
Seamless Personalization of E-Commerce Applications

Juan Cappi1. Gustavo Rossi1. Andrés Fortier1. Daniel Schwabe2

1 LIFIA-Facultad de Informática-UNLP, Argentina
{jcappi,gustavo,andres}@lifia.info.unlp.edu.ar

2 Depto. de Informática, PUC-Rio, Brazil
schwabe@inf.puc-rio.br

Abstract. In this paper we present an original approach for personalizing
complex Web applications, in particular e-commerce applications. This
approach is based on a clear separation of concerns, namely: base application
functionality, user profile management, and personalization rules, and supports
seamless addition of personalization features (such as recommendations, special
offers, individual interfaces, etc). We first explain our view of e-commerce
applications as views on application models, and briefly explain why
personalization functionality should be dealt by separating concerns. We next
introduce a simple example and focus on different personalization patterns,
emphasizing on behavior personalization. We show which design structures are
the most appropriated for obtaining seamless extensions to existing software.
We finally discuss some further aspects in building customized e-commerce
software.

1-Introduction

Personalization has become a very important issue in e-commerce applications. The
increasing popularity of the World Wide Web, the myriad of platforms supporting
some kind of browsing, and the very nature of e-commerce have reshaped this
problem. Not only we have to build applications customized to the individual; we
must also cope with constant changes of personalization policies and rules (that in
general follow the evolution of the business model itself).

Designing personalized e-commerce applications implies dealing with different
concerns. It may mean building different interfaces (customized to a particular
appliance), providing personalized navigation paths; offering different pricing
policies, customized check-out procedures, etc. All these features involve managing
information about the user (and his profile), implementing specific algorithms and
interfaces, designing and applying rules and other related design problems.

User modeling and profile derivation from internet-gathered information has been
extensively discussed in the literature [Perkowitz 00]. Recommendation algorithms and
mechanisms (such as push vs. pull) have been recently surveyed [Schafer 99] and
almost all electronic stores now include some kind of personalized behavior. A
broader approach for understanding general requirements for customized Web
Applications is presented in [Kappel 00].

However, while most of the “algorithmic” issues of personalization have been
already studied, little attention has been paid to the modeling and design process of
this kind of software; in particular, which design structures may help to cope with its
increasing complexity. This aspect is critic not only because of the difficulties
inherent to the problem but also because of the evolvable nature of (personalized) e-
commerce applications. More precisely, as personalization requirements and policies
change over time, software maintenance becomes a nightmare.

Suppose for example that product prices are personalized according to the buying
history of the user; however, on a particular week there is a sale for certain products
for which the mentioned policy does not apply. Or we decide to change the discount
policy and apply it only when the user spent more than a certain amount of money.
How do we guarantee software stability in this context? How do we simplify the
addition of new rules? How do we support new features in the user profile that were
not foreseen? How do we avoid melting business rules into the application code? The
answer is separation of concerns.

By clearly understanding and decoupling the design concerns involved in a
personalized e-commerce application, we can keep the software manageable; we can
also provide a conceptual framework for reusing designs and design experience. We
have a better way to understand the kind of interactions appearing in a personalized
application from an abstract point of view (independent of the specific aspects of the
application), and to simplify them by following existing design patterns.

We show that a clear separation of those concerns related with personalization
allows adding personalized behavior to applications conceptual models with a
minimum amount of code manipulation. We stress that reasoning over design objects
gives us better insight on the personalization process.

The structure of this paper is as follows: We first introduce the OOHDM approach
for building e-commerce applications. Next, we discuss the problem of designing
personalized applications. We identify the most common personalization patterns and
analyze the particular design concerns they involve. We introduce a stereotypical
example to illustrate our ideas briefly and show personalization hot spots in the
example. We next introduce personalized wrappers and rule objects; for each design
mechanism we discuss the problem which motivates it and its solution. We finally
explain how to scale-up towards a generic architecture for personalized applications
and discuss some ongoing research issues.

2-Our View of E-commerce Applications

The key concept in OOHDM is that Web (in particular e-commerce) application
models involve a Conceptual, a Navigational Model and an Interface Model [Schwabe
98]. Those models are built using object-oriented primitives with a syntax close to
UML.

The concern of the conceptual model is to represent domain objects, relationships
and the intended applications’ functionality. As we show later in this paper, most
personalization mechanisms involve dealing with objects and algorithms that are
expressed as part of the conceptual model.

