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ABSTRACT

Concurrent  programs  are  needed  to  take  advantage  of 
multicore  computers.  Debugging  such  concurrent 
programs is  very difficult  due to  their  nondeterminism. 
So, error  detection tools need  to  be used in  production 
environments.  One  very  popular  detection  technique  is 
interleaving analysis,  which detects  atomicity violations 
in  shared  memory  programs.  Unfortunately,  the 
algorithms  that  implement  this  technique  can  be  very 
costly at runtime, restricting its use to the software testing 
stage. This paper shows how to use the hardware counters 
present in today's processors to detect the occurrence of 
unserializable interleavings. This optimization will reduce 
the  overhead  introduced  by  concurrency  bug  detection 
tools.
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1. INTRODUCTION

In any concurrent program, the programmer has to specify 
how  processes  are  synchronized.  Depending  on  the 
communication model used, there are different methods to 
establish  synchronization.  For  example,  in  a  shared 
memory  model,  it  is  common  to  use  semaphores  or 
monitors,  whereas  in  a  distributed  memory  model, 
message passing is commonly used. Concurrency errors 
occur when the programmer makes a mistake when using 
any  of  these  methods,  resulting  in  race  conditions, 
deadlocks, or atomicity violations. 
One  feature  that  makes  concurrency  errors  particularly 
difficult to detect, is that they appear only under certain 
implementation condition, depending mainly on the non-
determinism present in the execution order of processes. 
If these errors do not occur during the test, the program 
will be part  of the production systems for which it  was 
thought, making them vulnerable. 

These errors, their causes, and ways to avoid them have 
been studied extensively by the scientific community. In 
1978,  Lamport  established  the  concept  of  partial  order 
between segments of processes  [1] (it is called Happens 
Before  relation),  and  it  has  been  used  to  build  race-
condition detection tools. Lockset (proposed in 1997 [2]) 
is  a  different  method  to  detect  race  conditions  which 
verifies that all shared variables are protected at the time 
they  are  accessed.  Deadlocks  are  another  example  of 
common mistake present in concurrent programs. In 1972, 
Holt  [3] proposed  a  model  that  was  able  to  detect 
deadlock  conditions  for  shared  resources  (in  fact,  this 
technique is used by operating systems to manage their 
resources). Finally, with the advent of multiprocessors to 
conventional computers, atomicity violations have begun 
to take a leading role because  their  occurrence  is more 
generalized than before. In 2006, Shan Lu [4] postulated 
an analysis of the order in which multiple threads access 
memory to help detect atomicity violations. The technique 
classifies  interleavings  as  serializable  or  unserializable, 
where the latter may be atomicity violations (this issue is 
addressed  further  on  this  paper).  Atomicity  violations 
have also been addressed by other authors [5], [6].
Any of  these  errors  can  be  found frequently  in  widely 
used, real programs, such as Apache, MySQL, or Mozilla 
Firefox  [7].  Due  to  this  non-determinism  in  parallel 
execution, it would be very useful to have tools to monitor 
applications in production environments. 
Unfortunately,  the overhead introduced by the detection 
algorithms is a determining factor in the viability of their 
use. For this reason, the current proposals tend to include 
a  version  of  the  algorithm  which  uses  hardware 
extensions to accelerate them and reduce the impact of the 
instrumentation. These extensions involve changes to the 
architecture  of  the  machines  where  they  run  (such  as 
adding bits to the cache line). 
In this paper, a different approach is proposed: using data 
available through the processor's performance-counters to 
choose  when  to  run  detection  algorithms.  Previous 
experiments [8] indicate that much of the overhead caused 
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by the monitoring tool is wasted in monitoring safe code 
regions. A similar technique was used by Greathouse in 
2011[9] to optimize a tool for detecting race conditions 
called Intel Inspector XE. However, this tool is only able 
to detect race conditions, and it uses algorithms based on 
happens-before  and  lockset.  The  techniques  and 
conclusions  of  this  work  are  aimed  at  determining  the 
feasibility  of  using  counters  to  detect  unserializable 
interleavings,  which  will  optimize  techniques  for 
detecting  atomicity  violations  in  shared  memory 
environments.  The hypothesis  is  that  it  will  reduce  the 
instrumentation  overhead  by  restricting  access  to  those 
which are actually not serializable. 
The  paper  is  organized  as  follows:  Section  2  offers  a 
background and main concepts needed to follow the rest 
of  the  work.  Section  3  presents  our  approach  and  the 
features  addressed  in  this paper.  Section 4 explains  the 
algorithms used for the experiments. Section 5 describes 
the test environment. Section 6 shows the results of the 
experiments. Finally, in Section 7, conclusions are drawn.

