
Managing Volatile Requirements in Web

Applications

Matias Urbieta

LIFIA, Facultad de Informática, UNLP and CONICET

 La Plata, Argentina

matias.urbieta@lifia.info.unlp.edu.ar

Gustavo Rossi

LIFIA, Facultad de Informática, UNLP and CONICET

La Plata, Argentina

gustavo@lifia.info.unlp.edu.ar

Damiano Distante

Unitelma Sapienza University

Rome, Italy

damiano.distante@unitelma.it

Wieland Schwinger

Department of Cooperative Information Systems,

Johannes Kepler University Linz

wieland.schwinger@jku.ac.at

Abstract— Web applications allow business to offer services

or products to numerous users with different culture, context,

and needs. There are situations where applications must adapt to

unforeseen and temporary business requirements, such as a one-

off market campaign to launch a new product, beta features for

engaging users, or disaster solidarity features that remain in the

application for a period of time. In this paper, we summarize an

approach for dealing with this sort of volatile requirements and

present challenges in the research field that must be addressed.

Keywords—Web applications; volatile requirements,

business process evolution, Web systems evolution

I. INTRODUCTION

Nowadays business must adapt to global trends in order to
keep users engaged; unplanned marketing campaigns, season
promotions (final season sales), crisis management, among
others business requirements are examples of unexpected
requirements that stress the whole applications’ infrastructure.
When unforeseen requirements arrive and remain in the
application for a period of time until a given business or time
event occurs, it is called Volatile Functionality.

Volatile functionalities demand business processes to
change according to active market campaigns, catastrophes,
etc. The system may modify the underlying workflow model;
this may imply executing a slightly different workflow version
which supports new requirements like discounts and free-
shipping, or introduces new workflow steps like new forms to
be filled, etc. In Web applications these changes may
compromise several tiers of the applications, including content,
behavior, navigation, and presentation. When the underlying
workflow changes, user interfaces may, for example, introduce
a new form that will demand a new view controller that
orchestrates data validation and workflow navigation, and
finally the business model must be modified to support new
form entities and fields.

As a reference example, we use the checkout process in an
e-commerce site; in order to buy some items, the user must
follow a simple workflow comprising a number of steps such
as selecting a product, choosing the type of wrapping (regular
or special for birthday), selecting the shipping address,
choosing the payment method, etc. Suppose an unforeseen
event, such as a catastrophe, happens that leads to a donation

campaign. We may require the introduction of a new donation
step in the purchase workflow, where users can choose
between different pre-set amounts of money to donate. This
change will require at least a set of modifications:

(i) implement a page that presents a donation form with
its corresponding fields;

(ii) add a corresponding step in the workflow and modify
the workflow coherently;

(iii) add persistence machinery for the new data to be
stored; and

(iv) upgrade navigation functionality, for example, to let
users navigate to their donations.

In this case, the set of changes must be present only when
the catastrophe campaign is active, otherwise they make no
sense. In the mid-term we have a volatile requirement (the
existing of a catastrophe and the donation campaign) which
leads to a “context-aware” workflow behavior.

Regularly, e–commerce sites promote sales campaigns such
as Back To School which is available for a period of time. In
this case, the Back to School page which in turn points to
products designed for scholars will be available to give quick
access to scholar products. Some days before the summer
holiday ends, customers can access to certain offers and, more
specifically, can benefit from free “super-shipping” with
certain constraints up to academic activities start. After that,
these features are removed due to every New Year Back to
School features defers from year before.

Additionally, the impact of the adaptation in the application
may not be simple; that is, the introduction of this volatile
requirement may cross other workflows such as ticket booking
for a recital, product pre-order, etc. Therefore, the way in
which the volatile requirements are modeled is critical to
assure that they are correctly implemented.

Unfortunately, applications are not modeled to support this
kind of situations and needs for adaptations usually arrive once
the application has been already released.

When new requirements are unpredictable and temporary
like volatile requirements [5], they are usually introduced in an

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 77

ad-hoc way. The inadequate implementation of the associated
changes may lead to a decay of the software quality
compromising application maintenance, stability, and
complexity, and finally the application’s budget.

