
Abstract

Mediators – used in federated information systems – provide a homogeneous read-only
access to a set of autonomous information sources. To achieve semantic integration of the
heterogeneous data, correspondences between the autonomous schemas are specified
manually by experts. Considering the continuous evolution of those typically long-living
information systems, schema evolution is an important aspect. New concepts are
necessary to adapt correspondences consistently to evolving schemas.
In this paper we propose a formalized schema evolution mechanism for federated infor-
mation systems based on metamodeling and dynamic logic. We define useful transactions
for schema evolution based on three elements: (1) a metamodel for ODMG schemas, (2) a
metamodel for model correspondence assertions (MoCAs), and (3) a classification of
evolution actions and their specification. For each evolution transaction, semantic precon-
ditions are specified and the impact on the correspondence assertions are described. In
this way, we contribute an important step towards a consistent evolution of federated
information systems.

1 Introduction

1.1 Federated Information Systems

The integration of autonomous information systems into one information infrastruc-
ture is a well known problem in modern information systems engineering ([SL 90],
[Wie 92]). We call those infrastructures federated information systems (FIS,
[BKLW 99]).

We address tightly coupled FIS, where a mediator provides a homogeneous read-
only access point to a dynamically changing information base of autonomous, heter-
ogeneous, and distributed legacy information systems. The mediator uses a virtual
global schema for semantic integration of the data sources. Wrappers encapsulate
data sources resolving technical differences and heterogeneous data models.

Schema Evolution in Federated Information Systems

Susanne Busse

TU Berlin, FB Informatik
Einsteinufer 17

D-10587 Berlin, Germany
sbusse@cs.tu-berlin.de

Claudia Pons

Lifia-UNLP
Calle 50 esq.115 1er.Piso

(1900) La Plata, Argentinia
cpons@info.unlp.edu.ar

To integrate data sources into the FIS, an expert defines relationships between the
mediator schema and the export schemas of the wrappers using a correspondence
specification language (CSL, for example [CGH+ 94],[SS 96],[LNE 89]). Based on a
common data model, correspondences explicitly specify and resolve conflicts caused
by heterogeneous names, semantics and structures (see detailed classifications of
heterogeneity in [SPD 92], [GSC 95]). From the information viewpoint, schemas and
correspondences are the most important components in FIS.

The MoCA language1 ([Bus 99]) introduced in chapter 2 is a CSL for conceptual
design of FIS that is based on the ODMG data model ([CB 97]). In this paper we use
ODMG schemas and MoCAs to analyze the connections of schemas and correspon-
dences through evolution.

1.2 Schema Evolution of Federated Information Systems

As FIS are long-living information infrastructures, the system components must be
flexible enough to cope with continuous change of components and configuration of
the system. Whereas new sources can be easily integrated into the FIS by specifying
new model correspondences, schema evolution requires modifications of correspon-
dence specifications. We distinguish two kinds of evolution scenarios (see Figure 1):

• Global schema evolution: The change of the mediator schema causes the modifi-
cation of all related correspondences to export schemas. The export schemas are
not changed.

• Local schema evolution: The change of one export schema causes the modifi-
cation of all correspondences related to the information source. MoCAs of other
information sources are not affected.

Fig. 1: Schema Evolution in FIS

1 MoCA = Model Correspondence Assertion

Mediator

MoCAs

MoCAs

Schema

Export
Schema 1

Export
Schema 3

Export
Schema 2

Mediator
Schema

Export
Schema 1

Export
Schema 3

Export
Schema 2

Global Schema Evolution Local Schema Evolution

MoCAs

MoCAsMoCAs
MoCAs

MoCAs

MoCAs

MoCAs

MoCAs

Both evolution scenarios consists of the initial change of one schema and the propa-
gation to related correspondence assertions. To guarantee consistency of the federa-
tion through evolution, we have to

• identify primitive modifications of schema and correspondence assertions,

• identify evolution transactions (e.g. meaningful groups of primitive modifications
that occur together frequently), and

• give a formal definition of evolution operations, including applicability conditions
and change propagation.