2. BACKGROUND

2.1 Interleavings Analysis

Concurrency errors can be seen through the pattern access 
(reads  and writes)  that  several  processes  make on each 
memory direction. When a variable is accessed between 
two  accesses  to  it  by  a  different  thread,  it  is  called 
interleaving.  Depending  on  interleaving  configuration, 
this  could  be  a  concurrency  error.  Table  1  shows  the 
different  possible  configurations:  in  each  case,  both 
accesses by thread 0 are aligned to the left, whereas the 
one interleaved access by thread 1 is indented to the right. 
Over  eight  possible  cases,  four  can  be  serialized. 
Serialized  means  that  interleaving  does  not  alter  the 
perception that the processes involved have regarding the 
memory region they access, and is therefore considered to 
be safe. Interleavings 0, 1, 4 and 7 are safe because their 
occurrence  produces  the same effect  as  if  they had not 
happened.  On  the  other  hand,  cases  2,  3,  5  and  6  are 

interleavings that may have been caused by a concurrency 
error. 
Proposals  of  this  type  seek  the  occurrence  of 
unserializable  interleavings.  When  an  unserializable 
interleaving is detected, the tool emits an alert or initiates 
a  corrective  procedure  (immediately  after  the  error 
occurs),  even to determine what  instructions caused the 
error. 
The  instrumentation  required  to  perform  this  type  of 
analysis  introduces  a  high  overhead  in  the  monitored-
application's runtime. As mentioned in the introduction, 
algorithms to implement this technique include a version 
that  uses  hardware  extensions  to  accelerate,  and  thus 
diminish the impact of instrumentation. Table 2 shows the 
results of running the software and hardware versions of 
AVIO  [4] on  the  suite  of  benchmarks  SPLASH-2 
applications.  Unfortunately  these  extensions  involve 
changes to the architecture of the machines they run on 
(e.g., add bits to the cache line), their application in real 
production environments thus becoming non-viable.

2.2 Hardware counters

All current processors have a set of special registers called 
hardware  counters  [10].  These  registers  can  be 
programmed to count the number of times an event occurs 
within  the  processor  during  the  execution  of  an 
application.  Such  events  can  provide  information  on 
different  aspects  of  program execution (e.g.,  number of 
instructions executed, number of failures in L1 cache, or 
number  of  floating  point  operations  executed).  This 
information is intended to help developers understand the 
performance  of  their  algorithms  and  optimize  their 
programs. These events are poorly documented, and often 
vary  between  different  architectures.  Processor 
manufacturers  usually offer  a manual to indicate events 
and a brief description of what it is they are supposed to 
measure.

3. HARDWARE COUNTERS INTEGRATION 
WITH CONCURRENCY BUG DETECTION 
TOOLS

The  alternative  proposed  in  this  paper  is  to  use  the 
information provided by hardware counters about what is 
happening in the processor to filter safe regions of code. It 

Case Interleaving Case Interleaving

0
read
      read
read

4
read
      read
write

1
write
      read
read

5
write
      read
write

2
read
      write
read

6
read
      write
write

3
write
      write
read

7
write
      write
write

Table 1. Each case shows a different interleaving configuration. Access 
are interleaved read/write operations to the same memory direction by 

two threads.

Benchmarks
AVIO 

(Hardware)
AVIO 

(Software)

fft 0,5 % 42X

fmm 0,4 % 19X

lu 0,4 % 23X

radix 0,4 % 15X

Average 0,4 % 25X

Tabla 2. Overhead comparison between hardware and software versions 
of AVIO over SPLASH-2 suite benchmarks.  X represents application 

runtime without instrumentation.



will improve the performance of bug detection tools based 
on  interleaving  analysis.  The  key  is  keeping  the 
monitoring tool disabled and toggling it to enabled mode 
if unserializable interleavings start occurring. In order to 
reach this we need:
– To  know  if  unserializable  interleavings  can  be 

detected through hardware counters.
– To  determine  whether  most  interleavings  are 

serializable  or  not.  This  would  hint  as  to  whether 
there is a chance of optimization with our proposal.

– To  characterize  applications  through  their 
unserializable interleavings distribution in the code.

Each one of these features will be explained in the next 
subsections.

