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Abstract— An interactive visual environment for teaching the 

concepts of concurrence and parallelism in an introductory 

course to algorithms is presented. The Lidi MultiRobot 

Environment (LMRE) is an evolution of the Visual Da Vinci 

environment that is extensively used in the introductory course to 

programming in several universities in Argentina. 

The paper analyzes the problem of the technology change 

introduced by multicore processors and their impact on 

programming. Also, an environment function is described, as well 

as the primitives to be used when programming concurrent 

applications. 

Lastly, implementation-related aspects of the prototype currently 

being tested are described, as well as prototype evolution aimed 

at using it in more advanced concurrency courses. 

Keywords- Algorithms; Concurrency; Parallelism; Sequential 

Programming; Parallel Programming 

I.  INTRODUCTION 

A typical course on algorithms is focused on the expression 
of control through a reduced number of primitives and the 
introduction of basic data structures. 

Typically, an only control flow is analyzed using basic 
efficiency metrics given by the runtime of a given algorithm for 
a certain set of input data. 

Algorithm verification is quite straightforward, and their 
validation is possible if some basic structured programming 
principles are followed [1]. Concepts such as modularization, 
documentation or reuse are incorporated as “good 
programming practices”. Problem analysis is focused on 
finding a correct and, if possible, efficient algorithm expression 
to find the solution. 

At all times, there is a control, one-thread underlying 
architecture, with an only clock. 

However, this approach leaves out two important aspects: 

A. Current processors have a parallel architecture 

The typical architecture of multicore processors, as Figure 1 
shows, has several elements to be considered: 

• Each core has its own clock, local memory, and 
arithmetic logic unit. 

• There are globally and locally shared memories (e.g., 
between two cores), which means that memory access 
is non-uniform (NUMA). 

• An application that will be run on a processor as the 
one shown in Figure 1 can be solved as multiple 
control threads by being concurrently run on the 
various cores. 

• Clearly, this requires solving (at least) two basic 
problems: dividing the application into tasks and 
assigning these concurrent tasks to the cores, and 
coordinating (communication and synchronization) the 
cores to solve the application. 

This brief analysis shows that the underlying “parallel 
machine” has to be taken into consideration to solve the 
application, which impacts every software level, especially 
languages, compilers, and operating system [2]. 

On the other hand, classic algorithm efficiency metrics will 
have to take into account the number of cores used, their 
performance, and the suitability of the concurrent division of 
the application to reduce idle times [3]. 

 
Figure 1.  Multicore structure diagram 

B. real-world problems are basically concurrent 

Concurrency is the property that have some problems to be 
divided (total or partially) into smaller tasks that can be 
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executed at the same time. When these tasks are executed 
simultaneously by different processors, it is said that the 
program runs in parallel. 

The fact that real-world problems are basically concurrent 
must be considered: databases, programming languages, 
operating systems, Web servers, commercial applications — 
they can all benefit if they are solved parallelly. 

Thus, even though newer architectures are more complex, 
they also allow implementing solutions that are more 
efficiently adapted to the application model. 

From this, it is clear that programming teaching poses 
multiple challenges. In particular, the “typical” courses on 
algorithms will have to be redesigned. 

The efficient execution of an application on an architecture 
as the one shown in Figure 1 will almost invariably lead to 
parallel programming. Sequential programming will only be 
used in isolated cases, since it would result in having N-1 idle 
processor cores. 

In this sense, the last recommendation of the ACM/IEEE 
[4] for computer science curricula identifies concurrency as a 
topic of interest and proposes adding parallel programming 
concepts to the first programming course taken by students 
without significantly changing its contents (structured 
programming, then object-oriented programming, and then 
parallel programming).  

There are various proposals aimed at satisfying this 
recommendation. The authors in [5] acknowledge that there is 
a need for the development of tools that help dealing with high-
performance computation problems. They propose a software 
application that helps develop and run parallel programs in 
HPC clusters, on hardware rented to Amazon, and they use 
virtual machine images for each course. Even though the 
framework that they developed is scalable and cost-effective, it 
is aimed at facilitating the management of the resources 
required for teaching parallel programming, rather than helping 
students learn its principles. 

Other authors present a class strategy based on visualization 
tools for the conceptualization of parallel programs [6]. In this 
case, the tool proposed is an application that allows entering 
the code and viewing it by means of UML diagrams. It can be 
used to visually identify candidates to concurrent code sections 
(such as vector initialization). This proposal helps with the 
analysis of the parallel code, but students still need to know the 
language with the specific primitives that support concurrency. 

More recently, the authors of [7] presented a study of the 
last three years of a CS1 course in which concurrency concepts 
were introduced through simple case studies to be implemented 
in Java. In the paper, the authors highlight the importance of 
teaching students general concurrency concepts to awaken their 
interest in those topics, as well as the impossibility of dealing 
with more advanced issues, such as efficiency metrics, at an 
early stage of their studies. 

