
NDT-Merge: A future tool for conciliating

Software Requirements in MDE Environments
J. A. García-García
IWT2 Reserch Group.

University of Seville, Spain
ETS Ingeniería Informática
Av. Reina Mercedes S/N

41012 Seville

julian.garcia@iwt2.org

M.J. Escalona
IWT2 Research Group.

University of Seville, Spain
ETS Ingeniería Informática
Av. Reina Mercedes S/N

41012 Seville

mjescalona@us.es

E. Ravel
IWT2 Research Group.

University of Seville, Spain
ETS Ingeniería Informática
Av. Reina Mercedes S/N

41012 Seville

eric.ravel@insa-lyon.fr

G. Rossi
LIFIA, Facultad de Informática,

UNLP, La Plata, Argentina
Conicet

Facultad de Informática - UNLP - 50 y
120 - La Plata, Argentina

gustavo@lifia.info.unlp.edu.ar

M. Urbieta
LIFIA, Facultad de Informática,

UNLP, La Plata, Argentina
Facultad de Informática - UNLP - 50 y

120 - La Plata, Argentina

murbieta@lifia.info.unlp.edu.ar

ABSTRACT

Requirements conciliation can result one of the most expensive

and critical tasks in Web development. It particularly depends on

analysts’ experiences since very frequently they have to use

manual solution to cope with requirements conciliation. After

some previous work presenting an approach oriented towards

Web requirements conciliation, this paper proposes a tool for

executing this task. It is based on the Model-driven paradigm and

it is included in the context of NDT (Navigational Development

Techniques) methodology.

Categories and Subject Descriptors

Documentation – requirements, conflict detection, Model-driven

paradigm.

General Terms

Algorithms, Management, Documentation, Verification.

Keywords

Requirements, conflict detection, Model-driven paradigm, tool

1. INTRODUCTION

In the information system development process, led or not to the

Web, the development team faces up the arduous task of defining

system requirements. It is a complex process since it must identify

the requirements that the system have to meet in order to satisfy

end users and customers’ requests. Requirements elicitation of

any Web application implies understanding the needs of different

groups of stakeholders who, in one way or another, will use the

final system. Normally, requirements are agreed by stakeholders

so that the semantics and meaning of each business term are well

defined and understood. However, if there are different points of

view on the same business concept [1], ambiguities and/or

contradictions in requirements specification may arise. This may

act to the detriment of requirements specification.

Traditionally, conciliation tasks are performed through

meeting-based techniques [2] in order to eliminate requirements

ambiguity and contradictions. The fact that requirement

inconsistencies are not detected on time may entail defects in the

Web software. In this context, the effort to correct the faults is

several orders of magnitude higher than correcting requirements at

the early stages [3][4] of the project.

This paper is contextualized within the line of research analyzed

in previous work [9], which described the improvement of

techniques for conciliating requirements in multidisciplinary

teams. In this work we applied requirement validation concepts in

a real project by means of NDT (Navigational Development

Techniques) [5] framework and its tool support (NDT-Suite [6]).

Through this work we explore the mechanisms offered by the

Model-driven paradigm for this purpose and assess the results of

implementing them with NDT. In addition, we suggest extending

NDT-Suite with a new tool which will automatically analyze the

conflicts in requirements specification and will propose solutions

to resolve them.

This paper is structured as follows. Section 2 gathers some related

work on requirements validation. Section 3 offers a global vision

of NDT and we focus on its requirements model. In addition,

Section 3 offers conflicts characterization and analysis. Section 4

lays the foundations for the implementation of NDT-Merge tool.

In this section, we explain various aspects of NDT-Merge: its

architecture, what is the procedure for identifying conflicts and

how to resolve these conflicts detected. In addition, we present an

example to show how the procedure works. Section 5 presents our

main conclusions and suggests further work in this field. Finally,

we include an Annex at the end of this paper. This annex provides

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

iiWAS2012, 3-5 December, 2012, Bali, Indonesia.

Copyright 2012 ACM 978-1-4503-1306-3/12/12...$10.00.

a description of the requirements that we have used in the

example presented in Section 4.

2. RELATED WORK

Silva & Do Santos [11] propose the use of Petri Nets as a specific

technique to validate the consistency of requirements defined as

use cases. This approach generates Petri Nets from use cases and

studies their consistency. It seems quite interesting as it tries to

normalize requirements validation with an important constraint, as

it is oriented to use cases described with a very specific notation.

This technique cannot be used, if any special extension of use

cases operates or other techniques to describe requirements are

applied.

In the Web Engineering field, the situation is not different.

Despite some methodologies improved their requirements phase

in the last years, the study of the requirements has remained too

“handcrafted” and non-systematized yet. Thus, recently, some

Web design approaches, such as WebML [12] and NDT, support

this idea by means of the Model-driven paradigm. Nevertheless,

even offering systematic (or even automatic) support for early

testing, the detection of inconsistencies in the specification of

requirements is still too “handcrafted” and depends on the

analysts’ experience and their capability to support the review

with customers and users.