3.1 Unserializable interleaving detection through 
hardware counters

The goal is to find events that can be used to detect code 
segments  of  the  program  where  unserializable 
interleavings occur. Since there are no events to measure 
interleavings, the problem is simplified to two accesses to 
the  same  memory  address  from  different  process.  We 
assume each process to be running in different cores on a 
processor with at lest one level cache shared among them 
and a MESI based coherency protocol. 
Each  access  can  be  a  read  or  a  write  operation.  The 
complete interaction between the accesses of each process 
is  called  access  pattern.  Table  3  summarizes  the  four 
possible  cases.  In  all  cases,  the  event  must  occur  with 
each read or write operation. 
In  coherence  MESI-based  protocols,  there  is  a  "Shared 
state" (S) which indicates that the cache line has been read 
by  more  than  one  processor.  The  candidate  events  are 
those that indicate a transition to or from this state. 
Each  access  pattern helps  detect  different  interleavings. 
Table 4 shows the relationship between these cases. As it 
can  be seen,  the access  patterns  that  are  useful  for  the 
purpose  of  this  study  are  1  and  2,  because  they  allow 
tracing unserializable interleavings 2, 3, 5, and 6.

3.2 Optimization feasibility 

Our  hypothesis  is  that  overhead  can  be  reduced  if 

monitoring is  restricted  to  the  regions  of  code  that  are 
unsafe. Thus, to determine if the technique proposed can 
improve the performance of the bug detection tool with a 
particular application, first we calculate the ratio between 
the  number  of  unsafe  accesses  and  total  accesses.  An 
application with an unsafe access indicator (UAI) near to 
zero has a high potential because it means there are few 
unserializable  accesses,  whereas  an  application  with  an 
UAI near to one has a low potential.

3.3 Concentrated vs. distributed interleavings

Even if an application has a high optimization potential, it 
is  important  to  know  how  these  unsafe  accesses  are 
distributed by the code. If they are concentrated, it is more 
likely that  our approach  will  reach  a high performance 
improvement. But if they are scattered over the code, our 
tool could start continuously toggling between the enabled 
and disabled modes. This scenario is undesirable because 
it  could  affect  not  only  the  performance,  but  also  the 
detection capability of the tool.

4. IMPLEMENTATION

4.1 Monitoring tool

In order to capture the information needed, we designed a 
software layer placed between the target application and 
the  hardware.  Basically,  this  tool  detects  when  a  new 
thread is created and sets its affinity to a specific core (we 
make sure each thread is running in different cores to take 
advantage of the changes in coherence states) and starts a 
hardware counter configured for the selected event. The 
tool  also  keeps  software  counters  for  program 
instructions.  It  can  classify  them  in  reads,  writes, 

Pattern  access  / 
Interleaving

0 1 2 3 4 5 6 7

read
      read
read

write
      read
read

read
      write
read

write
      write
read

read
      read
write

write
      read
write

read
      write
write

write
      write
write

0
read
      read

YES YES - - YES - - -

1
read
      write

- - YES - YES YES YES -

2
write
      read

- YES YES YES - YES - -

3
write
      write

- - - YES - - YES YES

Table 4. Each cell shows if the pattern access can be useful to detect an interleaving.

Case Pattern Case Pattern

0
read
      read

2
write
      read

1
read
      write

3
write
      write

Table 3. Each case shows a different pattern access to the same memory 
address by two threads.



branches, and others. This information will be enough to 
know the UAI of the target application. The tool has two 
operation modes:

1. Showing  statistics  collected  when  the  target 
application finishes.

2. Showing partial statistics collected every preset 
number of instructions.

The second operation mode will allow us to determine the 
distribution of unserializable interleavings along the code.

4.2 Micro-benchmarks

To verify that an event can be used to distinguish between 
different  access  patterns,  we  designed  the  micro-
benchmarks shown in Figure 1. 
In  each  case,  the  simulated  interaction  between  two 
threads  is  repeated  N times  (N is  a  parameter  of  the 
program). Each thread has a local variable called tmp used 
to simulate the reading operations. The shared variable is 
represented  by  an  array  of  N elements  Var,  which  is 
initialized by the main program thread. In order to have 
visibility regarding code operation, functions P() and V() 
were implemented with shared variables, instead of using 
pthread semaphores. Figure 2 shows the pseudocode for 
these operations. 
Variables s1 and s2 act as semaphores initialized to 1 and 
0 respectively. To avoid false sharing, a structure that fills 
the  entire  cache  line  for  all  vars  (s1,  s2 and  array 
elements)  was  designed.  This  allows  analyzing  state 
changes associated with the read/write operations on these 
variables.