The cornerstone of the OOHDM approach is that the user does not navigate
through conceptual objects, but through navigation objects (nodes). Nodes are defined
as views on conceptual objects, using a language that is similar to object database
view-definition approaches. As we consider Web applications as hypermedia
applications, we define links connecting nodes, as views on conceptual relationships.
Nodes are further organized in sets called navigational contexts. Indexes provide
shortcuts for accessing nodes. The complete syntax for nodes, links, contexts and
indexes definition can be found in [Schwabe 98]. OOHDM provides a straightforward
way to build applications customized to different user roles building different
navigational models (views) for each profile.

Finally, the abstract interface model specifies the look and feel of navigation
objects together with the interaction metaphor. Separating the interface from the
navigation specification allows us to cope with varying interface technologies in a
modular way. As interface objects are specified as Observers [Gamma 95] of
navigation objects, we also have a simple way for customizing the interface to
different Web appliances (as browsers, cellular phones, etc) [Schwabe 98].

3-Modeling and Design of Personalized Applications

We have mined recurrent personalization patterns in Web applications [Rossi 01a].
These (coarse grained) patterns allow us to focus on what can be personalized before
addressing which concerns are involved in the personalization design process.
Following the OOHDM framework (that partitions the design space into conceptual,
navigational and interface models) we can personalize:

- the algorithms and processes described in the conceptual model.
- the contents and structure of nodes and the link topology in the navigational model
- the interface objects and their perceivable aspects and the interaction styles.

These personalization aspects can be addressed at the role or at the individual levels.
As OOHDM naturally supports role-based personalization we do not discuss it further
in this paper. For the sake of conciseness we will neither discuss interface
personalization though the basic principles discussed later can be easily apply to this
aspect.

Once we understand the different personalization patterns in an abstract way, we
must discuss how to relate specific applications’ requirements with these patterns and
then map these patterns onto concrete designs. For example, if we need to personalize
products’ prices in an e-store, we first realize that this is a particular case of node
content personalization and then we use the most appropriate abstractions for
materializing design. In this paper we present some general design solutions to these
problems; we present them in a domain and application independent way, so they can
be reused in different systems and modeling approaches.
There are basically three concerns related with personalization: the user profile, the
personalization rules and the application of those rules for a particular individual.
Even in trivial e-commerce applications it can be shown that hard-coding some of
these aspects in core application objects may yield a difficult to maintain application

as shown in section 4. To make matter worse, we usually need to improve existing
applications adding personalization features that were not foreseen (see for example
the evolution of amazon.com, cnn.com or yahoo.com); we should do it without
affecting existing application logic.

The key for obtaining a good design is recognizing that the pace of evolution of
customization rules (and the associated user profiles) is faster than changes in the
basic application model so they must be clearly decoupled. We next introduce an
example to discuss these issues more concretely.

4-An Example

Suppose an electronic store that sells products to customers. The customer may put
products in his shopping cart, indicating the number of items of each product. When
he decides to buy, the check-out process generates an order containing the products,
paying mechanism, shipping address and delivering options; he choose if the product
should be gift-wrapped. Each customer has an account containing his buying history.
In Figure 1 we present an object model representing key features as classes.

Customer

-DNI : Int
-name : String
-Address : String

Product

+price() : Real
+name() : String

ShoppingCart

n

product

checkOut(c : Customer)
 chk = CheckOut.new();
 chk.checkOut(c);

Store

+checkOut(c : Customer)

CheckOut

+checkOut(c : Customer)

Account

-boughtCds : Int

n

step

Order

n

shoppingCart

1

creates

Shippingpayingwrapping

CheckSteps

1 creates

n

product

n

shoppingCart

n

account

Fig. 1. Conceptual Model for the e-store.

While variations in the domain model such as adding new products or paying
mechanisms can be solved by sub-classing and composing objects, if we want to

introduce some personalization capabilities, the problem gets worse. For example
suppose that we want to personalize product prices; one possibility is to let products
delegate the price computation to the corresponding customer object as shown in
Figure 2. The same strategy can be used with other object’ attributes.

