
UNSERIALIZABLE INTERLEAVING DETECTION USING HARDWARE
COUNTERS

Fernando Emmanuel Frati1, 2, Katzalin Olcoz Herrero3, Luis Piñuel Moreno3, Marcelo Naiouf1, Armando De Giusti1,2

1 Institute of Research in Computer Science LIDI (III-LIDI),
School of Computer Science, UNLP, Argentina

{fefrati, mnaiouf, degiusti }@lidi.info.unlp.edu.ar
2 National Commission of Scientific and Technical Research (CONICET)

School of Computer Science, UNLP, Argentina
3 Group of Architecture and Technology of Computing Systems (ArTeCS),

Complutense University of Madrid, España
{katzalin, lpinuel}@dacya.ucm.es

ABSTRACT

Concurrent programs are needed to take advantage of
multicore computers. Debugging such concurrent
programs is very difficult due to their nondeterminism.
So, error detection tools need to be used in production
environments. One very popular detection technique is
interleaving analysis, which detects atomicity violations
in shared memory programs. Unfortunately, the
algorithms that implement this technique can be very
costly at runtime, restricting its use to the software testing
stage. This paper shows how to use the hardware counters
present in today's processors to detect the occurrence of
unserializable interleavings. This optimization will reduce
the overhead introduced by concurrency bug detection
tools.

KEY WORDS

Parallel architectures, concurrent program, concurrency
error, error detection, debugging, hardware counters

1. INTRODUCTION

In any concurrent program, the programmer has to specify
how processes are synchronized. Depending on the
communication model used, there are different methods to
establish synchronization. For example, in a shared
memory model, it is common to use semaphores or
monitors, whereas in a distributed memory model,
message passing is commonly used. Concurrency errors
occur when the programmer makes a mistake when using
any of these methods, resulting in race conditions,
deadlocks, or atomicity violations.
One feature that makes concurrency errors particularly
difficult to detect, is that they appear only under certain
implementation condition, depending mainly on the non-
determinism present in the execution order of processes.
If these errors do not occur during the test, the program
will be part of the production systems for which it was
thought, making them vulnerable.

These errors, their causes, and ways to avoid them have
been studied extensively by the scientific community. In
1978, Lamport established the concept of partial order
between segments of processes [1] (it is called Happens
Before relation), and it has been used to build race-
condition detection tools. Lockset (proposed in 1997 [2])
is a different method to detect race conditions which
verifies that all shared variables are protected at the time
they are accessed. Deadlocks are another example of
common mistake present in concurrent programs. In 1972,
Holt [3] proposed a model that was able to detect
deadlock conditions for shared resources (in fact, this
technique is used by operating systems to manage their
resources). Finally, with the advent of multiprocessors to
conventional computers, atomicity violations have begun
to take a leading role because their occurrence is more
generalized than before. In 2006, Shan Lu [4] postulated
an analysis of the order in which multiple threads access
memory to help detect atomicity violations. The technique
classifies interleavings as serializable or unserializable,
where the latter may be atomicity violations (this issue is
addressed further on this paper). Atomicity violations
have also been addressed by other authors [5], [6].
Any of these errors can be found frequently in widely
used, real programs, such as Apache, MySQL, or Mozilla
Firefox [7]. Due to this non-determinism in parallel
execution, it would be very useful to have tools to monitor
applications in production environments.
Unfortunately, the overhead introduced by the detection
algorithms is a determining factor in the viability of their
use. For this reason, the current proposals tend to include
a version of the algorithm which uses hardware
extensions to accelerate them and reduce the impact of the
instrumentation. These extensions involve changes to the
architecture of the machines where they run (such as
adding bits to the cache line).
In this paper, a different approach is proposed: using data
available through the processor's performance-counters to
choose when to run detection algorithms. Previous
experiments [8] indicate that much of the overhead caused

mailto:%7Bemail%7D@dominio.com
mailto:lpinuel%7D@dacya.ucm.es
mailto:degiusti%7D@lidi.info.unlp.edu.ar
mailto:degiusti%7D@lidi.info.unlp.edu.ar

