
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

MODELING, DEPLOYING, AND CONTROLLING VOLATILE
FUNCTIONALITIES IN WEB APPLICATIONS

MATIAS URBIETA
LIFIA – Facultad de Informática, Universidad Nacional de La Plata

 Argentina
matias.urbieta@lifia.info.unlp.edu.ar

GUSTAVO ROSSI
LIFIA – Facultad de Informática, Universidad Nacional de La Plata

Argentina
gustavo@lifia.info.unlp.edu.ar

DAMIANO DISTANTE
Unitelma Sapienza University

 Italy
damiano.distante@unitelma.it

JERONIMO GINZBURG
Departamento de Computación, FCEyN, UBA

Argentina
jginzbur@dc.uba.ar

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

One of the main characteristics of most Web applications is their high dynamism. Once implemented
and deployed for the first time, new functionalities are added to meet new or changed requirements.
Some of these functionalities may appear on the Web in response to an unexpected event, or
phenomena (such as a natural calamity) after which they are removed. Some others are activated
periodically, to coincide with a particular date, or period of the year (such as, return to school,
Christmas holidays, etc.). Implementing such volatile functionalities usually impacts on a number of
aspects of a Web application, including content, navigation, presentation, business processes, and
user operations. Their cyclic activation/deactivation, which requires repetitive changes in the
application code, may be the cause of waste of effort and application quality deterioration, up to
incorrect functioning.
In this paper, we present an approach to decouple the design and implementation of volatile
functionalities from that of stable ones, i.e., the core functionalities of the application. The approach
is instantiated in the context of the Object-Oriented Hypermedia Design Method (OOHDM), but its
principles and related techniques are generally applicable to any other Web engineering method. We
show how our approach enables the deployment and removal of these functionalities in a cost-
effective and safe way and at runtime, thus providing business agility. A framework to classify
volatile functionalities and a number of examples are also reported.

Keywords: Web application, Web engineering, volatile functionality, volatile concern, OOHDM.

2 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

1. Introduction

One of the most outstanding characteristics of Web applications is their continuous
evolution in response to new requirements, or just for the purpose of keeping high their
appeal. Functionalities which are implemented and activated once, in connection with an
unexpected event and then removed definitely, or which are periodically activated during
a particular period of the year, are referred as Volatile Functionalities; they correspond to
the so called Volatile Concerns in [27]. As will be shown in this paper, a volatile concern
might comprise a set of volatile functionalities.

Volatile functionalities are common in most popular Web applications; sometimes
they are new features which are experimented for a period of time and then discarded
because the user does not find them useful. Some other times they are triggered
punctually in response to a specific event or set of conditions. More often they are
periodically activated and de-activated in coincidence with specific periods of the year.
Very often, the need for these functionalities arises after the application has been
implemented and deployed for the first time and, as a consequence, they are not taken
into consideration during the application design phase.

In an e-commerce Web site, such as Amazon.com, typical examples of such
functionalities are: (i) the special offers available at certain periods of the year (e.g.,
Christmas, St Valentine, etc.) on specific products; (ii) the customization of contents for
new releases (such as videos from Related Media performances); (iii) the functionality
for fundraising after a catastrophe, and many others. Similar examples can be found in
news sites, such as CNN.com to accommodate discussions on unexpected events, to
include new advertisement types (e.g., during presidential elections), etc.

As an example, we show in Fig. 1 the Back-to-School promotion in Amazon.com;
Fig. 1.a shows the volatile link in the home page and Fig. 1.b the Back-to-School page,
which in turn points at products designed for schools. Some days before the summer
holidays end and until the academic activities start, customers can access certain offers,
and more specifically, can benefit from free “super-shipping” with certain constraints.
After this period, these features are removed until the following year when they will be
activated again.

In order to ease the introduction of volatile functionalities into Web applications and
thus facilitate their evolution, reducing the risk of introducing errors in working software,
we have defined an approach that enables the systematic design, implementation and
automatic activation/deactivation of volatile functionalities using a model-driven
development style.

This paper, besides presenting in a thorough way the results of our research
concerning volatile functionalities, compared to our previous works on the subject [21,
34] introduces the following new contributions:
• It proposes a conceptual framework for characterizing volatile functionalities

according to their essential properties and an example instantiation of this framework
to characterize a set of volatile functionalities.

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 3

• It describes how to deal with volatile functionalities that impact on the business

process model implemented by a Web application, by modifying the set of process
activities included and their associated workflow.

• It provides guidelines on how to integrate our approach into Web engineering
methods different from the Object Oriented Hypermedia Design Method (OOHDM)
which we used as base model for our original research.

• It proposes a simple event-based language to specify different patterns of volatile
functionalities according to the conceptual framework mentioned above.

• It shows how our volatility pattern specification language and its runtime support are
integrated into the Web applications design and development framework supporting
the OOHDM method.

• It illustrates additional examples of volatile functionalities and a case study of
applying our approach to the design, implementation and management of a volatile
functionality in the context of an e-commerce Web site.

	

Fig. 1.a. The volatile link to the
Back to School offers.

Fig. 1.b. Back to School main page.

The reminder of the paper is organized as follows: Section 2 presents our framework
to characterize volatile functionalities; Section 3 discusses some related work; Section 4
synthesizes our model-based approach to deal with volatile functionalities in Web
applications; Section 5 describes the life-cycle (activation/deactivation) of volatile
functionalities and presents our solutions to automate its management, particularly the
volatility pattern specification language; Section 6 evaluates our approach with empirical
analysis; finally, Section 7 concludes the paper and introduces some of the future work
that we are pursuing.

2. Characterizing Volatile Functionalities

The addition of volatile functionalities in Web applications might be thought as a
particular case of Web software evolution and therefore tackled using existing

4 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

techniques, such as WebComposition Process Model [17], or more general principles,
such as refactoring [15] and patterns [18]. We claim, however, that a specific approach is
needed because of the very nature of these functionalities which distinguishes them from
other evolution requirements: volatility.

Our research has been aimed at developing a model-driven approach to deal with
volatile functionalities that makes it possible (i) to treat volatile functionalities similarly
to core and stable ones, while keeping their design and implementation separated from
the core application, and (ii) to automate their activation/deactivation according to a
defined volatility pattern.

To reach our goal, we first tried to identify the main characteristics of volatile
functionalities by analyzing several examples of them from real-world Web sites and
their evolution during the time. From this analysis we found that a volatile functionality
can be characterized at least along three dimensions that we defined as Intent, Extent and
Volatility Pattern.

The Intent of a volatile functionality can be identified by answering the following
questions: which aspects of the Web application does the volatile functionality impact?
For each aspect, which application object types (or classes) have to be added or modified
and how?

By taking as reference the design dimensions identified for a Web application by
most Web engineering methods [37], aspects that the Intent of a volatile functionality
may span include: content, navigation, user interface (or presentation) and behavior.
Correspondingly, application objects types include, among others: content types,
navigation nodes and paths, interaction widgets, business process workflows, business
process activities, and business rules. Names adopted for the mentioned aspects (a.k.a.,
concerns or layers) and object types (a.k.a., modeling concepts) may vary depending on
the considered Web engineering method.

The Extent of a volatile functionality identifies the set of application objects
(instances of the types identified by the Intent) that it impacts. The Extent of a volatile
functionality is indeed determined by answering the following questions: which
application objects have to be added or modified for the types determined by the Intent?
Is the volatile functionality complete? (i.e., does it affect all instances of the types) or
does it apply to some specific instances? For each of the application objects types in the
Intent, a way to determine the involved instances has to be specified.