Store

Product

+priceFor(c : Customer) : Real

-name : String
-price : Real

priceFor(c : Customer)

 return price - c.discount()

Customer

+discount() : real

-DNI : Int
-name : String
-discount : Real

bougth
ask

n

product
n customer

Fig. 2. Hard-coding Personalized Prices in products

Store

+getRecomFor(c : Customer)

Product

+price() : Real

-name : String
-price : Real

Recommendation

+getRecomFor(c : Customer)

RecommendationA

+getRecomFor(c : Customer)

RecommendationB

+getRecomFor(c : Customer)

1

recom

Customer

-DNI : Int
-name : String
-address : String

Account

-boughtCds : Int

getRecomFor(c : Customer)

 return recom.getRecomFor(c)

getRecomFor(c : Customer)
return //complex algorithm
 using c.account

n

product

n customer

1

account

Fig. 3. Adding recommendations to the base model

The problem with this approach is that it works well if no new customization rule
must be added or if we don’t need different rules in different use contexts, e.g.: when
the user browses the product, he gets one price (his price) but when he checks-out, the
price may be personalized differently (for example taken into account a special offer
when buying some combination of products). If this happens we will end re-designing
core business classes constantly and sooner or later the code will become messy.

Under those conditions, it is interesting to notice that recommendations, in fact the
most popular kind of personalization feature, are very easy to engineer as shown in
Figure 3, where algorithms are implemented using the Strategy design pattern [Gamma
95]. Instead of implementing the recommendation as a method in class Store, different
recommendation algorithms are organized in a class hierarchy and thus we can switch
algorithms dynamically. Recommendation algorithms will thus interact with customer
objects and their accounts to obtain the desired results.

However, if we have different algorithms according to the user profile, the solution
in Figure 3 does not scale-up as it may involve a complex if clause for associating the
algorithm to the profile. The problem is that we are coupling the basic business
behavior (e.g. in class Store) with one that depends on the user profile.

In the following section we elaborate this discussion and show a set of design
micro-arquitectures for coping with personalization complexity.

5-Separating Personalization Concerns

The key strategy for obtaining evolvable personalized e-commerce applications is
decoupling the main concerns of these applications. From the above discussion we
conclude that the core application logic should be separated from personalization
rules. Other authors have also suggested keeping business rules separated from
business objects as the former tend to vary faster than the latter [Arsanjani 99, Yoder
01].

As said before, the personalization logic itself involves three different aspects: the
rules, the user profile and the application of those rules to particular business objects.
Some of these concerns may partially overlap with the core objects as shown in the
example. Even though the application was not conceived as personalized, it contains
objects that will be useful as part of the customer profile (as Customer itself and its
account), and behaviors for keeping the user profile up to date (such as those adding
products to the customer’s account). We next show step by step our approach for
adding personalized behaviors in a non-intrusive way.

5.1 Personalizer Wrappers

The first problem to solve deals with changing the behaviors of some core business
objects to personalize them. A simple instance of this problem is the method returning
the price of a product. A more elaborated example can be found if we want to
personalize certain steps of the checkout procedure. There are two constraints in this
problem: we don’t want to mix the basic code in the product with the “new” code for
personalization and we also want to be able to easily “switch” these personalized
behaviors in different contexts, e.g. prices when you buy one product, many products,
in a special offer, etc.

The best solution to this design problem is based on the Decorator pattern [Gamma
95], which is used to dynamically add new behaviors to a given object. For each class
we want to personalize we can define a corresponding wrapper and connect it to the
personalized object in an instance basis (i.e. some objects may not be decorated). The

solution is shown in Figure 4, where we can see (in 4.a) the concept of wrapping. It
consists in intercepting messages, eventually processing them without intervention of
the base object and returning the result. Wrappers allow changing the behavior of an
object without re-writing its class; as wrappers work at the instance level, we can
wrap only some objects in a class. Figure 4.b shows the corresponding UML diagram.

Object

+m1()
+m2()

ObjectWrapper

+m1()
+m2()

-wrappedObject : Object

m1()
retrurn wrappedObject.m1()

m2()
 <excute some code>
 temp:=wrappedObject.m2()
 <excute some code>
 <return the modif ied v alue>

Object

m
es

sa
ge

re
su

lt

Object wrapper

m
es

sa
ge

re
su

lt

Pre-method
actions

Post-method
actions

Figure 4.a: Functionality of a Wrapper Figure 4.b: UML design for wrappers

1

wrappedObject

Fig. 4. Decorators for personalized behavior

Product

+price() : Real
+name() : String

ProductWrapper

+name() : String
+priceFor(c : Customer) : Real

-product : Product

priceFor(c : Customer)

 return product.price() - (product.price() * c.prof ile.discount)

1

product

name()

 return product.name()

CustomerProfile

+discount : Real1

prof ileCustomer

+prof ile : CustomerProf ile

Fig. 5. Implementing personalized behaviors in wrappers

A first approach would be to allocate the personalized behavior in the wrapper, which
might end up collaborating with other objects to complete the task. Following with
the example of the product’s price, the wrapper traps the message price, asks the user
profile the discount that should be applied and calculates the real price (Figure 5).

