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Abstract. Since the main themes at the Helena Rasiowa memorial were algebra, logic
and computer science, we will present a survey of results on fork algebras from these
points of view. In this paper we study fork algebras from the points of view of their
algebraic and logical properties and applications. These results will prove to be es-
sential, in a future work, for the definition of a wide-spectrum calculus for program
construction.

1. Introduction

Fork algebras are algebraic structures that appeared when looking for a relational calculus
suitable for program specification and construction [4, 13, 22, 23]. This calculus should fulfill
some requirements, as for example

e being expressive enough so that a wide variety of interesting problems for computer
science can be specified in this calculus,
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e being adequate with respect to the process of program construction, i.e., derivation
rules must yield algorithms that are formally correct regarding their specifications,

e being simple enough so that the amount of mathematical or logical knowledge necessary
in order to derive algorithms is minimal,

e being well behaved with respect to properties of the problem domain, i.e., properties
of the problem should translate in a natural way into program derivation steps,

e and being wide enough so that not only the problems can be specified, but also strate-
gies for solving these problems can be specified too.

At this point the reader may be asking himself “what is the need for a relational calculus,
when functional calculi for program construction have existed for years?”. The answer is
twofolded. First, specifying a problem in a relational framework can lead to more declarative
and simpler specifications. Second, nondeterministic problems can be specified naturally, as
well as parallel implementations can be developed for these problems.

It was when looking for a programming calculus of this kind that a more theoretical
research became mandatory. Analyzing the expressiveness of the calculus led to a result
important in itself, as it is the possibility of algebraizing classical first-order logic with
equality (FOLE) with this calculus. This result led later on to relational algebraizations of
a wide variety of non-classical logics. Also, the study of the portability of properties of the
problem domain into the calculus led to the representation theorem for fork algebras in terms
of a class of algebras of binary relations (proper fork algebras). This result implies (as will be
shown in a future paper) that the calculus is of a great heuristic power, since properties that
are valid in the problem domain are suitable to be proved syntactically within the calculus.

The structure of the paper is as follows. In Section 2 we will present the classes of proper
and abstract fork algebras and the representation theorem. In Section 3 we will present
results concerning the expressiveness of fork algebras and algebraization of classical and
non-classical logics, presenting for example a Rasiowa-Sikorski-like calculus for a formalism
based on fork algebras. In Section 4 we will describe ongoing research and further work, and
finally, in Section 5, we will present the conclusions derived from this research.

2. Fork Algebras in Algebra

In this section we will first define the classes of algebras of binary relations and their abstract
counterpart, the class of relation algebras. The study about algebras of binary relations
began with the works of Charles Sanders Peirce [47] and Augustus De Morgan [9] and was
later on continued by Ernst Schréder [50] when looking for an algebraic counterpart of first-
order reasoning, much the same as George Boole developed the now called Boolean algebras
as a counterpart to propositional reasoning.

Given a binary relation X in a set A, and a,b € A, we will denote the fact that a and b
are related via the relation X by (a,b) € X or aXb.

Definition 2.1. Let E be a binary relation on a set A, and let R be a set of binary relations
satisfying:
1. UJRCE,
2. Let Id denote the identity relation on the set A. Then @, F and Id belong to R,
3. R is closed under set union (U), intersection (M) and complement relative to £ (7),
4. R is closed under relational composition (denoted by |) and converse (denoted by ).
These two operations are defined by

X|Y ={{a,b) : 3c such that aXc A cYbh}

(X)"={{a,b):bXa}.
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Then, the structure (R,U,N,,0, E, |, Id,”) is called an algebra of binary relations. We
will denote the class of algebras of binary relations by ABR.

In 1941 Alfred Tarski introduced [51] the elementary theory of binary relations (ETBR)
as a logical formalization of the theory of binary relations. The formalism ETBR is a formal
theory where two different sorts of variables are present. The set IndVar = {v;,vo,v3,...}
contains the so-called individual variables, and the set RelVar = { R,S,T,...} contains the
so-called relation variables. If we add the relation constants 0, 1 and 1’ to the relation
variables and close this set under the unary operators ~ and *, and the binary operators +, -
and ;, we obtain the set of relation designations. Examples of such objects are for instance
R (to be read “the converse of R”) and R;S (to be read “the relative product — or Peircean
product — of R and S”). Atomic formulas are expressions of the form z Ry (where x, y are
arbitrary individual variables and R is an arbitrary relation designation) or R = S (with
R and S arbitrary relation designations). From the atomic formulas we obtain compound
formulas as usual, by closing the atomic formulas under the unary logical constants —, Vz,
Vy,..., 3z, Jy... (z, y,... individual variables) and the binary logical constants Vv, A, =
<. We will choose a standard set of logical axioms and inference rules (see for example [12]).
As the axioms that explain the meaning of the relational symbols 0, 1, ', 7, %, +, - and ;,
we single out the following formulas, in which z, y, z are arbitrary individual variables and
R, S, T are arbitrary relation designations.

VzVy (z1y) VzVy (—z0y)
Vz (z1' z) VaVyVz ((zRy A yl'z) = zRz)
VzVy (zﬁy & —a:Ry) VYzVy (:rRy =2 yR:c)

VzVy (zR+Sy & zRyVzSy) VzVy (zR-Sy < zRyAzSy)
VaVy (zR;Sy & Jz(zRzA2Sy)) R=S & VzVy(zRy < zSy)

In further work we will use an extension of the ETBR as a language for program specifi-
cation.

From ETBR Tarski introduced in [51} the calculus of relations (CR). The calculus of
relations is defined as a restriction of ETBR. Formulas of CR are those formulas of ETBR
where no variables over individuals occur. As axioms of CR Tarski singled out a subset of
formulas without variables over individuals valid in ETBR. The formulas Tarski chose as
axioms are, besides a set of axioms for the logical constants, the following formulas.

1. R=SAR=T) = S=T

2 R=S = (R+T=S+T A RT=ST)
3. R+S=S+R A R-S=S-R

4. (R+S)-T=(RT)+(S'T) A (R-S)+T = (R+T)-(S+T)
5. R+0=R A R-1=R

6. R+tR=1 A R-R=0

7.1=0

8. R=R

9. (R;S)"=3;R

10. (R;S);T =R; (S;T)

11. R;’ =R

12. (R;S)T=0 = (S;T)-R=0

13. R;1=1V 1I;R=

Axioms (1)-(7) are an axiomatization for Boolean algebras, axioms (8)-(12) axiomatize
the relative operators. Finally, formula (13) forces models to be simple (see [30]). The
models of the CR motivate the following definition.
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Definition 2.2. A relation algebra (RA for short) is an algebraic structure of type { 4, +, -,
~,0,1,;,1,7), where +, - and ; are binary operations, ~ and * are unary, and 0,1 and 1’ are
distinguished elements. Furthermore, the reduct (4, +,-,7,0,1) is a Boolean algebra, and
the following identities are satisfied for all z,y,z € A:

z; (y;2) = (z39) 52, (Ax. 1)

(z+y) ;2 =32 + y;2, (Ax. 2)

(z+y) =¥+, (Ax. 3)

f=u, (Ax. 4)

;P =1z =1, (Ax. 5)

(z;9)" = ¥;2, (Ax. 6)

zyy-2z=0 iff z;y-z2=0 if %z -y=0. (Ax. 7)

If we add formula (13) to the axiomatization of RA, we obtain the class of simple relation
algebras. It is proved in [8] that axioms (1)-(12) are provable in RA and viceversa. We will
denote by < the ordering induced by the Boolean structure.