The Volatility Pattern deals with describing the life-cycle of the volatile functionality,
i.e., the rules governing its activation/deactivation during the time. In fact, this dimension
distinguishes a volatile functionality from an evolution requirement. Although both an
evolution requirement and a volatile functionality can be unforeseen in the beginning of
the application development, a volatile functionality has a well defined Volatility Pattern
which describes its life-cycle. This dimension of the characterization can be defined by
answering the following questions: when has the volatile functionality to be activated?
(e.g., after a specific event has occurred; in a fixed date; at a specific day of the week; at a
specific time of the day; when certain business rules are satisfied, etc.). How long it has

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 5

to remain active? (e.g., a certain number of days, hours, minutes) or when it has to be
deactivated? (e.g., when a certain time has passed from the activation; when a certain
business rule is satisfied; when a certain day or time comes; etc.). Will it reappear later
on? If yes, which is the pattern of repetition?

For each of the characteristics and sub-characteristics described above, we identified
a set of possible, but not exhaustive, values it can assume. Overall, we obtained the
characterization framework for volatile functionalities reported in Table 1.

Table 1. Characteristics of volatile functionalities with example values.

Characteristic Possible values

Intent

Affected
application

aspects / objects
types

• Contents / content types, views on contents, access structures to
contents, etc.

• Navigation / navigation nodes, navigation links, navigation paths, etc.
• Interface (or presentation) / pages, look and feel of pages, interaction

widgets included into pages, etc.
• Behavior / user operations, business process workflows, business

process activities, business rules, etc.

Type of possible
intervention

• Addition of new application objects types
• Modification of existing application objects types

Extent

Affected
application objects

• All the instances of the application objects types identified by the Intent
• Only some of them, to be specified, e.g. with a query

Added application
objects

• Which new objects of the types identified by the Intent have to be
created

Volatility
Pattern

When

• At some specific date (e.g. Christmas)
• At some fixed time of the day, day of the week, etc.
• When some events occur (e.g., some item is out of stock, catastrophes)
• According to some business rule (e.g., you want to promote some

record; you want to celebrate the 100th customer of the day)

For how long

• For a fixed period of time (e.g., 15 days)
• Up to certain date (e.g., December 20)
• Depending on a business rule (e.g., no more than x CDs sold)
• According to human intervention

Pattern of
repetition

• E.g., every Monday, every first Sunday of the month, at 8.00am
everyday.

It is interesting to highlight some particular characteristics of volatile functionalities
shown in Table 1, which reflect the results of our analysis on successful Web sites. First,
volatility, which always arises at the requirements level, can affect any application
concern (content, navigation, interface and behavior); in some cases, volatile
functionalities might span different concerns, e.g., a new content or link implies
modifying the navigation and interface layers. Second, additions might be very irregular,
e.g., only one or some specific instances of an application object type (content type,
content view, navigation node, navigation path, user interface, interaction widget, user

6 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

operation, business rule, etc.) might be affected. Finally, volatile insertions might be
crosscutting with core functionalities: in Section 4.3.2 we describe a volatile feature
(Back to School products) that offers customers a shipping discount when purchasing a
Kindle Amazon reader together with school products; this volatile feature (temporarily)
modifies a basic business rule on shipping fares for a specific product, therefore
crosscutting the core business model of the Amazon system.

In the following section we briefly review the literature on this field and in Section 4
we present the coarse-grained design decisions underlying our design approach for
volatile functionalities.

3. Related Work

While software evolution has been studied for years now, volatility is a rather new
problem in the literature. The impact of volatile requirements on the costs of a software
product has been thoroughly studied [26]. It is now understood that software might vary
in unforeseen ways and that the impact of these changes on the overall software costs are
affected by an increasing application lifecycle complexity. For example, the Back to
School functionality demands the activation/deactivation of several software components,
and the execution of a number of software development activities (requirement analysis,
design, implementation and testing) both for introducing the change and later removing
it.

A first approach to deal with these changes in a modular way was presented in [28];
in this work the authors propose to capture volatile concerns during requirements
analysis, model them as (early) aspects and follow existing Aspect Oriented Software
Development (AOSD) techniques [14] in the overall application’s life-cycle. Even
though the approach is fairly general, it lacks the specificity of the interactive Web
applications and therefore it does not cover specific features such as enriching a page or
temporally changing an interface or navigation path.

As shown later in this paper, the key approach that we propose for dealing with
volatile functionality is to achieve transparent plugging and un-plugging of the new
features. In the context of Web applications we have found mainly three approaches to
solve this problem. A component-based approach is presented in [17]. The Web
Composition Process Model is a systematic approach for incorporating evolution as a
first-class citizen in a Web application life cycle encouraging reuse through the so called
“Web Application Evolution Bus”. By profiting from contracts, it simplifies the addition
of new functionality in components described using the Web Composition Mark-up
Language. Differently from our approach, it does not deal with the mechanics of
connecting/de-connecting new (volatile) components; besides, from the abstraction level
point of view, it does not consider the problem at the different layers of a Web
application model (conceptual, navigation, interface) but attacks mainly the
implementation aspects.

The other outstanding trend to deal with transparent evolution is the use of Aspect-
Oriented technologies as mentioned some paragraphs above. In the specific area of Web

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 7

applications, an interesting approach can be read in [5]. In this work the authors propose
to tackle evolution using Aspect-Oriented Design Patterns. The approach is sound and
powerful as the authors identify a set of possible types of changes in a Web application
and associate an Aspect Pattern to solve each specific situation. However, it is geared
towards implementation more than design and therefore it looses part of its power;
nevertheless, as discussed throughout this paper, the underlying ideas behind Aspect
orientation are key concepts to use with volatile functionality.

Another related work in which we found similar problems and ideas to ours is Web
application adaptation. A Web modeling framework with orthogonal facilities for
extending functionality in a seamless way is AMACONT [30]. This framework provides
means for addressing adaptation in Web applications by implementing AOP concepts.
Using aspect-oriented adaptation and semantics-based adaptation for different adaptation
granularity, it allows specifying changes in a component-based model. The work
provides a useful framework but lacks of means for specifying presentation aspects as
well as describing aspects lifecycle.

In [4] the authors use an aspect oriented approach to incorporate adaptive navigation
features into Web applications; the approach, built on the UWE method [37], supports
most of the well-known adaptive navigation patterns in a modular and transparent way.
By using aspects, it guarantees seamless activation and deactivation though limited to the
navigation layer. Also, in [6] the authors propose a semantic aspect-oriented approach to
adaptation which combines aspect-orientation with the powerful of Semantic Web
concepts in the context of the Hera method [37]. In the context of Rich Internet
Applications (RIAs), the authors of [20] propose OOH4RIA, an extension of the OO–H
method that allows defining personalization adaptations for RIAs’ presentation.

In [19] the authors introduce a software tool called AWAC based on A-OOH (the
Adaptive OO-H [22]) for automatic generation of adaptive Web applications. A rule-
based architecture for adaptation is presented in [9]; by using Event-Condition-Action
(ECA) rules, the rule engine processes Web-generated events and triggers changes over
application models to achieve adaptive behaviors. Though containing similar concepts,
such as using a rule engine to determine when a change has to be made, the mentioned
approaches are best suited to adaptation issues, while ours focuses on a broader spectrum
of change patterns and besides it deals with incorporating and eliminating these changes.

Though transparent improvement of conceptual and navigational models has been
treated in the literature, we are not aware of any approach supporting oblivious [14]
composition of interface design models in such a way that different concerns keep
orthogonal. In the XML field, the AspectXML project [3] has ported some concepts of
aspect-orientation to XML technology by allowing the specification of point-cuts and
advices similarly to Aspect Java. The project is still in a research stage.

