
Particle Swarm Optimization with Variable
Population Size

Laura Lanzarini, Victoria Leza, and Armando De Giusti

III-LIDI (Institute of Research in Computer Science LIDI)
Faculty of Computer Sciences. National University of La Plata

La Plata, Buenos Aires, Argentina

Abstract. At present, the optimization problem resolution is a topic of
great interest, which has fostered the development of several computer
methods forsolving them.

Particle Swarm Optimization (PSO) is a metaheuristics which has
successfully been used in the resolution of a wider range of optimization
problems, including neural network training and function minimization.
In its original definition, PSO makes use, during the overall adaptive
process, of a population made up by a fixed number of solutions.

This paper presents a new extension of PSO, called VarPSO, incor-
porating the concepts of age and neighborhood to allow varying the size
of the population. In this way, the quality of the solution to be obtained
will not be affected by the used swarms size.

The method here proposed is applied to the resolution of some com-
plex functions, finding better results than those typically achieved using
a fixed size population.

Keywords: Evolutionary Computation, Swarm Intelligence, Particle
Swarm Optimization, Function Optimization.

1 Introduction

Optimization, in the sense of finding the best solution or at least an acceptable
one for a given problem, is a field of critical importance in the real life. We are
constantly solving optimization problems, such as for example the shortest way
to get to a place or the organization of our daily duties so as to spend as little
time as possible. However, when the problem to solve is extremely complex it is
essential to have the computer tools to address it [9].

Due to the great importance of optimization problems, several computer meth-
ods have been developed to solve them, which can be generally classified into
exact and approximate. At present, in the context of approximate solutions,
research has been focused on design and application of metaheuristics, which
are based on the integration of local improvement procedures and high level
strategies creating efficient processes in terms of computing times and mem-
ory space. Such metaheuristics are capable of delivering a good solution, i.e.,
relatively closed to the optimal, by examining just a small subset of solution

L. Rutkowski et al. (Eds.): ICAISC 2008, LNAI 5097, pp. 438–449, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Particle Swarm Optimization with Variable Population Size 439

of the overall number. Particle Swarm Optimization (PSO) is a metaheuristics
which has been successfully used in the resolution of a wider range of optimiza-
tion problems, including neural network training and function minimization. In
the original definition of PSO, the quantity of solutions analyzed remains fixed
during the adaptive process [6] [11].

2 Objective

This paper aims at presenting a new extension of PSO, called VarPSO, incor-
porating the concepts of age and neighborhood to allow varying the size of the
population. In this way, not only the quality of the solution to be obtained will
be independent of the initial swarms size but also the commitment relationship
existing between the convergence speed and the population diversity will be im-
proved. The variation of the population size is based on a modification of the
adaptive process allowing adding and/or deleting individuals in function of its
capacity to solve the posed problem. This is carried out through the concept of
age, which allows determining the time of permanence of each element within the
population. In addition, since PSO tends to drive particles towards the explored
areas with good fitness and in order to not excessively overpopulate certain so-
lution spaces, each individuals environment is analyzed and the worst solutions
of the areas with larger number of particles are eliminated.

The method here proposed, VarPSO, is applied to the resolution of some
complex functions, finding better results than those typically achieved using a
fixed size population.

This paper is organized as follows: Section 3 briefly describes the basic PSO
algorithm; Section 4 presents the concepts necessary to carry out the variation
of the swarms size; Section 5 presents in detail the proposed algorithm; Section 6
introduces the results obtained, and Section 7, the conclusions and future lines of
work.

3 Swarm Particle-Based Algorithms

A Swarm Particle-based algorithm, also called Particle Swarm Optimization
(PSO), is a heuristic population technique in which each individual represents a
potential solution to the problem and makes its adaptation taking into account
three factors: its knowledge on the environment (its fitness value), its historical
background or previous experiences (its memory), and its historical background
or previous experiences of its neighborhoods individuals [6]. Its objective consists
in evolving its behavior so as to look like thosemost successful individualswithin its
environment. In this type of technique, each individual remains constantly moving
within the search space and never dies. On its part, the population can be consid-
ered as a multi-agent system in which each individual or particle moves around the
search space saving and, eventually, communicating the best solution found.

