
LIDI Multi Robot Environment
Support software for concurrency learning in CS1

Armando De Giusti, Fernando Emmanuel Frati, Mariano Sanchez, Laura De Giusti

Institute of Research in Computer Science (III-LIDI)

National Commission of Scientific and Technical Research (CONICET)

School of Computer Science, UNLP

La Plata, Argentina

{degiusti, fefrati, msanchez, ldgiusti}@lidi.info.unlp.edu.ar

Abstract— An interactive visual environment for teaching the

concepts of concurrence and parallelism in an introductory

course to algorithms is presented. The Lidi MultiRobot

Environment (LMRE) is an evolution of the Visual Da Vinci

environment that is extensively used in the introductory course to

programming in several universities in Argentina.

The paper analyzes the problem of the technology change

introduced by multicore processors and their impact on

programming. Also, an environment function is described, as well

as the primitives to be used when programming concurrent

applications.

Lastly, implementation-related aspects of the prototype currently

being tested are described, as well as prototype evolution aimed

at using it in more advanced concurrency courses.

Keywords- Algorithms; Concurrency; Parallelism; Sequential

Programming; Parallel Programming

I. INTRODUCTION

A typical course on algorithms is focused on the expression
of control through a reduced number of primitives and the
introduction of basic data structures.

Typically, an only control flow is analyzed using basic
efficiency metrics given by the runtime of a given algorithm for
a certain set of input data.

Algorithm verification is quite straightforward, and their
validation is possible if some basic structured programming
principles are followed [1]. Concepts such as modularization,
documentation or reuse are incorporated as “good
programming practices”. Problem analysis is focused on
finding a correct and, if possible, efficient algorithm expression
to find the solution.

At all times, there is a control, one-thread underlying
architecture, with an only clock.

However, this approach leaves out two important aspects:

A. Current processors have a parallel architecture

The typical architecture of multicore processors, as Figure 1
shows, has several elements to be considered:

• Each core has its own clock, local memory, and
arithmetic logic unit.

• There are globally and locally shared memories (e.g.,
between two cores), which means that memory access
is non-uniform (NUMA).

• An application that will be run on a processor as the
one shown in Figure 1 can be solved as multiple
control threads by being concurrently run on the
various cores.

• Clearly, this requires solving (at least) two basic
problems: dividing the application into tasks and
assigning these concurrent tasks to the cores, and
coordinating (communication and synchronization) the
cores to solve the application.

This brief analysis shows that the underlying “parallel
machine” has to be taken into consideration to solve the
application, which impacts every software level, especially
languages, compilers, and operating system [2].

On the other hand, classic algorithm efficiency metrics will
have to take into account the number of cores used, their
performance, and the suitability of the concurrent division of
the application to reduce idle times [3].

Figure 1. Multicore structure diagram

B. real-world problems are basically concurrent

Concurrency is the property that have some problems to be
divided (total or partially) into smaller tasks that can be

978-1-4673-1382-7/12/$31.00 ©2012 IEEE 294

executed at the same time. When these tasks are executed
simultaneously by different processors, it is said that the
program runs in parallel.

The fact that real-world problems are basically concurrent
must be considered: databases, programming languages,
operating systems, Web servers, commercial applications —
they can all benefit if they are solved parallelly.

Thus, even though newer architectures are more complex,
they also allow implementing solutions that are more
efficiently adapted to the application model.

From this, it is clear that programming teaching poses
multiple challenges. In particular, the “typical” courses on
algorithms will have to be redesigned.

The efficient execution of an application on an architecture
as the one shown in Figure 1 will almost invariably lead to
parallel programming. Sequential programming will only be
used in isolated cases, since it would result in having N-1 idle
processor cores.

In this sense, the last recommendation of the ACM/IEEE
[4] for computer science curricula identifies concurrency as a
topic of interest and proposes adding parallel programming
concepts to the first programming course taken by students
without significantly changing its contents (structured
programming, then object-oriented programming, and then
parallel programming).

There are various proposals aimed at satisfying this
recommendation. The authors in [5] acknowledge that there is
a need for the development of tools that help dealing with high-
performance computation problems. They propose a software
application that helps develop and run parallel programs in
HPC clusters, on hardware rented to Amazon, and they use
virtual machine images for each course. Even though the
framework that they developed is scalable and cost-effective, it
is aimed at facilitating the management of the resources
required for teaching parallel programming, rather than helping
students learn its principles.

Other authors present a class strategy based on visualization
tools for the conceptualization of parallel programs [6]. In this
case, the tool proposed is an application that allows entering
the code and viewing it by means of UML diagrams. It can be
used to visually identify candidates to concurrent code sections
(such as vector initialization). This proposal helps with the
analysis of the parallel code, but students still need to know the
language with the specific primitives that support concurrency.