In this paper we present the state of the art of our approach
for handling volatile functionalities regarding business
processes. This paper summaries our previous work
[4][6][9][10] and introduces challenges that must be addressed
for further work in this topic.

The rest of the paper is organized as follows: in Section 2
we present some background themes; in Section 3 we present
our model-driven approach to welcome volatile requirements
and implement corresponding volatile functionalities that
impact on the different layers of a Web application; finally, we
describe some related work in Section 4 and conclude the
paper announcing feature work in Section 5.

II. BACKGROUND

In our approach to deal with volatile requirements in Web
applications we use WebSpec [12] as the language for
modeling workflow requirements and Pattern Specifications
[3] as the technique for specifying the association between
requirements belonging to different concerns.

A. Abstract Data Views

Abstract Data Views (ADVs) [11] allows describing user
interface by means of an object-oriented model for interface
objects. An ADV is defined for each node class to indicate how
each node attribute or sub-node (if it is a composite node) will
be presented to the user. An ADV can be seen as an Observer
of the node expressing its perception properties, in general, as
nested ADVs or primitive types (e.g. buttons). Using a
configuration diagram we express how these properties relate
with the node attributes and operations.

ADVs are also used to indicate how interaction will
proceed and which interface effects take place as the result of
user-generated events. These behavioral aspects are specified
using ADV-charts, a kind of statecharts representing states and
state transitions for a given ADV. ADV-charts are useful when
we need to model rich interface behaviors such as that of Rich
Internet Applications (RIA).

B. WebSpec

WebSpec [12] is a visual domain specific language for
representing Web applications requirements; its main artifact
for specifying requirements is the WebSpec diagram, which
can contain interactions, navigations, and rich behaviors.

A WebSpec diagram defines a set of scenarios that the Web
application must satisfy. An interaction (denoted with a

rounded rectangle) represents a point where the user can
(widgets). Interactions have a name (unique per diagram) and
may have widgets such as labels, list boxes, etc. In WebSpec, a
transition (either navigation or rich behavior) is graphically
represented with arrows between interactions while its name,
precondition, and triggering actions are displayed as labels
over them. In particular, its name appears with a prefix of the
character ‘#’, the precondition between {} and the actions in
the following lines.

The scenarios specified by a WebSpec diagram are
obtained by traversing the diagram using the depth-first search
algorithm. The algorithm starts from a set of special nodes
called “starting nodes” (interactions bordered with dashed
lines) and following the edges (transitions) of the graph
(diagram).

In Figure 1, the checkout process in a Web application is
depicted as a set of interactions where the user is able to select
a product for start setting out its purchase (interaction
Products); next she is able to choose whether a simple or gift
wrap should be used; next, delivery information must be
introduced such as address and city; and finally the list of
current orders is shown.

WebSpec has a supporting tool with features that allow, in
the early phases of requirement gathering, realizing simulations
of application interaction against mock interfaces and
generating independent Web tests for testing the final
development result.

C. Pattern specification

Pattern Specifications (PSs) [3] is a technique for
formalizing the reuse of models. Originally, the notation for
PSs was presented using the Unified Modeling Language
(UML) as a base, but in this work we will instead use the
concept of patterns in the WebSpec realm. A PS describes a
pattern of structure defined over the roles played by pattern
participants. Role names are preceded by a vertical bar (“|”)
and a PS can be instantiated by assigning concrete elements to
play these roles.

III. OUR APPROACH IN A NUTSHELL

In most mature Web design approaches, such as UWE,
WebML, Hera, OOWS or OOHDM (see [7] for description
and examples of each approach), a Web application is designed
with an iterative process comprising at least conceptual and
navigational modeling. According to the state-of-the-art of
model-driven Web engineering techniques, most of these
design methods produce an implementation-independent model
that can be later mapped to different run time platforms. For
the sake of clarity we will concentrate on the conceptual,

Fig. 1 Simple checkout process modeled using WebSpec

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 78

navigational and interface models as they are rather similar in
different design approaches.

As most of the problems discussed so far apply to all
development approaches, we will first describe the philosophy
underlying our technical solutions in such a way that it can be
reused; next, we will concentrate on the OOHDM design
models and will briefly discuss how each part of our approach

could be adapted to other methods. A detailed discussion on
how to incorporate volatile functionalities in any other specific
design method and/or model-driven framework is, of course,
outside the scope of this paper.