Our focus are connections between structural models – schemas – and model corre-
spondences regarding their consistent evolution. Existing approaches (see
[BKK+ 87], [Kol 99], [Ber 97], [KS 96], [BFG+ 98]) address the specification of
effects of primitive evolution operations. [Kol 99] also specifies the effects on
federated schemas in federated database systems. Going beyond these works, we
define complex groups of primitive modifications. Those are important in FIS
because structural modifications cannot be modeled as a combination of deletion and
creation of model elements. The related correspondence assertions would be lost
when one model element is deleted and have to be added manually later on.

1.3 Metamodel-based Specification of Evolution

In this paper we will use a metamodeling technique as our primary mechanism to
encounter evolution. Both the ODMG data definition language and the MoCA lan-
guage are modeled within the same dynamic logic framework. A remarkable feature
of this approach is the ability to define the relation of intentional model entities and
correspondence specification entities (see Figure 2). It allows not only for the
description of structural relations among the modeling entities, but also for a formal
definition of structural constraints and dynamic behavior of model evolution opera-
tions.

Our approach can be combined with similar metamodeling approaches in related
contexts:

• [PBF 99] and [PK 99] use the same approach to specify constraints between the
extensional and intentional model level and their consistent evolution, including
both structural and behavioral aspects. This can be used in future work to specify
evolution operations including rules to adapt existing informations sources and
correspondence assertions.

• Many works use metamodels to define the semantics of modeling languages, for
example of the UML [UML 99] ([EFL+ 98], [EFL+ 99]). The metamodeling
approach and the separation of model level and correspondence level makes it
easier to change the underlying common data model of the FIS and to compare or
adapt the evolution specifications with other languages.

Fig. 2: Metamodeling Approach

Structure of the Paper

Chapter 2 gives a brief introduction to the MoCA language and the underlying meta-
model. Chapter 3 classifies evolution operations in FIS and identifies useful evolution
transactions. We describe the formalization of evolution operations with the focus on
constraints between model intention and model correspondences. Chapter 4 con-
cludes and gives an outlook to future work.

2 Model Correspondence Assertions

2.1 Purpose of MoCAs

MoCAs specify an overlap between two information sources or between mediator
schema and export schema of one information source. Autonomy, heterogeneity, and
overlapping universes of discourse are the main characteristics of information
sources in FIS. Correspondence specifications are used for the three main tasks of a
mediator that result from these characteristics:

MoCA S1 ~ S2

Model Level

Model Element

Generalization Class

Intentional Model Elements
MoCA Elements

Metamodel Level

…

Overlap MoCA

SubOverlap
*

…

Work

Country: string
Title: string
PName: string

S1

Works For1..**Person

SSN: int
Title: string
PName: string

Company

CName: string
City: string

S2

…

Model

«instance of»«instance of»

Schema

Correspondence

• Schemas model the same real world objects in different manners. Therefore,
MoCAs may specify mapping rules between intensional descriptions, for
example to map different data types or representations.

• The extensional overlapbetween different data sources specified in a MoCA is
relevant for identifying relevant sources in query processing and for query optimi-
zation.

• Data sources are typically overlapping in their extensions, i.e., they contain the
description of same real world objects. The mediator has to identify same real
world objects obtained from different sources in order to prevent redundant query
results (object fusion, [PAG 96]). For this purpose, MoCAs may specify
properties for identifying semantically equivalent objects.

A MoCA relates one schema to one or more other schemas. A MoCA contains
submodel correspondence assertions. A submodel correspondence assertion relates
parts of the schemas, for example single object types. Because real world objects can
be modeled in different ways, not only single object types, but also associated object
types can constitute a submodel. Precisely, a submodel is defined as a view on the
schema (the base schema), including projection on interesting types and selection of
interesting extensions. View definitions use the object query language (OQL) of
ODMG. Instances of the view are calledconcepts.

Each submodel correspondence assertion addresses the objectives described
above. In the intensional part, it explicitly specifies mappings between intensional
schema elements. If more than one attribute correspond to one attribute in the other
schema, they are grouped by parentheses (Title andPName in the following example).

The extensional part contains the specification of properties that can be used for
identifying corresponding objects and the specification of the extensional overlap
between the submodels.

The MoCA language addresses logical heterogeneity, particularly descriptive
conflicts (intensional part), extension conflicts (extensional part), and structural
conflicts (grouping of schema elements). A deeper discussion of the language can be
found in [Bus 99].