Focusing only on the detection of conflicts, [13] presents an

approach to identify concerned conflicts. The authors propose

using a Multiple Criteria Decision Making method to support

aspectual conflicts management in aspect-oriented requirements.

It results limited since it points out the treatment of aspect-

oriented requirements and it only deals with concerned conflicts.

In other phases of the lifecycle, the conflict-detection process has

been deeply studied by the Model-driven community mainly

based on UML model conflicts. In [14] the author suggests

identifying conflicts in a twofold process: analyzing syntactic

differences by raising candidate conflicts and understanding these

differences from a semantic view. In [15] is presented approach

based reasoning on logic descriptor. In this approach, UML

models are transformed into logic descriptor documents that are

later processed by a first-order logic engine in charge of

reasoning. To our knowledge, our proposal is the first Model-

driven approach for validating Web application requirements.

3. BACKGROUND

3.1 NDT: An overview

Navigational Development Technique (NDT) is a Model-driven

Web methodology initially defined to deal with requirements on

Web applications developments. NDT has evolved in the last

years and nowadays it offers a complete support for the whole

development lifecycle. It covers the viability study, requirements

treatment, analysis, design, construction, implementation, as well

as the maintenance and testing phases of software development.

Regarding the requirements phase, NDT classifies project

requirements according to their nature: information storage,

functional requirements, actor requirements, interaction

requirements, and non-functional requirements. The following

these requirements will be described.

The information storage requirements are divided into storage

requirements (RA) and new natures (NA). Information storage

requirements define what information will be stored in the system

and the relationships established between such information. Each

Information storage requirement has associated a number of

specific data, which represent the items of information that the

requirement will store. The concept of new nature differs from the

data type concept. Nature represents a domain as a set of values

that have a specific meaning within the system without going into

low-level details.

Actor requirements (AC) define what user roles can interact with

the system and the relations established between them.

Functional requirements (RF) describe the needs of functionality

offered by the system. The functional requirements respond to the

question of what the system can do? To capture and definition of

functional requirements, NDT uses the use case diagrams to

graphically represent the functionality of the system. NDT

proposes to accompany these diagrams with additional textual

information. All this information is registered in the pattern that

this methodology proposes to gather the information of the

functional requirements.

Interaction requirements define how each user role interacts with

the system and how you can navigate through it. Interaction

requirements will be defined by Phrases (FR) and Prototypes of

Visualization (PV). The Phrases are used to describe how the

information will retrieved, whereas Prototypes of Visualization

are used to describe how information is displayed in the system,

how the user navigates through the system and how the

functionality will be offered to the user.

Finally, non-functional requirements (RNF) are used to catalogue

any other needs of the system which cannot be classified

according to the above requirements. Non-functional requirements

can be used to register the following requirements: technical

requirements for communications (for example, the protocol used

for communications system), reliability requirements,

requirements development environment (for example, operating

system), portability requirements, accessibility requirements, etc.

In order to define these requirements, NDT provides special

patterns and UML techniques, such as the use cases technique for

functional requirements specification.

On the other hand, NDT supports a set of processes to bear out

project management and quality assurance and it is globally

complemented by a set of free tools grouped in the NDT-Suite [6].

This suite enables the definition and use of every process and task

supported by NDT and offers relevant resources to develop

software projects in terms of quality assurance, management and

metrics. Currently, the suite of NDT comprises the following free

Java tools:

 NDT-Profile is a specific profile for NDT developed using

Enterprise Architect [19]. NDT-Profile offers the chance

of gathering all the artifacts that define NDT easily and

quickly, as they are integrated within the tool Enterprise

Architect.

 NDT-Quality [20] is a tool that automates most of the

methodological review of a project developed with NDT-

Profile. It checks both, the quality of NDT methodology in

each phase of software lifecycle and the quality of

traceability of the MDE rules of NDT.

 NDT-Driver [21] is the key tool for carrying out the

transformations among NDT models. It implements a set

of automated procedures that enables to perform all

transformations MDE among the different models of NDT

that were described in the previous section. The data

source to use this tool is a project developed with NDT-

Profile. For practical purposes, this tool considerably

minimize the time spent in the design and development of

models from different life cycle phases of NDT, as the

basic models it obtains provide the analysts team with a

starting point.

 NDT-Prototype is a tool designed to automatically

generate a set of XHTML prototypes from the navigation

models of a project, described in the analysis phase,

developed with NDT-Profile.

 NDT-Glossary [22] implements an automated procedure

that generates the first instance of the glossary of terms of

a project developed by means of NDT-Profile tool.

 NDT-Checker is the only tool in NDT-Suite that it is not

based on the MDE paradigm. This tool includes a set of

sheets different for each product of NDT. These sheets

give a set of checklists that should be manually reviewed

with users in requirements reviews.