Those behaviors that are not personalized are simply delegated to the original object.
This same idea can be used for personalizing the checkout process or some of its steps
(delivery and paying options, etc).

Even though this solution seems to work fine, we might think on applying a
different policy to each particular customer. Of course, it is completely unacceptable
to write a wrapper for each aspect for each customer (think of personalizing three
aspects of an object, which can be handled in four different ways each: you end up
writing 64 wrappers!). Other approach would be to write a potentially huge case
statement to decide which algorithm to apply; there is no need to say that this idea
won’t scale up and the code ends completely messed up. An elegant solution to this
problem can be addressed by using the Strategy pattern [Gamma 95], which decouples
the algorithms from their implementation. Using this approach, the customer profile
delegates the behavior for obtaining the discount to an other object; the wrapper
would be just in charge of triggering its execution after getting the corresponding
algorithm as shown in Figure 6. Notice that we just delegated the task of selecting
which algorithm to apply to the Profile object. Now, we are able to choose different
algorithms depending on the customer, and as a side effect we can even change those
algorithms in run time as the user profile evolves.

DiscountAlgorithm

+exec(p : Product) : Real

CustomerProfile

+boughtCDs : Integer
+algorithm : DiscountAlgorithm

1

algorithm

AbsoluteDiscount

+exec(p : Product) : Real

QuantityDiscount

+exec(p : Product) : Real

Product

+price() : Real

ProductWrapper

+priceFor(c : Customer) : Real
-product : Product

1

product

exec(p : Product) : Real
 return p.price() - (p.price() * 0.1)

Customer

+prof ile : CustomerProf ile
1

prof ile

1prof ile

exec(p : Product) : Real
 if (prof ile.boughtCDs > 30) then
 return p.price() - (p.price() * 0.15)
 else return p.price()

Fig. 6. Decoupling algorithm implementation

Since the way in which we personalize an aspect of an object is generally more than
just an algorithm, we may call the wrappers ‘personalizers’, i.e. objects that take care
of personalizing a particular aspect. Summarizing, the main idea is that we engineer
each personalized aspect separately and configure the wrapper as necessary, maybe in
a per-instance basis.

To show how this approach helps us to cope with more complex situations,
suppose that we need to personalize different aspects of the same object for different
users; for example while one user has a personalized price, another has a personalized
delivery mechanism. This is the typical case when users can select what can be
personalized such as in my.yahoo.com. The solution is to delegate the responsibility
of handling the appropriate personalizer to the corresponding user profile object, as
shown in Figure 7 (where we personalize price and comments on a product). In this
solution we further decouple the process of intercepting the message from the
personalization code.

CustomerProfile

+pricePers : PricePers
-commentPers : NamePers

1

pricePers PricePersonalizer

+personalize(p : Product) : Real

Product

+comments() : String
+price() : Real

ProductWrapper

+priceFor(c : Customer) : Real
+commentsFor(c : Customer) : Real

-product : Product

priceFor(c : Customer)
 if (c.prof ile.pricePers /= nil) then
 return c.prof ile.pricePers.personalize(product)
 else return c.product.price()

Customer

+prof ile : CustomerProf ile

1

prof ile

commentsFor(c : Customer)
 if (c.prof ile.commentsPers /= nil) then
 return c.prof ile.commentPers.personalize(product)
 else return c.product.commentsFor(c)

CommentPersonalizer

+personalize(p : Product) : String
1

commentPers

1

product

Fig. 7. Personalizers that depend upon the user profile

The product wrapper (See method: priceFor) in Figure 7, checks if the profile
contains the corresponding personalizer; if it does not exist it just delegates the
behavior to the corresponding product object.

This last design can be improved by using the Null Object pattern [Woolf 96],
which helps us eliminate the if statement in the Product Wrapper. In Figure 8 we
show how we define a hierarchy of personalizers. While PricePersonalizerA and
PricePersonalizerB implement different price policies, the NullPricePersonalizer just
delegate the task to the original Product object. Null objects are an elegant way to
obtain uniform code because they help to eliminate complex if clauses.