Example. Fig. 3 shows two data sources and the relating MoCA specification.
Obviously, objects of typeWork of S1 correspond to the associated objects ofPerson

andCompany in S2. Theelements part of the MoCA defines these concepts. Corre-
sponding objects are identified by the company name and the SSN.S2 contains data
about all german companies and their employees. Therefore, we select onlyWork

objects of germany to ensure identical extensions. Arrows indicate identified corre-
spondences between attributes. Theintension part of the MoCA specifies mappings
between the attribute domains and defines the implicit attribute value ofCountry.

Fig. 3: MoCA Example

2.2 The MoCA Metamodel

Figure 4 shows the metamodel of schemas and MoCAs. The metamodel consists of
three levels:

• Themodel levelshown at the bottom of the figure defines the model elements of
the ODMG data model ([CB 97]). We use the definitions of the UML metamodel
([UML 99]) for the ODMG modeling concepts.

• The MoCA concept levelin the middle of the figure defines the model elements
and their properties that are used in a MoCA.

• The MoCA correspondence levelspecifies the correspondences between these
concepts on intensional and extensional level.

The MoCA concept level connects the metamodel of ODMG schemas and the
metamodel of MoCAs. The metamodel classConcepts represents a submodel
definition. Instances are derived from the OQL statement. Because of structural
heterogeneity, several model elements may constitute a submodel, such asPerson and
Company in our example before. These model elements are represented byConceptEle-

ments. The name is the name given in the submodel definition.

component overlap MoCA-Example
S1 ~ S2

correspondence Working
elements

submodel Sub1:
select Work w
where w.Country = ’Germany’

~
submodel Sub2:

select Person p, p.employer c
extension

UoD relation Sub1 ≡ Sub2
correspondence identifier

w.Company ~ c.CName and
w.P-SSN ~ p.SSN

intension mappings
w.Country = ’Germany’
w.Company = c.CName
w.P-SSN = p.SSN
w.Person ≈ (p.Title, p.PName)

with
w.Person =

p.Title || ’ ’ || p.PName
and
p.Title = firstWord(w.Person)
and
p.PName = secondWord(w.Person)

end
end component overlap

Work
Agency

 < Procures
1

S1:

*

Works For 1..*

S2:

*

Department

1..*

P-SSN: int
Company: string

Person: string

Person

SSN: int

Title: string
PName: string

Company

CName: string
City: string

Country: string

(employee) (employer)

ConceptProperty represents attributes and associations used in a MoCA. The
property name does have a corresponding property of the base type on the model
level. To capture 1:n attribute conflicts, a MoCA might also specify sets of corre-
sponding properties.

Fig. 4: Metamodel for Models and Model Correspondences

Property Mapping

Expression

Corresponding
Property Sets

(PropCorr)

Concept Property

PropName

Concept Element

Name

Concepts
Predicates

/Names

Model

Name

Model Element

Name

Class

Feature
Attribute

Operation

Association End Association

1..* 1
*

(Attr) (Map-
 ping) 1

1..*(Left) (Right) (RefProp)1

1

*1
(c)

▲ Of

1..*

1 (BaseType)

*

*

*

(Type)
1 * 2..*

1 1

1 1
(Base
Schema)

(Base
 Schema)

Model

Concept
Elements

Elements

MoCA
0,1

xor

*

Kind

/ConceptDef

LeftSubmodel

Name
/Constr

Overlap MoCA

Kind
Name
/LeftSchemaName
/RightSchemaNames

SubOverlap

Name

*

ExtCorr

UoDRel

IntCorr

Assembly Part

Name

PropCorrId AttrIntCorr

Kind

AssoIntCorr

Kind

Implicit Attr

Data Value

1 1 1 1

*

1..* * ***

0,1

0,1

*

MoCA

Assembly

/Constr

0,1 0,1

…

Correspondence
Elements

The MoCA correspondence level at the top of the figure models the MoCA with its
submodel correspondence assertions. A submodel correspondence relates aLeftSub-

model with a submodel of one or more other schemas – anAssembly. ExtCorr represents
the extensional part of a MoCA with the specified overlap of the universes of dis-
course and the identifying properties.IntCorr represents the intensional part with spec-
ified correspondences between attributes or outgoing associations and implicit
attribute values such asCountry. All correspondence specifications are characterized
by a kind (of different types). It specifies for example if a mapping is bijective or if
properties identify an extensional correspondence.