As an immediate consequence of Defs. 2.1 and 2.2 we obtain the following theorem.

Theorem 2.3. Every algebra of binary relations is a relation algebra.
At the end of his paper [51], Tarski asked the following questions.

1. Is every model of CR isomorphic to an algebra of binary relations? (representability)

2. Is it true that every formula of the calculus of relations that is valid in ABR is provable
in CR?

3. Is it true that every formula of ETBR can be transformed into an equivalent formula
of CR?

The answer to these questions is in all cases “No”. Question 1 was answered negatively
by Roger Lyndon [33, 34] by exhibiting a non-representable relation algebra. Question 2
was answered by McKenzie [36] by presenting a formula of CR (an equation as a matter of
fact) valid in ABR but that fails in a non-representable relation algebra. Regarding question
3, a result due to Korselt and whose proof is included in [32] shows that the expressive
power of CR is that of a proper restriction of first-order logic (see [53] Ch. 3.4 for a complete
discussion). In [51] Tarski presented the following formula, which is not equivalent to any
sentence of CR.

VzVyVz3u (uRz A uRy A uRz). (1)

If we attempt to eliminate the individual variables from formula (1), we can proceed as
follows. By using the definition of the converse in ETBR, we can transform formula (1) into

VzVyVz3u (zRu AN uRy A uRz). (2)

If we now try to eliminate the existential quantifier Ju from formula (2) by using the
definition of the relative product in ETBR, this will leave us with a free occurrence of the
individual variable u

VzVyVz (xR;Ry A uRz) , (3)
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and leave us also with a formula not equivalent to the original one.
In order to overcome this problem, it seems enough to have some operator V that allows
to perform the following transformation

uRz A uRy = uRVR (z,y). (4)
If such operator is available, we can then proceed as follows.

VeVyVz3u (uRz A uRy A uRz) < VaVyVz3u (uRV R (z,y) A uRz)
< VaVyVzIu ((z,y) (RVR)"'u A uRz2)
< VzVyVz ((z,y) (RVR)";Rz2)

<= VzVyVz (zR; (RVR) (:r,y))
<= R;(RVR)=1V1.
We can define the operator V by the following formula from ETBR!.
VaVy (tRVSy <= Judv(y=(u,v) A zRu A zS5v)). (5)

It was proved by Mikulds, Sain and Simon [37] that the class of ABR extended with an
operator V defined as in (5) is not finitely axiomatizable with formulas from CR. However,
it was proved in [41, 31] that this result is only a consequence of the axiom of foundation we
use nowadays. Namely, in a non-well-founded version of ZFC with (a weak version of ) Boffa’s
anti foundation axiom (BAFA), ABR with V as defined in (5) is in fact finitely axiomatizable.
Furthermore, as was shown in [31], this change of set theories does not affect the ordinary
theorems of mathematics, e.g., the isomorphism invariant theorems of universal algebra.
Since changing set theories is not a solution for the negative result from [37] when aiming
to provide a foundation for a calculus for program construction, we will use the following
alternative definition

Vavy (zRV,Sy <= Judv(y=+*(v,v) A zRu A zS5v)), (6)
where x is an arbitrary injective mapping, i.e., x satisfies the sentence
VoVyVuVv (x(z,y) = x(u,v) = z=u A y=v). (7

We will call the operator V, defined in (6) fork.

In the following subsections we will get into the technical details in order to define the
classes of proper (also called standard) fork algebras and abstract fork algebras, as well as
prove the representation theorem.

2.1. Proper and Abstract Fork Algebras

In order to define the class of proper fork algebras (denoted by PFA), we will first define the
class of FullxPFA as follows.

Definition 2.4. A Full«PFA is a two sorted structure with domains? P (U x U) and U
(P(U x U)7U7U’n7—307U X U7 I’Id7v’ 27*>
such that

1For more results concerning algebras of binary relations extended with a fork operator as the one defined
in (5), see {29, 38].
2By P (A) we denote the power set of a set A.
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1. |, Id,” and ~ stand for composition between binary relations, the diagonal relation on
U, the converse of binary relations, and set complementation w.r.t. U x U, respectively.
Thus, the reduct to the substructure (P (U x U),U,N, ,0,U x U, |, Id,”) is an ABR,

2. ¥ : U x U = U is an injective function,

3. RVYS = {(z,*(y,2)) :zRy and Sz }.

Definition 2.5. We define FullPFA as RdFullxPFA where Rd takes reducts to the similarity
type (U,N,7,0,U x U, |,Id,”, ¥ ), and define the class PFA as S P FullPFA, where S takes
subalgebras and P closes a class under direct product.

Definition 2.6. Notice that according to Def. 2.4 each % € PFA contains a set U on which
the binary relations are defined. This set will be called the base of 2, and will be denoted
by U .

Notation 2.7. By Dom (R) we denote the term (R;R) -1 and by Ran (R) we denote the
term (R;R) -1,
A relation R is called functional if B;R< 1.

In Defs. 2.4 and 2.5, the function * performs the role of pairing, encoding pairs of objects
into single objects. It is important to notice that there are * functions which are distinct
from set-theoretical pair formation, i.e., *(z,y) differs from {z,{z,y}}.

Notice that in order to define a FullPFA it suffices to provide the set U and an injective
mapping x: U x U = U.

Given 2 € PFA with base U , it is possible to single out those elements that do not
represent pairs (if there are any). Notice that the term 1V 1 stands for the binary rela-
tion {{z,y) :z €U A Yu,v €U (y# *(u,v))}. Thus, the term Ran (1V1) distinguishes
those objects from the base that are not pairs. In what follows we will denote by 1’y the
term Ran (1V1 }, by 1y the term 1;1’y and by y1 the term 1’y;1. We will call the elements
from the base in the domain of 1’y urelements, and will denote the set of urelements in a
fork algebra 2 by Urel .

Under the previous definitions, the equation

1;1y;1=1 (8)

is valid in a A € PFA only in case Urel is nonempty. We will denote by PFAU the class of
those algebras in PFA with a nonempty set of urelements. Also, we denote by SPFAU the class
of simple proper fork algebras with urelements. It is easy to show that SPFAU = S FullPFAU.

Given a pair of binary relations, the operation called cross performs a kind of parallel
product. A graphic representation of cross is given in Fig. 1. Its set theoretical definition is
given by

R®S ={(x(z,y),*(w,2)) : zRwAySz}.

It is not difficult to check that cross is definable from the other relational operators with
the use of fork. It is a simple exercise to show that

R®S§=((Id¥ (UxU))"|R) ¥ ((UXU) ¥V1d)"|S).

By 1'y* we will denote the term I'y® --- ®1'y.
k times
Much the same as relation algebras (30, 35, 51| are an abstract version of algebras of
binary relations, proper fork algebras have also their abstract counterpart. The class of
abstract fork algebras (denoted by AFA) is a finitely based variety, i.e., its axiomatization is
given by a finite set of equations.
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T R——w € R(z)
* ® *
y S——2z€ S(y)

Figure 1 The operator cross.