Feature Oriented Programming (FOP) provides means for synthesizing software by
composing features. A feature increments system functionalities by small refinements
introducing classes, resources, dependencies, etc. and is intended to be reused in several
applications. FOP and the approach presented in this work share the same underlying

8 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

goals: design application functionalities in a modular way where features are treated as
first-class entities. In [1] a feature algebra framework for describing feature composition
alternatives is presented. Operations such as features introduction and modification are
formally described taking into account well-known algebraic properties such as
associativity, commutativity, idempotency, among others. As it is a general feature
framework, it is not instantiated in a specific application domain, leaving features
composition implementation details uncovered. When FOP is combined with the Model
Driven Development paradigm (MDD) it results in a new paradigm so called Feature
Oriented Model Driven Development (FOMDD) in which models are refined instead of
specific platform artifacts. For example, in [41], Trujillo et al. present a FOMDD
approach for portlets product-line where porlets’ models are refined with transformations
that introduce functionalities. The approach does not take into account the volatility
aspect of features and therefore it makes feature composition permanent.

4. Integrating Volatile Functionalities into Web Engineering Approaches

In most mature Web design approaches, such as UWE, WebML, Hera, OOWS or
OOHDM (see [37] for description and examples of each approach), a Web application is
designed with an iterative process comprising at least conceptual and navigational
modeling. Some methods also include specific approaches for business process design
[11] as well as techniques for requirements elicitation and interface specification.
According to the state-of-the-art of model-driven Web engineering techniques [37], most
of these design methods produce an implementation-independent model that can be later
mapped to different run time platforms. For the sake of clarity we will concentrate on the
conceptual, navigational and interface models as they are rather similar in different
design approaches. While some comments on volatile requirements modeling are
presented below, a thorough discussion on this aspect can be found in [28].

As most of the problems discussed so far apply to all development approaches, we
will first describe the philosophy underlying our technical solutions in such a way that it
can be reused; next, we will concentrate on the OOHDM design models and will briefly
discuss how each part of our approach could be adapted to other methods. A detailed
discussion on how to incorporate volatile functionalities in any other specific design
method and/or model-driven framework is, of course, outside the scope of this paper.

Our approach is based on the idea that even the simplest volatile functionality (e.g., a
video available for a period of time) should be considered as a first-class functionality
and, as such, designed accordingly. At same time, their design and implementation have
to be taken separated and as much as possible decoupled from that of core and stable
functionalities.

Building on the above ideas, our approach can be summarized with the following
design guidelines:
• We decouple volatile from core functionalities by introducing a design layer for

volatile functionalities (called Volatile Layer) which comprises a requirements
model, a conceptual model, a navigational model, and an interface model.

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 9

• Volatile requirements are modeled using the same notation used to model core

requirements (e.g., use cases, class diagrams, user interaction diagrams, etc.) and
separately mapped onto the following models using the heuristics defined by the
design approach (See for example [43]). Notice that volatile requirements are not
integrated into the core requirements model, therefore leaving their integration to
further design activities.

• New behaviors, i.e. those which belong to the volatile functionality layer, are
modeled as first class objects in the volatile conceptual model; they are considered as
a combination of Commands and Decorators [18] of the core classes. This strategy
applies also to slight variants of business rules (such as adding a price discount to a
product). In this case, the decoration is applied at the method level more than at the
class level. Notice that this strategy can be applied to any object-oriented method,
i.e., any method using a UML-like specification approach. In methods which are
based on data modeling constructs, such as WebML, adding new (volatile)
information is straightforward given that a precise composition language for entity
types is defined. Alternatively, as we discuss in the related work section, an aspect-
oriented solution is possible [14].

• Inversion of control is used to achieve obliviousness; i.e., instead of making core
conceptual classes aware of their new features, the knowledge relationship is
inverted. New classes know the base classes on top of which they are built. Core
classes, therefore, have no knowledge about the additions. This also stands for
aspect-oriented approaches.

• Nodes and links belonging to the volatile navigational model may or may not have
links to the core navigational model. The core navigational model is also oblivious to
the volatile navigational classes, i.e., there are no links or other references from the
core to the volatile layer. This principle can be applied in any Web design approach.

• Separate integration specification is used to specify the connection between core and
volatile nodes. As we show later in the paper, the integration is achieved at run-time.
In other model-driven approaches, the integration can be performed during model
transformation by implementing the corresponding transformations.

• The interfaces corresponding to each concern (core and volatile) is designed (and
implemented) separately; the interface design of the core classes (described in
OOHDM using Abstract Data Views (ADV) [42]) are oblivious with respect to the
interface of volatile concerns. As in the navigational layer this principle is
independent of the design approach.

• Core and volatile interfaces (at the ADV and implementation layers) are woven by
executing an integration specification, which is realized using XSL transformations.
Again, the idea of model weaving is generic and therefore the same result can be
obtained using other technical solution.

We next explain how these principles have been put into practice in the OOHDM
method. For the sake of comprehension and conciseness we focus mainly on those issues
which are specific of Web applications (i.e., content, navigation, and presentation) and
ignore fine grained changes in business rules which apply only to the conceptual model
and do not impact on other models; however, this kind of volatile requirements have been
treated thoroughly in the literature (see [28] for example) and can be tackled either using

10 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

aspects or object decorations [18]. Conversely, we also address volatile functionalities
entailing coarse grained changes in business processes, such as the addition of new
process activities.

Our approach supports features aggregation (aka, monotonic module composition
[25]) by means of different technologies: (i) object-oriented programming patterns are
adopted to model volatile features at the conceptual model level, (ii) affinities are used to
enrich nodes in the navigation model, and (iii) XSL transformations are used in the
interface models to add new structures in the views. Functionality removal (aka, non-
monotonic module composition) and composition properties (e.g., commutativity and
associativity [1]) are not covered in this work.

4.1. Conceptual Design

The conceptual model of a Web application (a.k.a., application, domain, or content
model) is focused on defining the contents of the application with their attributes and
associated behavior. When it is defined using the OOHDM method (or others such as
UWE), this model is an object-oriented model described with UML and comprised of
classes, with their attributes and methods, and associations between classes.

Volatile functionalities may involve brand new content classes (e.g., the class
modeling a video content type) or the (volatile) modification of existing content classes
and application behaviors. In our approach a volatile functionality is treated as a
combination and generalization of Commands [18] and Decorators [18]. A new
functionality is a command because it embodies an application behavior in one class,
instead of a method. It can be considered also as a decorator because it allows adding
new features (properties and behaviors) to an application in a non intrusive way. In our
approach, volatile functionalities might be new behaviors which are added to the
conceptual model (and which might encompass many classes) or full-fledged navigation
models, containing new nodes, links and even relationships with conceptual classes. Each
volatile functionality is treated as a self-contained sub-system and modeled using the
OOHDM method. The notation is similar to symmetric approaches for separation of
concerns such as the one described in [7].

By using UML package merging [10], it is possible to design models obliviously and
seamlessly that, after their design, are merged producing a complex model combining
different concerns; UML model elements such as packages and classes are woven. Only
few platforms allow a direct translation of this model weaving concept such as built-in
C# partial classes, AspectJ (AOP weaver) [2] and Fuji (FOP compiler) [16]. If the
underlying platform does not support classes weaving, a programmer must take decisions
that will not be traceable because there is no isomorphic relation between models and
implementation artifacts.

The same solution can be applied when a business process is modified in a coarse
grained way, e.g., when a new activity is injected in the process. This is possible in
OOHDM as activities are modeled as first-class objects both in the conceptual and the
navigational schema as exemplified in Section 4.2 (See [38]).

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 11

When the process workflow is simple (e.g., when it is just a sequence of atomic
steps), the order of activities can be indicated by relating the corresponding classes in the
conceptual model. These relations are later reflected in the linking structure of the
navigational model (though, as explained in Section 4.2.3, the semantics associated with
these links is slightly different from that of conventional links). When the process
workflow is more complex, it is defined using a UML activity diagram and therefore we
also need to indicate how the diagram is modified when the new activity in inserted. A
thorough explanation of oblivious modifications (e.g., using aspects) of activity diagrams
is outside the scope of the paper. Our approach is a simplification of the technique
presented in Section 4.3.2 for behavioral weaving of user interfaces.