3 Metamodel-based Specification of Schema Evolution

We define evolution operations that enable the automatic adaptation of schema and
correspondence level to guarantee consistency of the federation.

3.1 Classification of Evolution Operations

Evolution actions are classified in two categories (see Figure 5): Primitive Actions
and Composite Actions. Primitive actions represent atomic modifications whereas
composite actions represent groups of modifications that are applied together. A com-
posite action represents an uninterruptable transaction. Consistency of the system
must be guaranteed after the execution of the group of actions, but it may not be guar-
anteed during the execution.

Fig. 5: Classification of Actions

Primitive Evolution Actions

We distinguish model evolution and MoCA evolution. From another point of view,
evolution actions can be classified by the kind of modification. Based on the classifi-
cation of [PK 99] we distinguish three groups (see Figure 6):

• Creation Actions insert a new element into either the model or the MoCA.

• Deletion Actions delete an existing element from either the model or the MoCA.

Action

PrimitiveAction

(Actions)
*

CompositeAction

• Modification Actions modify an existing element from either the model or the
MoCA.

Fig. 6: Classification of Primitive Evolution Actions

A detailed classification of creation, deletion and modification actions in model evo-
lution can be found in [BKK+ 87] or [Kol 99]. We extend this taxonomy and distin-
guish the following actions:

• Creation Actions
Adding
– an attribute
– an operation
– a class
– an association
– an association end

• Deletion Actions
Deleting
– an attribute
– an operation
– a class
– an association
– an association end

• Modification Actions
– on class level

Changing the
- name of an attribute, operation, association, role, or class
- domain of an attribute
- signature of an operation: adding or deleting a parameter
- implementation of an operation
- cardinality of an association

– on structural level
- a class become supertype (subtype) of another class
- a generalization/specialization relationship is deleted

In a similar way, we can define primitive evolution actions to add, delete or modify
objects of the MoCA metamodel. They are used by experts to correct or to extend
correspondence specifications and internally by the system to adapt the specifications
after model evolution actions. We will give some examples in the following section.

PrimitiveAction

Modification

{disjoint}

DeletionCreation

Composite Evolution Actions

We only consider composite evolution actions initiated on model level, because we
are interested in their effects on model correspondences. MoCAs cannot be derived
automatically from schemas. Therefore, the composition of evolution actions to one
uninterruptable transaction is useful if this leads in keeping model correspondences
alive which would be lost otherwise. This situation occurs when modifying a schema
because generally deletion and creation actions are combined and deletion actions
cause deletion actions on MoCAs.

Based on our modeling experiences (see for example [KSW+ 95], [BK+ 00]) we
propose six composite evolution actions for modifying the abstraction level of a
schema. Examples are given in Figure 7.

1. SplitRecord: The record elements of one structured attribute become attributes of
the class.

2. AttributeFusion: Several attributes of one class become elements of one struc-
tured attribute of the class. This is the reverse operation of SplitRecord.

3. SeparateAttributes: Several attributes of one class are moved to a new associated
class.

4. IncludeAttributes: The attributes of an associated class are included in a class.
This is the reverse operation of SeparateAttributes.

5. StructuralAbstraction: Two classes with one relating association build one new
class. For example,S2 in our example in Figure 3 could be abstracted to one class
’Work’.

6. MoveAttributes: Attributes are related to another class.

Fig. 7: Composite Evolution Actions – Examples

Order
To1

DelName Order

Status

No.
DeliveryDate

PlaceOfDelivery

DelName
DelStreet

No.

DelStreet
DelNo
DeliveryDate
Status
…

…
DelNo

Order

PlaceDelivery:
No.

struct{
DelName;
DelStreet;
DelNo;}

DeliveryDate
Status
…

To1Order

Status
No.

PlaceOfDelivery

DelName
DelStreet

… DelNoDeliveryDate

1 2

4

6
SplitRecord AttributeFusion

SeparateAttributes

IncludeAttributes

MoveAttributes

3
0,1

0,1

3.2 Formalization of Evolution Actions

The specification of evolution actions is based on the formalization of the metamod-
els. The dynamic logic signature2 ΣODMG with a formulaΦODMG overΣODMG repre-
sents the model level,ΣMoCA andΦMoCA the MoCA level. The sorts in the signature
correspond to model/MoCA elements (such as classes/concepts) and the action sym-
bols represent modifications of the schema or the MoCA, respectively (evolution).