In this paper, an alternative to these approaches is presented 
– an interactive visual environment to be used in a typical CS1 
course. In this environment, basic concurrent programming 
concepts are presented in a simple way, and students are guided 

to develop concurrent/parallel algorithms. The main difference 
between this approach and those mentioned above is that, 
rather than forcing students to learn the typical syntaxis of 
communication libraries, a set of simplified primitives is 
provided through the environment to help students learn 
concurrency concepts.  

In Section II, a conceptual description of the LMRE 
environment is detailed, and the programming primitives that 
students can use are explained. In Section III, some 
implementation aspects are discussed, and in Section IV, 
conclusions and future research lines are presented. 

II. CS1 COURSE AT THE UNLP 

This course is currently given at the School of Computer 
Science of the UNLP. It is an annual course that is called 
“Algorithms, Data and Programs”. Each year, it serves more 
than 1,000 students.  It is based on a classic, learning-focused 
model to teach algorithm expression, introduction to linear and 
non-linear data structures, and introductory concepts related to 
modularization, efficiency analysis, abstraction and reuse. 

During the 2
nd
 semester, object paradigm concepts are 

introduced. 

Practical activities are initially carried out with a 
proprietary environment, Visual Da Vinci [8], and then with 
Pascal and Delphi. 

Starting in 2010, a gradual change in 3 stages has been 
proposed. The stages are: 

• Incorporation of new processor architecture 
descriptions, as an evolution of the Von Neumann 
machine, and introduction to concurrency basic 
concepts. 

• Development of a visual environment for the 
expression of concurrent and parallel algorithms as an 
evolution of Visual Da Vinci (VDV). This new 
development should support communication and 
synchronization mechanisms, both through shared 
memory and messages. 

• Curriculum redesign to present concurrent/parallel 
programming as the standard, and sequential 
programming as the exception. 

A. Purpose of the LMRE environment 

Based on the analysis discussed in the Introduction and our 
experience in the development ans use of Visual Da Vinci [1] 
[8] [9], an evolution of the initial algorithm programming 
environment used by students of a CS1 course is proposed in 
order to incorporate the key concept of concurrency. 

This means that the environment should allow students to 
naturally work with two basic aspects: 

• Communication among concurrent processes (which 
usually involves cooperation). 

• Synchronization among concurrent processes (which 
usually involves competitiveness or dependence). For 
synchronization to be possible, the expression of 
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explicit and/or implicit mutual exclusion mechanisms 
must be possible. 

To study the communication and synchronization among 
the algorithms (“processes”) residing in the cores of an 
architecture as the one shown in Figure 1, students need to 
acquire the relevant concepts and develop 3 essential models: 

• Shared memory. 

• Messages. 

• Hybrid (algorithms that use shared memory as well as 
messages). 

The LMRE environment is then set to help students express 
concurrent algorithms (to make learning easier, for CS1 
students, these algorithms will be fully parallel, with one 
process linked to one processor) that can communicate and/or 
synchronize through messages and shared memory [10] [11] 
[12] [13]. 

B. Features 

The environment allows defining a “city”, represented by a 
grid of N streets x M avenues. 

A number of K robots can also be defined; these robots can 
move around the city. Each robot has a unique identifier (ID). 
A maximum number of R robots is set. 

The city can have Exclusive Areas (EA). For CS1, only one 
given robot can move in an EA. Shared Areas (SA) can also be 
defined, accessible to all robots. 

City “corners” may have two types of objects (flowers and 
candies).  

The initial distribution of the objects can be done 
automatically by the system or manually by the programmer. 

Robots can store an unlimited number of objects.  

Robots can perform basic actions on the objects (Put down / 
Pick up / Count), and can inform the results of their activities. 

It should be noted that, if N=M=100, K=1 and the entire 
city is available for an only robot, the result would be the 
implementation defined for Visual Da Vinci. 

Since our purpose is working with multiple robots in the 
city, the features of message communication actions and access 
to shared resources (city corners, objects, counters) need to be 
added. 

When there are K robots (K > 1) working in a shared area 
(that can be the entire city), the problems of mutual exclusion 
on shared memory will have to be solved. 

When there are independent robots working in exclusive 
areas in the city, as their collaboration to solve some problem, 
there will be message communication. 

Both mechanisms can co-exist if the city has several 
exclusive areas and one shared area. This case would be a close 
approximation to the architecture model shown in Figure 1. 

C. Primitives 

The 4 essential primitives provided by the environment to 
specify concurrency are:  

Send message (SM): this allows a robot to send a message 
to another robot (identified by ID). After sending the message, 
following the synchronous model, the robot waits until the 
target robot receives the message (synchronization). If 
messages are sent to a special ID, they become broadcast 
messages. 