by the monitoring tool is wasted in monitoring safe code
regions. A similar technique was used by Greathouse in
2011[9] to optimize a tool for detecting race conditions
called Intel Inspector XE. However, this tool is only able
to detect race conditions, and it uses algorithms based on
happens-before and lockset. The techniques and
conclusions of this work are aimed at determining the
feasibility of using counters to detect unserializable
interleavings, which will optimize techniques for
detecting atomicity violations in shared memory
environments. The hypothesis is that it will reduce the
instrumentation overhead by restricting access to those
which are actually not serializable.
The paper is organized as follows: Section 2 offers a
background and main concepts needed to follow the rest
of the work. Section 3 presents our approach and the
features addressed in this paper. Section 4 explains the
algorithms used for the experiments. Section 5 describes
the test environment. Section 6 shows the results of the
experiments. Finally, in Section 7, conclusions are drawn.

2. BACKGROUND

2.1 Interleavings Analysis

Concurrency errors can be seen through the pattern access
(reads and writes) that several processes make on each
memory direction. When a variable is accessed between
two accesses to it by a different thread, it is called
interleaving. Depending on interleaving configuration,
this could be a concurrency error. Table 1 shows the
different possible configurations: in each case, both
accesses by thread 0 are aligned to the left, whereas the
one interleaved access by thread 1 is indented to the right.
Over eight possible cases, four can be serialized.
Serialized means that interleaving does not alter the
perception that the processes involved have regarding the
memory region they access, and is therefore considered to
be safe. Interleavings 0, 1, 4 and 7 are safe because their
occurrence produces the same effect as if they had not
happened. On the other hand, cases 2, 3, 5 and 6 are

interleavings that may have been caused by a concurrency
error.
Proposals of this type seek the occurrence of
unserializable interleavings. When an unserializable
interleaving is detected, the tool emits an alert or initiates
a corrective procedure (immediately after the error
occurs), even to determine what instructions caused the
error.
The instrumentation required to perform this type of
analysis introduces a high overhead in the monitored-
application's runtime. As mentioned in the introduction,
algorithms to implement this technique include a version
that uses hardware extensions to accelerate, and thus
diminish the impact of instrumentation. Table 2 shows the
results of running the software and hardware versions of
AVIO [4] on the suite of benchmarks SPLASH-2
applications. Unfortunately these extensions involve
changes to the architecture of the machines they run on
(e.g., add bits to the cache line), their application in real
production environments thus becoming non-viable.

2.2 Hardware counters

All current processors have a set of special registers called
hardware counters [10]. These registers can be
programmed to count the number of times an event occurs
within the processor during the execution of an
application. Such events can provide information on
different aspects of program execution (e.g., number of
instructions executed, number of failures in L1 cache, or
number of floating point operations executed). This
information is intended to help developers understand the
performance of their algorithms and optimize their
programs. These events are poorly documented, and often
vary between different architectures. Processor
manufacturers usually offer a manual to indicate events
and a brief description of what it is they are supposed to
measure.

3. HARDWARE COUNTERS INTEGRATION
WITH CONCURRENCY BUG DETECTION
TOOLS

The alternative proposed in this paper is to use the
information provided by hardware counters about what is
happening in the processor to filter safe regions of code. It

Case Interleaving Case Interleaving

0
read
 read
read

4
read
 read
write

1
write
 read
read

5
write
 read
write

2
read
 write
read

6
read
 write
write

3
write
 write
read

7
write
 write
write

Table 1. Each case shows a different interleaving configuration. Access
are interleaved read/write operations to the same memory direction by

two threads.

Benchmarks
AVIO

(Hardware)
AVIO

(Software)

fft 0,5 % 42X

fmm 0,4 % 19X

lu 0,4 % 23X

radix 0,4 % 15X

Average 0,4 % 25X

Tabla 2. Overhead comparison between hardware and software versions
of AVIO over SPLASH-2 suite benchmarks. X represents application

runtime without instrumentation.

will improve the performance of bug detection tools based
on interleaving analysis. The key is keeping the
monitoring tool disabled and toggling it to enabled mode
if unserializable interleavings start occurring. In order to
reach this we need:
– To know if unserializable interleavings can be

detected through hardware counters.
– To determine whether most interleavings are

serializable or not. This would hint as to whether
there is a chance of optimization with our proposal.