Our approach is based on the idea that even the simplest
volatile functionality (e.g., a video available for a period of
time a website) should be considered as a first-class

Fig. 2. Back to school core and volatile models

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 79

functionality and, as such, designed accordingly. At same time,
their design and implementation have to be taken separated and
as much as possible decoupled from that of core and stable
functionalities.

Building on the above ideas, our approach can be
summarized with the following design guidelines:

• We identify volatile functionalities in the early phase
of requirement gathering and use WebSpec language to
describe them. In Section III.A this step is described
thoroughly.

• We decouple volatile from core functionalities by
introducing a design layer for volatile functionalities (called
Volatile Layer) which comprises a requirements model, a
conceptual model, a navigational model, and an interface
model.

• Volatile requirements are modeled using the same
notation used to model core requirements (e.g., use cases, class
diagrams, user interaction diagrams, etc.) and separately
mapped onto the following models using the heuristics defined
by the design approach. Notice that volatile requirements are
not integrated into the core requirements model, therefore
leaving their integration to further design activities.

• New behaviors, i.e. those which belong to the volatile
functionality layer, are modeled as first class objects in the
volatile conceptual model; they are considered as a
combination of Commands and Decorators of the core classes.
This strategy applies also to slight variants of business rules
(such as adding a price discount to a product). In this case, the
decoration is applied at the method level more than at the class
level. Notice that this strategy can be applied to any object-
oriented design method, i.e., any method using a UML-like
specification approach. In methods based on data modeling
constructs, such as WebML, adding new (volatile) information
is straightforward given that a precise composition language
for entity types is defined.

• Inversion of control is used to achieve obliviousness;
i.e., instead of making core conceptual classes aware of their
new features, the knowledge relationship is inverted. New
classes know the base classes on top of which they are built.
Core classes, therefore, have no knowledge about the additions.
This also stands for aspect-oriented approaches.

• Nodes and links belonging to the volatile navigational
model may or may not have links to the core navigational
model. The core navigational model is also oblivious to the
volatile navigational classes, i.e., there are no links or other
references from the core to the volatile layer. This principle can
be applied in any Web design approach.

• Separate integration specification is used to specify
the connection between core and volatile nodes. As we show
later in the paper, the integration is achieved at run time. In
other model-driven approaches, the integration can be
performed during model transformation by implementing the
corresponding transformations.

• The interfaces corresponding to each concern (core
and volatile) is designed (and implemented) separately; the
interface design of the core classes (described in OOHDM

using Abstract Data Views [11]) are oblivious with respect to
the interface of volatile concerns. As in the navigational layer
this principle is independent of the design approach.

• Core and volatile interfaces (at the ADV and
implementation layers) are woven by executing an integration
specification, which is realized using XSL transformations.
Again, the idea of model weaving is generic and therefore the
same result can be obtained using other technical solution.

In Fig. 2, we present both the Core and the Back to School
volatile concerns showing, in different layers, the
corresponding models. For the sake of simplicity, we have
limited the core concern’s models to those classes in the
conceptual, navigational and interface diagrams which are
“affected” by some Back to School feature.

A. Workflow requirements modelling

When a given application implements different workflows
as nodes and links, the introduction of volatile functionalities
may implicate ambiguity and inconsistencies with other
requirements. In order to avoid such inconsistences, the
approach supporting volatile functionalities helps identifying,
modeling, and validating requirements. The approach is based
on the idea that any volatile requirement must be treated as a
first–class citizen; we consider these requirements as belonging
to a separate concern [8] allowing us to isolate, model and later
compose both core application workflow and volatile
requirements. To make this presentation thorough, we first
describe the general approach to model Web workflow
requirements using WebSpec.

Step 1: Requirement gathering. Using well-known
requirement elicitation techniques such as meetings, surveys,
Joint Application Development (JAD), etc., a Software
Requirement Specification (usually in natural language) is
produced. In the case of an agile underlying development
process, a briefer description is usually produced with user
stories [2].

