantiation.
Although this attempt will help to implement awareness in
workflows, it works reactively from exception instead of being a
proactive solution. As exceptions are captured in real-time, the
solution recorded is ad-hoc and isn´t neither modelled nor
optimized by domain experts. This work provides an
implementation of a WfMS so called YAWL [2] that allows
implementing dynamic workflows. The platform defines Worklet
as a reusable unit of work. Each time a workflow derivation event
is detected it is either possible to choose an already defined
worklet or define a new one.
AO4BPEL [3] is an aspect-oriented extension to BPEL that
allows describing workflow´s crosscutting behaviour. The
extension comprises a language that is used to declare aspects and
an execution engine that is responsible of weaving core
workflows with workflow aspects. The language introduces
constructors for pointcut, joinpoint and advice concepts. It is
noteworthy that the extension supports process-level aspects being
activated in all workflow instances and instance-level being
activated on certain instance of the workflow. AO4BPEL is a
powerful tool for describing aspects in Business Process models
but aspects are taken into account later (in the design phase)

73

where crosscutting cannot be identified and checked with
stakeholders.
We are not aware about any approach that allows identifying
workflows and specifying their aspects in the requirement
gathering phase in such a way that the whole application
behaviour is described allowing assessing its behaviour first with
the user and later by automatic testing.

3. BACKGROUND
In this section we introduce some base work which we have used
in our approach namely WebSpec for modelling workflow
requirements and Pattern Specifications for specifying the binding
of requirements belonging to different concerns.
We will adopt a workflow’s definition presented in [19] where a
workflow has as a main objective to deal with a case. A workflow
has a set of elements that allows achieving the objective: a state
and a set of interconnected task where each one can have
conditions that enable its execution. From this definition, we
claim that WebSpec can help modelling Workflows requirement
from a user interaction perspective.

3.1 WebSpec
WebSpec [12] is a visual domain specific language for
representing Web applications requirements; its main artefact for
specifying requirements is the WebSpec diagram which can
contain interactions, navigations and rich behaviors.
A WebSpec diagram defines a set of scenarios that the Web
application must satisfy. Figure 2 shows a simplified WebSpec
metamodel. An interaction (denoted with a rounded rectangle)
represents a point where the user can interact with the application
by using its interface objects (widgets). Interactions have a name
(unique per diagram) and may have widgets such as labels, list
boxes, etc. In WebSpec, a transition (either navigation or rich
behavior) is graphically represented with arrows between
interactions while its name, precondition and triggering actions
are displayed as labels over them. In particular, its name appears

with a prefix of the character ‘#’, the precondition between {} and
the actions in the following lines.
The scenarios specified by a WebSpec diagram are obtained by
traversing the diagram using the depth-first search algorithm. The
algorithm starts from a set of special nodes called “starting” nodes
(interactions bordered with dashed lines) and following the edges
(transitions) of the graph (diagram).
In Figure 3, the checkout process in a Web application is depicted
as a set of interactions where the user is able to select a product
for start setting out its purchase (interaction Products); next she is
able to choose whether a simple or gift wrap should be used; next,
delivery information must be introduced such as address and city;
and finally the list of current orders is shown (see [12] for further
details).
WebSpec has a supporting tool [20] with features that allows, in
the early phases of requirement gathering, realizing simulation of
application interaction against mock interfaces and generating
independent Web tests for testing the final development result.

3.2 Pattern specification
Pattern Specifications (PSs) [8] is a tool for formalizing the reuse
of models. Originally the notation for PSs was presented using the
Unified Modelling Language (UML) as a base but in this work we
will instead use the concept in the WebSpec realm. A Pattern
Specification describes a pattern of structure defined over the
roles which participants of the pattern play. Role names are
preceded by a vertical bar (“|”). A PS can be instantiated by
assigning concrete elements to play these roles.