Definition 2.8. An abstract fork algebra is an algebraic structure
<Ra +a ';_)0717 v 1,5V7 V >

satisfying the following set of axioms

Axioms stating that the reduct (R, +,-,7,0,1,;,1’,") is a relation algebra in which
(R,+,+,7,0,1) is the Boolean reduct (where < denotes the induced partial ordering),
(R, ;,1') is the monoid reduct, and * stands for relational converse,

rVs=(r; (L'V1))- (s; (1VD)), (Ax. 8)
(rVs);(tVe) = (r;t) - (s;9), (Ax. 9)
(V1) 'VAVD) + 1 =1, (Ax. 10)

Once we have defined AFA we define AFAU (the class of abstract fork algebras with
urelements) as the class of algebras from AFA that satisfy equation (8). We also define
SAFAU (the class of simple abstract fork algebras with urelements) as those algebras from
AFAU that satisfy formula 13 from the axiomatization of CR.

From the abstract definition of fork induced by the axioms in Def. 2.8, it is possible to
define cross by the equation

R®S= (V1) ;R) V (1VD);S).

2.2. Representability

If we recall the second problem posed by Tarski on the relationship between relation algebras
and algebras of binary relations, the conclusion (proved by Roger Lyndon in [33]) was that not
every relation algebra is isomorphic to an algebra of binary relations. In this subsection we
will show that the answer to the same problem is positive when fork algebras are considered
instead of relation algebras. A first proof of this representation theorem for complete and
atomistic abstract fork algebras is given in [14, 15]. Later on Gyuris [21] and Frias et al. [16]
proved a representation theorem for the whole class by using a result developed by Tarski
on the representability of quasi-projective relation algebras [52]. Strictly speaking, since
proper fork algebras are not a concrete class because of the hidden operation *, this can
be considered as a weak-representation theorem®. Anyway, the theorem provides all the
machinery we need for developing our theory. A strong representation theorem for fork
algebras was proved in [31, 40, 41, 42], although in non-well founded set theories.

Definition 2.9. We say that a class of algebras K, is representable in a class of algebras K,
if for every algebra 2 € K there exists an algebra B € K, such that 2 is isomorphic to 8.

3This was pointed out by Andréka and Németi in a private communication.
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Figure 2 The projections 7 and p.

We will distinguish two constants 7 and p that behave in the standard models as projec-
tions. We define 7 := (1’V1)” and p := (1V1’)” (see Fig. 2). The following properties of the
relations 7 and p will be useful in the proof of the representation theorem. They establish
that the relations 7 and p satisfy the definition of quasi-projections as given in [53] p. 96.

Thus, we call 7 the first quasi-projection and p the second quasi-projection of an abstract
fork algebra.

Lemma 2.10. The relations 7 and p are functional. Moreover, the equation %;p = 1 holds
in every abstract fork algebra.

If we recall that quasi-projective relation algebras [53] are relation algebras containing
a couple of relations satisfying the properties annunciated in Lemma 2.10, we immediately
obtain the following proposition.

Proposition 2.11. The relation algebra reduct of any AFA is a quasi-projective relation
algebra.

Theorem 2.12. AFA is representable in PFA.

Proof:
We will present here a sketch of the proof. The complete proof is given in [16].
From Prop. 2.11, the relation algebra reduct of a fork algebra is a quasi-projective relation

algebra. Thus, by Thm. 8.4(iii), p. 242 of [53], the relation algebra reduct of a fork algebra
is a representable relation algebra.

Let 2 € AFA, and let us denote by B its relation algebra reduct. Let € be an algebra of
binary relations, and let h : B — € be a relation algebra isomorphism.

Let 7 and p be the projections in 2, and let p := h(7) and g := h{p). Let * be defined
by
x(a,b) =c <= (a,c) € pand {(c,b) € q.
It is not difficult to prove (using the AFA axioms) that *, as defined, is an injective
function.
Let D = (C, V) be an extension of € in which the operation V is defined by the formula
RV S = {{z,x(y,2)): 2Ry A zSz}.

As a final step, we prove that

R(RV S) = h(R) Y h(S).
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3. Fork Algebras in Logic

Tarski defined the formalism ETBR from the algebras of binary relations. In a similar way we
will define an elementary theory of fork relations (ETFR for short) from the class of proper
fork algebras.

Definition 3.1. Given a set of constant symbols C' and a set of function symbols F with
arity, the set of individual terms (denoted by IndTerm(C, F)) is the smallest set A satisfying:

1. IndVaruC C A,
2. If f € F has arity k and ¢;,... ,tx € A, then f(t;,... ,t) € A4,

Definition 3.2. Given a set of constant relation symbols P, the set of relation designations
on P (denoted by RelDes(P)) is the smallest set A satisfying:

1. RelVar U{0,1,7 }UP C A,
2. If R € A, then {RR} C 4,
3. IfR,S € A, then { R+S,R-S,R;S,RVS} C A.

Definition 3.3. Let u be a symbol, then A* is the smallest set satisfying (a) u € A*, (b) if
T,y € A%, then the expression %(z,y) belongs also to A*. Elements of A* are called arities.
The arity *(u, *(u, - -)) with k occurrences of u will be denoted by the number k. We will
in general write u % - - - x u (k occurrences of u) instead of (u,*(u,---)). For example, we
have 4 = *(u, *(u, *(u,u))) = u*u*xu*u.

Definition 3.4. Given a set of constant symbols C' and a set of function symbols F, by
IndTerm(C, F)* we denote the smallest set A satisfying:

1. IndTerm(C, F) C IndTerm(C, F)*,
2. If t1,ty € IndTerm(C, F)*, then x(t,,t2) € IndTerm(C, F)*.

Definition 3.5. Givent € IndTerm(C, F')* the arity of ¢ (denoted by arity(t)) is inductively
defined as follows:

1. If t € IndTerm(C, F), then arity(t) = u,
2. if t € IndTerm(C, F)* and t = *(t1,%2), then

arity(t) = x(arity(t1), arity(ts)).

Definition 3.6. Given a set of constant symbols C, a set of function symbols F and a set
of constant relation symbols P the set of atomic formulas of ETFR is the smallest set A
satisfying:

1. R= S € A whenever R, S € RelDes(P),

2. t; Rty € A whenever t;,ty € IndTerm(C, F)* and R € RelDes(P).

From the atomic formulas, compound formulas are built up as in first-order logic, with
quantifiers applied to individual variables only. Notice that once the sets C', F and P are
fixed, a unique set of formulas is characterized. We will denote this set by ForETFR(C, F, P).

Definition 3.7. Given a set of constant symbols C, a set of function symbols F and a set
of relation constant symbols P, we define the formalism ETFR(C, F, P) as follows:

Formulas: We choose the set ForETFR(C, F, P).
Inference rules: Same as in ETBR.
Axioms: Extend the axioms of ETBR by adding formulas (6) and (7).

Much the same as Tarski defined his calculus of relation from the elementary theory of
binary relations, we will define a calculus of fork relations (CFR) from the elementary theory
of fork relations.



10 M.F.Frias, G.A.Baum and A.M.Haeberer / Logic and Computer Science

Definition 3.8. Given a set of relation constant symbols P, we define the formalism CFR(P)
as follows:

Formulas: Those formulas from ETFR in which neither individual variables nor constant
symbols occur.

Inference rules: Same as in CR.
Axioms: Extend the axioms of CR by adding formulas (8)-(10) from Def. 2.8.

