
A minimal OCL-based Profile for Model Transformation

Roxana Giandini (1) (2) Gabriela Pérez (1) Claudia Pons (1) (3)
(1) LIFIA, Facultad de Informática,Universidad Nacional de La Plata, Buenos Aires, Argentina

(2) Dpto. Sistemas de Información, Facultad Regional La Plata,
Universidad Tecnológica Nacional.

(3) CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)
[giandini, gperez, cpons]@lifia.info.unlp.edu.ar

Abstract

The MDD (Model Driven Development) initiative
covers a broad spectrum of research areas such as
modeling languages, definition of transformation
languages among models, and construction of support
tools. Currently, some of these aspects are being
established and applied, while others are still in the
process of definition. Consequently, it is necessary to
make every effort to convert MDD and its concepts and
related techniques into a coherent proposal, based on
open standards, and supported by mature tools and
techniques.

Transformations among models require specific
languages for their definition. These languages must
have a formal base, for instance, a metamodel that
supports them and allows for an automated treatment.
This paper presents a declarative language for model
transformations inspired on OMG (Object
Management Group) standards. Our proposal is
expected to be a minimal extension of the already
existing OMG specifications, and it basically uses
OCL (Object Constraint Language) language to
specify transformation relations.

1. Introduction
In the MDD paradigm [1], models are thought to be

the primary conductors in all software development
aspects. A PIM (Platform Independent Model) is
transformed into one or more PSMs (Platform Specific
Model); hence, a specific PSM is generated for each
specific technological platform. Model transformation is
the MDD engine; models are no longer mere
contemplative entities and become productive entities.

The MDD initiative covers a broad spectrum of
research areas : modeling languages, definition of
languages for model transformation, construction of
support tools for the different tasks involved,
application of concepts to development methods and

specific domains, etc. Currently, some of these aspects
are well-based, and are being applied with some
success; however, other aspects are still undergoing
their definition process. In this context, it is necessary
to make every effort to convert MDD and its concepts
and related techniques into a coherent proposal, based
on open standards, and supported by mature tools and
techniques. Model transformations require specific
languages for their definition; these languages should
have a formal base, for example, a metamodel that
supports them and allows for an automated treatment.

In this paper, we present a pure declarative language
to express transformations among models whose initial
metamodel is inspired in the QVT
(Query\View\Transformation) language [4], which is the
OMG [2] specification for transformations, still
undergoing a definition process. The language we
propose aims at being minimal for expressing queries
and transformations among models.

The organization of this paper is as follows: in
Section 2 the concept of model transformation is
introduced by an example specified in QVT. Section 3
presents and discusses some disadvantages about
QVT notation, thus informally realizing our proposed
statement redefining the example. Section 4 presents a
step-by-step construction for a transformation profile,
based on the definition of stereotypes and the use of
OCL language giving thus a formal base to our
proposal. In Section 5, this profile is applied to the
example. Finally, conclusions and future working lines
are presented.

2. A Model Transformation example
For a better understanding of the model

transformation notion, we present a simple example
extracted from QVT manual. This example shows the
textual specification of a transformation called
UML2Rdbms that defines a relation Class2Table that in
turn transforms UML classes (which fulfill the







constraint of being persistent, as indicated in the when
clause of this relation) into Relational Model tables. For
each class a corresponding table under the same name
must exist. Also the transformation presents another
relation: the Attr2Col, which specifies that the class
attributes are in agreements with the columns under the
same name in the corresponding table (the relation only
transforms not multivalued attributes whose type is a
basic data type). This relation is invoked in the where
clause of Class2Table and it means that each time
Class2Table is fulfilled for a class and a table, Attr2Col
for its attributes and columns, respectively, are also
fulfilled:
Transformation UML2Rdbms (Uml: UML2.0, Rel:
RDBMS) {

TopLevel Relation Class2Table {
checkonly domain Uml c: Class {name = n }
checkonly domain Rel t: Table {name = n }
when { isPersistent = true }
where { Attr2Col (c, t) } }
Relation Attr2Col {
checkonly domain Uml c: Class { attribute = a:

Attribute {name = an, type = p: DataType {name = dt}}
}

checkonly domain Rel t: Table {column: col:Column
{name = an, type.name = dt } }

when { not a.isMultivalued() }
where { col.type = a.type } }

}
A graphic instantiation of this transformation could be,
for instance, the one shown in Figure 1 between two
concrete models: Uml (from UML) and Rel (from
Rdbms). In this case, for the class Person of the Uml
model, there is a Table in the Rel relational model under
the same name. Attributes undergo the same process:
for each attribute of the class Person there is a column
in the table Person under the same name and with the
same type. That is to say, for the attribute `name´, there
is a column `name ,́ and both are strings.

3. Our proposal – Informal Introduction
In the previous example, certain issues that can be

generally found in QVT examples could be observed.
We will give some details of these issues over this
particular example; they could be considered general
disadvantages that hinder the QVT use and
understanding.
Some of these issues are:
- Transformation relations are expressed through
template expressions in each domain. Then, a pattern
matching among these expressions will be performed to
concrete the transformation. Due to the fact that in
these expressions, variables can be recursively defined,
this nesting and the consequent pattern matching
could be broadcast producing complicated
specifications.
- The relation Attr2Col suggests its application over all
attributes of the Class parameter, but this is not
explicitly indicated. Similarly, the same situation
happens for the parameter Table. To denote that
without ambiguity, we could use OCL language.
- Also, the same relation transforms specifically
attribute to column, but its parameters are Class and
Table. It would be clearer if each relation has as
parameters the elements that actually transforms.

Consequently, we propose a new way to specify the
same transformation considering the mentioned
disadvantages, making more readable the notation,
following a more friendly syntax and maximizing the
OCL language use.

3.1 Redefining the example
In our proposal, each domain is specified with just

the participating variables, while the conditions, that
must be fulfilled among them, are specified in the where
clause of the relation. It means, we are using neither
template expressions nor pattern matching.
Furthermore, in the relation Class2Table we explicitly
specify in OCL the iteration over class attributes and
we call the relation with the adequate parameters:
Attribute and Column. Then, variables used in domain
and codomain have respectively the proper type:
Attribute and Column. Preconditions that attributes
must fulfill, appear in the when clause, while post
conditions are included in the where clause.
The example redefined in our notation is as follows:
Transformation UML2Rdbms (Uml: UML2.0, Rel:
RDBMS) {

TopLevel Relation Class2Table {
checkonly domain Uml c: Class
checkonly domain Rel t: Table
when { c.isPersistent = true }

Figure 1. Transformation UML2Rdbms graphic
instantiation.








where { c.name = t.name and c.allAttribute-> forAll
(a | ( t.column -> exists (co | Attr2Col (a, co)))) }
}
Relation Attr2Col {
checkonly domain Uml a: Attribute
checkonly domain Rel co: Column
when {not a.isMultivalued() and

a.type.oclIsKindOf (DataType)}
where { co.type = a.type and co.name = a.name } }

}
In the next section we discuss an approach to define a
formal base to the proposed notation. In order to realize
this, a UML Infrastructure extension is constructed.
This profile is based in stereotypes definition and
maximizes the use of the OCL to avoid the creation of
unneeded new elements. Stereotypes and constraints
definition is the standard extension mechanism of UML.
This mechanism promotes to extend existing
metaclasses instead of defining new ones. In turn, it is
commendable to minimize the amount of new
stereotypes maintaining the simplicity and reducing the
user’s training time, encouraging the use of this profile.

4. A minimal OCL-based Infrastructure
Extension for Model Transformation

Previously to present the analysis of how and where
the transformation language is defined, let us review
some concepts on techniques for metamodeling and
definition languages.

4.1 Model Transformation in the 4-layer
Metamodeling Architecture
Metamodeling is a mechanism that allows for the formal
construction of modeling languages such as UML and
RDBMS. The 4-layer Metamodeling Architecture is the
OMG proposal aiming at standardizing modeling-
related concepts, from the most abstract to the most
concrete ones.