 NDT-Counter is a tool that, using use cases points,

estimates the effort of a project that is going to be

developed with NDT.

In the last ten years, NDT and NDT-Suite were used in a high

number of real projects. In fact, NDT-Suite is currently being used

in several projects developed by different companies, either public

or privates. Public companies such as the Regional Cultural

Ministry or the Regional Health Ministry of Andalusia, among

others, are working with NDT and NDT-Suite. Private ICT

companies in Andalusia are also using NDT in some of theirs

projects. The use of NDT and NDT-Suite in numerous projects

has provided us with an important feedback. One of these projects

was the Mosaico project [7] which was developed for The

Regional Cultural Ministry of Andalusia. The idea of this Web

system was born from the need of managing all the information

on historic heritage in Andalusia. Mosaico was developed by two

important companies and it covered 5,670 requirements, out of

which 3,253 were functional requirements.

From the experience of this project we know that

requirements are difficult to conciliate in projects involving

multiple teams. This paper proposes improving the NDT

methodology to solve these problems during conciling

requirements. In addition, this article proposes extending NDT-

Suite with a new tool that will automatically analyze conflicts in

requirements specification and will propose solutions to solve

these conflicts.

3.2 Characterization and analysis of

conflicts

During requirement specification, there may be cases where two

or more scenarios that reflect the same business logic differ subtly

from each other producing an inconsistency. When these

inconsistencies are based on contradictory behaviours, we are

facing a requirements conflict [8]. Conflicts are characterized by

differences in the features of object, differences between logical

(what is expected) or temporal (when it is expected) conflicts of

actions, or even differences in terminology that provoke

ambiguity.

In this analysis we will emphasize Web application navigation, as

well as users’ interaction peculiarities that are not covered in the

traditional characterization of requirement conflicts [8].

Consequently, we provide an interpretation of each conflict type

on the Web application environment: (i) Structural conflicts stand

for a difference in the data expected to be presented on a Web

page by different stakeholders. A stakeholder may demand that

data be shown on a Web page to contradict other stakeholder’s

requirement; (ii) Navigational conflicts take place when two Web

application requirements may contradict the way in which links

are traversed producing navigational conflicts; (iii) Semantic

conflicts occur when the same real-world object is described with

different terms. This situation may generate a false negative in the

conflict detection process, since a conflict may not be identified

and new terms are introduced into the system space thus

increasing its complexity. As a consequence, the same domain

object is modelled in two entities with different terminology.

Our approach allows identifying, analyzing and solving conflicts

and was introduced in [9] through WebSpec [10] as a Web

requirement metamodel. Next, we will present a brief summary of

our approach shown in Figure 1:

1. Requirement gathering. A Software Requirement

Specification (usually in natural language) is produced by

means of well-known requirement elicitation techniques

such as meetings, surveys or Joint Application

Development (JAD), among others.

2. Requirement modelling. Web application requirements are

formalized by using a requirement Domain Specific

Language (DSL) (e.g. WebSpec or NDT) giving a formal

requirement model as a result.

3. Structural analysis of the Web requirements model.

Requirement gathering

Conciliation process
[Confirmed conflict]

Semantic analysis
Structural analysis of the web

requirements model

Requirement modeling/
refinement

[Semantically

equivallent]

[Pending requirements]

Automate steps

Figure 1. The Overall Process for Detecting Requirement Conflicts

Structural and navigational conflicts of a candidate are

identified by means of an algebraic comparison of

requirement models obtained in step 2. Additionally,

navigation paths are evaluated in order to check their

consistency.

4. Semantic analysis. Candidate conflicts are analyzed and

semantic equivalences are detected. For each candidate

conflict, both the new requirement and the compromised

requirement are translated from a high abstraction level

(the requirements DSL) into a minimal form by using

simple elements so as to detect semantic differences.

5. Conciliation process. Once the existence of a conflict is

confirmed, we must start conciliating requirements. This

process demands the establishment of a communication

channel among those stakeholders concerned in the

conflict.

6. Refinement. When a conflict is confirmed some

adjustment and tuning must be done in order to remove

the identified conflict and reach a consistent state.

The process is applied iteratively each time a new set of

requirement emerges. The new incoming set of requirements is

checked with each of the already consolidated requirements of the

system space.

4. NDT-Merge

In this section, we reflect about the future NDT-Merge tool. NDT-

Merge provides developers the opportunity to merge the two

requirement phases of projects developed using NDT-Suite, which

represent the same project developed by separate teams. The

software is still being developed but we give here the main

aspects.

4.1 Overall Architecture

Figure 2 show the proposed architecture of NDT-Merge. To

respect conventions and facilitate the development, the basic

architecture supposes three levels: Data Access, Business Logic

and Presentation.

The Presentation Level contains the user interface which mainly

presents to users who can choose the options for the treatments.

With this interface, the user can configure the tool to select for

instance a subset of NDT types of requirements to work on. These

options put conditions to the conflict detector which is part of the

next level in order to merge only selected requirements aspects of

two projects. We give here the types of requirements used in

NDT.