4.2. Navigational Design

The navigational design of a Web application is aimed at defining views, access
structures and navigation paths to contents in order to enable the user easily accessing
and navigating them. Most of Web engineering methods base their navigational model on
two modeling primitives, namely Node and Link. OOHDM is no exception to this, as it
defines nodes as logical views on application model classes and links as the hypermedia
realization of application model associations.

At the navigational layer, volatile and core navigational components are connected
using an integration specification which indicates, for example, if the volatile features are
“inserted” in the core node or if they are connected with a hyperlink (as in Fig. 1). This
specification also includes a query indicating which core nodes will contain the
extension. Nodes matching the query are affected by (or enhanced with) the volatile
functionality and represent the Affinity of the volatile functionality. The name we use was
inspired by [29].

It is possible to define one or more affinities for the same volatile functionality, i.e.,
the same functionality might be incorporated in different parts of the application, by
following different rules.

4.2.1. Affinity Definition

The affinities of a volatile functionality are specified with the same query language used
in OOHDM to define nodes [37]. The language is based on object queries. Using this
query language the definition of an affinity assumes the following form:

AFFINITY: AffinityName

FROM C1…Ci

WHERE Predicate

INTEGRATION: Extension | Linkage((V1…Vi))

In it, AffinityName is the name associated to the affinity, C1…Ci indicate core node

classes involved in the query, Predicate is a logical expression defined in terms of
properties of model objects which determines the instances of the core node classes C1…Ci

12 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

that will be affected by the volatile functionality, and Extension / Linkage indicate the
way the volatile functionality is integrated into core nodes through the volatile nodes
V1…Vi. An extension indicates that the core nodes are enhanced to contain the new
functionality information (and operations). In a linkage integration, the core nodes “just”
allow navigation towards the volatile nodes V1…Vi which actually contain the volatile
functionality, and therefore does not support new behaviors. In the case of linkage
integration, we can also specify additional features such as attributes or anchors that have
to be added to the extended node (e.g., to make navigation more clear).

The requirements related with the Back to School volatile concern shown in Fig. 1
make it necessary to introduce a new node called BackToSchoolNode which acts as an
index for the categories of products related to school. For the new volatile node to
become easily accessible to users we need to define at least two linkage affinities from a
core node to it: the first will link the Amazon home page to the index and the second will
link each product node tagged as ‘school’ to the index.

The specification of these two affinities would look, respectively, as follows:

AFFINITY: Back to School affinity - Home Page

FROM: HomePageNode

INTEGRATION: Linkage (BackToSchoolNode)

AFFINITY: Back to school affinity - Generic link

FROM: ProductNode

WHERE: hasTag(‘School’)

INTEGRATION: Linkage (BackToSchoolNode)

4.2.2. Query Execution

To improve flexibility, queries are intended to be executed at run-time; this allows to
support irregular extensions, i.e., volatile functionalities which apply only to some
specific nodes of a class, as the previous examples show. In this way, the weaving of
volatile navigational functionalities does not occur during model compilation, but during
application execution. Query execution and weaving of nodes in the context of the
OOHDM method is supported by an application framework named Cazon which will be
described later in this paper.

4.2.3. Volatility in Business Processes

A particular case of volatile insertion in the navigational model arises when a new
activity is injected in a business process, as mentioned in Section 4.1. Suppose, for
example, that the checkout process in an e-commerce Web site consists of six activities,
namely: “login”, “consolidate order”, “confirm address”, “select way of payment”,
“specify shipping options”, and “confirmation”. Suppose that during Christmas time we
want to add the option of adding a “custom wrapping” for products after selecting the
shipping options. In OOHDM, the navigational counterpart of activity objects are activity

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 13

nodes [37], hence, each of the activities in the checkout process mentioned above is
associated to a corresponding node in the navigational model of the application. As a
consequence, the injection of the new “custom wrapping” volatile activity consists in: (i)
defining a new activity node in the volatile navigation model (correspondingly, an
activity class is to be added in the volatile conceptual model), (ii) expressing the
relationships between the new volatile activity node and the other core nodes of the
application, and (iii) specifying the integration as described in Section 4.2.1.

OOHDM activity nodes are linked with each others by means of activity links whose
semantics is defined by the relations from which they derivate in the conceptual model.
Therefore, while the semantics of the Linkage integration type still holds (i.e., the new
“custom wrapping” volatile node is linked from the core “shipping options” node), the
exact semantics of the navigation path is defined in the conceptual model where the
workflow constraints are defined. Then, when the user navigates through the activity link,
the next activity node to be open will result from the corresponding volatile insertion in
the conceptual model which relates the “custom wrapping” conceptual object with the
previous activity object (“specify shipping options”) and the “next” one (“confirmation”).
The complete flow of this kind of volatile customization can be also derived from a
technique presented earlier in [36].

4.3. Abstract Interface Design

In OOHDM, the user interface is specified using Abstract Data Views (ADVs) [37]
which support an object-oriented model for interface objects. An ADV is defined for each
node class to indicate how each node attribute or sub-node (if it is a composite node) will
be presented to the user. An ADV can be seen as an Observer [18] of the node expressing
its perception properties, in general, as nested ADVs or primitive types (e.g. buttons).
Using a configuration diagram [42] we express how these properties relate with the node
attributes and operations.

ADVs are also used to indicate how interaction will proceed and which interface
effects take place as the result of user-generated events. These behavioral aspects are
specified using ADV-charts [42], a kind of statecharts representing states and state
transitions for a given ADV. ADV-charts are useful when we need to model rich
interface behaviors such as that of Rich Internet Applications (RIA) [42].
ADV-Charts are state machines diagrams* that allow expressing interface transformations
occurring as the result of the user interaction on a given ADV. ADV-Charts describe
interface behaviors through Event-Condition-Action rules. A complete description of
ADV-charts and their use to specify interface behaviors can be found in [42].

4.3.1. Structural Weaving of Volatile Functionality

As a consequence of inserting volatile functionalities into the conceptual model or the
navigational model, new interface elements must be added into the interface model,

* Or statechart diagrams if we refer to UML 1.x instead of UML 2.0.

14 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

therefore introducing new fields with data or control interface objects (anchors, buttons,
etc.). Though we described this process in [21], we briefly review it here for
completeness and readability reasons.

Each concern (core and volatile) will comprise ADVs for its corresponding nodes.
During the interface design stage and when a node should exhibit some volatile
functionality, we indicate the look and feel of the final page by specifying how the
volatile interface will be inserted into the core ADV. More specifically, we indicate the
relative position of the added interface objects with respect to the core interface objects.
To express the integration, we have defined a simple specification language which allows
indicating point-cuts and insertions at the abstract interface level, i.e. the position where
the volatile ADV has to be inserted in the core ADV.

The specification generalizes the idea of point-cuts in aspect-orientation to the two
dimensional space of Web interfaces. A point-cut and the corresponding insertion are
specified using the following template:

Integration: IntegrationName

Target: ADVTargetName

Add: ADVSourceName | InsertionSpecification

Relative to: ADV name

Position: [above | bottom | left | right]

The field Integration is an identification for this specification. It may refer or not
to a navigational affinity, since the same User Interface (UI) integration specification can
be used with many navigational affinities. The field Target indicates the names of the
ADVs (one or more) which will host the volatile interface code. Inner ADVs may be
specified using a “.” notation. As an example, Product.Reviews indicates that the
insertion will take place in the ADV Reviews, which is a part of the Product ADV.

The Add field indicates which elements must be inserted in the target, either an ADV
or an immediate specification which is used when the inserted field is simple enough to
avoid the specification of another (auxiliary) ADV. Finally, the insertion position is
pointed put by using the Relative and Position fields.

It is worth to notice that the specification is still “abstract”, thus leaving space to fine
tuning during implementation.