Figure 2. Layers M3 and M2 of the 4-layer Architecture

The levels defined in this architecture are commonly
called: M3, M2, M1, and M0. Level M3 is the most
abstract one, where MOF [3] is located; level M2
defines languages for specifying models , for instance

UML; level M1 defines instances of a metamodel; Level
M0 models the real system.

In this context, a specific transformation is located
in layer M2 so as to be able to relate generic instances
of concrete metamodels (located in M2), such as those
of UML and RDBMS, while instances of these
metamodels (for example a UML Class and an RDBMS
Table) are actually transformed. That is to say, models
that are concretely involved in the transformation (layer
M1) are parameters for the transformation language.
It is reasonable to think that the metamodel for
transformations and its instantiation cannot coexist in
the same layer since they represent different levels of
abstraction. Then definition of languages for model
transformation may be realized in the layer M3 of the 4-
layer Modeling Architecture.
However, MOF represents a close Meta-metamodel
upon which metamodels (MOF instances) are
instantiated and it is located in layer M3. Therefore, the
transformation metamo del should be located in layer
M2, together with the remaining metamodels (UML,
OCL, etc.) as shown in Figure 2. Let us analyze other
OMG specifications, closely related to MOF: one of
these specifications is the Infrastructure [7] for
modeling languages. The Infrastructure is the most
simplified specification defining the basic constructors
and the common concepts for modeling language. It
could be said that Infrastructure is independent from
the UML itself. The UML metamodel is complemented
by the Superstructure [6] specification, that defines the
constructors at UML 2.0 user’s level.

The Infrastructure case is interesting for its recursive
definition regarding MOF: on the one hand, it can be
defined as a MOF instance (in layer M2 as shown in
Figure 2); on the other hand, MOF itself is based on, or
uses elements of the Infrastructure Core package for its
definition, thus allowing for the identification of the
Infrastructure as a meta-metamodel. If the new
transformation metamodel is defined as an extension of

Figure 3. Model Transformation in 4-layer Architecture







elements of the Core package, it is questionable to think
that it lies in level M3 together with the Infrastructure
(see Figure 3). Then, a transformation metamodel
instance in layer M2 relates metamodel elements, while
in layer M1 will be a correspondence link among models
- instances of such metamodels, which are the ones that
are concretely transformed.
In the QVT specification document, the metamodel is
defined as a “MOF and OCL extension” [5]. Our point
of view, following what has been earlier analyzed and
the OMG definitions, is that it is not technically correct
to extend MOF since it represents a close Meta-
metamodel upon which metamodels are instantiated.
Hence, we propose to minimally extend Infrastructure
2.0 and use OCL 2.0 to implement the transformation
metamodel.
The QVT definition consists of three packages: two
declarative packages (Relations and Core) and one
imperative package. A large number of the languages
proposed for model transformation [8, 9, 10, 11 and 12]
are based on the QVT language. Most of these
language proposals are hybrid, being both declarative
and imperative. To define a transformation relation
among models, it seems to be enough to specify it
declaratively and then choose in which imperative
language it could be executed. Just then, executable
statements in agreement with the declarations should
be written. Thus, we chose to propose a pure
declarative language for transformations, whose initial
metamodel is inspired in the QVT Relations package.

Then, we implemented it as an Infrastructure extension
using the existing OCL metaclasses. This metamodel is
expected to be minimal in the set of metamodels

permitting us to express relations and queries of model
transformation.