Receive message (RM): this indicates that a robot will wait 
until it synchronizes with the message sent by another robot. 
To this end, the primitive receives an ID parameter that 
indicates the ID number of the robot that must send the 
message, or a special value that indicates that it can come from 
any robot. 

Block resource (BR): this indicates that the robot requests 
the exclusion of a resource to have exclusive access to it. 
Typically in a Shared Area, corner occupation (which allows 
picking up or putting down objects) must be exclusive for a 
robot. 

Free resource (FR): this indicates that the robot frees the 
resource (for example, the corner that it was occupying). This 
is also a commonly used primitive in Shared Areas. 

In a structure such as the one shown in Figure 2, these 
primitives allow presenting problems of “independent 
processes that communicate through messages”, as in the case 
of 4 robots on exclusive areas carrying out tasks (e.g., picking 
up the flowers found within their areas) and then 
communicating their partial results to a fifth robot that will 
report the results. 

 
Figure 2.  The image shows the city divided in 4 exclusive areas, identified 

by the colors of the robots. 

There can also be “concurrent runs” problems within a 
shared area as the one shown in Figure 3, where several robots 
try to carry out a task (e.g., place candies on certain corners), 
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starting from various locations in the city, and attempting to 
occupy the same corner at the same time. 

 
Figure 3.  This image shows (in blue) the city shared by the 4 robots, 

identified by their color. 

Finally, Figure 4 shows an Exclusive Area and Shared Area 
distribution, which allows combining independent processes in 
the exclusive areas, followed by all robots going to the shared 
area to finish the job. This clearly shows the concepts of hybrid 
programming.  

 
Figure 4.  The image shows the exclusive areas for each robot (identified by 

their color), and a shared area in blue. 

It should be noted that the environment allows the 
programmer to create multiple instances of the same code for 
different robots. 

III. ENVIRONMENT IMPLEMENTATION 

The environment is being developed in Java programming 
language. This language was selected based on two main 
aspects: Firstly, Java is the multiplatform language that is most 
widely used, providing a significant advantage in the fact that it 
is unlikely that students will have to install any additional 
libraries in the computer where they will be running the 
environment (it is highly likely that they are already installed). 
Secondly, the students of the School of Computer Science 
participating in the development of the environment have a 
solid background on object-oriented programming and have 
experience in this development language. 

As regards the suitability of Java for the project, it offers 
the Thread class that allows building concurrent programs (no 
additional tool is required), and it provides thread 
synchronization methods. Java has no control over possible 
situations that may occur in concurrent programs (blocking, 
atomicity violations, race conditions); it does, however, provide 
mechanisms that allow developers to algorithmically control 
these. These aspects should be considered when implementing 
the multirobot environment to prevent their occurrence. 

1) Challenges 
Even though the LMRE environment is devised to support 

the teaching of concurrency concepts in CS1, there is a need for 
a course that is entirely based on multiprocessors to expand on 
the necessary concepts to incorporate HPC. The curriculum of 
computer science courses at the UNLP includes academic 
subjects in the 3rd and 4th years that deal with these topics in 
detail. Despite this, it would be advisable to have an extension 
of LMRE that can be used in more advanced concurrency 
courses. To this end, the addition of functionalities of academic 
interest is planned: 

• Blocking arrangements (semaphores) that allow 
handling barriers or FORK-JOIN schemes. 

• Selective mutual exclusion. In the city, this leads to the 
incorporation of areas shared among certain robots and 
areas that selectively exclude robots. 

• Priority handling for access to shared resources. 
Priority can be a static attribute of the robot or a 
dynamic attribute based on the context and the task to 
be carried out by the robots. 

• Communication through asynchronous messages and 
their reflection on the status of each robot. 

2) Projection for 2012, progress to completion 
A prototype of the LMRE environment is currently being 

tested by a team formed by teachers and students of the School 
of Computer Science of the UNLP. The migration of the 
functionalities of the original Da Vinci environment to the new 
language has been completed, and the functionalities detailed 
in this paper are currently being tested. In August 2012, the 
environment will be introduced for systematic use by the 
students attending the second semester of the course CS1, and 
in 2013 its use will be generalized, after an assessment of the 
experience in 2012. 
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IV. CONCLUSIONS AND LINES OF WORK 

The interactive LMRE visual environment has been 
presented. This environment is proposed for teaching the 
concepts of concurrency and parallelism in an introductory 
course to algorithms, considering the technology change 
caused by the introduction of multicore processors and their 
impact on programming. 

When describing environment functionalities, the 
primitives to be used when programming concurrent 
applications were discussed and the rationale behind our 
choices explained. 

Implementation aspects were presented, as well as the 
extensions of the environment for advanced courses. 

There are two major lines of work: 

• Incorporating time as an attribute of the various 
operations to be carried out by the robots to study 
algorithm speed-up, efficiency and performance. 

• Developing a library of typical concurrency/parallelism 
examples in the LMRE environment. 
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