The model and the MoCA level are integrated by the FIS-theory, a first-order
dynamic logic theory. It consists of a signatureΣFIS and a set of axiomsΦFIS =
ΦODMG ∧ ΦMoCA ∧ ΦJOINT. The signature includes both the signatureΣODMG and
the signatureΣMoCA. It also contains a predicate symbol, ’Exists:Object’ that defines
the set of existing instances in each state.

The FIS-theory is interpreted as a set of transition systems (see [WB 98]). A
transition system is a set of states with a set of transition relations on states. The
domain for states is an algebra whose elements are model and MoCA elements. The
set of transition relations includes transitions representing evolution of the models
and correspondence assertions.
Each evolution action is defined by two formulas:

• Necessary preconditionsto describe the applicability conditions of operations.
The formula (〈op〉true →cond) states that the operationop is applicable only if
the conditioncond is true. Generally, preconditions result from static integrity
constraints.

• Sufficient postconditionsto describe the effect (direct effect and change propa-
gation) of the operations. The formula ([op]cond) states that after the application
of the operationop the conditioncond is true.

These formulas may contain either model elements, or MoCA element or both. This
allows us to define the effects from one level to the other. The specification of each
evolution action has the following structure:

Action act

Precondition τ
Effect γ
Propagation δ

This represents the following dynamic formula: (〈act〉true →τ) ∧ ([act] (γ ∧ δ)).

2 A signatureΣ = ((S, ≤), F, P, A) consists of a set of sort symbolsS, a partial order

relation between sorts≤, a set of function symbolsF, a set of predicate symbolsP,

and a set of Action symbolsA.

We describe model evolution, MoCA evolution, and composite evolution with one
example each. Thereby, we focus on the specification of dependencies between
schema and correspondences.

Primitive Model Evolution Actions

Creation actions have no effects on model correspondence assertions, so that a propa-
gation is only necessary in the model level.

The modification of model elements causes changes in the MoCAs that are based
on these model elements. For example, change of property names have to be propa-
gated to related concept properties. Other modifications like change of attribute
domains mostly result in deleting the related correspondence specifications because
the defined mappings do not hold anymore.

Deletion actions have similar effects: they have to be propagated to dependent
correspondence elements.

Action setAttributeName(attr: Attribute, new: Name)

old = name(attr)

Precondition
Attribute names of the class are unique.

∀a2: Attribute• (class(a2) = class(attr)→ name(a2)≠ new)
The name of an attribute cannot be the same as the name of an opposite
association end.

∀r1 ∈ associationEnd(class(attr)), r2∈ associationEnd(association(r1))•
(r1 ≠ r2 → name(r2)≠ new)

Postcondition
name(attr) = new

Propagation
All concept properties in MoCAs that are based on attr are renamed.

∀ce∈ conceptElement(class(attr)), cp∈ conceptProperty(ce)•
propName(cp) = old→ 〈setPropertyName(cp, new)〉 true

∀ce∈ conceptElement(c)• 〈delConceptElement(ce)〉 true

MoCA Evolution Actions

Evolution actions on the MoCA level modify existing model correspondences. To
emphasize the relationship to the model level, we show the specification of actions to
add concept elements. In contrast to evolution on the model level, the dependency
influences the preconditions of MoCA evolution actions. For clarity, we skip the
modification of derived attributes likeNames andConceptDef.

Action addConceptElement(c: Concepts, n: Name, k: TCElemKind,
type: Name, m: Model, out el: ConceptElement)

TCElemKind = enum(’independent’, ’dependent’, ’grouped’)

Precondition
MoCA level: The concept definition exists, the concept element does not exist.

Exists(c)∧ ¬Exists(el)
Model level:
The base schema exists.

Exists(m)
The base schema contains one class with the given type name.

∃!cl: Class• model(cl) = m∧ name(cl) = type

Postcondition
The concept element exists in the context of the context definition.

Exists(el)∧ concepts(el) = c∧ el ∈ conceptElement(c)
The concept element is initialized. It contains no concept properties.

name(el) = n∧ kind(el) = k ∧ conceptProperty(el) =∅
The concept element is associated with the base type of the model level.