4.2 Construction of the minimal profile
Following what has been stated in the above section,
our proposal is to extend Infrastructure, by creating a
specific profile (instance of the Profile metaclass from
the Infrastructure) capable of expressing particular
features of model transformation.
The extension offers a formal base that reflects our
textual notation proposed in section 3. It is defined in
five stages, as suggested in other works defining
profiles:

First stage: definition of the proposed
metamodel
Based on the QVT Relations package metamodel, the
metamodel proposed (see Figure 4) uses the OCL
existing metaclasses and minimizes the metamodel
proposed in our previous work [18]. Specifically
speaking, the concrete syntax (BNF grammar) of that
package was adapted with the purpose of simplify its
use and understanding, while keeping the necessary
basic concepts; eliminating several abstract classes
(such as Rule, RelationDomain, Pattern, PatternDomain,
etc.) and other concepts that appear in the
transformation domain (such us Query and Helper)
were taken into account.
In our metamodel, a transformation consists of typed

models, relations and queries. Each typed model has a
metamodel as type - any MOF instance – and it
participates in the transformation as source and/or

Figure 4. Metamodel proposed for Model Transformation








target. A relation has a Boolean attribute isTopLevel,
representing its level. A top level relation is executed
automatically; otherwise the relation must be explicitly
called by another one to be executed. Also relations
may include variable declarations, when and where
clauses - preconditions that should be fulfilled so as to
achieve the transformation and postconditions that
have to be fulfilled when finishing the transformation
execution, respectively - and helpers. A helper, an
element not taken into account in the QVT metamodel,
defines additional operations in order to perform
navigation upon the models participating in the
transformation. Helpers could optionally have input
parameters and use recursion. They consist of variable
declarations and expressions that specify the additional
operations definition. The application of a helper does
not produce side effects.
Moreover, relations are defined from domains to
codomains; each domain corresponds to a model and
can only be checked or else, forced. When a domain is
checked, its constraints will be evaluated regarding the
current model-associated values. When a domain is
forced, it is also checked, but in this case, the
associated model can be updated (that is to say, object
creation and/or erasure may occur) to realize the
transformation.

In the QVT metamodel, TemplateExp metaclass
represents complex expressions that consist in variable
declarations and optionally other constraints. They are
specified into the relation domains. The purpose of a
TemplateExp is to arbitrarily define nested objects
and/or collections templates for pattern matching and
instantiation. In the QVT document the TemplateExp
hierarchy is specify by new metaclasses added to the
OCL metamodel.

To be able to understand the Template Expression
issue, let us use the example in section 2. In the relation
Attr2Col, the TemplateExp of the UML domain, is c :
Class { attribute = a: Attribute, { name = an, type = p:
DataType {name = dt}} } and the TemplateExp of the
Rel codomain is t: Table { column: col:Column {name =
an, type.name = dt }.
We propose to separate the variable definitions that
could be nested, from the expressions which are used
to match patterns in candidate models. For this reason,
we define variables through the OCL Variable-
Declaration metaclass, and the pattern matching
expressions are added in the where clause. Specifically,
to represent the variable definitions in domain and
codomain, we propose to use the OCL VariableExp
metaclass, an OCLExpression which consists of a
reference to a typed variable (OCL VariableDeclaration

metaclass) through the referredVariable association
(see Fig . 4). Then, after analyzing the OCL 2.0, we
conclude that maximizing the use of this language it is
necessary to define neither new stereotypes nor new
metaclasses to the proposed profile.
As far as queries are concerned, they specify instance
transformations, in the same way as relations, but with
a simpler format. The idea is that they are side-effect-
free functions, with formal parameters and an
OCLExpression as body.

Second stage: Metamodel s tereotypes
definition
For each metaclass of the step above, a new stereotype
has been defined. Unlike in UML, in Infrastructure the
stereotype’s taggedValues are properties called
ownedAttribute. The following subsection shows the
new stereotypes with its extended metaclasses.
Regarding the relationships among the proposed
metaclasses, we have decided not to stereotype them to
avoid using an excessive notation when instancing the
profile. We have chosen to add constrain ts to the
connecting concepts. Association is used to relate

Figure 5. M odelTransformation profile







Classes, and DirectedRelationship1 when relating
Packages (as packages are not Classifiers, they cannot
relate via Association).