As an example, let us consider again the Back to School volatile functionality
example. The specification below (Back to School integration) indicates that the Amazon
Home page ADV has to be enriched with an ADV with the behavior of an anchor (as UI
component) to the Back to School page.

Integration: Back to School integration – Home page

Target: ADV Home page

Add: Anchor(ADV BackToSchool)

Relative to: ADVHomePage.CheckThisOut.NewAndUsedTextBooks

Position: Below

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 15

The specification indicates that the Home page ADV is to be modified with a new
anchor defined at runtime to the BackToSchool ADV. The join-point is defined by the
Relative to property which describes the path to the target pivot component. Finally
the Position points out which place the new link must take. This specification tries to
keep the ADV document model as simple as possible, by avoiding the introduction of
technology dependent information. In Fig. 1, the link that was appended to the page is
highlighted with a dashed oval, without any intrusive code editing.

In order to add a link from any product tagged as “school” to the “Back to School”
page, associated to the second navigation affinity reported as example in Section 4.2.1,
we can use the following integration specification:

Integration: Back to School integration – Generic link

Target: ADV Product

Add: Anchor(ADV BackToSchool)

Relative to: ADV AddToShoppingCart

Position: below

As it can be easily read, the integration specification increments the Product ADV

with a link to the BackToSchool ADV to be positioned below the
AddToShoppingCart ADV (which basically corresponds to a button UI component).

4.3.2. Behavioral Weaving

An interesting and certainly challenging situation arises when a volatile functionality
crosscuts with core functionalities, e.g., when its insertion modifies existing behaviors in
the core model. Crosscutting might manifest in different ways and, according to our
characterization in Table 1, it might affect the conceptual, navigation and interface
models. Crosscutting in the conceptual model can be solved in a straightforward way
using well-known software engineering techniques, such as aspect-orientation, or with
the correct use of certain patterns, as shown in our approach. Meanwhile, crosscutting in
the navigational model strongly depends on the modeling style, and a thorough analysis
of existing approaches shows that complex behaviors are not usual in this model as most
core behaviors are allocated in the conceptual model. Therefore, and for the sake of
conciseness, we focus on the interface model since, with the growing popularity or RIA,
more and more sophisticated behaviors are presented in the user interface and can be
affected by volatile insertions.

Continuing with our Back to School example, we want now to implement a new
Shipping Promotion requirement so that when a product tagged as “School” is added to
the shopping cart, the “addToShoppingCart” button pops-up a suggestion to add a
product promotion (e.g., a hypothetical offer of a Kindle reader with free shipping
promotion) as shown in Fig. 2.a and its corresponding ADV shown in Fig. 2.b; dotted
arrows were used to describe relationships between abstract and concrete interface

16 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

elements. In order to introduce the new behavior, we need to change the interface
behavior of an existing interface object (the AddToShoppingCartButton). Additionally,
we need to trigger the addition of the Kindle item and apply the shipping discount if the
user accepts the offer.

We have developed an extension of the ADV-chart notation to allow the specification
of behavioral weaving in an oblivious way.

Fig. 3 shows how the behavioral weaving of the Kindle ADV with the Product ADV
is specified, in this case a book, by means of ADV-charts, once the structural weaving
has been performed. Basically, the ADV-chart describes the following behavior for the
resulting interface:

• Intercept the “mouseClick” event of the addToShoppingCartButton (using the
catch keyword).

• Enable the pop-up interface to be in the state On, and block the underlying page.
• End, returning control to the original ADV-chart (using the proceed keyword at

the event 2) where the product will be appended to the cart in the first fragment
of transition 2 or,

• Trigger the event which causes the product to be added to the cart together with
a Kindle reader. After that, the business process goes on as expected using the
keyword proceed.

AddShippingPromotionConfirmation ADV

IncludePromotion:
Button

addProduct:
Button

OfferedProduct
Picture:bitmap

PromotionDescription:String

	

Fig. 2.a. Popup shown after AddToShoppingCart
button was clicked.

Fig. 2.b. Include Kindle Confirmation ADV.

Promotion Concern

Off

Include
Promotion

Button

addProduct
Button

On

1

2

AddKindle Confirmation ADV

Unlocked

Locked

1

2

Book ADV

1:
 Event: catch (mouseClick)
 Pre-Cond: AddToShoppingCart.hasFocus()
 Post-Cond: perCont=perCont+

AddShippingPromotionConfirmation
2:
 Event: MouseClick
 Pre-Cond: addProductButton.hasFocus()
 Post-Cond: proceed()

 Event: MouseClick
 Pre-Cond: IncludePromotionButton.hasFocus()
 Post-Cond: perCont=perCont-

AddShippingPromotionConfirmation &&
&& owner.includesShippingPromotion()
&& proceed()

Fig. 3. The promotion confirmation ADV-Chart.

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 17

For the processing to be complete, two methods in the corresponding volatile node
need to be added, namely includesShippingPromotion and addShippingPromotion. The
former checks if the shopping cart registers a Shipping Promotion and the latter routine is
used to register a promotion in the shopping cart. More details will be given in Section
5.2

Our approach takes advantage of well-known aspect oriented concepts in order to
keep the core interface (Product ADV) oblivious from the Shipping Promotion
requirement. In a few words, the solution is achieved by processing the original Product
page and introducing the new behavior by means of a weaver. The weaving process takes
the Shipping Promotion specification and binds its join-point definition (the catch of the
mouse click event) with the target page components (AddToShoppingCart button).

5. Lifecycle Management of Volatile Functionalities

In this section we briefly describe how to put the modeling concepts into work by
automating the process of activation/deactivation of volatile functionalities. We first
present a simple model for reasoning on the life cycle of these functionalities, then we
describe a rule-based language for simplifying the specification of activation/deactivation
conditions.

5.1. Life-Cycle Model

In the context of our OOHDM-based approach and following the analysis presented in
Section 2, we can reason on the life-cycle of a volatile functionality to better understand
when it has to be connected into the application, when it has to be disconnected or re-
connected in other pages, which design models it affects, etc..

Initially, the volatile functionality is introduced in the system in a passive state. When
a specific event arises, like a fixed date arrives or an application event occurs, the
functionality “wakes up” and turns into an “active” state where it starts participating by
introducing its new behaviors through the weaving machinery. Later, other events may
cause the functionality to be removed; this pair (active-passive) of transitions may happen
several times depending on the functionality’s requirements.

After a volatile functionality ends its expected life-cycle and enters into passive state,
it can be kept in the application to be inserted again in the future, discarded immediately
or eventually preserved to provide recorded information when needed, without affecting
the implementation of the core Web application components.

While our model-based approach allows dealing with volatile functionalities
modularly and decoupled from core functionalities, the process of connecting and
disconnecting them should be also treated in a model-based way since, as explained in
Section 2, volatile features can follow some predictable patterns which can help to
automate their activation/deactivation. Therefore, we extended the integration
specification language described in Section 4 by introducing production rules [12] to
express the complex activation rules for volatile functionality.

18 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

The event conditions that trigger the activation/deactivation of a functionality are
expressed using event patterns [44] which allow expressing rich event conditions,
correlation and possibly spanning time windows. Complex event conditions can be
specified combining different event patterns with first order logic.

Also, in order to allow a clear understanding of the activation rules by non-technical
stakeholders, we express the conditions and actions using an appropriate Domain Specific
Language (DSL). The rules written in DSL are then interpreted by a production rules
engine with support for Complex Event Processing (CEP) [44], as we will see in the next
section.