4. WORKFLOW REQUIREMENTS
MODELLING
Next, we present our approach to identify, and design adaptive
requirements in Web Workflows. The approach is based on the
idea that any adaptive requirement must be treated as a first–class
citizen; we consider these requirements as belonging to a separate

Figure 2. Simplified WebSpec meta-model

Figure 3. WebSpec scenario for Checkout process

74

concern1 [14] allowing us to isolate, model and later compose
both core application workflow and adaptive requirements. To
make this presentation thorough we first describe the general
approach to model Web workflow requirements using WebSpec.
The approach comprises a set of steps that are depicted in Figure 4
and described next. Step 3 below deals specifically with
introducing AR:
Step 1: Workflow requirement gathering. Using well-known

requirement elicitation techniques such as meetings,
surveys, Joint Application Development (JAD), etc. a
Software Requirement Specification (usually in natural
language) is produced. In the case of an agile underlying
development process, a briefer description is usually
produced with user stories [4].

Step 2: Workflow requirement modelling. Web application
requirements are formalized using a requirement
Domain Specific Language (DSL). This formalization is
essential during the requirement gathering process with
stakeholders. Using a requirement DSL, tasks such as
tests derivation and scenarios simulations can be
automated easily. In this work, we selected WebSpec as
the requirement DSL.

Step 3: Workflow requirement generalizations modelling. Base
Workflow changes (e.g. adaptations) are modelled using
the Pattern Specification extension for the requirement
DSL; in this paper we exemplify with the WebSpec
extension.

Step 4: Consistency validation. Syntactic and semantic analysis
is performed over requirements. By means of an
algebraic comparison of models, candidate structural
and navigational conflicts are detected. These conflicts
are analyzed and semantic equivalences are detected.
For each candidate conflict, both the new requirement
and the compromised requirement are translated from a
high abstraction level (the requirements DSL) to a
minimal form, using an atomic constructor in order to
detect semantic differences. Semantic equivalences
between requirements are detected for warning
requirement analysts. For more information on this
process see [16]. In order to check consistency of AR,

1 In software engineering a concern represents a matter of interest
that groups a coherent set of requirements.

base requirements are composed with AR (following
Pattern Specification semantics) giving as result a
complete model that is validated. Since a given AR can
be generic and so it can have several points of
instantiation into the base diagram, the validation
consistency procedure will only use specified binding
configuration between base and adaptation model’s
elements.

Step 5: Test derivation. In this step, tests for the composition of
the traditional WebSpec diagram and the WebSpec PS
extension are generated producing tests that allow
validating the final Web Application. Generated code is
based on Selenium tool [13] allowing automating Web
browsing task based on WebSpec requirements.
This also allows assessing the set of requirements with
users by using simulations in the early stages of UI
mocking. The same tests are used later in the testing
phase of the software development process. When
deriving tests for AR, the same binding configurations
used in step 4 are taken into account. That is, the test
derivation process uses an internal model where the base
model was only enhanced on those points that specify a
binding configuration.

For more information about the overall approach see [18].

5. CROSSCUTTING BEHAVIOUR IN WEB
WORKFLOWS
In this section, we introduce our WebSpec extension for
modelling Web workflow adaptations and illustrate the main
concepts with an example.

5.1 Modelling adaptations using WebSpec
WebSpec provides a powerful language for describing user’s
interaction of a Web application. Nonetheless it lacks a means for
portraying generalization of interaction patterns; for example,
common patterns required in determined workflows’ points (tasks
or transitions) that stop the workflow execution until the manager
authorizes to continue, or landmarks-like behaviour where a given
sub-workflow can be accessed from steps belonging to a main
workflow. This restriction increases the size and complexity of
diagrams, and the effort to document the requirement. So, we
propose the use of Pattern Specifications where, in our case, a role
is a specialization of a WebSpec Interaction restricted by
additional properties that any Interaction fulfilling the role must
possess. A model conforms to a PS if each one of model elements