There exist various versions of PSO; the most known are gBest PSO, which uses
as neighborhood criterion the overall population, and lBest PSO which, on the



440 L. Lanzarini, V. Leza, and A. De Giusti

other hand, makes use of a small sized population [6] [11]. The size of the neigh-
borhood impacts on the algorithm convergence neighborhood as well as on the
diversity of the populations individuals. When the neighborhood size increases,
the convergence of the algorithm is faster but the diversity of individuals is lower.
Each particle pi is made up by three vectors and two fitness values:

– Vector xi = (xi1, xi2, , xin) stores the current position of the particle in the
search space.

– Vector pBesti = (pi1, pi2, , pin) stores the best position of the solution found
by the particle up to the moment.

– Speed vector vi = (vi1, vi2, , vin) stores the gradient (direction) according to
which the particle will move.

– The fitness valuefitness xi stores the current solution capacity value (vector
xi).The fitness value fitnesspBesti stores the capacity value of the best local
solution found up to the moment(vector pBesti).

The position of a particle is updated as follows

xi(t + 1) = xi(t) + vi(t + 1) (1)

As previously explained, the speed vector is modified taking into account its
experience and the environments. The expression is the following:

vij(t + 1) = w.vi(t) + ϕ1.rand1.(pBesti − xi(t)) + ϕ2.rand2.(gi − xi(t)) (2)

where w represents the inertia factor [10], ϕ1 and ϕ2 are acceleration constants,
rand1 and rand2 are random values belonging to the interval (0,1), and gi rep-
resents the position of the particle with the best fitness of the environment of
pi (lBest o localbest) or the whole swarm (gBest o globalbest). Values of w, ϕ1
and ϕ2 are essential to assure the algorithms convergence. For more details on
the selection of these values, consult [3] and [1].

4 Variable Population Size Particle Swarms

The variation of the populations size is accomplished by allowing the particle to
reproduce and die during the adaptation process. This requires the definition of
mechanisms regulating the corresponding insertion and elimination processes.

4.1 Life Time

One of the most important concepts of the proposed strategy is the particle’s life
time, since it determines the duration of its permanence within the population.
Such value is expressed in quantity of iterations, which once over, the particle
is removed. This value is closely related to the capacity of each particle and
allows the best to remain longer in the population, influencing the behavior of
the others.

In order to assess the life time of each population individual, the method of
assignment by classes defined in [7] was used, since it has proved to be capable of



Particle Swarm Optimization with Variable Population Size 441

providing good results with a smaller quantity of individuals than that applied
by conventional methods. In [7], individuals of a population are grouped accord-
ing to their capacity value in k classes using a winner-take-all-type competitive
clustering method. Over the result of this clustering, we can apply one of the
following methods:

a) Fixed life time assignment by class. The maximum time of the life time
to assign is divided by the quantity of classes, k. This allows us to know the
time range corresponding to each class. Within a same class, its individuals will
receive a life time proportional to the class to which they belong and to the quan-
tity of individuals in the same class, as follows: WidthClass := MAX LT/k
TV Prev := (NumC − 1) ∗ WidthClass
TV Current := WidthClass
Displacement = (fitness[i] − Class[NumC].MinFit)/

abs(Class[NumC].MaxFit − Class[NumC].MinFit))
LifeT ime[i] := trunc(TV Prev + TV Current ∗ Displacement)

where

– WidthClass is the life time range assigned to each class.
– NumC is the number of class to which each individual belongs.
– TV Current is the life time range of the class to which the individual belongs.
– TV Prev is the life time range assigned to the classes previous to NumC.
– Class[NumC].MinFit and Class[NumC].MaxFit are the values of min-

imum and maximum capacity of the class to which the individual under
consideration belongs.

