
LONG PAPER

Improving accessibility of Web interfaces: refactoring
to the rescue

Alejandra Garrido • Gustavo Rossi •

Nuria Medina Medina • Julián Grigera •

Sergio Firmenich

� Springer-Verlag Berlin Heidelberg 2013

Abstract Universal access should be a target for all

public Web sites. However, it is very hard to achieve, and

even Web applications that comply with accessibility

standards may still lack usability for disabled users. This

paper proposes refactoring as an essencial technique to

incrementally improve the accessibility and usability of a

Web interface. Some accessibility refactorings are descri-

bed and classified by the problems that each refactoring

addresses. The way mainstream Web sites struggle with

accessibility is illustrated, and two evaluations of email

clients are presented as empirical evidence of the signifi-

cance of accessibility refactorings at a low implementation

cost.

Keywords Accessibility � Web applications �
Refactoring � Reengineering

1 Introduction

When building accessible Web applications, the design

target is to reach conformance with the W3C Web Content

Accessibility Guidelines (WCAG) [1]. These guidelines

can be met at three levels of conformance: A, AA, and

AAA (highest). WCAG also specify testable success cri-

teria for determining whether the content satisfies them [1].

Nevertheless, satisfying all WCAGs’ success criteria does

not guarantee usability [2], since people with disabilities

may still find it difficult to navigate and interact with the

content in a comfortable, easy, and effective way. For

example, let us consider Amazon’s Visually Impaired Store

(see Fig. 1). Although the homepage does not conform to

WCAG at level A because of a carrousel of unnamed

images, even if it is changed to be compliant, it will still

have usability problems that complicate its access using a

screen reader, such as the presentation of mixed content in

different areas of the same page, leading to a saturated

page. Such problems are called ‘‘bad smells’’ in usability or

accessibility, following the refactoring’s jargon for design

problems [3].

Even if graphical interface designers have been trying

for years to resemble users’ real world with interface

metaphors, there is little evidence of the real usability or

efficiency to support them. For example, small checkboxes

(often used to apply an operation to a list of items) have

never worked as easy as checking items with a pen on

paper in the real world. In addition, checkboxes always

appear before their label since (as indicated by WCAG [1])

this their most predictable position, which favors obeying

the metaphor over the need of screen reader’s users to hear

the label before deciding the need to check it. In working

applications, developers fear the risk of changing to a new,

nonstandard interface metaphor, even when they care about

usable accessibility, since the upgrade is too costly par-

ticularly if it has to be rolled back. This context is quite

similar to the fear of developers to change their working

code before the advent of refactoring and refactoring tools,

which allow them to incrementally improve design quality

A. Garrido (&) � G. Rossi � J. Grigera � S. Firmenich

LIFIA, Fac. de Informática, Univ. Nacional de La Plata,

50 y 120, CP 1900 La Plata, Pcia. de Buenos Aires, Argentina

e-mail: garrido@lifia.info.unlp.edu.ar

A. Garrido � G. Rossi

CONICET, Buenos Aires, Argentina

N. M. Medina

Escuela Técnica Sup. de Ingenierı́as Informática y de

Telecomunicación, Univ. Granada, C. Periodista Daniel Saucedo

Aranda s/n, 18071 Granada, Spain

123

Univ Access Inf Soc

DOI 10.1007/s10209-013-0323-2



without breaking functionality. The authors argue that in

the case of changing the presentation of Web applications

to improve their external quality, refactoring may once

again come to the rescue; it provides the ideal context to

incite developers to discover how to improve interface

metaphors for expert computer users as well as for novices

or handicapped users, from an early design phase.

Refactoring, originally defined as a disciplined process

of restructuring source code with a cleaning purpose [3],

has been generalized in two directions: (1) to broaden its

scope to other software artifacts, like databases [4] and

wikis [5], and (2) to change its intent to other concerns, like

look and feel embellishment [6]. The authors have recently

proposed refactoring for the design models of a Web

application with the goal of improving usability [7]. This

article goes further and proposes the application of refac-

toring to improve the accessibility of Web applications for

users of screen readers, without compromising usability for

different audiences, leading toward the ‘‘accessible

usability’’ of Web applications. With these refactorings,

developers may change the presentation aspects of a

working Web application, for which usage feedback proves

inadequate or unusable. These are called Web interface

refactorings (WIRs). They may be applied either at a

design level (more appropriate when using a model-driven

methodology) or at the implementation level. This article

describes some WIRs and explains the transformation steps

at both levels.

2 Refactorings for accessibility and usability

in the development process: a taxonomy

In the interest of helping organizations that understand

their social responsibility toward people with disabilities

and the elderly, and that are willing to invest in incorpo-

rating accessibility to their websites, if the organization

uses an agile development process, it is already applying

code refactoring since it is an essential technique to

improve and maintain internal quality through the whole

agile process [8]. In this case, the organization should

incorporate WIRs to improve the external quality of their

software also through the whole process, looking for

refactoring opportunities incrementally, by observing

usage feedback after each cycle or sprint [9]. When

refactoring is incorporated earlier in the process, even at a

design level, developers have better chances to address

client needs [8]. Similarly, when an organization shows

social responsibility toward elderly and disabled users

early, they are more susceptible to capture a larger user

base, as described by the W3C1: ‘‘Organizations with

accessible Web sites benefit from search engine optimiza-

tion, reduced legal risk, demonstration of corporate social

responsibility, and increased customer loyalty.’’ If the

organization uses a model-driven development, they have

better chances of incorporating refactoring at an early

design phase, since WIRs are also applicable on the pre-

sentation model of the application. The following section

shows examples of WIRs that have been implemented on a

tool for designing Web applications using the model-driven

methodology UWE [10].