– To characterize applications through their
unserializable interleavings distribution in the code.

Each one of these features will be explained in the next
subsections.

3.1 Unserializable interleaving detection through
hardware counters

The goal is to find events that can be used to detect code
segments of the program where unserializable
interleavings occur. Since there are no events to measure
interleavings, the problem is simplified to two accesses to
the same memory address from different process. We
assume each process to be running in different cores on a
processor with at lest one level cache shared among them
and a MESI based coherency protocol.
Each access can be a read or a write operation. The
complete interaction between the accesses of each process
is called access pattern. Table 3 summarizes the four
possible cases. In all cases, the event must occur with
each read or write operation.
In coherence MESI-based protocols, there is a "Shared
state" (S) which indicates that the cache line has been read
by more than one processor. The candidate events are
those that indicate a transition to or from this state.
Each access pattern helps detect different interleavings.
Table 4 shows the relationship between these cases. As it
can be seen, the access patterns that are useful for the
purpose of this study are 1 and 2, because they allow
tracing unserializable interleavings 2, 3, 5, and 6.

3.2 Optimization feasibility

Our hypothesis is that overhead can be reduced if

monitoring is restricted to the regions of code that are
unsafe. Thus, to determine if the technique proposed can
improve the performance of the bug detection tool with a
particular application, first we calculate the ratio between
the number of unsafe accesses and total accesses. An
application with an unsafe access indicator (UAI) near to
zero has a high potential because it means there are few
unserializable accesses, whereas an application with an
UAI near to one has a low potential.

3.3 Concentrated vs. distributed interleavings

Even if an application has a high optimization potential, it
is important to know how these unsafe accesses are
distributed by the code. If they are concentrated, it is more
likely that our approach will reach a high performance
improvement. But if they are scattered over the code, our
tool could start continuously toggling between the enabled
and disabled modes. This scenario is undesirable because
it could affect not only the performance, but also the
detection capability of the tool.

4. IMPLEMENTATION

4.1 Monitoring tool

In order to capture the information needed, we designed a
software layer placed between the target application and
the hardware. Basically, this tool detects when a new
thread is created and sets its affinity to a specific core (we
make sure each thread is running in different cores to take
advantage of the changes in coherence states) and starts a
hardware counter configured for the selected event. The
tool also keeps software counters for program
instructions. It can classify them in reads, writes,

Pattern access /
Interleaving

0 1 2 3 4 5 6 7

read
 read
read

write
 read
read

read
 write
read

write
 write
read

read
 read
write

write
 read
write

read
 write
write

write
 write
write

0
read
 read

YES YES - - YES - - -

1
read
 write

- - YES - YES YES YES -

2
write
 read

- YES YES YES - YES - -

3
write
 write

- - - YES - - YES YES

Table 4. Each cell shows if the pattern access can be useful to detect an interleaving.

Case Pattern Case Pattern

0
read
 read

2
write
 read

1
read
 write

3
write
 write

Table 3. Each case shows a different pattern access to the same memory
address by two threads.

branches, and others. This information will be enough to
know the UAI of the target application. The tool has two
operation modes:

1. Showing statistics collected when the target
application finishes.

2. Showing partial statistics collected every preset
number of instructions.

The second operation mode will allow us to determine the
distribution of unserializable interleavings along the code.

4.2 Micro-benchmarks

To verify that an event can be used to distinguish between
different access patterns, we designed the micro-
benchmarks shown in Figure 1.
In each case, the simulated interaction between two
threads is repeated N times (N is a parameter of the
program). Each thread has a local variable called tmp used
to simulate the reading operations. The shared variable is
represented by an array of N elements Var, which is
initialized by the main program thread. In order to have
visibility regarding code operation, functions P() and V()
were implemented with shared variables, instead of using
pthread semaphores. Figure 2 shows the pseudocode for
these operations.
Variables s1 and s2 act as semaphores initialized to 1 and
0 respectively. To avoid false sharing, a structure that fills
the entire cache line for all vars (s1, s2 and array
elements) was designed. This allows analyzing state
changes associated with the read/write operations on these
variables.