More recently, the authors of [7] presented a study of the
last three years of a CS1 course in which concurrency concepts
were introduced through simple case studies to be implemented
in Java. In the paper, the authors highlight the importance of
teaching students general concurrency concepts to awaken their
interest in those topics, as well as the impossibility of dealing
with more advanced issues, such as efficiency metrics, at an
early stage of their studies.

In this paper, an alternative to these approaches is presented
– an interactive visual environment to be used in a typical CS1
course. In this environment, basic concurrent programming
concepts are presented in a simple way, and students are guided

to develop concurrent/parallel algorithms. The main difference
between this approach and those mentioned above is that,
rather than forcing students to learn the typical syntaxis of
communication libraries, a set of simplified primitives is
provided through the environment to help students learn
concurrency concepts.

In Section II, a conceptual description of the LMRE
environment is detailed, and the programming primitives that
students can use are explained. In Section III, some
implementation aspects are discussed, and in Section IV,
conclusions and future research lines are presented.

II. CS1 COURSE AT THE UNLP

This course is currently given at the School of Computer
Science of the UNLP. It is an annual course that is called
“Algorithms, Data and Programs”. Each year, it serves more
than 1,000 students. It is based on a classic, learning-focused
model to teach algorithm expression, introduction to linear and
non-linear data structures, and introductory concepts related to
modularization, efficiency analysis, abstraction and reuse.

During the 2
nd
 semester, object paradigm concepts are

introduced.

Practical activities are initially carried out with a
proprietary environment, Visual Da Vinci [8], and then with
Pascal and Delphi.

Starting in 2010, a gradual change in 3 stages has been
proposed. The stages are:

• Incorporation of new processor architecture
descriptions, as an evolution of the Von Neumann
machine, and introduction to concurrency basic
concepts.

• Development of a visual environment for the
expression of concurrent and parallel algorithms as an
evolution of Visual Da Vinci (VDV). This new
development should support communication and
synchronization mechanisms, both through shared
memory and messages.

• Curriculum redesign to present concurrent/parallel
programming as the standard, and sequential
programming as the exception.

A. Purpose of the LMRE environment

Based on the analysis discussed in the Introduction and our
experience in the development ans use of Visual Da Vinci [1]
[8] [9], an evolution of the initial algorithm programming
environment used by students of a CS1 course is proposed in
order to incorporate the key concept of concurrency.

This means that the environment should allow students to
naturally work with two basic aspects:

• Communication among concurrent processes (which
usually involves cooperation).

• Synchronization among concurrent processes (which
usually involves competitiveness or dependence). For
synchronization to be possible, the expression of

295

explicit and/or implicit mutual exclusion mechanisms
must be possible.

To study the communication and synchronization among
the algorithms (“processes”) residing in the cores of an
architecture as the one shown in Figure 1, students need to
acquire the relevant concepts and develop 3 essential models:

• Shared memory.

• Messages.

• Hybrid (algorithms that use shared memory as well as
messages).

The LMRE environment is then set to help students express
concurrent algorithms (to make learning easier, for CS1
students, these algorithms will be fully parallel, with one
process linked to one processor) that can communicate and/or
synchronize through messages and shared memory [10] [11]
[12] [13].

B. Features

The environment allows defining a “city”, represented by a
grid of N streets x M avenues.

A number of K robots can also be defined; these robots can
move around the city. Each robot has a unique identifier (ID).
A maximum number of R robots is set.

The city can have Exclusive Areas (EA). For CS1, only one
given robot can move in an EA. Shared Areas (SA) can also be
defined, accessible to all robots.

City “corners” may have two types of objects (flowers and
candies).

The initial distribution of the objects can be done
automatically by the system or manually by the programmer.

Robots can store an unlimited number of objects.

Robots can perform basic actions on the objects (Put down /
Pick up / Count), and can inform the results of their activities.

It should be noted that, if N=M=100, K=1 and the entire
city is available for an only robot, the result would be the
implementation defined for Visual Da Vinci.

Since our purpose is working with multiple robots in the
city, the features of message communication actions and access
to shared resources (city corners, objects, counters) need to be
added.

When there are K robots (K > 1) working in a shared area
(that can be the entire city), the problems of mutual exclusion
on shared memory will have to be solved.

When there are independent robots working in exclusive
areas in the city, as their collaboration to solve some problem,
there will be message communication.

Both mechanisms can co-exist if the city has several
exclusive areas and one shared area. This case would be a close
approximation to the architecture model shown in Figure 1.

C. Primitives

The 4 essential primitives provided by the environment to
specify concurrency are:

Send message (SM): this allows a robot to send a message
to another robot (identified by ID). After sending the message,
following the synchronous model, the robot waits until the
target robot receives the message (synchronization). If
messages are sent to a special ID, they become broadcast
messages.

Receive message (RM): this indicates that a robot will wait
until it synchronizes with the message sent by another robot.
To this end, the primitive receives an ID parameter that
indicates the ID number of the robot that must send the
message, or a special value that indicates that it can come from
any robot.