In this section we will analyze the expressive power of CFR. When using fork algebras as
a formalism for program construction we will use FOLE and ETFR as program specification
languages, and CFR as a calculus for program construction and design. For this to be possible,
it is required that CFR be at least as expressive as FOLE and ETFR. In Subsection 3.1 we
will show how to carry this program on. As a consequence of these results, in Subsection 3.2
we will show how to algebraize non-classical logics.

For this and the remaining sections, given sets C,F and P we will denote by FOLE(C, F, P)
the first-order logic on the language with set of constant symbols C, set of function symbols
F and set of predicate symbols P. By = we will denote the equality predicate of FOLE.

An example of a formula from ETFR({4}, { Vo Plus } ,{<}) is the formula

VzJy (\/IW < y) :

The algebraization of logics is a field of extensive and active work. In the remaining part
of this section we will show how fork algebras can be used for algebraizing classical first-
order logic, as well as many non classical logics. The reader interested in the algebraization
of logics should consider reading the books [27] (in particular Section 4.3, which studies the
connections between cylindric algebras and logic, and Ch. 5, in which other algebraizations
are presented), and [25]. Also fundamental are the works of the Budapest school, specially
the papers [1, 2, 3, 39]. Finally, the work of Blok and Pigozzi (see [5] and the references
therein) is a very valuable source of results in algebraic logic.

3.1. Algebraization of Classical First-Order Logic

In order to fulfill the task of algebraizing FOLE, we will perform an intermediate step. We
will first show how to interpret FOLE in ETFR, and after doing this we will show how to
interpret ETFR in CFR.

Notice that in FOLE(C, F, P) there is a standard notion of arity for function and pred-
icate symbols. We will also assume that function and constant relation symbols from
ETFR(C, F, P) have an arity associated. Arity of functions is defined as usual. For con-
stant relation symbols the arity is defined as a pair {a;,as) where a;,a; € A*. a; is called
the input arity and a, is called the output arity. The reason to do this is that later on we will
convert first-order predicates into input-output binary relations. To this syntactic definition
of arity corresponds also a semantic notion.

Definition 3.9. Let A € PFAU. Given e € U and an arity a, we say that e has arity a
(denoted arity(e) = a), whenever:

1. e€ Urel and a = u,
2. e = (e, e2) and a = x(a;, a) and arity(e;) = a; and arity(es) = ay.

Definition 3.10. Given a PFAU 2., a binary relation R € 2 has arity (a1, a2) (a1, a2 € A*)
if

RC {(z,y) :z,y € U and arity(z) = a; and arity(y) = a2 } .
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Notation 3.11. Given a finiteset A = {ay,...,ax }, by A’ we denote the set {a;/,... ,a;'}.
Given a finite set of symbols A = {ay,...,ax } and a structure 2, by A we denote the
set of symbols {a; ,..., a

We will give semantics for ETFR(C, F, P) in terms of SPFAU. The definition is as follows.

Definition 3.12. An adequate structure for ETFR(C, F|, P) is a structure % = (A,C ,F ,
P ) such that:

1. A € SPFAU,

2. Foreach c€ C, ¢ € Urely,

3. For each f € F of arity k, f : Urels* = Urely,

4. For each p € P of arity (a1, a2) (a1,az € A*), p € A has arity (a;, a3).

Given a PFAU 2, a mapping v : IndVar — Urel is called a valuation of individual
variables. If x € IndVar, by v[z/a] we denote the valuation defined by:
_ ) ify #a,
YEIORE et

Definition 3.13. Given an adequate structure 2 = (A, c ,F,P ) for the calculus
ETFR(C, F, P) and a valuation of individual variables v we define the mapping V, giving
semantics to terms of IndTerm(C, F)* as follows:

1 Vi(z) = ( ), for all individual variables z,

Vi(c) = for allce C,
Vu(f (tl,.. t))=f V(t1),... ,Vi(ty)) for all f € F,
Vo(x(, 1)) = *(V. (1), Vo ()

Definition 3.14. Let 24 = (A,C ,F ,P ) be an adequate structure for the formalism
ETFR(C, F, P), and let m : Rel.Var — A. The pair (2, m) is called a model.

Definition 3.15. Given ¢ € ForE TFR(C F, P) and a valuation for the individual variables
v, we say that v satisfies the formula ¢ in the model 9 = < (A Cc ,F |P > m> (denoted
by M, v Eetrr @) whenever:

1. If ¢ = t1pt, with p € RelDes(P) and t1,t, € IndTerm(C, F)*, then
M, v Eerer tipty iff (V,(t1), Vi(t2)) € m(p).

CIf @ = "a, m, 14 'zETFR - iff m,l/%ETFR «,

B %) =aVg My ’=ETFR aVgiff M, v '=ETFR o or M, v *=ETFR 3,
o =anB, My Eerrr a A B iff M, v Ferer @ and M, v Eerer B,
CIf Y = 3.’1)&, gﬁ, v }:ETFR dra iff

ULl W N

there exists a € Urel such that M, v[z/a] Ferer @,
6. If p = Vza, M, v Eerer Vo iff

for every a € Urel , M, v([z/a] FEeteric,r,p) €.

The following mapping translates formulas from FOLE(C, F, P) into formulas of ETFR(C,
F, P'). We will denote by ForFOLE(C, F, P) the set of formulas of FOLE(C, F, P).

In order to simplify the presentation, from here on given a first-order predicate symbol
p € P with arity k, we will assume that the arity of p’ € P' is (n,m) (n, m numbers) with
n+ m = k. Moreover we will assume that the first n parameters from p will be input
parameters of p' and the last m parameters from p will be output parameters of p'.
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Definition 3.16. The mapping Tv : ForFOLE(C, F, P) — ForETFR(C, F, P') is defined
inductively as follows.

L To(p(t, - vtn ), ..., t)) = tixe -kt p'ti % -xtl, if p € P and p' has arity (n, m),
Ty(t = tz) =t 11,
Ty (—a) = ﬁTv( ),
: TV(aVﬂ) Ty (a) V Ty (B),

Ty(aAB) =Ty () ANTv(B),
Tv (3za) = 32Ty (a),
. Ty (Vza) = VzTy ().

ﬂ@@%ww

Given a first-order term ¢ and a valuation of variables v into a FOLE model 2, by V., (t)
we denote the value of ¢ under the valuation v in the model 2.

Theorem 3.17. Let ¢ € ForFOLE(C, F, P). Given a FOLE(C, F, P) model 2 with domain
A there exists a ETFR(C, F, P') model 8 such that for every valuation for individual variables
l/7

A, v FroLe ¢ = B, v Eeter Ty ().

Proof:
Let & = (A',*) be the free groupoid with set of free generators A. Notice that * is injective.
Let B be the FullPFAU with base A’ and injective mapping *. Define, forc€ C and f € F,
¢ =c¢ and f = f . Define, for p € P of arity n and p’ € P’ of arity (r, s) with r + s = n,
p = {(al*u«*ar,bl*---*bs) :p (a1,...,arby,... ,bs)}. Let m : RelVar — B be
arbitrary. Then, we define B = <<B,C JF P > ,m>.

It is clear that

Vt € IndTerm(C, F), V,(t) = V., (). 9)
Given p € P of arity k, p' € P’ of arity (r,s) and ¢1,... ,t.,t],... ,t, € IndTerm(C, F),

A frote Pty - -yt b, )

> (V,(t1),..., Vu(t), V., (81),..., VL)) €p (Def. =roLe)
== (Vu(t1) x -+ Vo (t,), Vo (t)) % - x V,(8)) € P/ (Def. p' )
= (Volt) %+ Vo), Vu(th) * - -+ Vo (8)) € P (by (9))
< B,vEerrrti* - Dtk x L (Def. EeTeR)
<~ B,v ’=ETFR Tv(p(tl, e ,t,—,t’l, . ,t’s)). (Def Tv)

The remaining part of the proof is easy and is left to the reader.