Third stage: Identification of the proposed
stereotypes’s extended metaclasses.
In this subsection, the Infrastructure metaclasses that
could be extended to represent the proposed
metamodel are identified.
According to this metamodel, a transformation could be
defined as a Class formed by the models it transforms,
and by the relations and queries defined among them.
Hence, all models are referred to without indicating to
which one transformation is not applied, nor in which
direction it is performed. This declarative style best fits
for our proposal. In this sense, a relation can also be
represented extending the metaclass Class, made up of
the intervening domains, and the conditions and
helpers constraining it. Domain adds features to models
and also has Class as extended metaclass.
The query stereotype extends the metaclass Operation.
Its Boolean attribute isQuery already exists in
Operation.
In general, models can be represented in packages.
Therefore, TypedModel and Metamodel are defined
extending the metaclass Package.
The relationship between transformation and query
concepts is represented by defining the owner of the
<<query>> operation as a <<transformation>> class.
Finally, let us analyze the expressions (when, where and
helpers) which constrain a relation of our metamodel. In
MOF-based modeling languages, in many of the cases
where the term expression is applied, an expression
written in OCL can be used. In the OCL abstract syntax,
an OCLExpression is defined recursively. For this
reason the metaclass ExpressionInOCL is needed to
represent the root of this recursive notation. It has a
body attribute (which would be the OCLExpression)
and a language attribute which should have the “OCL”
value for this case. An existing stereotype for an
ExpressionInOCL is <<definition>>, which constrains
the ExpressionInOCL indicating that it should be
defined in the context of a Classifier; it could also
define additional operations and have Let expressions.
This makes an OCL <<definition>> expression
appropriate for modeling helpers.
As regards the when and where clauses, they are
Boolean expressions, therefore we specialized the
existing <<invariant>> stereotype (which metaclass

1 There is neither Dependency, nor any other Relationship in
the Infrastructure connecting elements different from a
Classifier.

extended is ExpressionInOCL), for modeling them. An
<<invariant>> ExpressionInOCL is an expression whose
body is a Boolean OCLExpression constraining a
Classifier. In our metamodel, these clauses constrain a
<<relation>> class and can refer to other relations and
helpers. Figure 5 shows the stereotypes defined with
their extended metaclasses, making up the
ModelTransformation profile.

Fourth stage: Stereotype attributes
definition.
For each attribute in the metamodel proposed, an
attribute is defined in the corresponding stereotype.
Figure 5 shows the stereotypes with their attributes:
IsTopLevel of Boolean type in Relation stereotype;
isChecked, isEnforced, both of Boolean type in Domain
stereotype. In Section 5, we present a transformation
instantiation using the defined stereotypes and OCL.

Fifth stage: Complete definition of the
proposed extension
The proposed extension is a Profile class instantiation
within the Infrastructure 2.0 Profile package.
For those new stereotypes which add restrictions to its
base metaclass, we present below a formal definition
indicating which metaclasses they stereotype, their
attributes and the constraints expressed in OCL that the
extended metaclasses should be fulfilled when the
profile is being used. To graphically emphasize some of
the concepts defined in the profile, we introduce new
icons. This is the case of the transformation and
relation concepts.

STEREOTYPE Transformation

Extended metaclass: Class

Graphical Notation: a transformation occurrence is
shown by an hexagonal figure containing the name of
the transformation and the <<transformation>>
stereotype

Constraints:

[1] A transformation should contain relations or queries
and should have at least two models as parameters (one
input and one output)
(self.relations()->notEmpty() or
self.queries() -> notEmpty()) and
self.modelParameters() -> size() > 1

[2] The model parameters set of the transformation must
be equal to the domain and codomain type models set.
self.modelParameters()=self.relations
()-> collect (relation: Class |








relation. typedModels()) -> flatten()
-> asSet()

[3] A transformation can only be related to relations or
typedModels
self.relatedElements()->forAll(re|
re.stereotype.name=‘relation’ or
re.stereotype.name=‘typedModel’)