– Fitness[i] is the value of the population i-th individuals capacity.

b) Life time assignment proportional to the quantity of each classs
individuals. Each class receives a life time range proportional to the quantity
of elements it contains. That is, individuals belonging to numerous classes could
have a wider life time range. The computation is as follows:
TotalPrev := 0
for i :=1 to NumC - 1 do TotalPrev := TotalPrev + Class[i].Cant
TV Prev := MAX LT ∗ TotalPrev/TotalIndiv
TV Current := MAX LT ∗ Class[NumC].Cant/TotalIndiv
Displacement = (fitness[i] − Class[NumC].MinFit)/

abs(Class[NumC].MaxFit − Class[NumC].MinFit))
LifeT ime[i] := trunc(TV Prev + TV Current ∗ Displacement)

where

– Class[NumC].Cant represents the total quantity of individual of the closest
class.

– TotalIndiv is the total quantity of the individuals of the population.

These two ways of computing the individuals life time should be combined in
order to achieve the proper assignment. We propose to apply assignment b)



442 L. Lanzarini, V. Leza, and A. De Giusti

during acertain percentage of the algorithms maximum generation quantity and
apply a) in the remaining. This is due to the fact that initial clustering is carried
out over individuals which are not completely adapted yet and, thus, they give
place to highly dissimilar sized clusterings. If we directly apply the distribution
indicated in a) over these clusterings, several individuals will received similar life
times, leading the algorithm to unnecessarily increase the quantity of individuals
in the population.

4.2 Particle Insertion

Particle insertion has two objectives: increasing the convergence speed by incor-
porating individuals in the less populated areas and compensating the particle
elimination caused by the fulfillment of the corresponding life times. Determin-
ing the convenient locations, within the search space, where the new individuals
should be inserted is not a trivial task. In fact, it is a commitment between the
optimal area identification and the new individuals insertion process speed.

The adopted solution divides the original problem in two parts: first, it seeks
to determine how many particles it is necessary to incorporate so as to then
establish where they should be placed within the search space.

The quantity of incorporated particles at each iteration coincides with the
quantity of isolated individuals. An isolated individual is that which does not
have any neighbor within a pre-established r radius. Equations 3 and 4 show
the way in which such radius should be computed [2]. As it can be seen, r is
computed as the average of each particles distances with their closest neighbor.

di = min{‖xi − xj‖; ∀jxi, xjεS; xi �= xj} i = 1..n (3)

r =
∑n

i=1 di

n
(4)

It only remains to determine the position of these new individuals. The adopted
criterion was the following: the 20 % of these new particles receive position vector
of the best individuals of the population, but its speed vector is random; the
remaining 80% is random. In this way, part of the new individuals will begin to
move from the positions that have shown better performance up to the moment,
but with different directions and speeds from those of the best individuals. The
remaining 80% will allow exploring other areas of the search space.

It is important to notice that the efficacy of the distance measure used in 3
will depend on the selected search space representation. If necessary, you may
consult other alternatives in [4].

5 Proposed Algorithm

The algorithm begins with apopulation of N individuals generated at random
within the search space and computes, for each of them, their corresponding
fitness and life time.



Particle Swarm Optimization with Variable Population Size 443

During the process, individuals move according equations 1 and 2.The inertia
used in order to update speed vectors is adjusted as follows [8]:

w = wstart − (wstart − wend)
TotalIteraciones

.CurrentIteration (5)

where wstart is the initial value of w and wend is the end value.
A high value of w at the beginning of the evolution allows the particles to make

large movements placing themselves in different position of the search space. As
the number of iterations advances, the value of w is reduced, allowing them to
make a finer adjustment.

From the new positions within the search space, the individuals fitness value
is recomputed and radius r is obtained according to equation 4.

Then, as many individuals as particles exist in the population without neigh-
bors within this radius are created. These new individuals will have random
speed vectors, within the allowed ranges. The 20% of these new particles will
receive the position vectors of the best individuals of the population, and the
remaining 80% will have random position vectors. For these new particles, their
fitness is assessed and they are then incorporated to the population. Using the
complete population, the recently incorporated individuals life time is computed.