2. Workflow
requirement modelling

3. Workflow requirement
generalizations modelling

C
or

e
W

eb
 w

or
kf

lo
w

pr

oc
es

s

Ad
ap

ta
tio

n
re

qu
ire

m
en

t
lif

ec
yc

le

5. Test Derivation
 basic
 adaptation

4. Consistency validation

1. Workflow requirement gathering

Web method underlaying tasks: design,
development, testing and deploy

In
co

ns
is

te
nc

ie
s

fo
un

d

Figure 4. Overall schema for Web workflow requirement modelling

75

that plays the roles of the PS satisfies required properties defined
by the roles.
In Figure 5, a requirement that generalizes an interaction pattern
defines two roles: |sourceInteraction and |targetInteraction. The
|sourceInteraction role (notice that the role’s name starts with “|”)
demands a widget of type Label called mandatoryWidget that
must be present in the Interaction that conforms the role, and
defines a new widget of type TextField called introducedWidget
that will be part of the conforming Interaction. The
|targetInteraction role is analogous to the previous role; it
demands a widget of type Combobox called mandatoryWidget to
be part of the interaction that matches the role. Finally, when both
roles are bound in a given diagram, a new interaction is
introduced with the corresponding transitions called
IntroducedInteraction as it is defined in Figure 5. Notice that a
Role can be defined based on transitions for enhancing
preconditions and actions of core transitions. Alternatively, it can
be used for defining constraints over a diagram that may lead to
an overriding of existing definitions, e.g. Navigations
preconditions and actions may be introduced by PS in order to
enrich the scenario for making consistent a set of changes. This
kind of situations is usually present in adaptive requirements
where some behaviour is intended to be replaced by other.
In order to improve expressiveness of our language extension, we
also introduce stereotypes inspired by MATA [21]. These
stereotypes allow a precise description of Web workflows
adaptations. The stereotypes that can be used in PS-based models
are:

 «create»: applied to any model element, specifying the
creation of an element. This tag is implicit in elements
belonging to a PS-based model that are not a role.

 «delete»: applied to any model element, specifying the
deletion of an element that matches.

 «context»: used for specifying those elements that are
mandatory; it avoids creating an element inside., forcing
it to match an element in the base diagram. This is an
alternative to a role prefix.

 «regex»: used in a role definition for a regular
expression[9] (regex) matching strategy. When the role
name is annotated with this stereotype, a comparison
operation between the role and the base element is
performed by the role’s regex expression instead of a
literal comparison.

This last stereotype, helps reducing the system space elements to
match with.
For example, in Figure 6, we show a generalization of Web
application requirements that provides the option for donating
when performing a Web workflow. This introduces a banner
between two roles describing the donation goal and allows
traversing towards a donation form.

5.2 Bindings computation
So far, we have defined how to specify adaptations in Web
workflow requirements. In this section, we present how the
elements matching PS-based model’s roles are computed. We
refer to each pair of matching base element (interaction or
transition) and role element as a binding, and the set of bindings
that satisfy a whole PS-based model as a joinpoint. We name
these points as joinpoint inspired in the joinpoint concept of
Aspect Oriented Programming (AOP)[7]. It is noteworthy that a
PS-based diagram can have several valid joinpoints for a given
base diagram.
In Figure 7, we present a Java like pseudo-code that summarizes
the joinpoint computation. The algorithm has as a restriction that
both base and PS-based model must have a starting Interaction
defined.
The algorithm is quite straightforward because it implements a
well-known backtracking solution. It aims at matching the whole
PS-based model against a base one. The backtracking strategy
provides facilities for generating combinations of pairs of base
and role elements. The code shows exhaustive usage of getter and
setter methods that corresponds to instance variables and
relationships shown in Figure 2.
The most noteworthy aspect is the introduction of a stack for
resuming interaction’s transitions processing. When the matching

Figure 6. Donation requirement model using Pattern Specification

Figure 5. Introducing interactions and elements in a Workflow requirement

76

feasibility of role interaction is evaluated, roles’ transitions and
recursively the target of role’s transition must be checked. This
must be done in this way because to ensure a PS-model matching
we must check whether all of its roles and transitions are matched.
So, when a role transition is about to be processed, current role
interaction is pushed in the stack for resuming the processing of
its pending role transitions later on. For example, Figure 8 shows
a “|X” interaction with two role transitions. When the algorithm is
going to process the role transition from “|X” to “|Y” interaction,
“|X” interaction is pushed for a later resuming. When the “|Y”
interaction is finally processed, the stack is popped for resuming
the “|X” interaction and so the pending transition from “|X” to
“|Z” is processed.
function resolveJoinPoint(base, adaptationDiagram){