The Business Logic Level contains two packages permitting

conflict detection and their resolution. The detector module will

implement a generic architecture which will be able to deal with

any type of requirement. This module is responsible of the

detection of structural, link and semantic conflicts occurring in the

whole requirements phase. In the following subsection, an

example of the algorithm is explained. The detector uses the two

project’s data, using the lower level to get information from the

databases. It establishes what objects, from the two projects, in

each NDT model represent a same concept using a well spread

semantic analysis described below, this allows establishing the

structural differences between the two objects. Then, the resolver

module deals with the conflicts to resolve them.

The Data Access Level contains the NDT-Access module which

contains classes providing access services to the database. We use

this tool as a low level unity which allows upper processes to get

any type of object needed. In our case, only requirements will be

accessed.

Figure 2. Architecture of NDT-Merge

4.2 Conflict identification procedure

4.2.1 Conflicts in NDT

The structural analysis of the models proposed in [10] supposed

that two requirements to be compared have the same identifiers,

the name. We try to deal in a more general case supposing that the

objects representing the same concept can have different name.

For example: “Product” and “Good” could represent the same

concept in a particular context. Therefore a process is needed to

match objects from one version to the others, and link them to a

same concept. We use the description, one of the properties

offered by NDT to characterize objects.

We consider three types of conflicts. The most difficult to solve

solve is the semantic conflict; it occurs when two requirements, or

components of requirements, have same of rather identical names

but describe different objects. The link conflict represents the

difference of related object lists between two objects describing

the same requirement and it is like a generalization of the

navigational conflict described in Webspec [9]. The structural

conflict represents any other difference between the two objects

representing the same requirement. It can be then name, the inner

components, the various properties. Even the description has to be

marked as contentious, except if it was exactly the same, in order

to make a choice later in the resolution. We give level of severity

for the conflicts. A semantic conflict is always at the high level

because it can create misunderstandings quickly. The link conflict

has a medium severity and for the structural conflict it depends on

the level of the conflict and can be from the lowest severity to the

highest one.

4.2.2 Semantic Conflict Analysis

The identification of same concepts depends on the analysis of the

objects description. We carried out the analysis of text using the

technique described in [16] and [18]: the vector space model.

This technique has been used in a similar manner in [17], but in

our paper we use the statistic term frequency-inverse document

frequency. This technique associates a mathematical equivalence

to any text, i.e., n-dimensional vector where n is the numbers of

terms of the text. Each component stores the weight of each term.

This weight of each word is calculated by the multiplication of

two parameters: tf * idf . On the one hand, tf indicates the

frequency of the word in the text, i.e., the number of occurrences

of the term in the text divided by the total number of terms in the

text. On the other hand, idf is the inverse document frequency,

and it evaluates the importance of the considered term in the

whole set of descriptions. Its definition allows giving a greater

weight to the less frequent terms, which are considered as the

most characteristic words. It is calculated by taking the logarithm

of the quotient obtained by dividing the number of descriptions by

the number of descriptions that contains the term. Then, the

mathematical expression of idf is presented.

 ()

 * +

With:

 |D|. D is the corpus or set of descriptions analysed and |D|

is the number of descriptions in the corpus.

 * + This mathematical expression

represents the number of descriptions in which the term t

appears. The number of descriptions where the term t

appears. This expression avoids a division-by-zero in the

case in which the term would be absent.

Finally, the mathematical expression of tf * idf is presented:

 () () ()

4.2.2.1 An Example

In our example, we merge two projects developed with NDT-

Profile and we only focus on the model information storage

requirements (RAs and NAs). Figure 3 shows the information

storage requirements of the first project and Figure 4 shows the

information storage requirements of the second project.

All the requirements that we use in this example are described in

detail in the Annex.

The similarity of the descriptions is evaluated considering that

descriptions are vectors of words. Since we consider vectors we

have to apply a single order of words. All the words of the whole

set of descriptions have to be considered and each new one is a

new dimension in the vector. Then, the description's original order

is not relevant, it is only necessary to have all the words.

After building the two vectors (one for each description or text),

we can know what is the similarity between the two descriptions.

For this, we apply the cosine to calculate of the angle between two

vectors. The cosine with value 1 implies that the angle between

the vectors is 0, which implies that the texts are similar.

 ()

 ()

To apply the technique described, first of all, the words are

stemmed to their roots so that plurals, verbal forms or other forms

are not considered. We also don’t consider pronouns, articles and

other connexion terms. Then, the cosine similarity described in

[16] is applied; the algorithm calculates cosines between two

vectors. Therefore we understand that all the relevant words of the

corpus have to be represented in the vectors.

Figure 3. Information Storage Requirements from 1st Project

Figure 4. Information Storage Requirements from 2nd Project

Table 1 shows the description of two requirements. The corpus in

this short example is only two descriptions.