The life time of every individual is decreased in 1, and those who have reached
zero value are eliminated from the population.

The proposed algorithm makes use of elitism, reason why the best individual
of each iteration is preserved. In this way, it is assured that the population will
have at least one particle. This is carried out by replacing the particle with
smaller fitness by the best one of the previous iteration.

Finally, the algorithm ends when one of the following conditions is met:

– The initially indicated maximum quantity of iteration is reached.
– The best fitness has not been modified during the 15% of the total iterations.

Figure 1 presents the pseudo-code of the described algorithm.
The CreatePopulation function receives as parameter the quantity of particles

to be created and returns a swarm with random position and speed vectors within
the established limits and with null life times. In order to estimate them, it is
necessary to first assess each individuals fitness.

The ComputeLifeTimes process receives a complete swarm and only computes
the life time corresponding to the particles that have null life time at the moment
of the invocation. The second parameter corresponds to the type of computation
that should be carried out and it values 1 for the assignment described in 4.1.a),
and 2 for that described in 4.1.b).

The radius computation,according to equation 4, is carried out within the
ComputeRadius process which receives as parameter the complete swarm and
returns the quantity of new particles that should be inserted in the population.
This module is the one in charge of avoiding the concentration of several particles
in the same place of the search space; for this reason, it also returns the list of
individuals that have really closed neighbors. Such particles are eliminated in



444 L. Lanzarini, V. Leza, and A. De Giusti

the SeeEnvironmnet module, in function of their fitness and the quantity of
generated sons.

Pop= CreatePopulation(N)
ComputeFitness(Pop);
ComputeLifeTimes(Pop,2);
w←MAXIMUMINTERTIA
while no end condition is reached do

for i = 1 to size(S) do
evaluate particle xi of swarm S
if fitness(xi) is better than fitness(pBesti) then

pBesti ← xi; fitness(pBesti) ← fitness(xi)
end if

end for
Save individual with maximum fitness.
for i = 1 to size(S) do

Choose gi according to neighborhood criterion used
vi ← w.vi + (ϕ1.rand1.(pBesti − xi) + ϕ2.rand2.(gi − xi)
xi ← xi + vi

end
ComputeFitness(Pop);
ComputeRadius(Pop, SonQuant, Sentenced);
New = CreatePopulation(SonQuant);
Assign 20% to these new individuals the position vectors of the best individuals of Pop.
ComputeFitness(New);
SeeEnvironment(Pop, Sentenced, SonQuant);
Pop = Pop ∪New;
if (CurrentIteration is greater than 5%of the TOTALITERATIONS))

ComputeLifeTimes(Pop, 1);
else ComputeLifeTimes(Pop, 2);

end
Deduct 1 to each particles life time
Remove the particles with null life time
Replace the worst individual by the saved at the beginnning of this iteration
w ← dynamically modify the inertia

end while
Output : the best solution found

Fig. 1. Algorithm of the proposed VarPSO method

6 Results Obtained

VarPSO was used in order to obtain the minimum value of several functions.
Thus, each particle contains in its position vector the values of the function
statements. The capacity of each particle is computed as follows:

(c max − V alue of the Particle) (6)



Particle Swarm Optimization with Variable Population Size 445

where c max represents the function top limit in the interval to be optimized,
and Value of the Particle is the result from assessing the function in the corre-
sponding particles position vector.

Next, the functions used are presented in detail. For each of them, the interval
used to determine the search space is shown together with the c max value used
to compute the fitness.