List joinpoints = new ArrayList ();

for (Interaction interaction : interactions)

 Joinpoint joinpoint = new Joinpoint(base,adaptationDiagram);

 Stack emptyStack = new Stack ();

 resolveInteractionJoinpoint(interaction, adaptationDiagram.getStarting(),
 joinpoint, joinpoints, emptyStack);

}

function resolveInteractionJoinpoint (interaction, roleInteraction,
joinpoint, joinpoints, resumableInteractions)

 if (interaction matches roleInteraction)

 joinpoint.addBinding(interaction, roleInteraction);

 resolveTransitionJoinpoint(interaction, roleInteraction, joinpoint,
 joinpoints, resumableInteractions);

 joinpoint.removeLastInteractionBinding();

function resolveTransitionJoinpoint (interaction, roleInteraction,
joinpoint, joinpoints, resumableInteractions)

 List forwardRolTrans = roleInteraction.getRoleForwardTransitions();

 if (forwardRolTrans.isEmpty())

 if (joinpoint.isValid()) joinpoints.add(joinpoint.clone());

 else if (resumableInteractions.isNotEmpty())

 InteractionBinding pop = resumeableInteractions.pop();

 resolveTransitionJoinpoint(pop.getInteraction(),
 pop.getRoleInteraction(), joinpoint, joinpoints,
 resumableInteractions);

 else

 for (Transition roleInteractionTransition : forwardRolTrans)

 if (interaction.getForwardTransitions().isNotEmpty())

 List matchingTrans =
 matchingTrans (interaction,roleInteraction);

 if (matchingTrans.isNotEmpty())

 for (Transition transition : matchingTrans)

 if (transition not bound in the joinpoint)

 joinpoint.add(transition, roleInteractionTransition);

 resumableInteractions.push(last stack’s interaction);

 resolveInteractionJoinpoint
 (transition.getTargetInteraction(),
 roleInteractionTransition.getTargetInteraction(),
 joinpoint, joinpoints, resumableInteractions);

 joinpoint.removeLastTrasitionBinding();

Figure 7. Pseudo-code for computing joinpoint

 Figure 8. Simple PS-based diagram

For example, the execution of the algorithm presented in Figure 7
over the base diagram (simplified) in Figure 9 using the PS-model
shown in Figure 8 will resolve four joinpoint:

 A bound to |X, B bound to |Y and C bound to |Z

 A bound to |X, B bound to |Z and C bound to |Y

 B bound to |X, D bound to |Y and E bound to |Z

 B bound to |X, D bound to |Z and E bound to |Y
Finally, depending on the stakeholders’ needs, these joinpoints are
interpreted based on the concepts presented in Section 4.2 for
producing a woven model.

Figure 9. Simple base diagram with tree topology

In the case of the AR presented in Figure 6, this requirement can
be instantiated on base requirement shown in Figure 3 using one
of the available joinpoints:

 Products bound to |stepOne and Packaging bound to
|stepTwo

 Packaging bound to |stepOne and Delivery bound to
|stepTwo

 Delivery bound to |stepOne and Order Status bound to
|stepTwo

Notice that there are several joinpoint available because the
generality of adaptation model.

5.3 Discussion
Although there are several AOSD (Aspect-Oriented Software
Development) formal and visual languages already defined for
almost any model of a Web application (conceptual, navigational,
and interface models), none of them covers requirement gathering
phase and indeed these are focused on describing just functional
features closer to the conceptual model [22].
Tackling crosscutting workflow behaviour in the early
requirement analysis phase allows identifying crosscutting
behaviours in the system, and context variables that rules
adaptation behaviour. The use of WebSpec with PS helps to
separate matter of interest in (WebSpec) requirement diagrams
and thus in the whole System Requirement Specification (SRS)
documents.
In this case, the extension provided for WebSpec using PS not
only allows defining high level reusable requirements for Web
Applications; it also helps to derive the set of tests that will be

77

used for validating the final result of the application design and
implementation.