CustomerProfile

+pricePers : PricePersonalizer
PricePersonalizer

+pers(p : Product) : Real

Product

+price() : Real

ProductWrapper

+priceFor(c : Customer) : Real
-product : Product 1

product

priceFor(c : Customer)
 return c.prof ile.pricePers.pers(p)

PricePersonalizerA

+pers(p : Product) : Real

PricePersonalizerB

+pers(p : Product) : Real

NullPricePersonalizer

+pers(p : Product) : Real

price()
 return p.price()

Customer

+prof ile : CustomerProf ile

1

prof ile

1

pricePers

Fig. 8. Using the Null Object pattern

Personalizers allow decoupling the core business model from the personalized
behaviors. However when customization rules are complex, we need to further
decouple the rules from these objects as shown in the next sub-section.

5.2 Rule Objects

Personalization (or more generally business) rules are usually expressed in logical
terms in the following way: if a predicate <p> is satisfied, the actions <a1,a2,..,an>
should be executed. As rules are not first-class objects we need to analyze the best
way to map them into design constructs.

As said before, personalizers have the responsibility of executing the
personalization code: in fact they implement the concept of a rule.

This solution has two main problems. First, as rules may involve many different
conditions and corresponding actions, personalizers may become monolithic, as they
will contain complex if then else clauses. The best solution is to decouple Conditions
and Actions from the Rule as shown in Figure 9. Moreover, when mapping this
design to modern object-oriented languages (such as Java or Smalltalk), conditions
and actions can be implemented as light-weighted objects such as blocks (or inner
classes in Java) thus simplifying the design shown in Figure 9.

PriceAction

+exec(p : Product, c : Customer) : Real

PriceActionA

+exec(p : Product, c : Customer) : Real

PriceActionB

+exec(p : Product, c : Customer) : Real

PriceRule

+exec(p:Product, c:Customer, res:Real) : Real

-condition : Condition
-action : PriceAction

ProductCondition

+eval(p:Product, c:Customer) : Bool

1

condition

exec (p : Product, c : Customer, res: Real) : Real

 if condition.ev al(p,c) then
 return action.exec(p,c);
 else return res;

1 action

Fig. 9. The design of a rule

Using Conditions and Actions as shown in Figure 9, we can configure different price
rules by combining different instances of PriceAction and ProductCondition. The
reader should notice that this approach is easy to generalize by defining abstract
classes for Conditions and Actions.

CustomerProfile

+pricePers : PricePersonalizer

PricePersonalizer

+addRule(rule : PriceRule)
+remov eRule(rule : PriceRule)
+personalize(p : Product) : Real

-rules : Array of PriceRules

Product

+price() : Real

ProductWrapper

+priceFor(c : Customer) : Real
-product : Product

1

product

Customer

+prof ile : CustomerProf ile

personalize (p : Product)
v ar result : Real
 { result:=product.price();
 f or i in 1..rules.size() do
 result:=rules[i].exec(p,c,result);
 return result;}

PriceRule

+exec(p : Product, c : Customer, res : Real) : Real

n

rules

1pricePers

1

prof ile

Fig. 10. Decoupling rules from personalizers

The second problem we should solve is related with the evolution of rules. As
previously discussed, business rules tend to change quickly; new rules related with an

aspect may be added or eliminated. In the case of pricing policies we may have rules
that apply when the customer bought many products, others related with the current
order, etc. The solution is to design rules as separate artifacts (thus, decoupling them
from personalizers) in order to simplify their organization. This solution, shown in
Figure 10, treats rules as objects that may be triggered from personalizers or
eventually from other objects as explained in Section 5.4.

Notice that personalizers act as Facades [Gamma 95] and they may eventually
implement a policy for handling rules, for example when the same aspect may be
personalized using different rules. We can also reuse whole rules when they may be
applied to different objects (e.g. product sub-classes, or interfaces), or even define
hierarchies of personalizers that may be applied to different products.

5.3 Dealing with evolving user profiles

The user profile is an important component in every personalized application. As
shown before, the user profile may not only contain plain information about the user
such as his shopping history (see Figure 1) but may also contain rules, references to
algorithms, etc. In our design approach the user profile should be clearly separated
from business objects and should grow in a transparent way. However this is not
always possible: many information stored in the user profile is generated by core
business operations (e.g.: buying a product). Personalization rules may even require
this information to evolve: suppose for example that we want to apply some price
reduction to those customers who add some comments about products (for example
after reading a book). In this case, the evolution of the user profile implies an
interaction that will be handled (at least at first) by business objects and will require
adding some methods and even changing the structure of the profile. From the
designer point of view, however, it is important to characterize operations that affect
the profile, i.e. those that add information, those that associate personalization rules
with it and those that allow rules to query information about the user. These
operations should be kept isolated and be decoupled from the rest of the business
model when possible.