5. EXPERIMENTAL SETUP

The  monitoring  tool  was  developed  with  the  Pin  [11] 
dynamic binary instrumentation framework, version 2.11. 
The perf_event system calls to access counters were used. 
Experiments  were  performed  on  a  machine  with  two 
Xeon X5670 processors, each of which with 6 cores with 
HT.  The  operating  system  was  a  Debian  wheezy/sid 
x86_64 GNU/Linux with kernel 3.2.0, and the compiler 
was gcc, version 4.7.0. No optimization options were used 

because they may modify the codes to be analyzed. The 
micro-architecture of these processors, called Westmere, 
corresponds to the Nehalem micro-architecture with 32nm 
technology. This processor has three levels of cache – L1 
(32KB) and L2 (256KB) are private of each core and L3 
(12MB)  is  shared  among  all  cores  within  the  same 
physical processor  [12]. The coherence protocol is based 
on MESI, but adds a fifth state, "Forward" (F), to indicate 
that the line was sent from one socket to another. In this 
scheme, a cache line that is read by several cores will be 
in state S for all copies and in all cache levels (L1, L2 and 
L3). When one of the copies is modified, its cache line 
state is changed to Modified (M). That change of state is 
propagated to the other cores, whose copies are changed 
to the Invalid state (I) [13].
The  event  selected  was  MEM_UNCORE_RETIRED: 
LOCAL_HITM,  whose  description  in  the  Software 
Developer's Manual for Intel architectures  [14] indicates 
that it counts the number of reading instructions on cache 
lines that  are in state M in the cache of a sibling core, 
which means that this event can detect access pattern two 
(it  occurs after the read operation). As far as we know, 
there is no event to detect access pattern one (at least in 
the Westmere micro-architecture). 
To  see  if  the  event  selected  was  appropriate  for  our 
purposes, the micro-benchmarks explained in Section 4.2 
were used. In all remaining experiments, the SPLASH-2 
benchmark suite  [15] was used. These benchmarks were 
run on 2 threads using the test inputs. Table 5 shows the 
configuration for each program of the suite.

Repeat N times          P(&s1)          V(&s1)          P(&s2)          V(&s2)

tmp = Var[c];

tmp = Var[c];

Thread 0     Thread 1

Case 0                                Case 1                                Case 2                                Case 3

tmp = Var[c];

 Var[c] = 1;

Thread 0     Thread 1

 Var[c] = 0;

tmp = Var[c];

Thread 0     Thread 1

 Var[c] = 0;

Var[c] = 1;

Thread 0     Thread 1

Figure 1. Micro-benchmarks for each access pattern.

P(cache_line *s){
  while(*s <= 0);
  *s--;
}

V(cache_line *s){
  *s++;
}

Figure 2.  P() and V() functions used to synchronize threads. 



6. RESULTS

To reduce  the possibility of  error  in  the measurements, 
each test was run ten times and the results averaged.

6.1 Unserializable detection

This  experiment  was  designed  to  demonstrate  that  the 
event selected can track access pattern 2, which will allow 
detecting unserializable interleavings 2, 3 and 5. Since the 
micro-benchmarks explained in section 4.2 use a shared 
var  to  synchronize  threads,  an  average  of  one  event 
triggered  by  each  iteration  is  expected  (remember  that 
each event is triggered with a read operation after a write 
operation in cache of a sibling core). The only difference 
is found in case 2, where thread 1 must trigger an extra 
event after  each iteration caused by a reading operation 
after a writing operation on variable Var[c]. 
The results of  the experiments  can be seen  in Table 6. 
Each micro-benchmark was executed with different sizes 