6. Adaptation characterization
Workflow adaptations present themselves often in a unique way
but there is a basic set of common adaptations that can be
characterized in order to reuse the knowledge gained as long as
they are resolved.
We will present a basic context-awareness features that can be
incorporated in workflows and we will model illustrative
examples using Pattern Specification extension presented in
previous section.

6.1 Generic workflow entity modification
Workflow changes compromise the definition of steps and
transitions by introducing or removing new attributes, and guards
among others. Although this is a generic requirement definition, it
is a simple change present in most requirement adaptations.
For example, let’s suppose a new promotion that applies a
discount to products in the e-commerce site is available. For a
given basic product detail (shown in Figure 10), the promotion
requirements demand a proper user notification of promotion
details such as discount amount, description and legal terms
access. This kind of entity modification can be modelled using the
Pattern Specification extension as shown in Figure 11. In this
case, a discount and promotion description labels, as well as a link
to the “Promotion terms” interaction are introduced into a
matching ProductDetail interaction. Additionally, a new
interaction is appended for presenting the promotion’s terms.

Figure 10. Product Detail interaction

6.2 Device awareness
Implicit decisions can be taken or steps added/removed in a
workflow depending on the user’s device. Mobile devices provide
different facilities from traditional PC devices having access to

resources like location information, cameras, sound recording, etc.
but have different usage restrictions. For example, when driving a
car, it is not easy to introduce any data in Mobile devices but
register current GPS’s location. In this scenario, a workflow can
be aware of the user’s context in order to simplify data gathering.
If we want to report an urban incident by using a mobile device,
the reporting workflow can sense the current mobile location
avoiding entering that piece of information. In the other hand,
when reporting by using a PC, the location and date must be filled
out by the user.
For example “Reducing checkout process for smartphone” (shown
in Figure 12) introduces enhancements over the main workflow;
the “input of delivery address” task is avoided by using the closest
registered address to the current location. In Figure 12, this
requirement is modelled overriding the default navigation
presented in Figure 3 where the specification of delivery
information (Delivery interaction) is by-passed, and, instead, the
Order Status interaction is exhibited after selecting Packaging
configuration. This “by passing” is achieved by defining a
transition that goes from Packaging interaction to Order status
interaction. As the specification is abstract, it defines the
|Packaging role that later binds to Packaging interaction, and
“|Order status” that later binds to Order status interaction
overriding the transition identified with #next originally defined in
Figure 3.

6.3 Partner workflow awareness
There are situations in which workflows belonging to different
organizations must interact with each other in order to satisfy
inter- organizations needs defined by an embracing organization.
This kind of workflows is called Inter-Organizational Workflows
(IOC) [5]. In some cases, Web workflows that implement isolated
business process could have failed taking into account the Inter-
Organizational context, and so integration aspects such as share
resources, tasks and business rules may not be well defined.
Being aware of the whole context may lead to a more effective
workflow’s goal satisfaction. This kind of inter-organization
awareness requires a deep analysis for detecting shared concepts
(resources, tasks, decisions, etc.) and requirement modelling
(describing structure and states) that can result in a conflict of
interest between workflows. For this task we propose to face
inter-workflow adaptation using the Webspec PS extension to
represent those integration aspects as first-class citizens.

Figure 11. Discount promotion enhancements

Figure 12. WebSpec diagram for “Reduced checkout process for smartphones” requirement

78

The example of Section 1 illustrates the situation where highway
and train’s street are shared concepts. If the ASFINAG’s
workflow suggests using as alternative path the Railroad
crossing’s street because there is fog along the highway, it would
come to a conflictive decision when a train stops working
blocking the railroad crossing’s street and suggesting passengers
to walk toward highway for assistance. For solving this situation,
new workflow features should be modelled for enhancing the
ASFINAG’s workflow with a set of guards that check whether the
street (resource under consideration) is available in the decision
making step.
A basic Web workflow for Highway resources management is
shown in Figure 13. In this case, it is possible to browse from a
dashboard to distinct highway’s segments. When a specific
segment has the status “foggy”, the system must suggest
highway’s drivers to take an alternative path. A railway partner
aware adaptation for the workflow described in Figure 13, is
shown in Figure 14; it takes into account a critical railroad
crossing’s street status (workflows shared resource). The
SegmentDetail interaction is enriched with a new navigation that
is browsed when alternativePathStatus is blocked; that is, a
broken down train have blocked a railroad crossing. The original
navigation for “froggy” status is enhanced with a predicate that
evaluates the alternative path’s availability keeping the
requirement correct.