Additional Operations

[1] The query relations() gives all the relations
associated with the transformation
Class:: relations(): Set (Class)
relations =
self.owningPackage.ownedMember->
select ( r:Class | r.stereotype.name
= ‘relation’ and
self.owningPackage.ownedMember ->
exists (a:Association | a.memberEnd -
> includes (e: Property | e.type =
self and
e.opposite.type = r))

[2] The query queries() gives all the queries associated
with the transformation
Class:: queries(): Set (Operation)
queries = self.ownedOperations-
>select (o:Operation |
o.stereotype.name=‘query’)

[3] The query modelParameters() gives all the
typedModels associated with the transformation
Class:: modelParameters (): Set
(Package)
modelParameters =
self.owningPackage.ownedMember->
select ( m: Package |
m.stereotype.name = ‘typedModel’ and
self.owningPackage.ownedMember ->
exists
(d:DirectedRelationship | d.source =
self and d.target = m))

STEREOTYPE Relation

Extended metaclass: Class

Graphical Notation: a Relation occurrence is
shown by a pentagonal figure containing the name of
the transformation and the <<relation>> stereotype

OwnedAttributes:

 isTopLevel ::Boolean - Specifies whether the
relation is a top level relation. Default value is
false. If isTopLevel is false, the relation must
be explicitly called by another o ne.

Figure 6. Instantiation of the profile for the example







Constraints:

[1]. A relation should be defined in at least one domain
and one coDomain
self.domain()-> size()>=1 and
self.coDomain() -> size()>= 1

[2] A relation may have a when clause. However, it
must have a where clause.
(self.constraint -> select(c |
c.stereotype.name = ‘when’)->
size()<= 1) and (self.constraint ->
select(c | c.stereotype.name ‘where’)
-> size()= 1)

Additional operations
[1] The query domain() gives all the domains associated
with the relation through role name domain.
Class:: domain (): Set (Class)
domain =
self.owningPackage.ownedMember ->
select ( d:Class | d.stereotype.name
= ‘domain’ and
self.owningPackage.ownedMember ->
exists (a:Association |
a.memberEnd -> includes (e: Property
| e.type = self and e.opposite.type =
d and e.opposite.name = ‘domain’)))

[2] The query coDomain() gives all the domains
associated with the relation through role name
codomain.
Class:: coDomain(): Set (Class)
coDomain =
self.owningPackage.ownedMember->
select ( d:Class |
d.stereotype.name = ‘domain’ and
self.owningPackage.ownedMember ->
exists (a:Association |
a.memberEnd -> includes (e: Property
| e.type = self and e.opposite.type =
d and e.opposite.name = ‘codomain’)))

[3] The query transformation() gives all the
transformation associated with the relation
Class:: transformation (): Set
(Class)
transformation =
self.owningPackage.ownedMember->
select ( t:Class | t.stereotype.name
= ‘transformation’ and
self.owningPackage.ownedMember ->

exists (a:Association | a.memberEnd -
> includes (e: Property | e.type =
self and e.opposite.type = t)))

[4] The query typedModels() gives all the type models
associated with the relation (the domain and codomain
typed model)
Class:: typedModels(): Set (Package)
typedModels =
self.domain().typedModel -> union
(self.coDomain().typedModel)

STEREOTYPE Domain

Extended metaclass: Class

OwnedAttributes:

 isChecked:: Boolean - Specifies whether the
domain is just checked. In a checked domain,
the constraints will be evaluated regarding the
current model-associated values.

 isEnforced:: Boolean - Specifies whether the
domain is forced. Default value is false. In a
forced domain object creation and/or erasure
may occur.