An activation rule looks as follows:
WHEN

 (Event_Pattern_Expression)
THEN

 (CONNECT | DISCONNECT)

 Concern concern_Name

 NAV_Affinity Affinity_Name
 UI_Integration Integration_Name

In the Mother’s day example, the volatile functionality may be activated/deactivated

at fixed dates using a time event. In the following expression volatile functionality is
being activated a month before the Mother’s day:

WHEN

 Time is *-Apr-14 00:00

THEN CONNECT Concern MothersDay

 NAV_Affinity MothersDay,UI_Integration MothersDayHomePage

For disconnecting the volatile functionality, another date-based condition is used in
which the functionality is removed at Mother’s Day end:

WHEN

 Time is *-May-14 23:59

THEN

 DISCONNECT Concern MothersDay

 NAV_Affinity MothersDay,UI_Integration MothersDayHomePage

By combining event-based and time-based queries, we are able to describe complex
life cycles for volatile requirements.

5.2. From Models to Running Applications. The Cazon Framework

In order to support our approach to deal with volatile functionalities in the context of
OOHDM, we have implemented a framework, called Cazon, on top of Struts [40]. The

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 19

framework supports the semi-automatic translation of OOHDM models into running
applications and the introduction of volatile functionalities, working at the model level.
Cazon allows mapping the affinities and integration specifications described in Section 4
into XML documents and supporting both the execution of queries during page
construction and the weaving of interfaces. Cazon basically wraps the Struts
request/response cycle by introducing volatile support.

A thorough description of the Cazon framework can be found in [21,35]; here we will
focus on novel features related with the activation/deactivation of volatile functionalities.

A Cazon based application demands the definition of OOHDM module and the
VService module. The former deals with the definition of navigational constructors
(basically nodes and links) and can be used with or without the latter. The latter,
meanwhile, decorates the OOHDM module and is in charge of augmenting the
application nodes with volatile functionalities according to the navigational affinities
associated to each node.

Each VService is the implementation counterpart of a volatile functionality and is
also an OOHDM model. It contains all the conceptual classes, nodes definitions and the
UI Stylesheets that implement the volatile ADVs. The VService objects may have
references to some core application components, but the VService is oblivious to the
navigational and UI integration specifications which are kept in external files. These files
are configured as properties of the VService, as we will see in the following.

The navigational affinity specifications are mapped almost directly into XML files
[35]. The UI integration is performed by means of XSL transformations. The 2D point-
cuts where the volatile concern is added in the core interfaces are indicated by XPath
expressions [34]. A complete description of the basic implementation is described in [21].

In order to introduce runtime activation/deactivation and configuration of volatile
functionalities, each VService is managed by a JMX managed bean (MBean) [27]. A
MBean is a Java object that represents a manageable resource, such as a volatile
behavior. Through the MBean interface, all the functionality’s properties, such as
activation/deactivation life-cycle, navigational affinity and UI integration XML files, can
be set at run-time. Each VService is separately packaged into a service archive file (SAR)
and can be hot deployed on a JEE application server such as JBoss[24].

The VService's life-cycle is specified in a file using production rules which indicates
the activation/deactivation conditions. The activation rules file is then interpreted by
Drools [12], an open source production rules engine with CEP support.

As we have mentioned before, we defined a DSL that allows writing the activation
rules in an almost natural language. Activation conditions written in DSL are mapped as
event patterns. The events are represented as simple bean classes.

Once the activation rules are deployed, a stateful session of the rules engine will be
listening for application events flow which can come from arbitrary channels. When the
event condition of a rule is satisfied, the engine fires the consequence of the rule. In this
case, the connect() or disconnect() method is invoked with the functionality’s
name, a navigational affinity XML file, and the XSLT file for UI integration, as

20 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

parameters. Finally the VServiceManager executes an operation on the VService JMX
interface (retrieved by JNDI). This operation could be starting or stopping the volatile
functionality or changing its integration configuration files.

The activation rules can be changed at run-time through a Web interface, allowing a
quick change of the application when the business requires it (activation rules are also
volatile).

6. Evaluating the Approach

This work promotes handling volatile concerns in Web applications as first class
requirements and proposes a strategy to properly design, implement and deploy the
corresponding volatile functionalities. The approach also enables controlling the
activation and de-activation of these functionalities according to the application’s
business rules. As Web applications comprise several components and artifacts that are
designed and implemented using different kinds of tools, the impact of introducing
volatile concerns poses different problems depending on the affected application
components.

In order to validate our approach and assess its benefits, we applied it to introduce
two unforeseen concerns into an e-commerce application that is used as running
example†. The two concerns are: geolocalization, which provides longitude and latitude
to business objects including a suitable presentation of new data in a map, and
commentable, which allows users to add comments to specific business objects.

After applying our approach using the Cazon framework in several different systems,
we can summarize some lessons learned. Next we present a twofold analysis: a high level
impact analysis where it is provided a detailed explanation of code changes, and a source
code analysis where some well-known object oriented metrics are used.

6.1. Impact Analysis

In the following, for each Web application layer, we outline the potential changes that
could be introduced when implementing a volatile requirement using a conventional
object oriented approach, and compare them with that introduced by our approach:
• Application (or domain) layer

o Volatile instance variables and methods: When using a “bare” object oriented
(OO) approach to implement volatile functionalities, new elements such as
variables, relationships, and accessors must be coded inside existing classes.
Meanwhile, using our approach, new elements are encapsulated in decorators,
and core classes are not modified.

o Volatile classes: In a conventional OO approach, the introduction of volatile
classes produces no significant impact into existing code. However, when
removing the new classes, the application must be versioned again. In our

† Source code is available at: http://www.lifia.info.unlp.edu.ar/~murbieta/.

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 21

approach, new classes are packaged in a volatile component avoiding removing
volatile requirement’s code after it is deprecated and no longer needed.

o Volatile crosscutting behavior: To introduce volatile crosscutting behavior using
an OO approach, already existing behavior must be updated changing stable and
tested code. With our approach instead, by isolating volatile concerns, using
decorator objects or a classical aspect-oriented (AO) approach, new behavior is
introduced easily. The volatile functionality enriches core behavior with
different strategies (i.e. pre-processing and post-processing).

• Navigational layer
o Volatile navigational nodes: In conventional approaches, similarly to adding

volatile classes in the application layer, adding new nodes in the navigational
layer produces neither tangled nor scattered behavior, thus its impact is minimal
to the core application. However, deactivating the volatile feature requires
removing the new nodes and modifying again the application. Conversely, our
approach promotes the packaging of new nodes in such a way that they are
easily plugged and unplugged when implemented using Cazon.

o Navigational node operations: In MVC Web frameworks such as Struts that
Controller layer is based on command pattern [18], new operations can be
encapsulated as new classes, thus avoiding the need to modify any page of the
application. This solution produces previously mentioned new class’s impact as
it also introduces a new class.

• Interface layer
o User interface widgets: When dealing with volatile functionalities with

conventional OO approaches, new interface features are introduced in user
interfaces components producing more complex code where the new feature is
tangled with core features. In contrast, in our approach, new structural features,
such as widgets or layout configuration, are specified using transformations and
later weaved by a transformation engine. Therefore, the base user interface
remains unchanged.

o RIA behavior: In conventional approaches, behavior declaration is scattered
among different objects, e.g., using JavaScript functions, code defined
anonymously in widgets, or object methods. Code complexity becomes high
since user interface definition is affected in several points by the new RIA
behavior. Alternatively, our approach encapsulates the behavior in HTML
documents and JavaScript artifacts complemented with an integration
specification that contains the target of such behavior and how it should be
introduced.

Overall, one of the major drawbacks of using conventional approaches (e.g., OO

approaches) for handling volatile concerns is the fact that their life-cycle has to be
supported in an ad-hoc fashion, by hard-coding the associated logic. This prevents
reusability and demands the application to be modified and re-deployed again without

22 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

volatile requirements when they “expire”. In our approach, life-cycle management of
volatile concerns is supported by means of business rules combined with CEP which
allows specifying time and business-based events responsible of enabling and disabling
volatile features.