Theorem 3.18. Let ¢ € ForFOLE(C,F,P). Let % = <<A,C F P >,m > be a
ETFR(C, F, P') model. Then there exists a FOLE(C, F, P) model B = <B,C JF P >
such that for every valuation for individual variables v,

A v Ferer Ty (4) g B,V FFoLe ¢

Proof:
Let B = Urely. Foreachce C and f € F, we definec =c¢ and f = f . For each
p' € P' of arity (r, s) we define

P :{(al,...,a,,bl,u.,bs):(al*u-*ar,bl*u«*bs)Ep' }
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Ifp=pt,...,t1t,...,t,) with p € P, then
Av Ferer Tv(p(t, - 7trytl17'~- t’))

<= A vEerer b *- - * Pt * t's (Def. Ty)
= V() + V), V() =+ V(¢ )) ep (Def. f=eTeR)
= Voltr), o, Valtr), Vilt)), ,v,,< ) € (Def. p )
= (Vo). , Vults), Vo (t1), .-, Vit )) €p (by (9))
< B,v Eroe plt1, -« b th, ..o, E)). (Def. =eoLe)

The remaining part of the proof is easy and is left to the reader.

By EroLe ¢ we will denote the fact that formula ¢ is valid in FOLE. In a similar way
we say that a formula ¢ from ETFR is valid in ETFR if for all ETFR model 2 and every
valuation of individual variables v we have 2, v l=gTer ¢.

By using the mapping Ty we obtain the following result on the interpretability of FOLE
in ETFR.

Theorem 3.19. Let ¢ be a FOLE(C, F, P) formula. Then

FroLe ¢ = F=eter T (9).
Proof:

=) If Bever Tw (@), then there exists an ETFR(C, F, P') model « and a valuation of individ-
ual variables v such that 2, v Eerer Ty (¢). Then by Thm. 3.18 there exists a FOLE(C, F, P)
model B such that %, v }éFOLE (b Then #FOLE ¢
<) If Froe ¢, then there exists a FOLE(C, F, P) model 2 and a valuation of individual
variables v such that A, v Frore ¢. By Thm. 3.17 there exists a ETFR(C, F, P’) structure 8
such that %, v #ETFR Tv (¢) Then #ETFR TV (¢))

In the remaining part of this subsection we will show that ETFR(C, F, P) can be inter-
preted into CFR(A) for a suitable set of constant relation symbols A. Finally, by exploiting
the relationship existing between CFR(A) and AFA we will show how to reason algebraically
in order to prove logical properties from FOLE and ETFR.

Given sets C, I" and P consisting of constant, function and relation symbols respectively,
by K we will denote the set C'U F'U P’. By CFR*(K) we will denote the extension of CFR
obtained by adding the following axioms.

1. The formula
1;Vy;1 =1,

which implies that models of CFR™ are abstract fork algebras with urelements.
2. for each ¢ € C, we add the following equations stating that ¢’ is a constant relation
having an urelement in its range:
¢;c 4+ 'y =1y (¢ is functional),
1;d = (¢ is left-ideal) ,
d;1=1 (¢ is nonempty) .
3. for each f € F with arity k, the following equations stating that f' is a functional
relation that takes k urelements as input and produces urelements as output:

frif + Ty ="y,
Py® - ®Vy;f =f.
——

k times
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4. for each p € P with arity (m,n), the following equations stating that p’ is a binary
relation expecting m urelements as input and n urelements as output:

Uy® - @ly;p; 'y® - @1y =p.
mt;;les nt?r;es

In items 3 and 4 we are assuming that f’ has input arity k and that p' has arity (m,n).
We can generalize to arbitrary arities by rearranging parenthesis in a convenient way. For
example, if p' has arity ((u*u)* (u*u), (u*u)*u), then we would impose the condition

(Vu®ly)®(Ty®Ty)p (Tu®Ty)@Ty =p.

Notice that given a finite set K with constant, function and relation symbols, only finitely

many equations are introduced in items 1 to 4 above.
n times

In what follows, t* is an abbreviation for t; - - - ;f. For the sake of completeness, t:° is
defined as 1'.

The following mapping translates ETFR(C, F, P) formulas into CFR*(K) formulas. The
definition proceeds in two steps, since also terms (not only formulas) need to be translated.

For the following definitions, o will be a sequence of numbers increasingly ordered. In-
tuitively, the sequence will contain the indices of those individual variables that appear free
in the formula (or term) being translated. By Ord(n,o) we will denote the position of the
index n in the sequence o, by [0 @ n] we denote the extension of the sequence ¢ with the
index n, and by o(k) we denote the element in the k-th position of o.

Definition 3.20. The mapping 6, : IndTerm(C, F) — RelDes(C' U F'), translating indi-
vidual terms into relation designations, is defined inductively by the conditions:

i0rdlio)=1.0 if § is not the last index in o,

if 7 is the last index in o.

L 50(1]1') = p;Length(u)—l

2. 0,(c) = for each c € C.
3. 8o(f(tr,- - ytm)) = (65(t1)V - - - Vs (tm)); f' for each f € F.

Before defining the mapping 7, translating ETFR formulas, we need to define some
auxiliary terms. Given a sequence ¢ such that Length(c) = [, we define the term A,,
(n < w) by the condition

8 (Vo(1)) V -+ Vo (V1)) V1u V86 (Vo(ke41)) V - - - Vb6 (Vo (1))
A = if k = Ord(n,[c®n]) <,
o 5,(U,(1))V R V&d(va((_l))VhJ

if Ord(n,[c ®n]) = 1.

The term A, , can be understood as a cylindrification [26, 27] in the k-th. coordinate of a
[-dimensional space.

For the next mapping to be correctly defined, we assume that atomic formulas of the
form R = S do not occur in the scope of a quantifier over individual variables. This is
a reasonable assumption because, since atomic formulas of this form do not contain any
individual variables, they can be promoted outside the scope of quantifiers.

Definition 3.21. The mapping 7,, translating ETFR(C, F, P) formulas into CFR™(K) for-
mulas, is defined inductively as follows.

1. T,(R=S)=R= S5 (R, S € RelDes(P)),
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2. Ty(ty -ty Rty % xtl) = Ti(ty & -+ x t, Rty %+ - xt') = U'y*;1, (k = Length(o),
t;, t; € IndTerm(C, Fyforalli,j,1<i<r,1<j<sand R € RelDes(P)),

L) = -, (a),

aV f)=T,(a) VvV T,(3),

) = To () AT(B),

Jupa) = T!(Fvea) = 1551, (k = Length(o)),

Yopa) = T (Vuna) = 14¥;1, (k = Length(o)),

00 =1 O T W
!