5. EXPERIMENTAL SETUP

The monitoring tool was developed with the Pin [11]
dynamic binary instrumentation framework, version 2.11.
The perf_event system calls to access counters were used.
Experiments were performed on a machine with two
Xeon X5670 processors, each of which with 6 cores with
HT. The operating system was a Debian wheezy/sid
x86_64 GNU/Linux with kernel 3.2.0, and the compiler
was gcc, version 4.7.0. No optimization options were used

because they may modify the codes to be analyzed. The
micro-architecture of these processors, called Westmere,
corresponds to the Nehalem micro-architecture with 32nm
technology. This processor has three levels of cache – L1
(32KB) and L2 (256KB) are private of each core and L3
(12MB) is shared among all cores within the same
physical processor [12]. The coherence protocol is based
on MESI, but adds a fifth state, "Forward" (F), to indicate
that the line was sent from one socket to another. In this
scheme, a cache line that is read by several cores will be
in state S for all copies and in all cache levels (L1, L2 and
L3). When one of the copies is modified, its cache line
state is changed to Modified (M). That change of state is
propagated to the other cores, whose copies are changed
to the Invalid state (I) [13].
The event selected was MEM_UNCORE_RETIRED:
LOCAL_HITM, whose description in the Software
Developer's Manual for Intel architectures [14] indicates
that it counts the number of reading instructions on cache
lines that are in state M in the cache of a sibling core,
which means that this event can detect access pattern two
(it occurs after the read operation). As far as we know,
there is no event to detect access pattern one (at least in
the Westmere micro-architecture).
To see if the event selected was appropriate for our
purposes, the micro-benchmarks explained in Section 4.2
were used. In all remaining experiments, the SPLASH-2
benchmark suite [15] was used. These benchmarks were
run on 2 threads using the test inputs. Table 5 shows the
configuration for each program of the suite.

Repeat N times P(&s1) V(&s1) P(&s2) V(&s2)

tmp = Var[c];

tmp = Var[c];

Thread 0 Thread 1

Case 0 Case 1 Case 2 Case 3

tmp = Var[c];

 Var[c] = 1;

Thread 0 Thread 1

 Var[c] = 0;

tmp = Var[c];

Thread 0 Thread 1

 Var[c] = 0;

Var[c] = 1;

Thread 0 Thread 1

Figure 1. Micro-benchmarks for each access pattern.

P(cache_line *s){
 while(*s <= 0);
 *s--;
}

V(cache_line *s){
 *s++;
}

Figure 2. P() and V() functions used to synchronize threads.

6. RESULTS

To reduce the possibility of error in the measurements,
each test was run ten times and the results averaged.

6.1 Unserializable detection

This experiment was designed to demonstrate that the
event selected can track access pattern 2, which will allow
detecting unserializable interleavings 2, 3 and 5. Since the
micro-benchmarks explained in section 4.2 use a shared
var to synchronize threads, an average of one event
triggered by each iteration is expected (remember that
each event is triggered with a read operation after a write
operation in cache of a sibling core). The only difference
is found in case 2, where thread 1 must trigger an extra
event after each iteration caused by a reading operation
after a writing operation on variable Var[c].
The results of the experiments can be seen in Table 6.
Each micro-benchmark was executed with different sizes