Table 1. Similarity between Requirements (I)

NA-02.Warehouse Type NA-01.Capacity

The capacity of the storage

facilities is defined in this
object. Warehouses are from

three different kinds.

This represents the capacities

defined for warehouses.

Warehouses contain different
quantities of products to be

sold.

Table 2 shows the tf and idf of the underlined terms for both objects

giving as example the term “warehouse”.

Table 2. Similarity between Requirements (II)

NA-02.Warehouse Type NA-01.Capacity

tfwarehouse = 1/11

idfwarehouse =

≈-0.176

tf * idf ≈ -0.016

tfwarehouse = 2/11

idfwarehouse =

≈-0.176

tf * idf ≈ -0.032

In the same way, we obtain the results for all terms that are

underlined in Table 1. Table 3 presents these results.

On the other hand, we need to calculate the vector associated with

the concepts we have described in Table 1. This vector has 17

components: one for each keyword (you must remember the

criteria explained in this section such as plurals, etc.). Then, the

vector’s dimensions are:

{capacity, represent, storage, define, facility, is, warehouse, contain,
object, different, quantity, are, product, three, be, sell, kind}

Table 3. Similarity between Requirements (III)

NA-02.Warehouse Type

tf * idf

NA-01.Capacity

tf * idf

Capacity -0.016 Represents 0

Storage 0 Capacities -0.016

Facilities 0 Defined -0.016

Is 0 Warehouses -0.032

Defined -0.016 Contain 0

Object 0 Different -0.016

Warehouse -0.016 Quantities 0

Are 0 Products 0

Three 0 Be 0

Different -0.016 Sold 0

kinds 0

Table 4 shows the values of the vector components for each one

of the requirements shown in Table 1.

Table 4. Similarity between Objects (IV)

NA-02.Warehouse

Type
NA-01.Capacity

capacity -0.016 -0.016

represent 0 0

storage 0 0

define -0.016 -0.016

facility 0 0

is 0 0

warehouse -0.016 -0.032

contain 0 0

object 0 0

different -0.016 -0.016

quantity 0 0

are 0 0

product 0 0

three 0 0

be 0 0

sell 0 0

kind 0 0

Finally, we calculate the angle between the vectors described in

Table 4. For this, we apply the cosine:

 ()

 =

 ≈ .952

This means that the angle between the two vectors is very small

(≈0.3 rad) and the vectors are very similar.

4.2.3 Algorithm of concepts’ identification

Before starting the identification algorithm, user must have

previously indicated what requirements he/she wants to merge.

User must also indicate the two NDT-Profile projects. Then, our

tool (NDT-Merge) can run the algorithm. Our procedure for

identifying concepts is as follows.

Our tool (NDT-Merge) gets the set of requirements from the first

project. It is usually called a query. The whole set of requirements

from the second project constitutes the compared objects. Then

cosine similarity is applied between the requirement from the first

project and each of the requirements from the second project. All

the results are saved. Then the second requirement of the first

project is compared to the same set and so on until all the

requirements from the first project have been used (1). The results

are taken all together and sorted. The sorting algorithm takes the

pair which got the highest similarity and save it has a

correspondence between the two objects: they are describing the

same object. Then the second more relevant pair is taken and so

on until we get all the requirements from both projects. In fact we

want to have a correspondence for each requirement (2). It can be

possible that several requirements got linked to a single one if the

number of requirements is not the same in both project (3), this

case is visible in the following example. We consider the example

shown in Figures 3 and 4.

In the first project, the first requirement to be used as query is

“RA-01.Client” (see Figure 3). Next, our tool calculates the cosine

similarity with each requirement of the same type in the second

project (see Figure 4): RA-02.ProductID, RA-01.Good, RA-

03.Storage Facility, RA-04.Client. Thus, each requirement gets at

least one relationship with the other requirements. Posteriorly, our

tool applies exactly the same algorithm for “RA-02.Product” and

“RA-03.Warehouse” in the first project.

The temporary results of applying the cosine similarity for the

Storage Requirements are shown in the Table 5.

Table 5. Results of Applying the Cosine Similarity

First project Second project
Score

(cosine)

Client

Product

Product

Warehouse

Warehouse

Client

Warehouse

Client

Client

Warehouse

Product

Product

Client

Good

Client

Storage Facility

Client

Good

Good

ProductID

Storage Facility

ProductID

ProductID

Storage Facility

0.596986

0.335637

0.223984

0.203202

0.184944

0.134006

0.121600

0.119864

0.109182

0.107809

0.090265

0.074950

The algorithm allows getting only the highest scores of each

requirement. The results for this example are shown in the Table

6.

Table 6. Results of Applying the Cosine Similarity (I)

Score

(cosine)

R
A

-X
X

Client & Client :

Product & Good :

Warehouse & Storage Facility :

Product & ProductID
1
 :

0.596986

0.335637

0.203202

0.090265

N
A

-X
X

Capacity & Warehouse Type :

Capacity & IDType
2
 :

0.222456

0.057308

All the objects are linked and the doubled objects will be

considered as structural conflicts.