Besides the development phase in which refactoring is

applied (by programmers, in the first case above or

designers, in the second), there are two main approaches to

incorporate Web accessibility that an organization should

weight in terms of advantages and cost:

1. Incorporating accessibility in a separate version of the

application: Building a separate interface makes it

possible to reach the highest level of conformance with

WCAG, and also to tailor the application for a specific

disability, all without depriving other users of rich

1 http://www.w3.org/WAI/bcase/.

Fig. 1 Amazon’s visually

impaired store (http://www.

amazon.com/Visually-

Impaired-Books/b?ie=

UTF8&node=14264821)

Univ Access Inf Soc

123

http://www.w3.org/WAI/bcase/
http://www.amazon.com/Visually-Impaired-Books/b?ie=UTF8&node=14264821
http://www.amazon.com/Visually-Impaired-Books/b?ie=UTF8&node=14264821
http://www.amazon.com/Visually-Impaired-Books/b?ie=UTF8&node=14264821
http://www.amazon.com/Visually-Impaired-Books/b?ie=UTF8&node=14264821


Internet features. However, the cost for the organiza-

tion is high: It requires an initial effort of creating a

separate application and a subsequent and continuous

effort of maintaining two applications’ operative and

consistent. As a consequence of this high cost, the

accessible version is usually provided with less and

outdated functionality, and consequently, this

approach is generally not welcomed from end users.

Many organizations do maintain a separate mobile

version of the application mostly fully functional,

which they provide as the accessible version. An

example is the mobile version of Amazon,2 which is

WCAG-level A conformant; however, it does not

provide certain functionality (search ordering, related

searches, specifying a different shipping address for

each product in the cart, etc.) and content (customer

rating in product searches, product details, etc.).

2. Incorporating accessibility within the main applica-

tion: The advantage of this approach is that it is not

necessary to build and maintain a separate application

to address disabled users. Nevertheless, the hard

problem is to reach a balance in addressing usability

for the disabled and not disabled audiences. Further-

more, it requires accommodating extra resources for

accessibility (e.g., buttons for auditory descriptions of

a video) and having them easily available, while

providing nondisabled users with the main elements

(navigation and content) also ‘‘upfront’’. An example

is the Web site www.dbcde.gov.au of the Australian

government, which conforms to WCAG at level AA.

From the viewpoint of maintaining an existing Web

application, a refactoring that is applied to increase its

external quality may be targeted at two different but

interrelated aspects: (I) providing access to information

that was previously unreachable (transformation on

accessibility) or (II) enhancing the interaction with content

that was previously available but with some difficulties

(transformation on usability).

At the same time, an improvement (either accessibility

or usability) may benefit: (A) a group of users with very

specific characteristics that limit their interaction with the

application or (B) a much wider and generic audience.

Clearly, the latter is the most desirable one, but also the

most difficult to achieve. Another problem, as mentioned

above, is the case of changes aimed at improving the

interaction of a particular group of users, although that

might adversely affect users who are outside the group and

vice versa.

The approaches 1–2, I–II, and A–B present complex

interrelationships, which are important for an organization

to understand in order to make an informed decision on

how to approach accessibility and usability for their Web

sites. Nevertheless, whatever path the organization takes,

the refactoring technique may help reducing the cost of the

initial investment and further maintenance. To better

describe these interrelationships and define precisely the

intent (accessibility and/or usability) and subject (specific

audience and/or general audience) of WIRs, a taxonomy,

sketched in Fig. 2, has been developed. This taxonomy also

provides a framework to catalog not only the proposed

WIRs but also future contributions that the present work

may motivate.

The set labeled ‘‘Specific audience’’ contains WIRs

aimed at improving the accessibility offered to an audience

with specific needs due to the access technology they use,

their disabilities, or their personal and organizational lim-

itations. These refactorings are focused on improving the

accessibility of the application. Some of them are limited to

allow access (accessibility refactorings), while others also

include allowing such access in a pleasant, easy, and effi-

cient way (usable accessibility refactorings).

The set labeled ‘‘General audience’’ contains WIRs

aimed at improving the user experience during the inter-

action with the application, i.e., emphasizing usability.

Within this set, there are refactorings that do not take into

account, or are even harmful, to users with special needs

(usability refactorings) from those that are also beneficial

for disabled users (accessible usability refactorings). The

latter appears as the intersection between usability refact-

orings and usable accessibility refactorings. They make it

possible to have a single version of the Web site for all

users (balancing usability and accessibility to handle the

needs of a larger audience).

Table 1 summarizes the purpose of each type of WIR in

the proposed taxonomy, also indicating the following:

Whether it is applicable on the main or a separate version

of a Web site, its classification, and an example.

Fig. 2 Taxonomy of accessibility and usability refactorings

2 http://www.amazon.com/gp/aw/h.html.