Py NG AN NG
Q
>
=)

. TZ tykeooxt, R %o xtl) =
((6a(t1)V V() Y (6,(8)V - V(L)) ;1—?) 3.1, (10)
9. T,(~a) = T3 (),
10. Th(aV B) = T'(a)+T.(B),
11. T {a A B) = Ti(a) T(B),
o

12. T H'Un(a)) - a,n;jﬂ[la@n] a),
13. T.(Vup(@)) = T)(—3v,-a).
In item 8 we are assuming that R has arity (r, s) (r, s numbers). If we allow for arbitrary

arities, then the parenthesis in formula (10) should be rearranged. For example, if R has
arity {(u*u)* (u*u), (u*u)*u), then

Ta{(t1 *t2) * (t3 xt4) R(t5 x tg) % t7)
= (((5a(t1)Véa(tz)) V (85 (ts) Vo (t4))) V ((85(t5) Vs (t6)) Vb5 (tr)) ;fi!) 251

Notation 3.22. Given a formula or term «, by o, we denote the sequence of indices of
variables with free occurrences in ¢, sorted in increasing order.

Theorem 3.23. Let o € ETFR(C, F, P) and let ¢ = 0,. Then,
FeTFR @ =  Fcrt Tola).

Theorem 3.23 shows that reasoning in ETFR can be replaced by reasoning in CFR*. The
reason why this is considered an algebraization of ETFR is because validity in CFR* means
that some formula holds in the class of algebras SAFAU. In order to obtain an algebraization
of FOLE it suffices to compose the mappings Ty and 7,. We then obtain the following
mapping Ty , : ForFOLE(C, F, P) — ForCFR(C U F U P). If we recall that in order to
apply the mapping Ty there is to divide arguments of predicate symbols between input
and output arguments, we will assume that all arguments are to be considered as input
arguments.

(p(tl, N ,tk)) = (5,,(t1)V s Vég(tk)) i1,
2. Tv,(,g—'a) =Ty (),
(

3. Tyo(aVp) =Ty q(2)+Tvq(B),

By using the translation Ty , we can prove the following theorem.
Theorem 3.24. Let o € ForFOLE(C, F, P) and let 0 = 0,. Assume also that Length(o) =
k,
F=FoLe @ =  Ere Tvolo) =0051

From CFR™ we define the formalism CFREQ™ as a restriction of CFRT. CFREQT is defined
as follows.

Formulas: Equations from ForCFR™.
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Inference Rules: Those of equational logic.
Axioms: Set of equations characterizing the class AFAU.

Notice that in the axiomatization of CFREQ™ we dropped the axiom requiring models to
be simple.

Theorem 3.25. Let e be an equation. Then,

Ferr+ € Aand Fcrreqt €
Proof:
By definition of the formalism CFR™,
'=CFR+ e iff fOr all A € SAFAU, A ’: €. (11)

Since the variety generated by SAFAU is AFAU, SAFAU and AFAU share the same equa-
tional theory. Thus,

for all A € SAFAU, U = e iff for all 2 € AFAU, A . (12)
Then, by (11) and (12),
E=crr+ € iff for all 2 € AFAU, 2 e (13)
By definition of CFREQ* and (13),
Fcrrt € — Fcrreq+ € (14)
Since equational logic is complete,
Fcrreq+ € - Fcrreq+ € (15)
Finally, joining (14) and (15),
Fcr+ € = Fcrreqt €

Corollary 3.26. Let o € ForFOLE(C, F, P) and let ¢ = 0,. Assume also that Length(c) =
k,

t’:FOLE «a < }—CFREQ"’ Tv,,,(a) = lyuk;l.
Proof:
By Thm. 3.24,
FroLE @ — Eerrr Ty o) = 10851 (16)
By Thm. 3.25,
Ecrrt Ty o(a) = y*;1 <  Feregr Tvo(@) = U051 (17)
Thus, by (16) and (17),
':FOLE o $=> I_CFREQ* Tv,a-(a) = 1’Uk;1.

In [27], FOLE is algebraized using cylindric algebras. Cylindric algebras are a very natural
algebraic counterpart of FOLE. The fact they have a Boolean algebra reduct allows to
algebraize the propositional part of FOLE. Also, for each quantifier Ju;, a new operator ¢;
(called the i-th cylindrification) is defined. The axioms for the cylindrifications are natural
translations of valid properties for the existential quantifiers. For example, the property
Jv;Jv;a & Fv;3v;a corresponds to the cylindric algebra axiom c;c;z = c;c;z, for all pair of
indices (i, 7). Finally, for each pair of indices (i, j), a constant element d;; (called the 4,j-
diagonal element) is distinguished. Intuitively, d;; characterizes algebraically the predicate
v; = v;. Notice that infinitely many axioms are required for axiomatizing the infinitely
many cylindrifications and diagonal elements. The fact fork algebras have only finitely many
operators and are axiomatized by a finite set of equations makes fork algebras more attractive
in computer science, where this finiteness plays an essential part in the implementability of
a calculus for program construction based on fork algebras.
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3.2. Algebraization of Non-Classical Logics

In this subsection we will show how to algebraize many non-classical logics (modal logics,
dynamic logic, relevant logics, intuitionistic logic, intermediate logics) with the help of fork
algebras. The results that will be presented in this part were published in [17, 18] and were
obtained as joint work with Ewa Orlowska.

Equational reasoning based on substitution of equals for equals is the kind of manipu-
lation that is performed in many information processing systems. The role of equational
logics in development of formal methods for computer science applications is increasingly
recognized and various tools have been developed for modeling user’s systems and carrying
through designs within the equational framework (Gries and Schneider [20], Gries {19]).

In this subsection we will develop an equational formalism that is capable of modeling a
great variety of applied nonclassical logics and of simulating nonclassical means of reasoning.
The formalism is based on fork algebras. The idea of relational formalization of logical
systems has been originated in Orlowska ([43]) and developed further in Orlowska ([44, 45,
46)).

Examples of relational formalisms for applied logics can also be found in Buszkowski and
Orlowska ([7]), Demri and Orlowska ([10]), Demri et al. ([11]), Herment and Orlowska ([28]).
The main idea of all these relational formalisms is to represent formulas of a nonclassical
logic as relations from a suitable algebra of binary relations, and to develop a relational proof
system for this logic. However, since the class of algebras of binary relations (representable
relation algebras) is not finitely axiomatizable, and the finitely axiomatizable class of relation
algebras is not representable (it is not the case that every relation algebra is isomorphic
to an algebra of binary relations), the existing relational framework for nonclassical logics
suffers several disadvantages. The class of fork algebras is both finitely axiomatizable and
representable, and hence a fork algebra formalism seems to be an appropriate candidate for
relational formalization of nonclassical logics. Here we will prove interpretability of several
nonclassical logics in CFR™.

The interpretability of a nonclassical logic in the logic CFR* is established by means of a
provability preserving translation of formulas of the logic into formulas of CFR*. Under that
translation both formulas, formerly understood as sets of states, and accessibility relations
receive a uniform representation as relations. The propositional connectives are transformed
into relational operations. The constraints on accessibility relations are translated into re-
lational equations. The major advantage of relational formalization is that it provides a
uniform framework for representation of a broad class of applied logics and enables us to
apply an equational proof theory to these logics.

3.2.1. Interpretability of Modal Logics in CFR*

Definition 3.27. A frame is a relational system (W, R) where W is a nonempty set of
possible worlds and R C W x W is a binary accessibility relation between worlds.

Definition 3.28. Given a frame (W, R}, a Kripke model is a triple (W, R, m ) where m is
a meaning function that assigns subsets of W to propositional variables.