∀cl: Class• (model(cl) = m∧ name(cl) = type)
→ (baseType(el) = cl∧ el ∈ conceptElement(cl))

Composite Evolution Actions

Composite evolution actions consist of a set of (primitive) evolution actions which
build one transaction. Usually the specification of the composite evolution action
does not contain any postcondition, but only propagations to the primitive evolution
actions of the transaction.

To explain the effects on model correspondences we consider the example of
separating the attributes of delivery from the classOrder given in Figure 7. This
evolution action causes the following steps (see Figure 8):

• Adding the new classPlaceOfDelivery, the new associationTo and the attributes
DelName, DelStreet andDelNo in the created class. As all attributes can be null, the
cardinality of the new class is 0..1.

• Adapting the model correspondences that are based on separated attributes.
– Adding a new concept element to the submodel definition. The concept

element is based on the new class. The modification for our example is shown
in the new MoCA at the bottom of Figure 8.

– Moving the concept properties of separated attributes to the added concept
element.

– Modifying the extensional overlap if necessary.
Elements of the changed submodel are associated objects ofOrder andPlaceOf-

Delivery. Single instances ofOrder which has no associatedPlaceOfDelivery (all
attributes are null) are not element of the submodel anymore. As a conse-
quence, the extension of the submodel is smaller than before and the specified

overlap has to be modified. To keep the correspondence specification of single
Order objects withoutPlaceOfDelivery, we copy the submodel correspondence
before we add the new concept element to the submodel definition. As a
result, we get two submodel correspondence assertions.

• Deleting the separated attributes in the old class.
This action results in the deletion of correspondence specifications that are based
on the ’old’ attributes.

Fig. 8: SeparateAttributes – Example

The composite evolution action separateAttributes has the following specification.
For clarity and briefness, we introduce some additional operations and predicates
without detailed definition.

Action SeparateAttributes
(c: Class, attrs: set(Attribute), cName: Name, assName: Name)

newC: Class, newSub: SubOverlap

Precondition
All attributes are features of the class.

∀attr ∈ attrs • attr∈ feature(c)

Order
To1

DelName Order

Status

No.
DeliveryDate

PlaceOfDelivery

DelName
DelStreet

No.

DelStreet
DelNo
DeliveryDate
Status
…

…
DelNo

SeparateAttributes (Order,
0,1

{DelName, DelStreet, DelNo},
’PlaceOfDelivery’, ’To’)

correspondence Order
elements

submodel SubOrder: Order o
~ ...

extension
UoD relation

SubOrder ⊇ ...
intension

o.DelName = ...
...

end

correspondence
OrderWithoutPlaceOfDel

elements
submodel SubOrder: Order o
~ ...

extension
UoD relation

SubOrder ⊇ ...
intension

...
end

correspondence Order
elements

submodel SubOrder:
Order o,

o.PlaceOfDelivery to
~ ...

extension
UoD relation

SubOrder ∩ ...
intension

o.DelName = ...
...

end

The name of the new class and the new association are unique.
(∀cl: Class• model(cl) = model(c)→ name(cl)≠ cName) ∧
(∀ass: Association• model(ass) = model(c)→ name(ass)≠ assName)

…

Postcondition
Propagation

Model level: Adding the new class, association and attributes.
(〈addClass(model(c), cName, newC)〉 true)∧
((∃attr ∈ attrs• ¬canBeNull(attr))→

〈addAssociation(assName, {(c, name(c), 1), (c2, cName, 1)})〉 true)
∧
((∀attr ∈ attrs• canBeNull(attr))→

〈addAssociation(assName, {(c, name(c), 1), (c2, cName, 0..1)})〉 true)
∧
(∀attr ∈ attrs• 〈addAttribute(c2, name(attr), type(attr))〉 true)

MoCA level: if separated attributes are used then
∀el ∈ conceptElement(c)• attrs∩ conceptProperty(el)≠ ∅ →
copy the submodel correspondence and change the extensional overlap if
the cardinality is 0..1 and

((∀attr ∈ attrs, ec = extCorr(subOverlap(concepts(el)))•
canBeNull(attr)) →

(〈copySubOverlap(subOverlap(concepts(el)),
name(subOverlap(concepts(el))) || ’Without’ || cName,
newSub)〉 true)∧

((UoDRel(ec) = ’Equivalence’∧ isLeft(concepts(el)))→
〈setUoDRel(subOverlap(concepts(el)), ’Inclusion’)〉 true)∧