Univ Access Inf Soc

123

http://www.dbcde.gov.au
http://www.amazon.com/gp/aw/h.html


3 Web interface refactorings for usable accessibility

and accessible usability

A WIR, by definition of refactoring, does not change the

behavior of the application; rather, its purpose is to improve

the way users access the application’s content or trigger its

behavior [7]. For instance, a WIR may move, copy, or

replace the type of an interface component that allows exe-

cuting an operation (e.g., changing a combination of

checkbox ? button for a single button), but it must not

eliminate the possibility of executing that operation. In

operations composed by several steps, such as checkouts,

some of the steps that span multiple pages may be refactored

into a single page (e.g., shipping and handling ? credit card

information) or divided into separate ones; however, none

should be removed. Finally, content may be deleted from a

page only when it is obsolete, duplicated, or unnecessary.

Some of the refactorings that are more complex may usually

be created as the composition of multiple simpler refactor-

ings to create a more substantial change [7].

The targets of WIRs, i.e., the elements that a WIR may

change, are as follows:

• layout structure and distribution of semantic sections;

• distribution of data and operations among available pages;

• content format, like color scheme, fonts, and back-

ground images;

• type of interface component used to display data or

execute an operation (e.g., replacing a drop-down menu

by a fixed menu);

• dynamic effects of components, like blink, sidle, or

format change;

• interaction styles, e.g., mouse hover, double click, etc.;

• navigation aids, i.e., elements offered to browse links,

like menus, lists, or tab rows.

3.1 Bad accessibility smells

Economic (and even methodological) reasons often push

for building the ‘‘standard’’ application first, which is then

improved with accessibility and/or usability. Fortunately,

the use of this initial application helps detecting signs about

the failure or poor compliance of any accessibility or

usability principles. The case is similar for any kind of

application, in which internal quality features are only

recognized to be poor or defective following usage feed-

back and gradually improved throughout the development

cycle. The refactoring literature calls ‘‘bad smells’’ to the

signs of problems in the code that degrade its internal

quality [3]. In the case of accessibility and usability, such

problems are so-called ‘‘bad accessibility smells’’ and ‘‘bad

usability smells’’ [7], respectively.

Some ‘‘bad accessibility smells’’ are as follows:

• Long navigation paths to achieve a goal, which shows

problems of synthesis and efficiency;

• Saturated pages, i.e., large pages with mixed content,

reflecting problems of synthesis and comprehension;

• Heavy use of visual annotations or floating menus;

• Unpredictable amount of content, or excessive detail

upfront;

• Operations appearing before the data on which they

apply, which require reading the list of operations

twice, before and after reading, and selecting the data

for the operation.

‘‘Bad accessibility smells’’ arise from many sources in

the literature (e.g., [1, 2, 5]), besides the current practice

and feedback of the users. Another important source for

‘‘bad accessibility smells’’ emerges from poor or non-

compliance with WCAG accessibility guidelines and WAI-

ARIA technology3 (the Accessible Rich Internet Applica-

tions Suite). WAI-ARIA focuses on dynamic Web content

widgets and complex interaction through the mouse, or

those that show difficulties for being accessed using a

screen reader, for example drag and drop elements, tree

widgets that present hierarchical contents, or the excessive

use of DIV tags to divide sections instead of more

3 http://www.w3.org/TR/wai-aria.

Table 1 Types of refactorings

Purpose Version Classification Example

Accessibility refactorings

(AR)

Make a Web site accessible, i.e., WCAG compliant Main

version

I A Convert images to

text

Usable accessibility

refactorings (UAR)

Make an accessible Web site easier to use by a disabled person Separate

version

I II A Postpone selection

and/or operation

Usability refactorings

(UR)

Make a Web site more usable (comfortable and organized) for

a person without especial needs

Separate

version

II B Introduce

information on

demand

Accessible usability

refactorings (AUR)

Improve the usability of a Web site for both disabled and non-

disabled users

Main

version

II A B Split page

Univ Access Inf Soc

123

http://www.w3.org/TR/wai-aria


semantically appropriate ones (especially in RIA applica-

tions with the heavy use of AJAX).

Identifying ‘‘bad accessibility smells’’ in the design or

interface of a particular application is an important step in

the development process, as much as it is identifying bugs,

since they provide the motivation for refactoring. This step

should be included after acceptance testing or usage feed-

back. The following section goes one step further in

helping developers and associates ‘‘bad smells’’ with the

WIRs that fix them, thus pointing to the specific solution

for each problem.

3.2 Initial catalog of Web interface refactorings

Table 2 lists some usable accessibility refactorings

(UARs) and accessible usability refactorings (AURs).

Each refactoring is associated with the ‘‘bad smells’’ it

aims to solve, thus helping developers select the best

refactoring for each problem. The third column in the table

describes the interface elements that each refactoring

changes. They are grouped in two coarse sections accord-

ing to their main purpose, i.e., to improve access to content

or navigation.

Six WIRs are described below: three usable accessibility

refactorings (UARs) and three accessible usability

refactorings (AURs). Regarding accessibility, they are

specially targeted for visually impaired users. The refact-

orings are described in terms of the following:

• bad smells as already explained, each refactoring is

triggered by one or more specific accessibility or

usability problems; the citation in a ‘‘bad smell’’

indicates the source that identifies that fact as a

problem;

• motivation whereas the ‘‘bad smells’’ are short sen-

tences, the motivation has a description of the problem

with examples;

• transformation describes the steps required in order to

apply the refactoring. Since most WIRs may be applied

at the level of design models or in the code, the

transformation steps at both levels for some of them are

described.

The refactorings are illustrated in the description of the

case study presented in Sect. 5.

3.2.1 Replace non-accessible menu by list of links (UAR)

Bad smells Disguised operations, options, or navigation

structure [2]; Unpredictable number of operations [1];

Screen reader users needing to read the menu again.