When using a traditional OO approach, volatile functionality development does not
only compromise the coding task, but it also demands additional effort on testing since
the affected features must be tested twice, both for volatile requirement introduction and
removal. In a traditional OO approach, volatile requirements introduce changes on Web
application functionality (e.g. method crosscutting behavior, instance variable, or RIA
behavior) requiring regression tests in order to ensure that base features still work. When
volatile functionality is not longer necessary, its code must be eradicated by means of
manual, error-prone, tasks and so testing is needed. Meanwhile, with our approach, core
behavior is not modified and thus regression testing is not needed. Instead, integration
test is mandatory to verify that the woven concerns behave as expected. Only volatile
requirements activation demands testing because their deactivation brings the application
to a previous and already tested version.

6.2. Source Code Analysis

In order to assess how our ideas impact applications implementation, we have analyzed
different applications source code measuring a variety of aspects using well-known
metrics of Object-Oriented Programming [8]. In this analysis we will focus on (i) Source
Line Of Code (SLOC or LOC) metric, which measures the size of the source code
without comment lines; (ii) Lack of COhesion Metric (LCOM), which measures where
class’ features are not related to its modularization; (iii) class complexity, defined as the
size of a class in terms of line of sentences; and (iv) code duplication, which detects
duplication of code sentences.

We used the Sonar [39] source code quality tool for analyzing code automatically.
This tool allows managing source code quality analyzing code complexity, design,
coding rules, duplications, and potential bugs, among others. By using this tool, we
compared how code changes when introducing volatile features using a conventional OO
approach against using our proposed approach.

Before introducing analysis results, we must remark that the lack of modularization of
crosscutting concerns increases application complexity when the application is evolving
and growing, affecting different application source code aspects. First we will analyze
how, when using an OO approach the application reacts to new features, and then we will
provide a brief description of how our approach keeps modules simples.

The SLOC metric may be used as an indicator for predicting defect density [33]. The
analysis showed up that when introducing volatile functionality using either a
conventional OO approach or our approach, the SLOC metric increases. This is not
surprising as, in both cases, volatile features are introduced by means of new objects and
new object’s state and behavior appended to object definitions, which ultimately
correspond to new lines of code. Even though our approach promotes modularization,

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 23

new features must still be implemented and thus its SLOC adds up to the overall amount.
Differently from a conventional OO approach, instead, our approach promotes the
separation of concerns, and thus keeps classes smaller by having different artifacts for
each feature instead of having a single class with both core and volatile functionality
tangled. This kind of modularization has shown to prevent defects [13].

Application testability is compromised, at least, by two factors: the SLOC increment
in an existing artifact, such as a class, and the increasing of LCOM metric. When new
sentences are introduced in a class, its complexity increases demanding new test suites
for testing the new feature. On the other hand, a lack of cohesion (LCOM) produces
classes that encapsulate different features; this problem is known as the tyranny of
dominant decomposition [31], which does not modularize concerns that are not framed
by the main decomposition criterion. In some cases, this issue was registered as a code
duplication metric increase.

The consequence of volatile functionality elimination is an error prone task because
of its intrinsic crosscutting nature. Although we have not assessed the effort of manually
removing a volatile functionality, several works have shown that the more changes a
component has, more risk for a presence of bug exists [23]. Instead, using our approach,
there is no chance of introducing a bug because no code is modified for introducing a
volatile functionality thus a task for removing it is not needed.

7. Conclusions and Future Work

In this paper we have presented an integrated approach for dealing with volatile
functionalities in Web applications. The approach is based on two main ideas: 1) treating
volatile functionalities similarly to core and stable application’s features (thus designing
them prior to implementation), and 2) keeping their design and implementation separated
and decoupled from core and stable features.

The proposed approach provides solutions to cover the whole life-cycle of volatile
functionalities, from design to implementation, to deployment and run-time state
management (activation/deactivation, according to their volatility pattern). It addresses
volatility at the different application layers it can impact, including conceptual,
navigational and user interface, and makes it possible to seamlessly integrate and manage
volatile functionalities without the need for any modification to the application’s core
(stable) components.

Our proposal makes it possible to introduce new volatile functionalities in Web
applications “on the fly”, and enable non-technical people to control their activation rules
at runtime, thus providing business agility to the application.

The approach has been derived from a conceptual framework, also presented in the
paper, that can be used to characterize volatile functionalities and to reason on this kind
of temporal-framed features which are nowadays typical in Web software.

We have shown, with simple but archetypical examples, how we model volatile
functionalities and their weaving at the conceptual, navigational and interface layer. We
have also shown how to specify their volatility pattern, i.e., the events/conditions under

24 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

which the new functionality has to be activated and deactivated, and the way in which we
implemented this process.

We have described the overall structure of a run-time framework, named Cazon, that
we developed for dealing with volatile functionalities in the context of the OOHDM
model-driven Web engineering method.

We have presented a comprehensive and detailed example of application of our
approach and the Cazon supporting framework to deal with a real-world volatile
functionality in the context of an e-commerce Web application, and have discussed how
our proposal could be applied to other Web engineering methods, different from
OOHDM.

By treating volatile functionalities similarly to first class core functionalities, our
approach simplifies the application’s evolution and provides a framework for reusing
both components and activation/deactivation rules. Our approach and our conceptual
framework to deal with volatile functionalities can ease designers' tasks in: 1) evolving
the application more seamlessly when unforeseen volatile functionality arises, and 2)
understanding which type of volatile functionality might become “stable” and therefore
will be integrated in the core application.

We are currently extending our research in different directions. First we are studying
how to extend our semi-automatic integration approach to the conceptual layer for the
particular case in which the new functionality only concerns this layer; while the process
of dynamic page construction and deployment can be easily intercepted, as we did with
Cazon, the same solution can not be applied automatically to the connection among
application objects. We are studying techniques for dynamic weaving as in [32].

Correctness of Web concern compositions needs to be studied as it was done in [25]
for Feature compositions to guarantee correctness of the resulting application. A language
for describing concerns’ dependencies (constraints) as well as expected hooks in different
models (conceptual, navigational, and interface models) should be defined. The model
checking task would be automated for easing designer tasks. The length restrictions of the
Journal prevent us to further discuss this issue which requires much space. Additionally
this discussion is somewhat out of the present scope of the paper.

We are also working on the integration of our approach in other model-driven Web
engineering methods and particularly analyzing the integration at the meta-model level;
by analyzing existing ideas to bridge and/or unify methods [37] we can find a way to
express volatility in a higher abstraction level.

Finally, we are constantly analyzing and assessing Web applications in order to
obtain additional feedback for our conceptual framework related to this kind of Web
application evolution.

References

[1] S. Apel, C. Lengauer, B. Möller, and Christian Kästner. An Algebraic Foundation
for Automatic Feature-Based Program Synthesis. Science of Computer
Programming (SCP), 75(11):1022-1047, November 2010

 Modeling, Deploying, and Controlling Volatile Functionalities in Web Applications 25

[2] AspectJ, http://eclipse.org/aspectj/
[3] AspectXML, The AspectXML home page. in www.aspectxml.org.
[4] H. Baumeister, A. Knapp, N. Koch, and G. Zhang, Modelling Adaptivity with Aspects, in

Proc. of the 5th International Conf. on Web Engineering (ICWE'05), Lecture Notes in
Computer Science, Springer Verlag, 2005.

[5] M. Bebjak, V. Vranic, and P. Dolog, Evolution of Web Applications with Aspect-Oriented
Design Patterns, in Proc. of the 2nd International Workshop on Adaptation and Evolution in
Web Systems Engineering (AEWSE'07). CEUR Workshop Proceedings, ISSN 1613-0073.
http://CEUR-WS.org/Vol-267/, 2007.

[6] S. Casteleyn, W. Van Woensel, and G. J. Houben, A semantics-based aspect-oriented
approach to adaptation in web engineering, in Proc. of the 18th ACM Conf. on Hypertext and
Hypermedia (HT07; September 10-12 2007; Manchester, UK;), ISBN 978-1-59593-820-6.
pp. 189-198, ACM 2007.