F1(x, y) = x2 + y2 x, y ∈ [−1, 5]; c max = 50

F2(x) = −x ∗ sin(10 ∗ π ∗ x) + 1 x ∈ [−2, 1]; c max = 3

F3(x, y) = 0.5 +
(sin(

√
x2 + y2 + 4))2 − 0.5

(1 + 0.001.(x2 + y2))2
x, y ∈ [−50, 50]; c max = 1

F4(x1, x2) =
1

0.002 +
∑25

j=1
1

50j+
∑ 2

i=1 (xi−aij)6
x1, x2 ∈ [−50, 50]; c max=500

F5(x1, x2) =
1

0.002 + 1
1+(x1+1)12+(y1+1)12

) x1, x2 ∈ [−200, 200]; c max = 500

F6(x1, x2) =
1

0.002 +
∑3

j=1
1

50j2+
∑ 2

i=1 (xi−bij)12
x1, x2 ∈ [−50, 50]; c max=500

bij =
(

−30 16 30
−40 −32 35

)

The six functions present a single minimum. Each of them seeks measuring
a different aspect of the proposed algorithm. F1 allows analyzing the precision
of the solution obtained. F2, F3, and F4 show their capacity of moving along
a search space with really changing fitness values. Notice that function F4 is
a modification of the De Jong’s function 5. Functions F5 and F6 have been
introduced to analyze the algorithm’s exploratory capacity. In F5 a single gap
appears, which leads to the minimum within a completely flat surface. F6 is
similar, but it presents three gaps with very different depths.

For each function, 100 tests were carried out, using in each case, a maximum
quantity of 500 iterations. The used cognitive and social learning values, ϕ1 and
ϕ2, described in equation 2, were both in 0.5. Inertia values were between 0.2
and 1.5. The allowed speed range was established between -0.5 and 0.5.

The quantity of classes used for computing the individuals life time was 4.
Tests were carried out with values between 2 and 10, confirming that a high value
for the number of classes improves the fitness distinction among individuals,
but significantly increases the population size. On the other hand, if the class
quantity is very low, the swarms size could be considerably decreased. A value
of 4 classes is adequate for the minimization of the afore mentioned functions.
The value used as maximum life times was of 9 iterations, except in functions
F5 and F6, which used a value of 12.



446 L. Lanzarini, V. Leza, and A. De Giusti

Table 1. Results obtained with PSO and VarPSO

Function F1 Avg.Ite. Min. Fit. Med. Fit. Max. Fit. Ini.Pop Fin.Pop
gBest PSO 106.90 48.0544 49.2226 50.0000 20 20.0
lBest PSO 142.08 48.0373 49.2735 50.0000 20 20.0
gBestVarPSO 181.89 30.4806 45.3319 49.9996 30 33.8
lBestVarPSO 169.82 30.3254 45.0502 49.9995 30 32.8
Function F2 Avg.Ite. Min. Fit. Med. Fit. Max. Fit. Ini.Pop Fin.Pop
gBest PSO 102.67 1.6791 2.1150 3.8466 60 60.0
lBest PSO 102.40 1.7325 2.0647 3.8456 70 70.0
gBestVarPSO 115.22 1.3443 2.3861 3.8489 40 13.1
lBestVarPSO 122.18 1.2349 2.3705 3.8489 30 17.7
Function F3 Avg.Ite. Min. Fit. Med. Fit. Max. Fit. Ini.Pop Fin.Pop
gBest PSO 231.06 0.7288 0.9074 0.9762 70 70.0
lBest PSO 197.59 0.6130 0.8607 0.9717 60 60.0
gBestVarPSO 175.17 0.3032 0.5857 0.9942 20 53.3
lBestVarPSO 154.88 0.3025 0.5866 0.9936 40 62.6
Function F4 Avg.Ite. Min. Fit. Med. Fit. Max. Fit. Ini.Pop Fin.Pop
gBest PSO 284.10 441.7729 445.3109 446.6185 60 60.0
lBest PSO 218.77 437.8757 443.5489 444.9094 70 70.0
gBestVarPSO 132.04 145.0876 285.1007 453.0275 30 30.7
lBestVarPSO 124.64 156.9515 299.9142 454.5333 40 55.0
Function F5 Avg.Ite. Min. Fit. Med. Fit. Max. Fit. Ini.Pop Fin.Pop
gBest PSO 140.19 468.3641 482.4536 484.0312 70 70.0
lBest PSO 138.37 448.4032 477.8286 479.0419 70 70.0
gBestVarPSO 117.01 171.4216 280.7481 494.0287 40 16.2
lBestVarPSO 121.72 134.1485 238.5021 496.0285 30 23.8
Function F6 Avg.Ite. Min. Fit. Med. Fit. Max. Fit. Ini.Pop Fin.Pop
gBest PSO 103.27 373.4571 391.0167 391.8489 60 60.0
lBest PSO 115.49 404.7819 440.9218 442.8571 50 50.0
gBestVarPSO 92.56 71.9364 194.3381 443.2076 40 85.7
lBestVarPSO 108.44 120.5613 228.8209 443.4110 20 52.9