Table 2 Catalog of Web

interface refactorings
Refactoring Bad smells Change applied

Simplify content

Split page (AUR) Saturated page Layout and navigation structure;

distribution of contents/operations

Focus-dispersed content and/or

operations (AUR)

Confusing organization;

Long navigation paths

Distribution of contents and/or

operations

Add content summaries (AUR) Saturated page;

Abuse of scrolling;

Useless link activations

Layout and navigation structure

Add size indicators (UAR) Unpredictable size;

Users quitting before

completing a goal

List and tables

Remove unnecessary content

(UAR)

Obsolete content; Duplicated

content; Large page

Content

Simplify navigation

Merge pages (AUR) Long navigation paths Layout and navigation structure;

distribution of contents/operations

Replace non-accessible menus

by list of links (UAR)

Disguised navigation structure Type of interface component

Show all structural links at

once (AUR)

Disguised/spread navigation

structure

Layout structure; interaction style

Fix menu (AUR) Excessive backward scrolling

toward menu

Section layout

Postpone selection and/or

operation (UAR)

Reading twice through an

element to select it

Selection checkbox placement

Distribute menu for an

elements container (UAR)

Difficult interaction to apply

operations on elements

Distribution of operations

Univ Access Inf Soc

123



Motivation Non-accessible menus are those that appear

in a drop-down fashion, or in a pop-up, and those that

display their options one-by-one as the user hovers over

an image. They are also unusable since they make their

available options difficult to spot even for a sighted user

[2] (for this reason, this refactoring may be also classified

as AUR). Menus that appear in a table row may be

accessible, but not usable for a visually impaired person,

since the number of options is unknown, and so is the end

of the menu. Lists are accessible and usable containers

since all their elements are shown at once, and screen

readers say the number of elements at the beginning of a

list.

Transformation Gather all menu elements and arrange

them in a single list of links in decreasing order of usage

frequency. For instance, several Web pages have menus,

which are built by using DIVs. Typically, the menu sub-

items are hidden until the mouse hovers over a particular

element. The transformation in this case implies replacing

DIVs around menu items by a bulleted list (e.g., using UL

tag), which will make the menu sub-items visible and will

cause any screen reader to say the number of elements

upfront.

3.2.2 Postpone selection and/or operation (UAR)

Bad smells Difficult interaction to apply operations on

elements of a list or table; Reading twice through an ele-

ment to select it.

Motivation In order to apply an operation on a list or

table of elements, a common approach is used to provide a

drop-down menu of operations at the top of the table and

checkboxes on each line to select the target elements. Since

checkboxes appear before the description of each element,

a screen reader user needs to go through the line to listen to

the contents first and then go back to the checkbox at the

beginning of the line for selecting it. Once the user selects

some elements, she/he needs to go back to the top and

browse through the operations again. These interactions

become too complex for a visually impaired person that

does not know the keyboard shortcuts to move fast through

the page. Even when WCAG recommend placing menus

and checkboxes in their most predictable position, the blind

users in the experiments conducted in this study clearly

showed a preference in the ability of selecting an item or

operation on it, just after reading it.

Transformation Move the column containing the check-

boxes to the last column in a table of elements, so a user

can select an element after reading or hearing it; move or

copy the menu of available operations after the table or

container.

3.2.3 Remove unnecessary content (UAR)

Bad smells Obsolete content; duplicated content [1];

large page [2]; unused operations [2].

Motivation Unnecessary content refers to obsolete data

that were left in a page as dead code that developers forget

to remove. Sighted users may easily skip it; however, it is

not that easy for screen reader users. Unnecessary content

also refers to duplicated data, links, or operations which are

made available in several places to be easier to spot, though

again, cumbersome to read through it many times. Other

times, a site provides operations that users never select and

should be removed because it all contributes to a large

page.

Transformation This refactoring may be applied at a

higher level of abstraction, in the presentation model of a

Web application. For example, in the UWE design notation

[10], each page is modeled as a stereotyped class with a set

of attributes, each attribute corresponding to a data item,

input field, link, or operation, inside a box that represents

its abstract location (Fig. 3 shows an example). Duplicated

data, links, or operations are easier to spot at this level, and

the corresponding attribute may be easily selected and

deleted.

3.2.4 Split page (AUR)

Bad smells Overloaded page [2]; complex and heteroge-

neous page [2]; confusing organization.

Motivation A large page that requires too much scrolling

is annoying for any user. Large pages should only be

destination pages [2], with detailed information that some

users are willing to scroll to read, but should be avoided for

intermediary, or home pages where most users want to

quickly figure out whether the site can handle their needs.

Furthermore, a page that mixes too many concepts or

several operations that should have been presented in

stages is confusing, loses the focus of the reader, and

makes it hard to find specific information. For people with

visual impairments using a screen reader, a large page with

mixed content is frustrating and multiplies the time to find

a specific content.

Transformation This refactoring is also applicable at

design time, in the presentation model of the application. In

the case of using the UWE notation, the page model that is

found to be complex and heterogeneous must be divided

into a structure of interrelated pages, reorganizing seman-

tic, layout, and navigation structure so that each new page

is simpler and more cohesive. For this purpose, each set of

cohesive content is moved into a new page and replaced in

the original page by a link to the new page. Figure 3 shows

Univ Access Inf Soc

123



a simplified version of the presentation model of the case

study’s home page, made with the tool MagicUWE [11],

which has been extended with model refactorings such as

Split Page.