5.4 Putting all pieces together

In the previous paragraphs we have discussed the most important design problems a
developer has to face when personalizing e-commerce applications. Each critical
concern has been consciously decoupled yielding a modular architecture that can
evolve seamlessly together with the business model’s evolution. Each component
(i.e.: wrappers, rules and the user profile) can be engineered separately provided that
they conform to common protocols. The ideas underlying this architecture can be
used as they are, or just as guidelines (or patterns) during e-commerce application
building. For example, it is possible to get simpler designs when the forces that drive
the application’s evolution do not require that all components are completely
decoupled (e.g. writing the rules code in personalizers).

It is interesting to remark that these micro-architectural constructs can be used to
customize e-commerce applications, even when the customization conditions do not
involve individual users. For example suppose that we need to implement a marketing
strategy that reduces products’ prices during Christmas season. We can also think
about wrapping products that intercept this behavior and delegate it to a set of rule
objects that check the environmental conditions (e.g. date) and decide the
corresponding action.

All these components can be materialized in abstract classes that can be eventually
sub-classified for each particular application. The process of personalizing an e-
commerce application will then consist in creating instances of corresponding
wrappers, personalizers and rules and “plugging” them into base classes as shown
earlier in this paper.

6-Conclusions and Further Work

In this paper we have presented a design approach for building personalized e-
commerce applications. This approach is based on a clear separation of concerns,
namely base business logic, user profile, personalization rules and the application of
rules.

We have shown that personalization issues should be carefully considered when
building the application’s model. In particular we claim that design components
related with personalization should not be hard coded in core application objects, but
rather built as separated artifacts and conveniently composed with the objects they
personalize. We showed that applying well-known patterns (such as Decorator,
Strategy and Facade) we can seamlessly extend e-commerce applications with
personalization features. The approach is non-intrusive because it provides
architectural mechanisms for adding extra functionality (e.g. personalization) without
re-coding the base business logic.

We are now developing visual tools for simplifying the personalization process by
allowing the designer to plug personalizers to base objects easily. This approach has
been used successfully for letting designers describe rules visually [Yoder 01].

We are finally exploring how to extend our approach to a more general scope of
customization, not limited to individual customization. The whole architecture can be
reused, though rule managers should provide additional functionality for other
customization rules. In this case, wrappers should also provide the context of
customization (thus allowing rules to “know” which objects may contain information
useful for the process). Our approach can then be applied to more general frameworks
like the one in [Kappel 00] to solve the problem of ubiquity and customization in e-
commerce.

7-References

[Arsanjani 99] A. Arsanjani. "Analysis, Design, and Implementation of Distributed Java
Business Frameworks Using Domain Patterns" in Proceedings of
Technology of Object-oriented Languages and Systems 30, IEEE Computer
Society Press 1999, pp. 490-500

[Gamma 95] E. Gamma, R. Helm. R. Johnson, J. Vlissides: “Design Patterns. Elements

of reusable object-oriented software”, Addison Wesley 1995.

[Kappel 00] G. Kappel, W. Retschitzegger and W. Schwinger. "Modeling Customizable

Web Applications - A Requirement's Perspective". In Proc. International
Conference on Digital Libraries: Research and Practice, Kyoto 2000.

[Perkowitz 00] M. Perkowitz, O. Etzioni: “Adaptive Web Sites” In Comm ACM, August

2000, p.p. 152-158.

[Rossi 01a] G. Rossi, D. Schwabe, J. Danculovic, L. Miaton: “Patterns for Personalized

Web Applications”, Proceedings of EuroPLoP 01, Germany, July 2001.

[Schwabe 98] D. Schwabe, G. Rossi: “An object-oriented approach to web-based

application design”. Theory and Practice of Object Systems (TAPOS),
Special Issue on the Internet, v. 4#4, pp.207-225, October, 1998.

[Schafer 99] Schafer, J. B.; Konstan, J.; Riedl,, J.; “Recommender Systems in E-

Commerce”, Proc. of E-Commerce’99, Denver, USA, ACM, 1999.pp.158-
166.

[Woolf 96] Bobby Woolf: “The null object pattern”. Proceedings of PloP’96, Pattern

Languages of Program Design, 1996.

 [Yoder 01] J. Yoder, F. Balaguer, R. Johnson: Adaptive Object-Models: With

Application to Medical Observations. To be published in Proceedings of
OOPSLA 2001.