…
) ∧

add a new concept element and concept predicate and
(〈addConceptElement(concepts(el), assName, ’independent’, newC,

model(newC))〉 true)∧
(〈addPredicate(concepts(el),

assName || ’∈ ’ || name(el) || ’.’ || cName)〉 true)∧
move the concept properties of separated attributes

(∀cp ∈ conceptProperty• (propName(cp)∈ map(attrs, name)→
〈moveConceptProperty(c, newC, cp)〉 true))

Model level: Deleting the attributes in the initial class.
(∀attr ∈ attrs• 〈delAttribute(attr)〉 true)

4 Conclusions

In this paper we defined a schema evolution mechanism for federated information
systems (FIS) with formal semantics based on metamodeling and dynamic logic.
From the information viewpoint, schemas and model correspondences – specifying
semantic relationships between schemas – are the most important components in FIS.
Schema evolution is an important aspect in long-living federations. As model corre-
spondence assertions cannot be created automatically, mechanisms are necessary to
adapt them consistently to evolving schemas.

Our metamodel-based approach provides one formal framework to specify the
relationships between schemas and model correspondences. It allows not only for the
formal definition of structural constraints, but also for the specification of the
dynamic semantics of the modeled elements, that means the behavior of model
elements and correspondences through evolution of the FIS. For each evolution
action, we define semantically preconditions and describe the impact on other model
elements (change propagation). In this way, consistency of the system through
evolution is guaranteed.

In the second part we classified useful evolution actions. From a first classification
of evolution scenarios in FIS, we defined primitive evolution actions and useful
composite evolution actions for restructuring of a schema. They are transactions of
several primitive operations and allow to keep existing correspondence assertions.
Future work will go in three directions:

• the detailed evaluation of such evolution transactions and their formal specifi-
cation to complete our taxonomy;

• combining our approach with metamodel-based approaches for schema evolution
on intentional and extensional level;

• embedding the formal framework within tools for specifying correspondence
specifications and within mediator-based information systems (see [Oer 00]).

References

[Ber 97] P. Bergstein,Maintenance of object-oriented systems during struc-
tural evolution, Theory and Practice of Object Systems, Vol. 3, No.
3, John Wiley & Sons, 1997.

[Bus 99] S. Busse,A Specification Language for Model Correspondence
Assertions — Part I: Overlap Correspondences, Technical Report,
Forschungsberichte des Fachbereichs Informatik Nr. 99-8, TU
Berlin, April 1999.

[BFG+ 98] E. Bertino, E. Ferrari, G. Guerrini, I. Merlo,Extending the ODMG
Object Model with time, Proc. ECOOP’98, Lecture Notes in
Computer Science 1445, 1998.

[BKK+ 87] J. Banerjee, W. Kim, H.J. Kim, H.F. Korth,Semantics and Imple-
mentation of Schema Evolution in OODB, Proc. 5th ACM
SIGMOD Conference on Management of Data, ACM, pp. 311-
322, 1987.

[BK+ 00] S. Busse, R.-D. Kutsche et al.,Modellierung informationslogis-
tischer Anwendungen – Projektbericht, Forschungsberichte des
Fachbereichs Informatik Nr. 2000-9, TU Berlin, 2000.

[BKLW 99] S. Busse, R.-D. Kutsche, U. Leser, H. Weber,Federated Infor-
mation Systems – Concepts, Terminology and Architectures,
Technical Report, Forschungsberichte des Fachbereichs Informatik
Nr. 99-9, TU Berlin, April 1999.

[CB 97] R.G.G. Cattell, D.K. Barry (eds.),The Object Database Standard:
ODMG 2.0, Morgan Kaufmann, 1997.

[CGH+ 94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. D. Ullman, J. Widom,The TSIMMIS Project:
Integration of Heterogeneous Information Sources, 16th Meeting
of the Information Processing Society of Japan, pp. 7-18, Tokyo,
Japan, 1994.

[EFL+ 98] A. Evans, R. France, K. Lano, B. Rumpe,Developing the UML as
a formal modeling notation, in: Muller, Bezivin (eds.),UML’98
Beyond the notation, International Workshop, Lecture Notes in
Computer Science LNCS 1618, Springer, 1998.