3.2.5 Merge pages (AUR)

Bad smells Long navigation paths [2].

Motivation Although the ‘‘three click rule’’ may be too

strict, unnecessary long navigation paths to reach a goal are

uncomfortable for any audience [2]. Users are not really

patient if they feel like wasting their time in searching for

something without getting any more information in return.

Unsighted users always complain about this problem since it

makes them feel frustrated. Moreover, splitting a page into

several pages may result in some of the new pages being too

small; if some of them are related, they may be merged.

Transformation Also applicable at the model level, the

content attributes of a small page may be moved into

another existing page with related contents. Consider

renaming the existing page and the anchors for incoming

links to refer to the added content, so that users will still

find the contents of the merged page.

3.2.6 Add content summaries (AUR)

Bad smells Large page; excessive scrolling; excessive

detail upfront [2].

Motivation The ‘‘bad smells’’ of this refactoring are

similar to those of Split Page, implying that this is a dif-

ferent solution for a related problem. Upon a large page

requiring scrolling or causing frustration because of mixed

content, this refactoring offers an intermediate step that

shows summaries of all content. This solution keeps a

complete overview of content while avoiding excessive

scrolling or unwanted link activations. Visually impaired

users always benefit from shorter pages that prevent

unnecessary navigation.

Transformation At the model or code level, add an

intermediate page showing a synthesis of the content, and

provide a link to follow for more information. In this way,

users can have a quick understanding of core content and

decide whether to navigate to any item.

4 Case studies and evaluation

The above refactorings have been applied to the email

reader of the University of Granada (UGR).4 This Web

application is not accessible, so refactorings have been

applied to make it accessible and also usable, especially

for visually impaired users. The authors do not claim to

have reached the best Web interface design, but one that

allows all users (disabled and nondisabled) to access and

complete more tasks than before. Additionally, WAI-

ARIA technology still does not offer enough implemen-

tation to consider it in the redesign; however, future WIRs

would benefit from the use of ARIA technology,

enhancing the keyboard interaction mode with the

application.

Fig. 3 Applying split page over

the presentation model through

a menu option

4 https://webmail.ugr.es.

Univ Access Inf Soc

123

https://webmail.ugr.es


4.1 Webmail UGR: users’ perspectives

4.1.1 Discovering bad smells

The first step with the target application was to analyze it in

search of ‘‘bad smells’’. For this purpose, different sources

of ‘‘bad smells’’ in the literature (such as [1, 2] as discussed

in Sect. 3.1) were used, besides accessibility assessments

such as [12], which thoroughly describes the problems that

blind people find in leading Webmail applications. Second,

a preliminary test with a blind person was conducted, as

well as short surveys with other blind persons (our focus

group), enquiring about usual problems with Web applica-

tions and email clients. The following list contains the ‘‘bad

accessibility smells’’ resulting from the previous analysis

and survey on UGR Webmail. Figure 4 shows the appli-

cation before refactoring, and some of these ‘‘bad smells’’:

(A) Overloaded pages: All pages contain the list of folders

and all operations at the top, even when they do not

apply to the current data. Having a screen reader go

through all this in every page gets very tedious.

(B) Use of frames: Frames are known to cause usability

and navigation issues. When using a screen reader,

it is hard to move between frames with keystrokes,

which made it quite hard to access the folders.

(C) Unnecessary links: The links to each page number

are rarely used, but take a long time to read if there

are many pages.

(D) Difficulty to select emails: In the email list, the

selection checkbox for each email appears before the

subject, forcing the reader to go through it before

knowing the referred email, eventually having to go

back to the checkbox.

(E) Operations before data: Similarly to checkboxes,

operations appear before the data on which they

apply, which complicates their application.

(F) Confusing organization: There is a ‘‘Folders’’ head-

ing in the left frame with a list of folders, and a

‘‘Folders’’ button at the top menu, which does not

navigate to a list of folders as one would expect, but

allows creating and deleting a given folder. This is

confusing even for sighted users.

(G) Unpredictable amount of operations: Users of screen

readers have to hear through an excessively large set

of operations listed at the top of each page, without

knowing how many there are.

(H) Users quitting before completing a goal: Testing with

screen reader users showed that it was very difficult

to change folders since they had to change to the left

frame, and keyboard combinations did not work.

(I) Excessive detail up front: All the email fields are listed

when displaying an email, and the majority of these

details are generally unnecessary.

(J) Absence of returning links: Some pages do not provide a

link to go back to the previous page or canceling the

operation, like in the email composition page.

(K) Missing Alt text for images: like attachments and

email priority in email list.

(L) Intermediate blanks: Blanks are used to separate each

menu option on top, which makes the screen reader

say ‘‘blank’’ too often.

(M) Drop-down folder’s menu goes unheard: The screen

reader says ‘‘combo box’’ for the drop-down menu

with the list of folders, so users fail to select a folder.

4.1.2 Fixing bad smells through refactoring

The applied WIRs are listed below, and the final result

appears in Fig. 5.

1. Unframe application: to solve the ‘‘bad smell’’ ‘‘B.

Use of frames’’.

Fig. 4 Current email reader

before refactoring showing

some bad smells

Univ Access Inf Soc

123



2. Split page: applied to solve ‘‘A. Overloaded pages,’’

‘‘F. Confusing organization,’’ and ‘‘H. Users quitting

before completing a goal.’’ It was applied twice: (1)

to split the left frame and (2) to split the top menu,

which are now accessed through the menu options

marked with circle ‘‘2’’ in Fig. 5.