6.4 Temporal awareness
So far, we have shown how to introduce changes in Web
workflows requirements models. Very often adaptation
requirements are valid only during fixed periods of time. For
instance, the Donation AR (shown in Figure 6) will be available
from a specific date up to the completion of a goal, e.g. having
collected a concrete sum of money. (See a more thorough analysis
of this kind of “volatile” requirements in [11,17]).

When dealing with this kind of temporal awareness, changes in
workflow are introduced to support business events which occur
in a time frame and must be removed when that time frame is
over. This sort of adaptations compromises the modification of
workflow’s states and transitions. For instance, new transitions
can be introduced, removed or modified changing their guards.
To support this activation/deactivation process we use a specific
DSL named Activation Rules [17]. The active period of an AR is
defined using two rules: one rule that specifies when the AR will
be active and another one defines when the requirement is not
longer needed. Both rules are described by temporal and/or
custom business events. When a given event expression is
satisfied, a set of WebSpec scenarios are enabled/disabled. Next
we present a template for a rule definition:
WHEN
(Event_Pattern_Expression)
THEN
(CONNECT | DISCONNECT)
SCENARIO 1, SCENARIO 2,…, SCENARIO N

For example suppose we are interested on enabling donation
requirement (shown in Figure 6) when for a precise date up to
donation’s objective is achieved. The Activation Rule for enabling
the donation looks like:

WHEN
Time is *-May-25 23:59
THEN
CONNECT
Donation Requirement

Figure 13. Highway decision making requirement for foggy days

Figure 14. Railway workflow awareness adaptation

79

For disabling donation, we should use next Activation Rule.
WHEN
DonationCompleteEvent()
THEN
CONNECT
Donation Requirement
With these rules, adaptation requirement modelling is now
complete taking into account temporal aspects.

7. SUPPPORTING TOOL
As part of this research work we have developed an extension for
our WebSpec tool [20] that gives support to Pattern Specification
concepts and stereotypes as described in Section 4.2. WebSpec is
a tool built on top of the Eclipse platform[6]. This platform
implements an OSGI architecture [15] where application’s
concerns are packaged as bundles that can be plugged in at any
time. By taking advantage of this architecture, the WebSpec tool
was developed providing, at first, the core set of building blocks
that allow designing and validating models, deriving tests, and
performing simulations. The extension provides the following
new features:

 WebSpec model composition: WebSpec diagrams
describe scenarios depending on user stories. After
requirement gathering and analysis steps, these
WebSpec models can be combined in order to provide a
whole system view. This whole system must be
consistent since the tool uses this resultant model to
validate its consistency.

 WebSpec model weaving: this feature implements
Pattern Specification support by processing WebSpec
templates and introducing its improvements into base
diagrams.

Next we describe WebSpec model weaving extension.

7.1 WebSpec model weaving extension
The weaving extension reasons over two diagrams: a base
WebSpec and a PS-based one. A PS-based diagram describes an
AR as a set of changes (introduction and modification of
Interactions and Transitions) that must be applied in the base
WebSpec diagram.
There is a weaving processor responsible for calculating the set of
points in the diagram that the PS-based model matches. As a PS-
based diagram is a template with several hooks, there can be
several combinations of base model elements where PS-model can
be instantiated. We can think each combination as an analogy of
AOP’s joinpoints.
When the tool takes as input the example presented in section 4.3,
it will resolve and present the available joinpoints as shown in
Figure 15. After computing the available joinpoints, the tool
prompts user to choose which one will be used for the PS-based
model instantiation.
Next, the weaving processor uses the selected endpoint for
instantiating the PS-based model. In the instantiation process the
following rules are applied:

1. If a role interaction (belonging to the PS-model)
matches a given interaction and all of role widgets
belonging to the role interaction match distinct base
interaction’s widgets, all of non-role widgets belonging

to the role interaction are cloned into the base
interaction. In this case, the base interaction is
augmented with widgets. Rules 3 and 4 are applied over
forward transitions that have as a source the role
interaction.