[EFL+ 99] A. Evans, R. France, K. Lano, B. Rumpe,Towards a core
metamodelling semantics of UML, in: H. Kilov (ed.), Behavior
specifications of business and systems, Kluwer Academic
Publishers, 1999.

[GSC 95] M. Garcia-Solaco, F. Saltor, M. Castellanos,Semantic Heteroge-
neity in Multidatabase Systems, in: O.A. Bukhres, A.K.
Elmagarmid (eds.), Object-Oriented Multidatabase Systems,
Prentice Hall, 1996; pp. 129-202, 1995.

[Kim 95] W. Kim (ed.),Modern Database Systems, Addison-Wesley, 1995.
[Kol 99] S. Kolmschlag,Schemaevolution in Föderierten Datenbanksys-

temen, Dissertation D 466, Universität-GH Paderborn, C-LAB
Publication, Band 2, Shaker Verlag, 1999.

[KCGS 95] W. Kim, I. Choi, S. Gala, M. Scheevel,On Resolving Schematic
Heterogeneity in Multidatabase Systems, in: [Kim 95], pp. 521-
550, 1995.

[KS 96] F. Kesim, M. Sergot,A logic programming framework for modeling
temporal objects, IEEE Transactions on Knowledge and Data
Engineering, Vol. 8, No. 5, Oct. 1996.

[KSW+ 95] R.-D. Kutsche, C. Schöning, S. Waßerroth et al.,Informationsmod-
ellierung im Rahmen eines Umweltinformationssystems,
Forschungsberichte des Fachbereichs Informatik Nr. 95-17, TU
Berlin, April 1995.

[LNE 89] J.A. Larson, S.B. Navathe, R. Elmasri,A Theory of Attribute Equiv-
alence in Databases with Applications to Schema Integration,
IEEE Transactions on Software Engineering, Vol. 15, No. 4, pp.
449-463, Apr. 1989.

[Oer 00] L. Oergel, Viewpointübergreifende Konzeption eines evolutions-
fähigen Informationsmediators, Diplomarbeit, TU Berlin, FB
Informatik, Juli 2000.

[PAG 96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina,Object
Fusion in Mediator Systems, in: T.M. Vijayaraman, A.P.
Buchmann, C. Mohan, N.L. Sarda (eds.),22nd Conf. on Very Large
Databases, VLDB, Mumbai (Bombay), India, 1996.

[PBF 99] C. Pons, G. Baum, M. Felder,Foundations of Object-oriented
Modeling Notations in a Dynamic Logic Framework, in: T. Polle,
T. Ripke, K. Schewe (eds.),Fundamentals of Information Systems,
Kluwer Academic Publishers, chapter 1, 1999.

[PK 99] C. Pons, R.-D. Kutsche,Model evolution and system evolution,
Proc. CACIC’99, Universidad Nacional del Centro de la Provincia
de Buenos Aires, Argentinia, Nov. 1999.

[SL 90] A.P. Sheth, J.A. Larson,Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous
Databases, ACM Computing Surveys, Vol. 22, No. 3, pp. 183-236,
Sep. 1990.

[SPD 92] S. Spaccapietra, C. Parent, Y. Dupont,Model Independent Asser-
tions for Integration of Heterogeneous Schemas, The VLDB
Jounal, Vol. 1, No. 1, pp. 81-126, Jul. 1992.

[SS 96] I. Schmitt, G. Saake,Schema Integration and View Generation by
Resolving Intensional and Extensional Overlappings, in: K.
Yetongnon, S. Hariri (eds.), Proc. 9th ICSA Int. Conf. on Parallel
and Distributed Computing Systems (PDCS’96), pp. 751-758, Sep.
1996.

[UML 99] Object Management Group,The Unified Modeling Language
(UML) Specification – Version 1.3, available at http://
www.omg.org/, 1999.

[Wie 92] G. Wiederhold,Mediators in the Architecture of Future Infor-
mation Systems, IEEE Computers, Vol. 25, No. 3, pp. 38-49, Mar.
1992.

[WB 98] R. Wieringa, J. Broersen,Minimal Transition System Semantics for
Lightweight Class and Behavior Diagrams, in: M. Broy, D.
Coleman, T. Maibaum, B. Rumpe,PSMT Workshop on Precise
Semantics for Software Modeling Techniques, TUM-I9803, TU
München, 1998.