3. Merge pages: The result of applying Split Page twice

resulted in a new bad smell: ‘‘Long navigation

paths.’’ Thus, the email list and the list of operations

were merged in the top menu in a single page.

4. Replace non-accessible menu by list of links: This

solves ‘‘G. Unpredictable amount of operations’’ on

top of the page.

5. Remove unnecessary content used to remove ‘‘C.

Unnecessary links,’’ in this case the links to each

page number that lists emails.

6. Postpone selection and operations: Checkboxes were

moved to the last column, so that a user can select an

email after it was read, solving ‘‘D. Difficulty to

select emails.’’ Additionally, operations were moved

after the table to solve ‘‘E. Operations before data’’.

7. Distribute menu for an elements container: to facilitate

the local application of an operation right after the

email is read, also solving ‘‘E. Operations before data,’’

this refactoring was applied to attach the list of

operations to each email at the end of the row.

8. Add content summary: to solve ‘‘I. Excessive detail

upfront,’’ when navigating to an email, it shows only

sender and subject, proving a link to the rest of the

email fields.

9. Transform drop-down into radio buttons’ group: The

drop-down list of folders to choose where to move

selected emails is transformed into a group of radio

buttons, thus solving ‘‘M. Drop-down folder0s menu

goes unheard’’.

10. Replace image by text: All images (\img[) were

replaced by their title and/or alt text, solving ‘‘K.

Missing Alt text for images’’.

11. Delete blank spaces: Blanks were removed from all

pages solving ‘‘L. Intermediate blanks’’.

12. Improve description: The caption for the ‘‘Folders’’

button was replaced for ‘‘Manage Folders,’’ clarifying

its purpose and solving ‘‘F. Confusing organization’’.

4.1.3 Evaluation of UGR Webmail

An evaluation of UGR Webmail was conducted with 24

sighted and nonsighted users. Most of them (92 %) already

knew the application, and half of them use it with high

frequency. The participants were divided in 4 groups,

namely UGRJWS: 6 unsighted participants used the normal

application with Jaws; ReUGRJWS: 6 unsighted participants

used the refactored version with Jaws; UGR: 6 sighted

participants used the normal application; ReUGR: 6 sighted

participants used the refactored application.

The experiment was composed of three tasks:

Fig. 5 Refactored UGR

webmail

Univ Access Inf Soc

123



I. (1) Find an email from a given sender in the inbox, (2)

read it, and (3) reply answering a question that appears in

the email;

II. (1) Search the reply message in the sent folder and (2)

delete it;

III. (1) Return to the inbox, find the first message with

high priority and (2) log out.

Table 3 shows the number of users in each group that

were able to complete the tasks. Note that, for group

UGRJWS, none of the tasks were completed by the whole

group of 6 users. The main problems reported (besides the

listed ‘‘bad smells’’) were as follows:

• the presence of the frame and its incompatibility with

Jaws made it really hard to change folders: Some of the

users tried Jaws’ keystroke combination to change

frames without success;

• the absence of Alt text for the image showing an

email’s priority made it impossible to accomplish task

III.1 (find a message with high priority);

• Jaws’ accent and speed were hard to understand, mostly

because the setting was different than what they had at

home.

In contrast to group UGRJWS, group ReUGRJWS com-

pleted all tasks except for just one person in one task. In the

case of sighted participants, half of them could not com-

plete task III.1 (they did not know the image for high

priority) in the normal application, while all sighted par-

ticipants completed all tasks with the refactored version.

Figure 6 shows the box plots with the time to accomplish

each task in seconds. In order to include in the box plots all

the results, even those for unaccomplished tasks, a suffi-

ciently large number (1,000 s) were used, to represent a

task that a user could not complete (the largest time to

accomplish a task was 900 s.).

4.1.4 Threats to validity and discussion

Looking at Fig. 6, one notices that in general, the refac-

tored versions received better results than the normal ones.

The differences are especially significant for the normal

and refactored versions in unsighted participants (UGRJWS

vs. ReUGRJWS). For example, in Task I.1, 75 % of

unsighted users of ReUGRJWS lie below the median of

unsighted users of UGRJWS. In Task I.3, the maximum time

for sighted users of ReUGR lies below the median of

sighted users of UGR. There are four cases where the

participants took longer time with the refactored version;

however, this coincides with frequent users of UGR

Webmail, implying that they are highly accustomed to its

normal interface.

Sighted users reported that the inbox was cleaner and

straightforward, although accessing folders through a dif-

ferent page took longer. They suggested improving the

design of the refactored pages, which they did not find

appealing, although this was not the objective at this time.

Unsighted users required more time to get used to the new

interface and to read through each page to find the new

place for each operation. After granting them that time,

they indicated that their experience was more pleasant

using the refactored application. Some positive points that

they emphasized were as follows:

• the new structure provides less crowded pages, and

blanks are not read, which allows reaching targets faster

in all three tasks;

• the elimination of vertical frames and the split of

folders in a separate page allows moving from the

inbox to the folder list, while this was too difficult or

impossible to do with the standard application, and

prevented them from using folders. This change was

imperative to complete the second task;

• textual information provided instead of unnamed

graphics made it possible to learn from the email list

if one had an attachment or priority and thus crucial to

complete the third task.