2. If a Non-role interaction of a PS-model doesn’t exist in
base model, then it is cloned in the base model
understanding it is an introduction.

3. Transitions and interactions belonging to the PS-model
with the same name to one belonging to the base model,
override the base version. Rule 1 is applied recursively
over the transition’s target interaction.

4. If a role transition matches one belonging to the base
model, the base transition is augmented with the role
transition’s constraint and actions. Rule 1 is applied
recursively over the transition’s target interaction.

It is worth to note that these rules are evaluated over a given PS-
model and their applicability was already validated in the first step
executed by the weaving processor.

Figure 15. List of resolved joinpoint shown by the tool

8. CONCLUSIONS & FUTURE WORK
In this work we presented a novel approach for modelling
Workflows in Web applications for both traditional requirements
as well as crosscutting ones. By using WebSpec diagrams,
workflows were modelled as a set of interactions representing
their steps, and transitions for defining interactions’ connections.
In this work, we proposed a PS extension for WebSpec and a set
of new stereotypes that allow easily specifying crosscutting
workflow’s behaviour. On the other hand, the approach allows
modelling requirements associated to Inter-Organization
Workflows [5] that, as we are aware, do not have supporting tools.
We have implemented a set of tool extensions that supports the
approach. The approach allows composing diagrams based on PS
with base WebSpec diagrams. From the outcome woven model, a
set of test can be generated in order to assess the implemented
Web workflow.
We plan to perform assessments to validate our ideas and measure
benefits of its application exploiting WebSpec’s features such as
test generations and simulations.
UML class diagrams and business process models can be sketched
from WebSpec diagrams. Heuristics must be studied in order to
produce accurate design models. Obtained UML and business

80

process modes can be used also for producing prototype
applications.
We plan to compare the outcome obtained from the requirement
gathering tasks using our approach (based on Web requirement
models) against traditional lexical software requirement
specification. We will measure improvements by means of
studying documentation’s quality metrics such as ambiguity,
completeness, correctness, achievement, traceability, among
others. We plan to analyze the advantages in traceability between
model elements since our model for formalizing requirements also
allows deriving design models following a model driven
approach. Finally, we are studying how Web workflow
requirements can ease agile development by inferring required
story points[4] for a given requirement.

9. ACKNOWLEDGMENTS
This work has been funded by the österreichische Agentur für
internationale Mobilität und Kooperation in Bildung,
Wissenschaft und Forschung (OeAD) under grant AR 21/2011. It
also received funding from the Argentinian Mincyt in the context
of Argentina-Austria Cooperation and Agencia’s PICT 2187.

10. REFERENCES
1. Adams, M., Edmond, D., ter Hofstede, A. 2003. The

Application of Activity Theory to Dynamic Workflow
Adaptation Issues. In: PACIS 2003 Proceedings. Paper 113.

2. Adams, M., ter Hofstede, A. H. M., Edmond, D., M. P. van
der Aalst, W. 2006. Worklets: a service-oriented
implementation of dynamic flexibility in workflows. In Proc.
of the 2006 Confederated international conference on On the
Move to Meaningful Internet Systems: CoopIS, DOA, GADA,
and ODBASE, pp. 291-308.

3. Charfi, A. 2007. Aspect-Oriented Workfow
Languages:AO4BPEL and Applications. In Phd thesis,
Fachbereich Informatik, der Technischen Universit at
Darmstadt. http://d-nb.info/985111321.

4. Cohn, M. 2009. Succeeding with Agile: Software
Development Using Scrum (1st ed.). Addison-Wesley
Professional.

5. Divitini, M., Hanachi, C., Sibertin-Blanc, C. 2001. Inter-
organizational workflows for enterprise coordination. In
Coordination of Internet agents. Springer-Verlag, London,
UK pp. 369-398.