of N to show the behavior of the event scales with the size 
of the problem. 
The table should be interpreted as follows – rows show 
the event count for thread 0 and thread 1 in each access 
pattern  by  each  size  problem,  and  calculate  the  ratio 
between  this  value  and  the  size  of  the  problem  (cells 
highlighted in gray). Results are rounded to two decimal 
places. It should be noted that each access pattern exhibits 
the same behavior regardless of problem size. In all cases, 
with each iteration of the loop, the event is triggered once. 
This  can  be  explained  from  Figures  1  and  2.  For 
operations in which the read/write activity occurs in the 
proper order, threads are synchronized using two shared 
variables, s1 and s2. For example, thread 1 keeps reading 
s2 until thread 0 increases its value (see the gray arrow in 
Figure 1). 
Because  the  write  policy  is  a  write-allocate  one,  the 
processor running thread 0 brings variable s2 to its own 
cache. Then updates the coherence state to M (modified). 
After that, thread 1 reads the line in M state from the core 
cache  where  it  is  running thread0,  triggering the event. 
The same applies to thread 0. As we mentioned before, it 
can be seen that for case 2, thread 1 has counted an extra 
event with each iteration, showing that the event can be 
used to distinguish pattern 2 from the others.  Thus, the 
selected event will identify three of the four unserializable 
interleavings.  As  previously  mentioned,  an  event  for 
pattern 1 was not found. However, it has to be considered 
that, if interleavings are concentrated in the code, there is 
a high probability that most of the times the tool will be 
enabled  when  interleaving  case  6  happens.  This 
hypothesis will be tested in future experiments.

6.2 SPLASH-2 unsafe access indicator

The monitoring tool was used with each application of the 
SPLASH-2  suite  benchmarks.  Only  read  and  write 
instructions  were  considered  because  the  technique  is 
based  in interleaving  analysis  and does not  require  any 
other type of instructions. Results are shown in Table 7. 
In  most  of  the  cases,  the  UAI  is  lower  than  1%.  This 
means that 99% of the read and write operations do not 
trigger the event and, in consequence, we know for sure 
that there are no unserializable interleavings in cases 2, 3 
or 5 in those code regions. It should be noted that UAI is 
not an indicator of the number of shared instructions; it 
only serves as a measure of the number of unserializable 
interleavings. The program may have a higher percentage 
of read and write operations to shared vars, but these may 
be serializable or case 6 interleavings.

6.3 Unserializable interleavings distribution

As mentioned in Section 3.3, the UAI is not enough to 
know  if  our  approach  could  improve  tool  performance 
with the application. In order to decide if the monitoring 
tool can be disabled, we need to know how interleavings 
are distributed along the code. 
These experiments were made with the monitoring tool in 
operation mode 2, as described in Section 4.1. The tool 
was  set  to  take  approximately  100  samples  for  each 

Application (configuration) RD+WR Others Total

BARNES 
(16K particles)

1138,19 718,85 1857,04

CHOLESKY 
(Tk15.0)

183,06 242,15 425,22

FFT 
(64K points)

9,26 24,53 33,79

FMM 
(16K particles)

437,37 2160,04 2597,41

LU 
(512x512 
matrix, 16x16 
block)

Continuous Block
152,64 221,75 374,39

Non Continuous 
Block

2,51 3,4 5,91

OCEAN 
(258x258)

Continuous Partition
160,08 265,09 425,18

Non Continuous 
Partition

148,13 273,97 422,1

RADIOSITY 
(room -ae 5000.0 -en 0.050 -bf 0.10)

575,93 1021,19 1597,13

RADIX 
(256K keys, 1024 radix)

27,82 29,13 56,94

RAYTRACE 
(car)

379,43 576,67 956,09

VOLREND 
(head)

2108,2 2107,58 4215,78

WATER 
(512 
molecules)

NSQUARED 195,84 382,36 578,19

SPATIAL 177,73 318,93 496,67

Table 5. Millions of instructions by application. 

Pattern Thr 10000 100000 1000000

Case 0
0 11807,7 1,18 101987,2 1,02 1009867,8 1,01

1 11138,1 1,11 98839,6 0,99 980244,2 0,98

Case 1
0 11635,8 1,16 94526,7 0,95 926031,5 0,93

1 11058,3 1,11 98601 0,99 974063,8 0,97

Case 2
0 12420,8 1,24 97233,9 0,97 936528,9 0,94

1 20114,6 2,01 192174,5 1,92 1904729,5 1,90

Case 3
0 11654,7 1,17 95997,3 0,96 920952,7 0,92

1 10791,3 1,08 95941,7 0,96 894380,1 0,89

Table 6. Results of evaluating each access pattern between two threads 
for different problem sizes. 