1 “ProductID” requirement doesn’t have any equivalent in the first project.

The algorithm links it to the closest object of the same type.

2 “Capacity” requirement is taken twice because “IDType” requirement

have not any equivalent. “Capacity” is the closest requirement.

It is sometimes difficult to get relevant similarity results because

the texts may be too short. It may happen that the list of

similarities gets low scores in general, when for example the

words chosen are synonyms (“products” and “goods” for

instance). In its actual version, our algorithm doesn’t use any

dictionary of synonyms. For this reason, the scores are only based

on roots of words.

To improve the results, a second step is realized. With this new

step, the algorithm takes into account the name of the

requirements and the text of the descriptions. We temporary add

the usable name (without the type and attributes) to the

description. In general we observed that the description contain

terms from the name. Adding it, we improve the tf component of a

term which is in the title and in the description. Sometimes the

term in the name/title is not present in the description. This will

improve the idf component of this term. As we do this for both

projects the similarity cosine should be improved between objects

to match.

Table 7 shows the results taking into account this second step.

You can check the results have improved from the results shown

in Table 6.

Table 7. Results of Applying the Cosine Similarity (II)

Score

(cosine)

R
A

-X
X

Client & Client :

Product & Good :

Warehouse & Storage Facility :

Product & ProductID

:

0.641377

0.345933

0.226203

0.117276

N
A

-X
X

Capacity & Warehouse Type :

Capacity & IDType

 :

0.222456

0.057308

Then, obtained score are changed and several cases for the

descriptions may occur:

 The score of the considered pair is improved following a

general improvement of the majority of pairs: the two

names contained same words and confirm that the two

objects represent the same requirement. It is often the case

that analyst chose similar words as name from one group

to another to identify an object. This case is shown in

Table 7.

 The score is quite the same (in comparison of the rank of

values) and shows that the names were different. The

result is not improved so the name did not enhance the

similarity for the considered pair. The analysts chose

different names; this is a structural conflict on an

identified pair we may resolve later, choosing one of

them.

 The score is seriously raised, and two other pairs

containing the two requirements with two other

requirements associated respectively had higher scores in

the first list. We consider that the names were the most

relevant element in the descriptions which were not

considered describing the same requirement. Therefore we

conclude that the names, which contain same element or

are identical, create a semantic conflict.

4.2.4 Conflicts characterization

The difference of the components of the pairs is made in order to

get the structural conflicts. The components depend on the type of

NDT requirement dealt. As said before, the structural conflicts

can be seen as a difference in any property of two objects when

they are identified as a unique concept. These properties are state

of the object (approved, etc.), tags, author, description, attributes,

and name, among others. We call these characteristics as common

characteristics.

Most of the properties are also very specific to the type of object.

For instance, Interaction Requirements have sub objects like

combo boxes, textboxes, checkboxes, and buttons, among others.

Moreover, these sub objects have their own characteristics.

In its actual version, our algorithm only deals with simple objects

or common characteristics of the objects.

For the attributes for example, we apply the same algorithm than

before. The sets of “requirements” are the requirements of each

pair obtained before. Then, we compare all the attributes to get

pairs.

In our example, in the pair of storage requirements “RA-

01.Client” (see Figure 3) we may get the conflict on “First name”

and “Name” which are identified as same concepts by their

descriptions. The conflict is then a structural conflict about the

name we have to choose. Another example would be between

“Product” and “Good”. The attributes “label” and “name” may

generate a conflict as described above, the other attributes are

different so we generate a conflict in the requirement level and in

the resolution, and we add all of them in the new requirement.

NDT requirement have also special fields for links. These

relations allow to link requirements from one diagram to others,

which can be of different type, in the same one or in a different

one. This is then analysed to get link conflicts when the lists are

different.

4.3 Conflict resolution

The resolver module gets the conflicts and creates a new NDT-

Profile project. The new project comes with some reports about

the detection. We describe how the software may deal the

resolution which is still in development.

The Resolver Module will work with the structural conflicts to

erase them. We define two cases. First, we add artefacts which are

absent in one model and present in the other one to the new

project – they were added as structural conflicts. We take an

optimistic position understanding that the best solution is to

include the construction as an improvement when it is not present.

This idea comes from the fact that new requirement artefact may

improve other requirements functionality. Then, for artefacts type,

or configuration incompatibility, we need to analyse deeper,

putting some priority rules to choose one of the objects or to even

replace by another type of object. Some rules concerning the

interaction diagram in NDT are given in [9] and they will be

extended in our project.

 Read-write over Read-only widgets. It may happen that

the structural comparison exposes a contrast between

read-only widget (or disabled TextField) and a TextField.

In this case, we choose the most flexible one: use a

TextField to enable showing and editing data.