6. Eclipse OSGI, http://www.eclipse.org/osgi/, Accessed
August 2012.

7. Filman, R., Elrad, T., Clarke, S., Aksit, M. 2004. Aspect
Oriented Software Development. Addison Wesley.

8. France, R., Kim, D., Ghosh, S., Song, E. 2004. A UML-
Based Pattern Specification Technique. In IEEE Transactions
on Software Engineering, Volume 30(3).

9. Goyvaerts, J., Levithan, S. 2009. Regular Expressions
Cookbook, O'Reilly Media, ISBN 978-0-596-52068-7.

10. Luecke, R. 2004. Crisis Management: Master the Skills to
Prevent Disasters. Harvard Business Press Books. ISBN 978-
1591394372.

11. Moreira, A., Araújo, J., Whittle, J. 2006. Modeling Volatile
Concerns as Aspects. In CAiSE, pp. 544-558.

12. Robles, E., Garrigós, I., Grigera, J., Winckler, M. 2010.
Capture and Evolution of Web Requirements Using
WebSpec. In ICWE 2010, pp. 173-188.

13. Selenium. http://seleniumhq.org/ Access August 2012.
14. Sutton, S., Rouvellou, I. 2002. Modeling of Software

Concerns in Cosmos. In Proc of ACM Conf. AOSD 2002, pp.
127-133, ACM Press.

15. OSGI, http://www.osgi.org.
16. Urbieta, M., Escalona Cuaresma, M.J., Robles Luna, E.,

Rossi,G. 2011. Detecting Conflicts and Inconsistencies in
Web Application Requirements. In ICWE Workshops,278-
288.

17. Urbieta, M., Rossi, G., Distante, M., Ginzburg, J. 2012.
Modeling, Deploying, and Controlling Volatile
Functionalities in Web Applications. In International
Journal of Software Engineering and Knowledge
Engineering (IJSEKE), vol. 22(1), pp. 129-155.

18. Urbieta, W., Rossi, G., Gordillo, S., Schwinger, W.,
Retschitzegger, W., Escalona, M. J. 2012. Identifying and
Modelling complex Workflow Requirements in Web
Applications. In proc. ICWE’12, Springer-Verlag, Berlin,
Heidelberg, In press.

19. van der Aalst,W., van Hee, K. 2004. Workflow Management
Models, Methods, and Systems. The MIT Press, ISBN 978-
0262720465.

20. WebSpec Language, http://code.google.com/p/webspec-
language/. Access August 2012.

21. Whittle, J., Moreira, A., Araújo, J., Rabbi, R., Jayaraman, P.,
Elkhodary, A. 2007. An Expressive Aspect Composition
Language for UML State Diagrams. Int. Conference on
Model Driven Engineering, Languages and Systems
(MODELS), Springer.

22. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger,
W., Schwinger, W., Kapsammer, E. 2011. A survey on
UML-based aspect-oriented design modeling. ACM Comput.
Surv. (CSUR) 43(4):28.

81

http://d-nb.info/985111321
http://www.eclipse.org/osgi/
http://seleniumhq.org/
http://www.osgi.org/
http://code.google.com/p/webspec-language/
http://code.google.com/p/webspec-language/

	1. INTRODUCTION
	

	2. RELATED WORK
	3. BACKGROUND
	3.1 WebSpec
	3.2 Pattern specification

	4. WORKFLOW REQUIREMENTS MODELLING
	5. CROSSCUTTING BEHAVIOUR IN WEB WORKFLOWS
	5.1 Modelling adaptations using WebSpec
	5.2 Bindings computation
	5.3 Discussion

	6. Adaptation characterization
	6.1 Generic workflow entity modification
	6.2 Device awareness
	6.3 Partner workflow awareness
	6.4 Temporal awareness

	7. SUPPPORTING TOOL
	7.1 WebSpec model weaving extension

	8. CONCLUSIONS & FUTURE WORK
	9. ACKNOWLEDGMENTS
	10. REFERENCES