Constraints:

[1] A domain should make reference to only one
TypedModel (there is a DirectedRelationship between
Domain and TypedModel)
self.owningPackage.ownedMember->
select(d:DirectedRelationship |
d.source = self and
d.target.stereotype.name =
‘typedModel’)-> size()=1

[2] A Domain must contain at least one variable
declaration
self.variables() -> size()>0

Additional operations
[1] The query relation() gives all the relation associated
with the domain .
Class:: relation(): Set (Class)
relation =
self.owningPackage.ownedMember->
select ( d:Class | d.stereotype.name
= ‘relation’ and
self.owningPackage.ownedMember
-> exists ( a:Association |
a.memberEnd -> includes (e :
Property| e.type = self and
e.opposite.type = d))








[2] The query variables() gives all the variable
declarations associated with the domain .
Class:: variables(): Set
(VariableDeclaration)
variables = self.constraint -> select
( c:Constraint |
c.body.bodyExpression.oclIsKindOf(Var
iableExp))-> collect (c:Constraint |
c.body.bodyExpression.referredVariabl
e)

STEREOTYPE TypedModel

Extended metaclass: Package

Constraints:
[1] A typed model should be an instance of one
metamodel, that is, it should be the source of a
DirectedRelationship having as target a
<<metamodel>> package
self.metamodel() -> size() = 1

[2] A typed model should only contain instances of the
metamodel it relates to.
self.ownedMember-> forAll (e|
self.metamodel().ownedMember() ->
includes (e.type))

Additional operations
[1] The query metamodel () gives all the metamodel
packages associated with the typedModel .
Package:: metamodel (): Set (Package)
metamodel =
self.owningPackage.ownedMember
->select (d:DirectedRelationship |
d.source = self and
d.target.stereotype.name =
‘metamodel’) -> collect
(d:DirectedRelationship | d.target) )

STEREOTYPE When/Where (subclass of
Invariant)

Extended metaclass: ExpressionInOCL

Constraints:
[1] A when/where clause must constraint a relation.
self.constraint.constrainedElement.
stereotype = ‘relation’

5. Profile Application to the Example
In this Section, we show an instance of the

metamodel using the proposed profile for the
redefined example in Section 3. Figure 6 illustrates this
example using the proposed graphic notation and

stereotypes. We can see that a new instantiation of
this transformation will be upon particular elements of
concrete models at the M1 level of the 4-layer
architecture. This model presents a transformation
instantiation that defines transformation patterns
upon the generic instances of the metaclasses (e.g.
classes and tables, attributes and columns). The
transformation has two models as parameters
(umlModel and RelationalModel) and two relations
(class2Table and Attr2Col). When and where clauses
are OCL expressions stereotyped with <<when>> and
<<where>> respectively, which constrain the relations
Class2Table and Attr2Col. Both relations have one
domain (Uml) and one codomain (Rel). Because of
domains and codomains are structurally identical and
th e only difference between them are just its role into
the relation, it is possible to represent both by a class
stereotyped with <<domain>>. Variable declarations
within the domains are also expressed in OCL via a
VariableDeclaration metaclass that, as stated in
subsection 4.2, matches the TemplateExp metaclass of
the QVT metamodel.

6. Conclusions and Future Work
Model Transformation is the MDD engine; in this

way, models, from being mere contemplative entities,
become productive entities within the software
development process. Model transformations require
specific languages for their definition. These languages
must have a formal base, for instance, a metamodel that
support s them, and allows for an automated treatment.

In this paper, we have proposed a pure declarative
language to express model transformations whose
initial metamodel is inspired in the QVT language.
Regarding the construction of a language, there are two
options: One of them is create a new language based in
a metamodel implicating new metaclasses definition.
Another option is using the standard extension
mechanism of UML that consists in new stereotypes
definition extending existing metaclasses.
Our proposal is based on specifications already existing
in OMG; on the one hand, by means of the stereotype
definition, we extend Infrastructure 2.0, an independent
and more abstract specification than UML; on the other
hand we use the OCL language to express
transformation patterns, since after analyzing these
concepts, we concluded that it is not necessary to
create new elements for modeling them.
The proposed language is expected to be minimal in the
set of metamodels permitting us to express relations
and queries of model transformation. To maintain
simplicity and to reduce user training time are the main







advantages of this minimal approach. Furthermore,
since the proposal maximizes the use of OCL and there
are several modeling tools that support OCL, the
development work of a tool to support this
transformation language is much easier.
As future working lines, in the near future, we will
implement this language integrating it to the Case tool
[15] that our research group is developing. This tool,
oriented to formal modeling, includes the model
refinement specification which can be seen as a
particular model transformation case. On this topic, we
have published, among other, papers [16, 17] which
provide a formal base to this tool. Some of the works
about model refinement that have helped us as
inspiration are [13, 14]. Furthermore, we propose
ourselves to incorporate to the language elements to
facilitate traceability among models, consistency
checking (when the transformation is forced), testing
integrated to transformation, and transformation
composition.