Table 1 allows us to compare the results obtained when applying the algorithm
proposed in this paper and the fixed population PSO algorithm. Tests were
carried out with initial population size of 5, 10, 20, 30, 40, 50, 60, and 70 particles.
In all the cases, the values correspond to the averages of the 100 tests carried out
for each function, taking as initial population size that which allowed obtaining
the best maximum average fitness.

As it can be seen, in all the cases, the solution obtained using VarPSO is
superior or equal to that reached by PSO with fixed population, presenting
greater population diversity. In addition, except function F1 for which, it is
quite simple to reach the maximum fitness, the proposed method makes use of a
inferior initial population than that of the fixed population method. If we analyze
the quantity of particles displaced in average in each case, we can see that, in
most of the functions, the proposed method carries out less than half of the job



Particle Swarm Optimization with Variable Population Size 447

0 10 20 30 40 50 60 70
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Initial population 
 a)

be
st

 fi
tn

es
s

gBest PSO
lBest PSO
gBest VAR PSO
lBest VAR PSO

0 10 20 30 40 50 60 70
110

120

130

140

150

160

170

180

Initial population 
 b)

A
ve

ra
ge

 it
er

at
io

ns

gBest PSO
lBest PSO
gBest VAR PSO
lBest VAR PSO

Fig. 2. a) Average maximum fitness obtained for different initial population sizes.
b) Variation of the average iteration number necessary to obtain the best fitness in
function of the initial population size.

0 50 100 150 200
0

10

20

30

40

50

60

70

80
gBest VAR PSO

Iteration

po
pu

la
tio

n 
si

ze

popsize = 5
popsize = 10
popsize = 20
popsize = 30
popsize = 40
popsize = 50
popsize = 60
popsize = 70

0 50 100 150 200
0

10

20

30

40

50

60

70

80
lBest VAR PSO

Iteration

po
pu

la
tio

n 
si

ze

popsize = 5
popsize = 10
popsize = 20
popsize = 30
popsize = 40
popsize = 50
popsize = 60
popsize = 70

Fig. 3. Average size of the population using gBest VarPSO and lBest VarPSO. The
values correspond to the first 200 iterations average of the 600 tests carried out (100
over each function).

than that carried out by fixed population solutions. This last is not verified for
functions F1 and F6. In the case of F1, it is due to the functions simplicity, which
contrasts with the exploratory behavior of the proposed method, and in the case
of F6, it is due to the fact that the method does not prematurely converge like
its fixed population peer, but goes on analyzing the search space obtaining best
solutions.

Figure 2.a) shows the capacity of the proposed method to adapt itself to the
searching surface, finding an almost optimal solution independent of the size
of the initial population. We can also observe that fixed population methods
provide proper results when the adequate initial population size is used. Each
point of figure 2.a) corresponds to the maximum average fitness of the 600 tests



448 L. Lanzarini, V. Leza, and A. De Giusti

(100 for each function) carried out for each initial population size. In each case,
the fitness has been linearly scaled to [0,1], dividing it by the maximum fitness
corresponding to the function.

If we analyze the average quantity of iterations carried out for each method
in function of the size of the initial population, we can see that, for fixed pop-
ulation solutions, it tends to slightly increase while for variable size popula-
tions, it rapidly decreases as the initial population increases. This is repre-
sented in Figure 2.b) and reflects the behavior of each method. Fixed popu-
lation methods only depends on the initial particle displacement, while variable
population methods carry out an initial increase of the population which al-
lows them to rapidly explore a wider area of the search space, reaching at the
optimum with a smaller number of iterations. Finally, Figure 3 shows the aver-
age growth of the population for both variants of the proposed method. As it
can be seen, the behavior is rather similar in both cases and presents a growth
phase, within the first 30 iterations, followed by a reduction and stabilization
phase.