of N to show the behavior of the event scales with the size
of the problem.
The table should be interpreted as follows – rows show
the event count for thread 0 and thread 1 in each access
pattern by each size problem, and calculate the ratio
between this value and the size of the problem (cells
highlighted in gray). Results are rounded to two decimal
places. It should be noted that each access pattern exhibits
the same behavior regardless of problem size. In all cases,
with each iteration of the loop, the event is triggered once.
This can be explained from Figures 1 and 2. For
operations in which the read/write activity occurs in the
proper order, threads are synchronized using two shared
variables, s1 and s2. For example, thread 1 keeps reading
s2 until thread 0 increases its value (see the gray arrow in
Figure 1).
Because the write policy is a write-allocate one, the
processor running thread 0 brings variable s2 to its own
cache. Then updates the coherence state to M (modified).
After that, thread 1 reads the line in M state from the core
cache where it is running thread0, triggering the event.
The same applies to thread 0. As we mentioned before, it
can be seen that for case 2, thread 1 has counted an extra
event with each iteration, showing that the event can be
used to distinguish pattern 2 from the others. Thus, the
selected event will identify three of the four unserializable
interleavings. As previously mentioned, an event for
pattern 1 was not found. However, it has to be considered
that, if interleavings are concentrated in the code, there is
a high probability that most of the times the tool will be
enabled when interleaving case 6 happens. This
hypothesis will be tested in future experiments.

6.2 SPLASH-2 unsafe access indicator

The monitoring tool was used with each application of the
SPLASH-2 suite benchmarks. Only read and write
instructions were considered because the technique is
based in interleaving analysis and does not require any
other type of instructions. Results are shown in Table 7.
In most of the cases, the UAI is lower than 1%. This
means that 99% of the read and write operations do not
trigger the event and, in consequence, we know for sure
that there are no unserializable interleavings in cases 2, 3
or 5 in those code regions. It should be noted that UAI is
not an indicator of the number of shared instructions; it
only serves as a measure of the number of unserializable
interleavings. The program may have a higher percentage
of read and write operations to shared vars, but these may
be serializable or case 6 interleavings.

6.3 Unserializable interleavings distribution

As mentioned in Section 3.3, the UAI is not enough to
know if our approach could improve tool performance
with the application. In order to decide if the monitoring
tool can be disabled, we need to know how interleavings
are distributed along the code.
These experiments were made with the monitoring tool in
operation mode 2, as described in Section 4.1. The tool
was set to take approximately 100 samples for each

Application (configuration) RD+WR Others Total

BARNES
(16K particles)

1138,19 718,85 1857,04

CHOLESKY
(Tk15.0)

183,06 242,15 425,22

FFT
(64K points)

9,26 24,53 33,79

FMM
(16K particles)

437,37 2160,04 2597,41

LU
(512x512
matrix, 16x16
block)

Continuous Block
152,64 221,75 374,39

Non Continuous
Block

2,51 3,4 5,91

OCEAN
(258x258)

Continuous Partition
160,08 265,09 425,18

Non Continuous
Partition

148,13 273,97 422,1

RADIOSITY
(room -ae 5000.0 -en 0.050 -bf 0.10)

575,93 1021,19 1597,13

RADIX
(256K keys, 1024 radix)

27,82 29,13 56,94

RAYTRACE
(car)

379,43 576,67 956,09

VOLREND
(head)

2108,2 2107,58 4215,78

WATER
(512
molecules)

NSQUARED 195,84 382,36 578,19

SPATIAL 177,73 318,93 496,67

Table 5. Millions of instructions by application.

Pattern Thr 10000 100000 1000000

Case 0
0 11807,7 1,18 101987,2 1,02 1009867,8 1,01

1 11138,1 1,11 98839,6 0,99 980244,2 0,98

Case 1
0 11635,8 1,16 94526,7 0,95 926031,5 0,93

1 11058,3 1,11 98601 0,99 974063,8 0,97

Case 2
0 12420,8 1,24 97233,9 0,97 936528,9 0,94

1 20114,6 2,01 192174,5 1,92 1904729,5 1,90

Case 3
0 11654,7 1,17 95997,3 0,96 920952,7 0,92

1 10791,3 1,08 95941,7 0,96 894380,1 0,89

Table 6. Results of evaluating each access pattern between two threads
for different problem sizes.