 Fixed data values range over wide values range. Two

widgets may deal with the same data but differ in the

manipulated range; masked text inputs and restricted set

of options are examples. In this case, restrictive widget

such as Combobox, RadioButton or masked TextFields

are prioritized over less restrictive widgets.

 Container vs. atomic widgets: When having one

VisualizationPrototype specifying a Container that defines

an aggregation of data against a non container widget such

as a TextField, Containers must be preserved because they

establish a detailed information structure specification.

Note that each NDT model must be specifically analyzed,

however, a common process for all the NDT objects consists in

letting the analyst choose between the two configurations of NDT

common attributes (Names, Notes...) or propose him to make a

merge version.

The structural conflicts may be dealt among their complexity. If it

is a name problem, e.g. they are different, we can arbitrary choose

one of them if the name is a unique key in the project.

The link conflict resolution is made in a first version by putting

into the link list of an object only the requirements which are

present in both requirements.

The semantic conflict can be dealt by just identifying it in a report

and not changing the name because the action of choosing names

can be complex and not easily automated.

5. Conclusions & Future Works

In a software project, one of the most relevant phases in the

lifecycle is the requirements phase, which conditions the

development through all the aspects of the project, mainly

economic. Either the diversity of data the system has to manage or

the diversity of users show the complexity analysts must face up.

In big projects, managers usually share tasks among different

teams working on separated aspects often occurring in the same

phases. Then it is particularly important to conciliate results.

Conflicts in the requirements phase must be solved to get a

working set of models for next phases of development.

Nevertheless, this task frequently depends on the analyst’s

experience or it is performed manually, without a specific and

normalized support to develop it.

In this paper we propose to extend NDT-Suite with a new tool

(NDT-Merge) that aims to help analysts in this task saving time.

The process, using NDT methodology for the systematic detection

of requirements inconsistencies, extends it to the conflicts

resolution that already exists in some methodologies like

WebSpec. The objective is to propose a tool capable of solving

conflicts for any types of requirements of NDT and their models.

In this paper we mainly focus on the model of interaction

requirements which organises the functional requirements through

the construction of the future interface prototype, because these

mechanisms bring into play many specific aspects of NDT and

include generic processes used for the whole merging step.

ACKNOWLEDGMENTS

This research has been supported by the Tempros project

(TIN2010-20057-C03-02) and the NDTQ-Framework project of

the Junta de Andalucía, Spain (TIC-5789).

REFERENCES
[1] Kotonya, G., Sommerville, I. 1996. Requirements

engineering with viewpoints. Software Engineering

Journal, vol.11, no.1, pp.5-18.

[2] De Lucia, A., Qusef, A. 2010. Requirements Engineering

in Agile Software Development. In Journal of Emerging

Technologies in Web Intelligence, Vol. 2, no. 3, pp 212-220.

[3] McConnell, S. 1996. Rapid Development: Taming Wild

Software Schedules. Microsoft Press. ISBN 1-55615-900-5.

[4] Leffingwell, D. 1997. Calculating the Return on Investment

From More Effective Requirements Managament. American

Programmer, Vol. 10, no. 4, pp 13-16.

[5] Escalona, M.J., Aragón, G. 2008. NDT: A Model-Driven

Approach for Web requirements, IEEE Transactions on

Software Engineering. Vol. 34, no. 3. pp 370-390.

[6] NDT-Suite. 2012. Available at www.iwt2.org. Accessed in

August 2012.

[7] Escalona, M.J. 2007. Equipo de Coordinación. Mosaico. El

sistema de Información para la Gestión del Patrimonio

Histórico Andaluz. Proceedings of XI International Congress

on Project Engineering.

[8] IEEE. 1998. IEEE Recommended Practice for Software

Requirements Specifications. IEEE Std pp 830-1998.

[9] Urbieta M., Escalona M.J., Robles E., Rossi G. 2011.

Detecting Conflicts and Inconsistencies in Web Application

Requirements. ICWE Workshops 2011, pp 278-288.

[10] Robles, E., Garrigós, I., Grigera, J., Winckler, M. 2010.

Capture and Evolution of Web Requirements Using

WebSpec. ICWE Workshops 2010, pp 173-188.

[11] Silva, J.R., Do Santos, E.A. 2004. Applying Petri Nets to

requirements validation. ABCM Symposium. Series in

Mechatronics. Vol. 1. pp. 508-517.

[12] Ceri, S., Fraternali, P. Bongio, A., Brambilla, M., Comai, S.,

Matera, M. 2002. Designing Data-Intensive Web

Applications. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[13] Brito, I. S., Vieira, F., Moreira, A., Ribeiro, R. A. 2007.

Handling conflicts in aspectual requirements compositions.

In Transactions on aspect-oriented software development III,

LNCS, Vol. 4620. Springer-Verlag, Berlin, Heidelberg, pp

144-166.

[14] Altmanninger, K. 2007. Models in Conflict - Towards a

Semantically Enhanced Version Control System for Models.