7. References
[1] MDA Guide, v1.0.1, omg/03-06-01, June 2003.

http://www.omg.org

[2] OMG (Object Management Group)
http://www.omg.org

[3] Meta Object Facility (MOF) 2.0. OMG Adopted
Specification. October, 2003. http://www.omg.org

[4] MOF 2.0 Query/View/Transformations - OMG
Adopted Specification. March 2005.
http://www.omg.org

[5] OMG. The Object Constraint Language
Specification – Version 2.0, for UML 2.0, revised by the
OMG, http://www.omg.org. April 2004.

[6] The Unified Modeling Language Superstructure
version 2.0.,OMG April 2004. http://www.omg.org
[7] The Unified Modeling Language Infrastructure
version 2.0, OMG. March 2005. http://www.omg.org
[8] Jouault F., Kurtev I. Transforming Models with ATL
Workshop in Model Transformation in Practice at the
MODELS 2005 Conference. Montego Bay, Jamaica,
2005

[9] Akehurst D., Howells W., McDonald-Maier K. Kent
Model Transformation Language. Workshop in Model
Transformation in Practice at the MODELS 2005
Conference. Montego Bay, Jamaica, Oct 3, 2005

[10] Lawley M., Steel J. Practical Declarative Model
Transformation with TefKat. Workshop in Model

Transformation in Practice at the MODELS 2005
Conference. Montego Bay, Jamaica, Oct 3, 2005

[11] Dimitrios S. Kolovos, Richard F. Paige and Fiona
A.C. Polack. The Epsilon Object Language (EOL). In
Proc. Model Driven Architecture Foundations and
Applications: Second European Conference, ECMDA-
FA, volume 4066 of LNCS, pages 128– 142, Bilbao,
Spain, June 2006.

[12] Anneke Kleppe. MCC: A Model Transformation
Environment. A. Rensink and J. Warmer (Eds.):
ECMDA-FA 2006, LNCS 4066, pp. 173 – 187, Spain,
June 2006.

[13] Hnatkowska B., Huzar Z., Tuzinkiewicz L. On
Understanding of Refinement Relationship. Workshop
in Consistency Problems in UML-based
SoftwareDevelopment III – Understanding and Usage
of Dependency Relationships at the 7th International
UML Conference.. Portugal, 2004.
[14] Liu Z., Jifeng H., Li X., Chen Y. Consistency and
Refinement of UML Models. Workshop in Consistency
Problems in UML-based Software Development III at
the 7th International Conference on the UML.Portugal,
2004

[15] Pons C., Giandini R., Pérez G., et al. Precise
Assistant for the Modeling Process in an Environment
with Refinement Orientation. In UML 2004 Satellite
Activities, Revised Selected Papers". Lecture Notes in
Computer Science number 3297. Springer, Oct., 2004.

[16] Pons, C., Kutsche, R. Traceability Across
Refinement Steps in UML Modeling. 3rd WiSME at the
7th UML Conference. October 11, 2004. Lisbon,
Portugal .

[17] Pons, C., Pérez,G., Giandini, R., Kutsche, R.
Understanding Refinement and Specialization in the
UML. 2nd International Workshop on Managing
SPEcialization/Generalization Hierarchies (MASPEGHI).
In IEEE ASE 2003, Canada.

[18] Giandini, R., Pons, C. Un lenguaje para
Transformación de Modelos basado en MOF y OCL.
Proceedings of XXXII CLEI. Santiago, Chile. August,
2006.