application. The tool has a set of software counters for
each thread; every time an instruction is executed, the
corresponding counter is increased. When a new thread is
created, its counter is initialized with the partial count of
thread 0. When the counter reaches the sample step preset
for the application, the hardware counter is read and saved
with the software counter number in a file. The hardware
counter is set to 0 and the process continues until the
application finishes.
Figures 2 and 3 show the distributions for three
applications of the suite. These cases were chosen because
they are representative of the rest. The horizontal axis
corresponds to the number of instructions executed, and
the vertical axis to the count of events. Threads 0 and 1
are the blue and red lines, respectively. The legend
corresponding to the horizontal axis was intentionally left
blank because large numbers make it difficult to read the
figure. As shown in the figure, three different behaviors
were found among the programs:
– In FFT, each thread has several peaks of the event

higher than zero. It should also be noted that there is
a significant amount of code that can be executed

without instrumentation: it is where both threads have
zero count of the event between the peaks. BARNES,
CHOLESKY, and RADIX behave in the same way.

– In OCEAN, there seems to be significant issues
between the threads. This is the worst-case scenario
for our proposal, because an application with this
behavioral pattern would cause our tool to constantly
toggle between the enabled and disabled states.. Both
OCEAN, both LU, VOLREND, and RAYTRACE
versions showed this behavior.

Application
Thread 0 Thread 1

Event Count RD+WR (M) UAI Event Count RD+WR (M) UAI

BARNES 471613 578,21 0,08% 479037 575,49 0,08%

CHOLESKY 349135 116,02 0,30% 274857 83,59 0,33%

FFT 52355 5,26 0,99% 38218 4,01 0,95%

FMM 274997 221,66 0,12% 235089 220,14 0,11%

LU
Continuous Block 46271 80,94 0,06% 39468 72,42 0,05%

Non Continuous
Block

33724 1,36 2,49% 27294 1,16 2,35%

OCEAN

Continuous
Partition

554190 81,20 0,68% 528390 81,32 0,65%

Non Continuous
Partition

514282 74,55 0,69% 461943 74,59 0,62%

RADIOSITY 886884 298,43 0,30% 903262 296,89 0,30%

RADIX 51664 14,46 0,36% 46883 14,47 0,32%

RAYTRACE 563691 243,62 0,23% 586121 141,93 0,41%

VOLREND 304107 1670,51 0,02% 737558 472,17 0,16%

WATER
NSQUARED 189560 99,02 0,19% 155233 97,01 0,16%

SPATIAL 254036 88,95 0,29% 140784 88,83 0,16%

Table 7. Unsafe Access Indicator (UAI) estimation for each application of the SPLASH-2 suite.
Counts are expressed in millions of instructions.

0

200

400

600

800

1000

1200

FFT
Thread 0

Thread 1

Figure 2. Ideal unserializable interleaving distribution .

0

500

1000

1500

2000

2500

3000

OCEAN
Continuous Partition

Thread 0

Thread 1

0

500

1000

1500

2000

2500

3000

WATER
NSQUARED

Thread 0

Thread 1

Figure 3. Special unserializable interleaving distribution

– WATER presents an interesting situation – even
though the program registers counts higher than zero
all the time, there is a pattern in the way events occur.
Most of the time, event count is lower than 300. This
kind of behavior is probably caused intentionally by
the programmer, such as the case of the synchronize
mechanism through shared vars we used for the
micro-benchmarks. FMM, RADIOSITY, and
WATER SPATIAL have this behavior.

It should be noted that a program can exhibit one or all of
these behaviors in different runs. For this reason, our goal
was to show that a dynamic technique for detecting unsafe
code regions can be implemented, rather than obtaining
static information on program execution.