7 Conclusions and Future Works

A strategy based on particle swarm (PSO) with variable size population based
on the concepts of age and neighborhood has been presented. It has been proven
that the mechanism used to incorporate new individuals and the way in which
life time is computed preserves the diversity of the population. Its applica-
tion on different complex functions has been compared to gBestPSO and lBest
PSO. The results obtained show that the strategy proposed in this paper al-
lows obtaining results with a better capacity value than those obtained with
both version of PSO with fixed population size, using a smaller quantity of
iterations.

Work is currently under way on the parallelization of the proposed algorithm
using only the information environment of each particle to determine whether
this is an isolated individual or not. Also algorithm migration to cluster/grid
arquitectures is analyzed. Moreover, according to the great exploration capac-
ity shown by method proposed in this paper, we are currently working on its
applications to neural networks’ adaptation. In this case, each particle repre-
sents a complete feedforward neural network with fixed architecture and, along
iterations, we intend to adapt the connection weights. It remains defining a sim-
ilarity measure assuring the proper quantification of the proximity between two
individuals in the search space.

Acknowledgment

This research was partially funded by the project CyTED ”Grid Technology for
Boosting Regional Development”.



Particle Swarm Optimization with Variable Population Size 449

References

1. Van den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. dissertation.
Department Computer Science. University Pretoria. South Africa (2002)

2. Bird, S., Li, X.: Adaptively Choosing Niching Parameters in a PSO. In: Keijzer,
M., et al. (eds.) Proceeding of Genetic and Evolutionary Computation Conference
2006 (GECCO 2006), pp. 3–9. ACM Press, New York (2006)

3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computa-
tion 6(1), 58–73 (2002)

4. Ertöz, L., Steinbach, M., Kumar, V.: A new shared nearest neighbor clustering
algorithm and its applications. In: Proc. Workshop on Clustering High Dimensional
Data and its Applications, Arlington, VA, USA, pp. 105–115 (2002)

5. Fernandes, C., Ramos, V., Rosa, A.: Varying the Population Size of Artificial For-
aging Swarms on Time Varying Landscapes. In: Duch, W., Kacprzyk, J., Oja, E.,
Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer, Heidel-
berg (2005)

6. Kenedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE
International Conference on Neural Networks, Australia, vol. IV, pp. 1942–1948
(1995)

7. Lanzarini, L., Sanz, C., Naiouf, M., Romero, F.: Mixed alternative in the assign-
ment by classes vs. conventional methods for calculation of individuals lifetime
in GAVaPS. In: Proceedings of the 22nd International Conference on Information
Technology Interfaces, 2000. ITI 2000, pp. 383–389 (2000); ISBN: 953-96769-1-6.

8. Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimiza-
tion (OPSO) and its application to artificial neural networks training. In: BMC
Bioinformatics 2006 (Published online 2006 March 10) pp. 7–125 (2006) DOI:
10.1186/1471-2105-7-125

9. José, G.N.: Algorithms based on swarms of particles for solving complex problems.
University Málaga (In Spanish) (2006)

10. Shi, Y., Eberhart, R.: Parameter Selection in Particle Swarm Optimization. In:
Proceedings of the 7th International Conference on Evolutionary Programming,
pp. 591–600. Springer, Heidelberg (1998)

11. Shi, Y., Eberhart, R.: An empirical study of particle swarm optimization. In: Pro-
ceeding on IEEE Congress Evolutionary Computation, Washington DC, pp. 1945–
1949 (1999)


	Particle Swarm Optimization with Variable Population Size
	Introduction
	Objective
	Swarm Particle-Based Algorithms
	Variable Population Size Particle Swarms
	Life Time
	Particle Insertion

	Proposed Algorithm
	Results Obtained
	Conclusions and Future Works



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