Step 2: Requirement modeling. Web application
requirements are formalized using a requirement Domain
Specific Language (DSL). This formalization is essential
during the requirement gathering process with stakeholders.
Using a requirement DSL, tasks such as tests derivation and
scenarios simulations can be automated easily. In this work, we
selected WebSpec as the requirement DSL.

Step 3: Requirement generalizations modeling. Base
workflow changes (e.g. adaptations) are modeled using the
Pattern Specification extension for the requirement DSL; in
this paper we exemplify with the WebSpec extension.

Step 4: Consistency validation. Syntactic and semantic
analysis is performed over requirements. By means of an
algebraic comparison of models, candidate structural and
navigational conflicts are detected. These conflicts are
analyzed and semantic equivalences are detected. For each
candidate conflict, both the new requirement and the
compromised requirement are translated from a high
abstraction level (the requirements DSL) to a minimal form,
using an atomic constructor in order to detect semantic
differences. Semantic equivalences between requirements are

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 80

detected for warning requirement analysts. For more
information on this process see [9]. In order to check
consistency of volatile functionalities, base requirements are
composed with volatile requirements (following Pattern
Specification semantics) giving as result a complete model that
is validated. Since a given volatile requirement can be generic
and so it can have several points of instantiation into the base
diagram, the consistency validation procedure will only use
specified binding configurations between base and adaptation
model’s elements.

Step 5: Test derivation. In this step, tests for the
composition of the traditional WebSpec diagram and the
WebSpec PS extension are generated producing tests that allow
validating the final Web Application. Generated code is based
on the Selenium tool which allows automating Web browsing
task based on WebSpec requirements.

This also allows assessing the set of requirements with
users by using simulations in the early stages of UI mocking.
The same tests are used later in the testing phase of the
software development process. When deriving tests for volatile
functionalities, the same binding configurations used in Step 4
are taken into account. That is, the test derivation process uses
an internal model where the base model was only enhanced on
those points that specify a binding configuration.

For more details on the approach to address volatile
requirements that involve adapting the workflows of the
application see [7].

IV. CHALLENGES

We have presented an approach that provides support for

volatile requirements during the whole development process

of a Web application. Nonetheless, a number of challenges

must be addressed in this field:

• Models@Runtime: In previous work that we have

conducted on the topic of this paper, we have realized that

introducing volatile functionalities in Web applications may

be challenging when dealing with static underlying technology

such as Java. Once the application is running it is not

straightforward to introduce changes for a period of time. A

trending research field called Models@Runtime [1] aims at

providing guidelines, tools, and approaches for designing and

implementing runtime adaptive applications. Introducing

Models@Runtime concepts in software development process

may help systems adapting to any future volatile functionality.

• Agile development: The presented model-driven

approach is formal and well-structured but doesn’t fit very

well with agile approaches because this last relies on less

structured tools for requirement gathering such as Mockups.

Mockups have shown to be useful for effective requirement

gathering. Although agile development reduces artifacts

release cycle, applications are still prone to introduce volatile

functionality. Tools for identifying and formalizing volatile

functionalities in agile methods should be developed.

• Volatile workflows. Workflows are first-class citizen

in Web applications because they address business goals.

Volatile functionality may rise suddenly at any already

defined workflow as it was depicted in the introduction

section and may affect already stable and productive

components. Conceptual tools for modeling volatile

functionality that compromises workflow may ensure

consistency in order to handle different versions (that run in

parallel) of a given workflow: compromised instances of a

given workflow, and not compromised ones.

Based on these themes, next we present a roadmap of further

work.

V. FURTHER WORK

The proposed approach provides solutions to cover the whole

life-cycle of volatile functionalities in Web applications, from

design to implementation, deployment, and run-time state

management (activation/deactivation, according to their

volatility pattern). It addresses volatility at the different

application layers it can impact, including conceptual,

navigational and user interface, and makes it possible to

seamlessly integrate and manage volatile functionalities

without the need for any modification to the application’s core

(stable) components.

Our proposal makes it possible to introduce new volatile

functionalities in Web applications “on the fly”, and enables

non-technical people to control their activation rules at

runtime, thus providing business agility to the application.

We also pointed out different related topics that we are

undertaking for integrating our approach in agile development,

supporting business process as first-class citizen and

rethinking applications for having Models@Runtime. First we

are studying how to implement Volatile functionality in static

typed language such as Java where changes in runtime are not

simple.