7. CONCLUSION

This paper presents a model for using hardware counters
in detecting unserializable interleavings. Through the use
of instrumentation techniques, we were able to establish a
relationship between memory access patterns, the size of
the problem, and the proposed event. From the
experiments, it can be concluded that counters can be
used to detect the execution of at least three of the four
cases of unserializable interleavings.
Our experiments show that the technique proposed can
help dynamically identify unsafe code regions. Depending
on the way the program has been developed, it is possible
to use this information to decide when to disable or enable
the monitoring tool. In some cases, where there are
constant unserializable interleavings along the code, our
proposal could be useful if trained first to adjust to the
threshold indicator of unsafe interleavings (in this paper,
it was assumed to be zero).
We are currently working to use this information to
develop a smart tool to detect atomicity violations, which
would only be active on those program segments that run
unserializable interleavings, which is expected to achieve
an improvement in execution times of detection
algorithms.
Recalling that AVIO introduces a 24X penalty in average,
this optimization could significantly reduce the overhead
of the software version without modifying the architecture
of the target machine.

REFERENCES

[1] L. Lamport, Time, clocks, and the ordering of events in a
distributed system, Communications of the ACM, vol. 21,
pp. 558–565, jul-1978.

[2] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Anderson, Eraser: a dynamic data race detector for
multithreaded programs, ACM Trans. Comput. Syst., vol.
15, no. 4, pp. 391–411, nov. 1997.

[3] R. C. Holt, Some Deadlock Properties of Computer
Systems, ACM Comput. Surv., vol. 4, no. 3, pp. 179–196,
sep. 1972.

[4] S. Lu, J. Tucek, F. Qin, and Y. Zhou, AVIO: detecting
atomicity violations via access interleaving invariants,
SIGPLAN Not., vol. 41, no. 11, pp. 37–48, 2006.

[5] B. Lucia, J. Devietti, K. Strauss, and L. Ceze, Atom-Aid:
Detecting and Surviving Atomicity Violations, in ISCA
’08: Proceedings of the 35th Annual International
Symposium on Computer Architecture, Washington, DC,
USA, 2008, pp. 277–288.

[6] B. Lucia, L. Ceze, and K. Strauss, ColorSafe:
architectural support for debugging and dynamically
avoiding multi-variable atomicity violations, SIGARCH
Comput. Archit. News, vol. 38, no. 3, pp. 222–233, 2010.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou, Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics, SIGARCH Comput.
Archit. News, vol. 36, no. 1, pp. 329–339, 2008.

[8] F. E. Frati, K. Olcoz Herrero, L. P. Moreno, D. M.
Montezanti, M. Naiouf, and A. De Giusti, Optimización
de herramientas de monitoreo de errores de concurrencia
a través de contadores de hardware, in Proceedings del
XVII Congreso Argentino de Ciencia de la Computación,
La Plata, 2011, vol. XVII, p. 10.

[9] J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T.
Austin, Demand-driven software race detection using
hardware performance counters, SIGARCH Comput.
Archit. News, vol. 39, no. 3, pp. 165–176, jun. 2011.

[10] B. Sprunt, The basics of performance-monitoring
hardware, IEEE Micro, vol. 22, no. 4, pp. 64– 71, ago.
2002.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, Pin:
building customized program analysis tools with dynamic
instrumentation, in PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation, New York, NY, USA, 2005,
pp. 190–200.

[12] Intel® 64 and IA-32 Architectures Optimization
Reference Manual, Intel Corporation, Manual 248966-
026, abr. 2012.

[13] D. Levinthal, Performance Analysis Guide for Intel®
CoreTM i7 Processor and Intel® XeonTM 5500
processors, Intel Corporation, Report Version 1.0, 2009.

[14] Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Intel Corporation, Manual 253669-043US, may
2012.

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, The SPLASH-2 programs: characterization and
methodological considerations, SIGARCH Comput.
Archit. News, vol. 23, pp. 24–36, may 1995.

	1. Introduction
	2. Background
	2.1 Interleavings Analysis
	2.2 Hardware counters

	3. hardware counters integration with concurrency bug detection tools
	3.1 Unserializable interleaving detection through hardware counters
	3.2 Optimization feasibility
	3.3 Concentrated vs. distributed interleavings

	4. Implementation
	4.1 Monitoring tool
	4.2 Micro-benchmarks

	5. Experimental Setup
	6. Results
	6.1 Unserializable detection
	6.2 SPLASH-2 unsafe access indicator
	6.3 Unserializable interleavings distribution

	7. Conclusion