Definition 3.29. The inductive definition of satisfiability describes the truth conditions
depending on the complexity of formulas. For atomic formulas (i.e., propositional variables)
we have:

(at) M,w = p iff w € m(p) for any propositional variable p.

For formulas built with extensional operators such as classical negation, disjunction,
conjunction or implication, their satisfiability at a possible world is completely determined
by satisfiability of their subformulas at that world.
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(7)) M,wl—aiff not M,w [«

(V) MulEaVBif MwlEaor M,w B
(AN) MiwEaABiff MwEaand M,w 8
(=) MiuEa—Bif MywkE-aV 8.

For formulas defined from modal operators, as [R] (necessity) and (R) (possibility), we
have

([R]) M,w [= [Rla iff for all u € W, (w,u) € R implies M,u = A
((R)) M,w = (R)« iff there is an u € W s.t. (w,u) € R and M,u = A.

For the sake of simplicity, we use the same symbol for the relational constant R that appears
in modal operators and the accessibility relation which is denoted by this constant.

In various modal logics, the accessibility relation is assumed to satisfy certain conditions.
If we call FRM (Conditions) the class of all those frames in which the accessibility relation
satisfies the “Conditions”, then the set of all the formulas valid in that class is called the
logic L(Conditions). For example: K (no restriction on accessibility), T (reflexive), KB
(symmetric), B (reflexive, symmetric), K4 (transitive), KB4 (symmetric, transitive), S4
(reflexive, transitive), S5 (equivalence), S4.1 (reflexive, symmetric, atomic), KD (serial),
K DB (symmetric, serial), KD4 (transitive, serial), $4.3.1 (reflexive, transitive, euclidean,
discrete), G (transitive, well-capped).

Definition 3.30. Given a Kripke model M = (W, R,m ) and a modal formula o, a is said
to be true in M if for allw €e W, M, w kE .

Definition 3.31. A modal formula « is called valid if it is true in all models.

In the following definition we introduce a mapping Ty, translating modal formulas into
CFR* equations.

Definition 3.32. Before defining the mapping Ty, we define the mapping T}, by:

(var) Ti,(p:) = P;, where p; is a propositional variable and P; € RelVar,
(neg) Ty (—a) =1y;Tyy(a),

(and) Ty (aA B) = Ty(a) Ty (B),

(or) T3 (Vv B) = Th(a)+T(B),

((R) Ty ((R) o) = R; Ty ().

([R]) Ty([Rle) = Ty (= (R) ~a).

For the sake of simplicity we assume that the constant R from the modal language is
translated into a constant from the language of CFR* that is denoted by the same symbol.
We finally define the mapping T by Tam(a) = Ti(a)+ul = 1.

The next theorem (whose complete proof is given in [17]) shows the interpretability of
any modal logic L{C) (C a set of FOLE sentences) into CFR*. We will denote by () the
empty sequence of indices. Also, given a set of formulas ¥, by Ty (¥) we denote the set
{Tu(¥): ¢ € ¥}, and by Ty ,(¥) we denote the set { Ty ,(¥) : v € ¥}.

Theorem 3.33. Given a modal logic L(C), where C is a set of FOLE sentences, a set of
modal formulas ¥ and a modal formula ¢,

YL ¢ = Ty 4 (C) U T (¥) Ecer+ Tm(p)-

Notice that the use of the relational composition to algebraize the modalities is a standard
thing to do (see for example [6] Chapters 5 and 6). The result Thm. 3.33 provides, is that
any modal logic whose accessibility relation is characterized by a set of FOLE sentences has a
relational algebraization. Much the same as the naive translation of modal logics into FOLE
allows to use the tools of first-order logic to study modal logics, Thm. 3.33 allows to use
relational tools.
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3.2.2. Interpretability of Dynamic Logic in CFR

In [24], the syntax and semantics of propositional dynamic logic are introduced. Dynamic
logic is considered as a programming logic, i.e., a logic suitable for asserting and proving
properties of programs. Dynamic logic is a modal logic whose modal operators are deter-
mined by programs understood as binary relations in a set of computation states. The
following definitions provide a formal description of propositional dynamic logic.

Definition 3.34. Let us consider a set Py of so called atomic programs, and a set Fj of so
called atomic dynamic formulas. From these sets we will construct the sets F' of dynamic
formulas and P of compound programs.

F and P are the smallest sets satisfying the following conditions:

true € F; false € F; Fy C F,

ifpe Fand g€ F then -p € F and (pVq) € F,

ifp€ F and a € P then (a)p € F,

B CP,

ifao€ Pand § € P then (aUB) € P, (a;8) € Pand o* € P,
if p € F then p? € P.

AR ANl ol

Definition 3.35. A structure is a triple D = (W, 7,8) where W is a set of states, 7 assigns
subsets of W to atomic formulas, and J assigns subsets of W x W to atomic programs. The
mappings 7 and § are extended inductively to determine the meaning of compound formulas

and programs as follows:
T(true) = W,

yedla)AteT(p)},
€ 8(a) A (Ut)€5( N}

a)* = {(s,t) : 3k, 80,51, ..., Sk(So=5 A sg=t A (V5,1 <1 < k) (s;_1,8:) € 6())}.

Propositional dynamic logic is know to have a complete Hilbert—style calculus. The
calculus is given in the following definition. The proof of the completeness of the calculus is
given in [24], Thm. 2.11, p.515.

Definition 3.36. The calculus for propositional dynamic logic is given by the following
axiom schemas and inference rules:
(A1) all instances of tautologies of the propositional calculus.
(@)(pVq) < ((a)pV(a)q)
(a; B)p <> (a) (B)p
(aUB)p < ((a)pV (B)p)
(@)p < (pV(a)(a")p)
(@")pephg
[*)(p — [e]p) = (p — [o’]p)
(A8) [a)(p = ) — ([elp — [a]g).
The inference rules for the calculus are, as in the modal logic K, modus ponens and
generalization.

The presence of the Kleene star operator in the language of dynamic logic requires a
slight generalization of fork algebras in order to obtain the interpretability result.
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Definition 3.37. A closure AFAU (CAFAU for short), is a structure { 4, *) such that A is
an AFAU, and =* satisfies the equations

R =1+R;R", (18)

R*;8;1< S;14+R*;(S;1 - R;S;1). (19)

From the class CAFAU of closure fork algebras with urelements we will define as an
extension of CFR* the formalism CFR*. This formalism is obtained by modifying Def. 3.2
(that defines the set of relation designations RelDes) by adding the condition

If R € RelDes, then R* € RelDes,

and we add formulas (18) and (19) as axioms.

The following mapping will be used in order to prove the interpretability of propositional
dynamic logic in the formalism CFR*.

Definition 3.38. In order to define mappings Tp; and Tp from dynamic logic formulas and
compound programs, respectively, onto CFR* we first define recursively the mappings Tp;
and Tp by:

Tp(p:i) = P, (pi an atomic formula.)

Tp(true) = yl,

Tpr(false) =0,

Tpr(=p) = Vu; Tp.(p),

Tp(pV q) = TpL(p)+Tpr(a),

Tp({R) p) = Te(R); Tp, (),

Tp(R;) = R;, (R; an atomic program.)

Tp(RUS) =Tp(R)+T5(S),

Tp(R; S) = Tp(R);Tp(S5),

Tp(R') =Tp(R)",

Tp(p?) = TpL(p)- V.

Next, we define the mapping T, by Tpr(a) = Th,(a)+yl = 1.