MoDELS Workshops 2007, pp 293-304.

[15] Sommerville, I.: Software Engineering. Addisson Wesley

(2002). Van Der Straeten, R., Mens, T., Simmonds, J.,

Jonckers, V. 2003. Using Description Logic to Maintain

Consistency between UML Models. UML 2003, pp 326-340.

[16] Salton G., Buckley C. 1988. Term-Weighting approaches in

automatic text retrieval. Department of Computer Science,

Cornell University, Ithaca, NY 14853, USA.

[17] Rifaieh R. et Al. 2006. A Matching Algorithm for Electronic

Data Interchange. Proceeding TES'05 Proceedings of the 6th

international conference on Technologies for E-Services,

Springer-Verlag Berlin, Heidelberg 2006, pp 34-47. ISBN: 3-

540-31067-3 978-3-540-31067-9.

[18] Salton, G. and McGill M. J. 1986. Introduction to modern

information retrieval.

[19] Enterprise Architect. 2012. Available at

www.sparxsystems.com. Accessed in August 2012.

[20] Escalona M.J., Gutiérrez J.J., Pérez-Pérez M., Molina A.,

Martínez-Force E., Domínguez-Mayo F.J. 2011. Measuring

the Quality of Model-Driven Projects with NDT-Quality.

Information System Development. Springer Science Business

Media, LLC 2009; USA. Vol. 1, Chapter 26, pp. 307-317,

ISBN/ISSN: 978-1-4419-7355-9.

[21] García-García J.A., Cutilla C.R., Escalona M.J., Alba M.,

Torres J. 2011. NDT-Driver, a java tool to support QVT

transformations for NDT. The Twentieth International

Conference on Information Systems Development (ISD

2011). ISBN: 978-1-4614-4950-8.

[22] García García J. A., Escalona M.J., Cutilla C.R., Alba M.

2011. NDT-Glossary. Proceedings of the 13th International

Conference on Enterprise Information System (Iceis 2011).

International Conference on Enterprise Information Systems

(Iceis) (13). no. 13. Beijing, China. Insticc Press. 2011. Pag.

170-175.

Annex

We give the descriptions of the requirements and their attributes

1
st
 project 2nd project

RA-01.Client

“This represents a client. The client is a particular person buying the company's

products.”

 ID “This is the national identification number of the client”

 Surname “This field represents the client's surname.”

 First name “This field represents the client's first name.”

RA-01.Good

“The goods are the products sold by the company. They are stored in warehouses

before clients buy them.”

 Name “This is the name given to that category of good.”

 Product ID “This is the product identification number. There are several

types of products, some are made by the company and others are bought.”

RA-02.Product

“This represents a product the company may sell. The products are material goods

stored before being sold by the company.”

 Label “This represents the label given to that kind of product by the

company.”

 Price “This is the price in euros of the product.”

RA-02.ProductID

“This is the product ID. There are types of ID according to the product provenance.”

 Number “This is the ID number.”

 IDType “This represents the ID type.”

RA-03.Warehouse

“This represents a place where the products are stored before being distributed to

smaller facilities.”

 ID “This is the identification number used by the company for the

warehouses.”

 Capacity “The capacity of the warehouse. This can take three different

values defined by the Capacity requirement.”

 Address “This is the warehouse's place.”

RA-03.Storage Facility

“This represents the facility's data where are stored the goods. There are different kinds

of them.”

 Address “The address of the warehouse.”

 Warehouse Type “This represents the type of warehouse. It depends on

the size.”

NA-01.Capacity

“This represents the capacities defined for warehouses. Warehouses contain different

quantities of products to be sold.”

 Name “This represents the capacity of the warehouse using the internal

cathegories system. It may be : A, B, C. A is a small warehouse where a

thousand products can be stored. B is usually between twice and five

times bigger. This category of warehouse is usually present in big cities.

The C capacity is used to represent the main warehouses which are a

hundred times bigger than the A one. The company only owns a couple of

C warehouses.”

 Description “This field gives a description to each type of Capacity.”

RA-04.Client

“This represents a client of the company. The client can only be a particular person

who buys goods.”

 Surname “The client's surname.”

 Name “This is the client's name.”

 ID “This is the national client's ID.”

 NA-01.IDType

“This is the type of ID a product or good can have. It depends on several criterious.”

 Type “This represents the ID types. There are two different types, X and

Y, X define the products which are distributed under new ownership and

Y the own made ones.”

 Description “This allows to explain the type of product ID.”

NA-02.Warehouse Type

“The capacity of the Storage Facilities is defined in this object. Warehouses are from

three different kinds.”

 Type “The type of the warehouse depends on the size and capacity. The

1000G (1000 goods capacity), the 2-5000G (from 2000 to 5000 products),

the 100MG represents a main warehouse which is presents only in main

cities (100000 Goods).”

 Description “This describes the capacities of the storage facility.”