We are also working on the integration of our approach in

model-driven Web engineering methods other than OOHDM

and particularly analyzing the integration at the meta-model

level. By analyzing existing ideas to bridge and/or unify

methods [5] we can find a way to express volatility in a higher

abstraction level.

We plan to perform assessments to validate our ideas and

measure benefits of its application exploiting WebSpec

features such as test generations and simulations.

UML class diagrams and business process models can be

sketched from WebSpec diagrams. Heuristics must be studied

in order to produce accurate design models. Obtained UML

and business process modes can be used also for producing

prototype applications.

We plan to compare the outcome obtained from the

requirement gathering tasks using our approach (based on

Web requirement models) against traditional lexical software

requirement specification. We also plan to analyze the

advantages in traceability between model elements since our

model for formalizing requirements also allows deriving

design models following a model driven approach. Finally, we

are studying how Web workflow requirements can ease agile

development by inferring required story points [2] for a given

requirement.

Finally, we are constantly analyzing and assessing Web

applications in order to obtain additional feedback for our

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 81

conceptual framework related to this kind of Web application

evolution.

ACKNOWLEDGMENT

The authors also want to thank Silvia Gordillo, Werner

Retschitzegger, and Esteban Robles Luna who have helped

reviewing and providing an interesting point of view on some

aspects of our approach.

REFERENCES

[1] Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V. The role
of models@run.time in supporting on-the-fly interoperability. In
Computing, 95(3), pp. 167-190. Spinger-Verlag Wien (2013).

[2] Cohn, M. Succeeding with Agile: Software Development Using Scrum
(1st ed.). Addison-Wesley Professional (2009).

[3] France, R., Kim, D., Ghosh, S., Song, E. A UML-Based Pattern
Specification Technique. In IEEE Transactions on Software
Engineering, 30(3). IEEE Computer Sociaty (2004).

[4] Ginzburg, J., Distante, D., Rossi, G., Ubierta, M. “Oblivious Integration
of Volatile Functionality in Web Application Interfaces”, Journal of
Web Engineering, Special Issue on Design of Sophisticated Web-based
Systems, Vol. 8, No.1 pp. 25-47, Rinton Press. 2009.

[5] Moreira, A., Araújo, J., Whittle, J. Modeling Volatile Concerns as
Aspects. In Proc. of the 18th International Conference on Advanced

Information Systems Engineering (CAiSE 2006), Lecture Notes in
Computer Science pp. 544-558, Springer (2006).

[6] Rossi, G., Ginzburg, J., Urbieta, M., Distante, D. "Transparent Interface
Composition in Web Applications." 7th International Conference on
Web Engineering (ICWE2007). Lecture Notes in Computer Science
Volume 4607, 2007, pp 152-166, Springer (2007).

[7] Rossi, G., Pastor, O., Schwabe, D., Olsina, L., Web Engineering:
Modelling and Implementing Web Applications. Human-Computer
Interaction Series. Springer, London (2008).

[8] Sutton, S., Rouvellou, I. Modeling of Software Concerns in Cosmos. In
Proc. of the 1st ACM international conference on Aspect-oriented
software development (AOSD 2002), pp. 127-133, ACM Press (2002).

[9] Urbieta, M., Retschitzegger, W., Rossi, G., Schwinger, W., Gordillo,
S.E., Roble Luna, E. Modelling adaptations requirements in web
workflows. In Proc. of the 14th Int. Conference on Information
Integration and Web-based Applications & Services (iiWAS 2012): 72-
81, ACM Press (2012).

[10] Urbieta, M., Rossi, G., Distante, D., Ginzburg, J. Modeling, Deploying,
and Controlling Volatile Functionalities in Web Applications.
International Journal of Software Engineering and Knowledge
Engineering 22(1), pp. 129-155, World Scientific Publishing Co. (2012).

[11] Urbieta, M., Rossi, G., Ginzburg, J., and Schwabe, D. Designing the
Interface of Rich Internet Applications, in Proc. of LA-WEB 07, Chile,
IEEE Press, 2007.

[12] WebSpec Language, http://code.google.com/p/webspec-language/.
Access August 2012.

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 82