Both sighted and unsighted participants used Jaws. It

was observed that it is very important to find a comfortable

configuration of Jaws for each user since otherwise, it may

be too hard to understand, and this was reported as a real

drawback. It was also observed that in general, visually

impaired persons do not know/use many Jaws’ keyword

commands besides the arrows to move (combining them

with Ctrl) and spacebar to follow links.

4.2 WebMail Horde: developers’ perspective

A second case study was conducted to measure the effort

needed for a developer to implement some of the refact-

orings. Instead of UGR, Horde was used as it is a larger and

highly configurable, open source Webmail application.

Since the authors were not previously familiar with Horde,

the numbers obtained represent a maximum value, as they

also include the cost of learning the code first.

Table 3 Number of users that completed each task

Task UGRJWS ReUGRJWS UGR ReUGR

I.1 5 6 6 6

I.2 1 6 6 6

I.3 2 6 6 6

II.1 3 6 6 6

II.2 3 6 6 6

III.1 0 5 3 6

III.2 2 6 6 6

Univ Access Inf Soc

123



Fig. 6 Box plots with 25, 50,

and 75 % for the first four tasks

Univ Access Inf Soc

123



Three of the most representative refactorings were

selected: Split Page, Distribute Menu, and Postpone

Selection. The measurements taken for each selected

refactoring were as follows: the time required to apply it,

the number of updated lines of code (LOC) and its types:

CSS, HTML, etc., the number of lines of code added, and

finally, the number of modified files. Table 4 summarizes

the results.

The refactoring Distribute Menu was the most time-

consuming because of the time to understand the Webmail

source code. Note that, while Distribute Menu needed

125 min solely for updating 7 CSS lines and adding both 4

CSS and 15 HTML lines, Split Page needed 45 min with

much more effort in the modification itself (5 HTML lines

modified, 25 HTML lines, and 50 JavaScript lines added).

The Split Page refactoring was developed using JavaScript,

since this Webmail application uses this kind of technology

for building the UI, so emphasis was given in keeping the

same style. Postpone Selection was easily applied by

changing 4 HTML lines and other 8 CSS lines that took

20 min.

In this way, it can be seen that Web application acces-

sibility may be improved by applying few changes on

source code. The hardest refactoring to implement was

Split Page; however, it would be easier to apply it without

using JavaScript, as described in Sect. 3.2.4.

5 Related work

Since the interface is a critical aspect of a Web site, many

approaches to improve its appearance and interaction styles

have emerged in recent decades. Two of them are inter-

action patterns and transcodings.

An interaction pattern presents a solution to a recurring

problem in the design of Web interfaces, from abstract solu-

tions like ‘‘Instant gratification’’ to concrete ones such as ‘‘One

window drilldown’’ [13]. In contrast, an interface refactoring

specifies a step-by-step transformation to achieve an

enhancement on a Web interface. Thus, refactorings could be

used to apply interaction patterns on an existing design or a

running application [14], similarly to how traditional refact-

orings may introduce design patterns [15]. For example, the

refactoring ‘‘Introduce Information on Demand’’ [7] may be

used on a cluttered interface to apply the pattern ‘‘Information

on Demand’’ [16], which uses the same screen area to show

different contents as the user hovers over menu titles.

Transcoding is a technique that applies on-the-fly

transformations on a working application, normally based

on semantic annotations previously made by developers or

derived from Web design models [17]. For example,

transcodings may replace a floating menu for a static one, a

link menu for a linear table, or add size indicators in

dynamic lists. Refactoring of graphical interfaces comes

close to transcoding, though several differences between

both approaches have been identified:

• transcodings do not necessarily preserve behavior, as

they may remove some operations, for example when

they aim to simplify content [18]; in contrast, refact-

orings were conceived as behavior-preserving transfor-

mations [3], which in the case of Web applications

means preserving content and functionality [7];

• transcodings apply on HTML code [17], while refact-

orings can work either at the implementation or design

levels [7];

• refactorings are by nature composable and can be

applied incrementally to create larger changes [3]. This

allows for a sequence of refactorings to be applied

incrementally, and developers may choose to inject

gradual transformations thus avoiding user disorienta-

tion with radical changes. Instead, transcodings do not

necessarily compose and may even interfere with each

other [17];

• refactorings allow a wider range of transformations

because they do not need to be applied on-the-fly; they

are part of the developer armory. For a complex

refactoring like merging related node classes at the

navigation model [14], the annotations in the ‘‘equiv-

alent’’ transcoding may not be manageable. The

difficulty augments, if one considers the increasingly

dynamic nature of Web applications, which makes it

very hard to update the annotations (in spite of the

progress that transcoding is doing to reduce this

problem, such as differential analysis [19]).

There are also usability and accessibility studies,

including for example the work of Wentz and Lazar [12],

which presents an evaluation performed by blind users on

the leading desktop and Webmail applications. This eval-

uation was used to identify usual ‘‘bad smells’’ in email

clients. Some examples of the problems they report are as

follows: loses focus on screen reader cursor (all-tested

applications); basic HTML version easier to use but with

Table 4 Cost of implementing refactorings in Horde

Refactoring Time

(min)

Modified

LOC

Added LOC Changed

files

Distribute

menu

125 7 CSS lines 4 CSS lines

15 HTML lines

3

Split page V1 45 5 HTML lines 25 HTML lines

50 JavaScript

lines

2

Postpone

selection

20 4 HTML lines

8 CSS lines

– 2

Univ Access Inf Soc

123



less features (Gmail, Yahoo); too many links (Hotmail);

difficult to navigate (Gmail, Hotmail, Yahoo); and satu-

rated page with advertising (Yahoo) [12].