[7] S. Clarke and E. Baniassad, Aspect-Oriented Analysis and Design, The Theme Approach,
Addison-Wesley, Object Technology Series, 2005. ISBN: 0-321-24674-8.

[8] S. H. Chidamber and C. F. Kemerer , A Metrics Suite for Object Oriented Design. IEEE
Trans. Software Eng. (TSE) 20(6):476-493, 1994.

[9] F. Daniel, M. Matera, A. Morandi, M. Mortari, and G. Pozzi, Active Rules for Runtime
Adaptivity Management, in Proc. of the 2nd Int. Workshop on Adaptation and Evolution in
Web Systems Engineering (AEWSE'07). CEUR Workshop Proceedings, ISSN 1613-0073,
http://CEUR-WS.org/Vol-267/, 2007.

[10] J. Dingel, Z. Diskin, and A. Zito, Understanding and Improving UML Package Merge,
Understanding and improving UML package merge, Software & Systems Modeling, Vol. 7,
No. 4. (4 October 2008), pp. 443-467.

[11] D. Distante, G. Rossi, G. Canfora, and S. Tilley, A Comprehensive Design Model for
Integrating Business Processes in Web Applications, in Int. Journal of Web Engineering and
Technology (IJWET), Vol. 3, Issue 1, 2007, pp 43-72. Inderscience Publishers, 2007.

[12] Drools, at https://www.jboss.org/drools/ .
[13] K. El Emam, S. Benlarbi, N. Goel, W. L. Melo, H. Lounis, S. N. Rai, The Optimal Class Size

for Object-Oriented Software. IEEE Trans. Software Eng. (TSE) 28(5):494-509, 2002.
[14] R. Filman, T. Elrad, S. Clarke, and M, Aksit, Aspect-Oriented Software Development.

Addison-Wesley, 2005.
[15] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 2000.
[16] Fuji: A Compiler for Feature-Oriented Programming in Java, http://fosd.de/fuji.
[17] M. Gaedke and G. Graf, Development and Evolution of Web-Applications using the

WebComposition Process Model, in Web Engineering, Software Engineering and Web
Application Development. LNCS 2016 Springer 2001, pp 58-76.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[19] I. Garrigós, C. Cruz, and J. Gómez, A Prototype Tool for the Automatic Generation of
Adaptive Websites, in Proc. of the 2nd Int. Workshop on Adaptation and Evolution in Web
Systems Engineering (AEWSE'07). CEUR Workshop Proceedings, ISSN 1613-0073.
http://CEUR-WS.org/Vol-267/, 2007.

[20] I. Garrigós, S. Meliá, and S. Casteleyn, Personalizing the Interface in Rich Internet
Applications, in Proc. of the 9th Int. Conf. on Web Engineering (ICWE 2009), LNCS 5648,
Springer-Verlag, pp. 292-299, 2009.

[21] J. Ginzburg, D. Distante, G. Rossi, and M. Urbieta, Oblivious Integration of Volatile
Functionality in Web Application interfaces, in Journal Web Engineering. Vol. 8, N.1, pp.
25-4, Rinton Press, 2009.

[22] J. Gómez, C. Cachero, and O. Pastor , Conceptual Modelling of Device-Independent Web
Applications, IEEE Multimedia, Special Issue on Web Engineering, pp. 26–39, 2001.

[23] A. E. Hassan, Predicting faults using the complexity of code changes. ICSE 2009:78-88.
[24] JBoss application server at http://www.jboss.org/jbossas .

26 M. Urbieta, G. Rossi, D. Distante & J. Ginzburg

[25] M. Kuhlemann, D. Batory, and C. Kästner, Safe composition of non-monotonic features. in

Proc. of the 8th international conference on Generative programming and component
engineering (GPCE '09). ACM, New York, NY, USA, 177-186.

[26] G. P. Kulk, and C. Verhoef, Quantifying requirement volatiliy effects. Science of Computer
Programming 72 (2008), pp 136-175

[27] MBean JBoss microkernel, http://docs.jboss.org/jbossas/jboss4guide/r4/html/
[28] A. Moreira, J. Araujo, and J. Whittle, Modeling Volatile Concerns as Aspects, in Proc. of the

18th Conf. on Advanced Information Systems Engineering (CAiSE 2006). LNCS 4001
Springer, 2006.

[29] M. Nanard, J. Nanard, and P. King, IUHM: A Hypermedia-based Model for Integrating
Open Services, Data and Metadata, in Proc of 14th ACM Conference on Hypertext and
Hypermedia (HT03; Nottingham, UK; 26-30 August 2003). ACM Press (2003), pp. 128-137.

[30] M. Niederhausen, K. Van Der Sluijs, J. Hidders, E. Leonardi, G. J. Houben, and K. Meißner,
Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation for AMACONT, in
Proc. of the 9th Int. Conf. on Web Engineering (ICWE 2009). LNCS, Springer Berlin /
Heidelberg, 2009, pp. 106-120.

[31] D. L Parnas, On the Criteria To Be Used in Decomposing Systems into Modules, Commun,
ACM (CACM) 15(12):1053-1058, 1972.

[32] A. Popovici, T. R. Gross, and G. Alonso, Dynamic weaving for aspect-oriented
programming, in Proc. of the 1st Int. Conf. on Aspect-Oriented Software Development,
AOSD 2002, ACM 2002, pp.141-147.

[33] C. Rahmani, D. Khazanchi, A Study on Defect Density of Open Source Software. ACIS-ICIS
2010:679-683, 2010.

[34] G. Rossi, J. Ginzburg, M. Urbieta, and D. Distante,Transparent Interface Composition in
Web Applications, in Proc. of the 7th Int. Conf. on Web Engineering (ICWE2007). LNCS
4607 Springer 2007.

[35] G. Rossi, A. Nieto, L. Mengoni, N. Lofeudo, L.S. Nuño, and D. Distante, Model-Based
Design of Volatile Functionality in Web Applications, in Proc. of the 4th Latin American
Web Congress (LA-WEB 2006). IEEE Computer Society, 2006.

[36] G. Rossi, H. Schmid, and F. Lyardet, Customizing Business Processes in Web Applications,
in Proceedings the 4th Int. Conf. on E-Commerce and Web Technologies (EC-Web-
2003).LNCS 2738 pp 359-368, Springer 2003.

[37] G. Rossi, O. Pastor, D. Schwabe, and L. Olsina, Web Engineering: Modelling and
Implementing Web Applications. Human-Computer Interaction Series. Springer, London,
2008.

[38] H. Schmid, and G. Rossi, Modeling and Designing Processes in E-Commerce Applications,
in IEEE Internet Computing 8(1): 19-27,2004.

[39] Sonar, http://www.sonarsource.org/, Accessed 4 June 2011.
[40] Struts Framework, http://struts.apache.org/ .
[41] S. Trujillo, D. Batory, and O. Diaz, Feature Oriented Model Driven Development: A Case

Study for Portlets, In proc. of the 29th international conference on Software Engineering,
Vol. 0 (ICSE '07), pp. 44-53.

[42] M. Urbieta, G. Rossi, J. Ginzburg, and D. Schwabe, Designing the Interface of Rich Internet
Applications, in Proc. of LA-WEB 07, Chile, IEEE Press, 2007.

[43] P. Vilain, D. Schwabe, and C. Sieckenius De Souza, A Diagrammatic Tool for Representing
User Interaction in UML, in Proc. of UML 2000, Lecture Notes in Computer Science 1939,
pp 133-147, Springer 2000.

[44] D. Zimmer, and R. Unland, On the semantics of complex events in active database
management systems, in Proc. of the 15th Int. Conf. on Data Engineering, (ICDE 1999). pp.
392-399, 1999.