The following theorem (whose complete proof is given in [17]), presents the result on the
interpretability of propositional dynamic logic into CFR*.

Theorem 3.39. Given a dynamic formula ¢,

FpL o — Ecrre Tor(e)-

We obtain a fork-algebraic formalization of relevant logics (see [44] for an introduction to
relevant logics related to this work) in much the same way as that of modal logics. Although
models of relevant logics are based on ternary accessibility relations, there is an easy way of
representing these relations as binary ones. In general, given a ternary relation R, we will
codify it by the binary relation {(z, *(y, 2)} : R(z,y, 2)}.

The main result concerning the algebraization of relevant logics is given by the following
theorem whose complete proof appears in [17).

Theorem 3.40. There is a recursive mapping T translating relevant formulas into ForCFR*
such that for every relevant formula o,

FrL @ — *:CFR+ TR(G).
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3.2.3. A Rasiowa-Sikorski Calculus for CFREQ™

The original Rasiowa~-Sikorski proof system presented in [48] refers to the classical predicate
logic. The system is designed for verification of validity of formulas from this logic. It consists
of a pair of rules for each propositional connective and each quantifier. Every pair of rules,
in turn, consists ef a “positive” rule and a “negative” rule. A positive (resp. negative) rule
exhibits the logical behavior of the underlying connective or quantifier (negated connective
or negated quantifier). For example, the rules for conjunction are the following

CanB A (PA) I-(anB),A (NA)
]‘-\7a7A F’ﬁ?A F5—'a’ﬁ65A

The system operates in a top-down manner. Application of a rule results in a decompo-
sition of a given formula into the formulas that are the arguments of a respective connective
or quantifier. In general, the rules apply to finite sequences of formulas. To apply a rule
we choose a formula in a sequence that is to be decomposed and we replace it by its com-
ponents, thus obtaining either a single new sequence (for ‘or’-like connectives) or a pair of
sequences (for ‘and’-like connectives). In the process of decomposition we form a tree whose
nodes consist of finite sequences of formulas. We stop applying rules to the formulas in a
node after obtaining an axiom sequence (appropriately defined) or when none of the rules is
applicable to the formulas in this node. If a decomposition tree of a given formula is finite,
then its validity can be syntactically recognized from the form of the sequences appearing in
the leaves of the tree. The system we present is an extension of the proof system presented
in Orlowska [43, 46]. The system consists of a positive and a negative decomposition rule for
each relational operation from the language of CFREQ™, and moreover of the specific rules
that reflect properties of the function x and the relational constant 1.

In this part we will assume that IndVar = UreVar U CompVar, with UreVar and
Comp Var two disjoint sets.

Next we will present the rules of the sequent calculus FLC for CFREQ™. Since we are
dealing with fork algebras with urelements (required in order to interpret first-order theories),
the calculus we present is more involved than a calculus for fork algebras when no assumption
is done on the existence of urelements.

IzR+Sy,A (P+) E,J:R+Sy,A_ (N+)
T',zRy,zSy,A I',zRy,A T,zSy,A

T,zR-Sy,A  (P") r,zR-Sy,A (N
IyzRy,A T,zSy,A I',zRy,z5y, A

T,zR;Sy, A (P;) __TisRiSyA (N3)
T,zRz,A,zR;Sy T,z8y,A,zR;8y T,zRz1,21Sy,A TI,zRz2,225y,A
I,zRy,A (N7)
I',zRy, A
I,zhy, A (P Fyxfiy,A (NY)
T,yRz,A T,yRz,A
I'zRV Sy, A (PV)

T,yPuxv,A,zRVSy T',zRu,A,zRVSy T,z5v,A,zRVSy

I'zRVSy,A (NV)
T,y0u; *v1,:v§u1,z§v1,A T,y0us + uz,zEuz,:Evg, A
I, y0'u3 *v3,zRu3z,zSv3, A T,y0u4 > v4,zRus,z8v4,A
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Tyzy x 221y xy2, A (PY) I,z %220y *y2,A  (N1)
Ioil’y1, A TLz2lye, A T,z10°y1,220'y2, &
I,zRy, & (Va)

Izl'z,zRy,A T,zRy,zRy, A

TzRy, A (I'p)
T ,zRz,zRy,A T,21y,zRy,A

Lzl'y, A (Sym)
Tylz, A, zl'y

Iz21'y, A (Trans)
Izlz,A,zly T,20'y,A,zl'y

T,zl'y, A (Cut)
Fizxulyxv,A,zl'y T zxuly+v, A zly

I (U
I'zly

In rule (P;), z € IndTerm is arbitrary. In rule (N;), 2; € UreVar and z, € Comp Var.
In rule (PV), u,v € IndTerm are arbitrary. In rule (NV), u;,ug,vy,v3 € UreVar and
u3, UsUs,v4 € CompVar. In rules (1'g) and (1), z € IndVar is arbitrary. In rule (Trans),
z € IndTerm is arbitrary. In rule (Cut), u,v € IndTerm are arbitrary. Finally, in rule (U),
z € UreVar and y € IndTerm \ UreVar.

Definition 3.41. A formula t; Rt, is called indecomposable if it satisfies either of the fol-
lowing conditions.

1. R € RelVar U RelConst,
2. R= 5 and S € RelVar U RelConst,
3. Re {1, 0}.

Definition 3.42. A sequence of formulas I is called indecomposable if all the formulas in T
are indecomposable.

Definition 3.43. A sequence of formulas I is called fundamental if either of the following
is true.

1. T contains simultaneously the formulas ¢, Rt, and t, Rt,, for some t;,t, € IndTerm
and R € RelTerm.
2. T contains the formula t1't for some t € IndTerm.

Definition 3.44. Let T be a tree satisfying:

1. Each node contains a finite sequence of fork formulas.

2. If the sequences of fork formulas A;,..., Ay are the immediate successors of the se-
quence of fork formulas I'; then there exists an instance of a rule from FLC of form
r
A Ay o Ay

Then T is a proof tree.

A branch in a proof tree is called closed if it ends in a fundamental sequence.



M.F.Frias, G.A.Baum and A.M.Haeberer / Logic and Computer Science 23

Definition 3.45. A formula ¢, Rt; is provable in the calculus FLC iff there exists a proof
tree T satisfying:

1. T is finite,
2. t; Rty is the root of T,
3. Each leaf of T contains a fundamental sequence.

Theorem 3.46. The calculus FLC is sound and complete w.r.t. CFREQ™, i.e., given an
equation R = S,

Fcreqt R=S <= Frice z(ﬁ-}-S) . (R+§) y, with z,y € CompVar.

The calculus FLC can be used in order to prove properties from all the logics studied
before, namely, FOLE, modal logics, dynamic logic, and relevant logics. Besides these log-
ics, the calculus FLC has been used in [18] for reasoning in intuitionistic logic, minimal
intuitionistic logic, and many intermediate logics.

4. Further Work

As it was mentioned in the abstract, in a future paper we will present a methodology for
program construction based on fork algebras. We will use both FOLE and ETFR as specifi-
cation frameworks, and CFR* and CFREQ™ as our formalism for program construction. We
will also incorporate program design decisions in our framework.

5. Conclusions

We presented a study of fork algebras from the algebraic and logical points of view, aiming
to settle the basis for the study of program construction within fork algebras. We presented
the representation theorem and also how to algebraize classical and non-classical logics using
a formalism based on fork algebras.
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