application.  The tool has a set  of  software counters  for 
each  thread;  every  time  an  instruction  is  executed,  the 
corresponding counter is increased. When a new thread is 
created, its counter is initialized with the partial count of 
thread 0. When the counter reaches the sample step preset 
for the application, the hardware counter is read and saved 
with the software counter number in a file. The hardware 
counter  is  set  to  0  and  the  process  continues  until  the 
application finishes. 
Figures  2  and  3  show  the  distributions  for  three 
applications of the suite. These cases were chosen because 
they  are  representative  of  the  rest.  The  horizontal  axis 
corresponds to the number of instructions executed, and 
the vertical axis to the count of events. Threads 0 and 1 
are  the  blue  and  red  lines,  respectively.  The  legend 
corresponding to the horizontal axis was intentionally left 
blank because large numbers make it difficult to read the 
figure. As shown in the figure, three different behaviors 
were found among the programs:
– In FFT, each thread has several  peaks of the event 

higher than zero. It should also be noted that there is 
a  significant  amount  of  code  that  can  be  executed 

without instrumentation: it is where both threads have 
zero count of the event between the peaks. BARNES, 
CHOLESKY, and RADIX behave in the same way.

– In  OCEAN,  there  seems  to  be  significant  issues 
between the threads. This is the worst-case scenario 
for  our  proposal,  because  an  application  with  this 
behavioral pattern would cause our tool to constantly 
toggle between the enabled and disabled states.. Both 
OCEAN,  both  LU,  VOLREND,  and  RAYTRACE 
versions showed this behavior.

Application
Thread 0 Thread 1

Event Count RD+WR (M) UAI Event Count RD+WR (M) UAI

BARNES 471613 578,21 0,08% 479037 575,49 0,08%

CHOLESKY 349135 116,02 0,30% 274857 83,59 0,33%

FFT 52355 5,26 0,99% 38218 4,01 0,95%

FMM 274997 221,66 0,12% 235089 220,14 0,11%

LU
Continuous Block 46271 80,94 0,06% 39468 72,42 0,05%

Non Continuous 
Block

33724 1,36 2,49% 27294 1,16 2,35%

OCEAN

Continuous 
Partition

554190 81,20 0,68% 528390 81,32 0,65%

Non Continuous 
Partition

514282 74,55 0,69% 461943 74,59 0,62%

RADIOSITY 886884 298,43 0,30% 903262 296,89 0,30%

RADIX 51664 14,46 0,36% 46883 14,47 0,32%

RAYTRACE 563691 243,62 0,23% 586121 141,93 0,41%

VOLREND 304107 1670,51 0,02% 737558 472,17 0,16%

WATER
NSQUARED 189560 99,02 0,19% 155233 97,01 0,16%

SPATIAL 254036 88,95 0,29% 140784 88,83 0,16%

Table 7. Unsafe Access Indicator (UAI) estimation for each application of the SPLASH-2 suite. 
Counts are expressed in millions of instructions.
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– WATER  presents  an  interesting  situation  –  even 
though the program registers counts higher than zero 
all the time, there is a pattern in the way events occur. 
Most of the time, event count is lower than 300. This 
kind of behavior is probably caused intentionally by 
the programmer, such as the case of the synchronize 
mechanism  through  shared  vars  we  used  for  the 
micro-benchmarks.  FMM,  RADIOSITY,  and 
WATER SPATIAL have this behavior.

It should be noted that a program can exhibit one or all of 
these behaviors in different runs. For this reason, our goal 
was to show that a dynamic technique for detecting unsafe 
code regions can be implemented, rather  than obtaining 
static information on program execution.

7. CONCLUSION

This paper presents a model for using hardware counters 
in detecting unserializable interleavings. Through the use 
of instrumentation techniques, we were able to establish a 
relationship between memory access patterns, the size of 
the  problem,  and  the  proposed  event.  From  the 
experiments,  it  can  be  concluded  that  counters  can  be 
used to detect the execution of at least three of the four 
cases of unserializable interleavings. 
Our  experiments  show that  the  technique  proposed can 
help dynamically identify unsafe code regions. Depending 
on the way the program has been developed, it is possible 
to use this information to decide when to disable or enable 
the  monitoring  tool.  In  some  cases,  where  there  are 
constant  unserializable interleavings along the code, our 
proposal  could be useful  if trained first  to adjust  to the 
threshold indicator of unsafe interleavings (in this paper, 
it was assumed to be zero). 
We  are  currently  working  to  use  this  information  to 
develop a smart tool to detect atomicity violations, which 
would only be active on those program segments that run 
unserializable interleavings, which is expected to achieve 
an  improvement  in  execution  times  of  detection 
algorithms. 
Recalling that AVIO introduces a 24X penalty in average, 
this optimization could significantly reduce the overhead 
of the software version without modifying the architecture 
of the target machine.
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