6 Conclusions and future work

The solutions that the presented WIRs offer allow devel-

opers to apply well-known Web usability patterns and

provide accessible and useful interfaces that allow visually

impaired users interact with Web pages in a more com-

fortable way. Current work includes measuring the

improvement gain in usability and accessibility for a better

understanding of the consequences of each refactoring and

automating the refactorings in some development envi-

ronment to offer developers a tool that can apply the re-

factorings, log them, replay them, and roll them back.

Furthermore, work is carried out on how to customize re-

factorings for each user through client-side scripting [20].

While Web applications continue to hit the mainstream

and social networks offer unimaginable opportunities,

technology should not be allowed to hinder usability for all

audiences. Developers should strive to provide universal

access, and researchers must find efficient techniques and

tools to help developers in this challenging goal. If they can

attain this goal consuming fewer resources, managers will

be more willing to invest in it and change accessibility

policies. The use of refactoring toward this goal is thus

advocated as an incremental and systematic process of

finding opportunities for quality improvement (identifying

‘‘bad smells’’) and producing safe transformations toward

universal access.

References

1. W3C: Web Content Accessibility Guidelines (WCAG) 2.0, http://

www.w3.org/TR/WCAG20 (2008). Accessed 10 July 2012

2. Nielsen, J.: Designing Web Usability: The Practice of Simplicity.

New Riders Publishing, Indianapolis (2000)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code.

Addison-Wesley, Boston (1999)

4. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolu-

tionary Database Design. Addison-Wesley, Boston (2006)

5. Puente, G., Diaz, O.: Wiki Refactoring as Mind Maps Reshaping.

In: 24th International Conference on Advanced Information

Systems Engineering (CAiSE’12) Poland, pp. 646–661

6. Harold, E.R.: Refactoring HTML: Improving the Design of

Existing Web Applications. Addison-Wesley, Boston (2008)

7. Garrido, A., Rossi, G., Distante, D.: Refactoring for usability in

web applications. IEEE Softw. 28(3), 60–67 (2011)

8. Beck, K., Andres, C.: Extreme Programming Explained: Embrace

Change, 2nd edn. Addison-Wesley, Boston (2004)

9. Schwaber, K., Beedle, M.: Agile Software Development with

Scrum. Prentice Hall, Upper Saddle River (2001)

10. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based

web engineering: an approach based on standards. In: Rossi et al.

(eds.) Web Engineering: Modelling and Implementing Web

Applications. Human–Computer Interaction Series, pp. 157–191.

Springer, New York (2008)

11. Busch, M., Koch, N.: MagicUWE—a CASE tool plugin for

modeling web applications. In: Proceedings of 9th International

Conference Web Engineering (ICWE’09), Springer, Berlin,

LNCS 5648: 505–508

12. Wentz, B., Lazar, J.: Usability evaluation of email applications by

blind users. J. Usability Stud. 6(2), 75–89 (2011)

13. Tidwel, J.: (2011) Designing Interfaces: Patterns for Effective

Interaction Design. O’Reilly Media Inc, California

14. Garrido, A., Rossi, G., Distante, D.: Systematic improvement of

web application design. J. Web Eng. 8(4), 371–404 (2009)

15. Kerievsky, J.: Refactoring to Patterns. Addison Wesley, Boston

(2004)

16. Rossi, G., Schwabe, D., Garrido, A.: Design Reuse in Hyper-

media Applications Development. In: Proceedings of the eighth

ACM Conference on Hypertext (Hypertext’97). Southampton,

United Kingdom, pp. 57–66 (1997)

17. Asakawa, C., Takagi, H.: Transcoding. In: Harper, S., Yesilada,

Y. (eds.) Web Accessibility: A Foundation for Research,

pp. 231–261. Springer, New York (2008)

18. Huang, A.W., Sundaresan, N.: Aurora: a conceptual model for

Web-content adaptation to support the universal usability of

Web-based services. In: Proceedings of the 2000 Conference on

Universal Usability, Virginia, United States, pp. 124–131 (2000)

19. Asakawa, C., Takagi, H.: Annotation-based transcoding for

nonvisual web access. In: Proceedings of the 14th International

ACM Conference on Assistive Technologies, Virginia, USA,

pp. 172–179 (2000)

20. Garrido, A., Firmenich, S., Rossi, G., Grigera, J., Medina Medina

N., Harari, I.: Personalized web accessibility using client-side

refactoring. IEEE Internet Comput. To appear (2013)

Univ Access Inf Soc

123

http://www.w3.org/TR/WCAG20
http://www.w3.org/TR/WCAG20

	Improving accessibility of Web interfaces: refactoring to the rescue
	Abstract
	Introduction
	Refactorings for accessibility and usability in the development process: a taxonomy
	Web interface refactorings for usable accessibility and accessible usability
	Bad accessibility smells
	Initial catalog of Web interface refactorings
	Replace non-accessible menu by list of links (UAR)
	Postpone selection and/or operation (UAR)
	Remove unnecessary content (UAR)
	Split page (AUR)
	Merge pages (AUR)
	Add content summaries (AUR)


	Case studies and evaluation
	Webmail UGR: users’ perspectives
	Discovering bad smells
	Fixing bad smells through refactoring
	Evaluation of UGR Webmail
	Threats to validity and discussion

	WebMail Horde: developers’ perspective

	Related work
	Conclusions and future work
	References