Block resource (BR): this indicates that the robot requests
the exclusion of a resource to have exclusive access to it.
Typically in a Shared Area, corner occupation (which allows
picking up or putting down objects) must be exclusive for a
robot.

Free resource (FR): this indicates that the robot frees the
resource (for example, the corner that it was occupying). This
is also a commonly used primitive in Shared Areas.

In a structure such as the one shown in Figure 2, these
primitives allow presenting problems of “independent
processes that communicate through messages”, as in the case
of 4 robots on exclusive areas carrying out tasks (e.g., picking
up the flowers found within their areas) and then
communicating their partial results to a fifth robot that will
report the results.

Figure 2. The image shows the city divided in 4 exclusive areas, identified

by the colors of the robots.

There can also be “concurrent runs” problems within a
shared area as the one shown in Figure 3, where several robots
try to carry out a task (e.g., place candies on certain corners),

296

starting from various locations in the city, and attempting to
occupy the same corner at the same time.

Figure 3. This image shows (in blue) the city shared by the 4 robots,

identified by their color.

Finally, Figure 4 shows an Exclusive Area and Shared Area
distribution, which allows combining independent processes in
the exclusive areas, followed by all robots going to the shared
area to finish the job. This clearly shows the concepts of hybrid
programming.

Figure 4. The image shows the exclusive areas for each robot (identified by

their color), and a shared area in blue.

It should be noted that the environment allows the
programmer to create multiple instances of the same code for
different robots.

III. ENVIRONMENT IMPLEMENTATION

The environment is being developed in Java programming
language. This language was selected based on two main
aspects: Firstly, Java is the multiplatform language that is most
widely used, providing a significant advantage in the fact that it
is unlikely that students will have to install any additional
libraries in the computer where they will be running the
environment (it is highly likely that they are already installed).
Secondly, the students of the School of Computer Science
participating in the development of the environment have a
solid background on object-oriented programming and have
experience in this development language.

As regards the suitability of Java for the project, it offers
the Thread class that allows building concurrent programs (no
additional tool is required), and it provides thread
synchronization methods. Java has no control over possible
situations that may occur in concurrent programs (blocking,
atomicity violations, race conditions); it does, however, provide
mechanisms that allow developers to algorithmically control
these. These aspects should be considered when implementing
the multirobot environment to prevent their occurrence.

1) Challenges
Even though the LMRE environment is devised to support

the teaching of concurrency concepts in CS1, there is a need for
a course that is entirely based on multiprocessors to expand on
the necessary concepts to incorporate HPC. The curriculum of
computer science courses at the UNLP includes academic
subjects in the 3rd and 4th years that deal with these topics in
detail. Despite this, it would be advisable to have an extension
of LMRE that can be used in more advanced concurrency
courses. To this end, the addition of functionalities of academic
interest is planned:

• Blocking arrangements (semaphores) that allow
handling barriers or FORK-JOIN schemes.

• Selective mutual exclusion. In the city, this leads to the
incorporation of areas shared among certain robots and
areas that selectively exclude robots.

• Priority handling for access to shared resources.
Priority can be a static attribute of the robot or a
dynamic attribute based on the context and the task to
be carried out by the robots.

• Communication through asynchronous messages and
their reflection on the status of each robot.

2) Projection for 2012, progress to completion
A prototype of the LMRE environment is currently being

tested by a team formed by teachers and students of the School
of Computer Science of the UNLP. The migration of the
functionalities of the original Da Vinci environment to the new
language has been completed, and the functionalities detailed
in this paper are currently being tested. In August 2012, the
environment will be introduced for systematic use by the
students attending the second semester of the course CS1, and
in 2013 its use will be generalized, after an assessment of the
experience in 2012.

297

IV. CONCLUSIONS AND LINES OF WORK

The interactive LMRE visual environment has been
presented. This environment is proposed for teaching the
concepts of concurrency and parallelism in an introductory
course to algorithms, considering the technology change
caused by the introduction of multicore processors and their
impact on programming.

When describing environment functionalities, the
primitives to be used when programming concurrent
applications were discussed and the rationale behind our
choices explained.

Implementation aspects were presented, as well as the
extensions of the environment for advanced courses.

There are two major lines of work:

• Incorporating time as an attribute of the various
operations to be carried out by the robots to study
algorithm speed-up, efficiency and performance.

• Developing a library of typical concurrency/parallelism
examples in the LMRE environment.

ACKNOWLEDGMENT

Work partially supported by MICINN (TIN2009-14317-
C03-01).

REFERENCES

[1] R. Champredonde and A. De Giusti, “Design and implementation of the
visual da vinci language”. Graduate Final Work, School of Computer
Science, UNLP, 1997.

[2] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy, “Software
engineering for multicore systems: an experience report”, Proceedings of
the 1st international workshop on Multicore software engineering, pp.
53–60, 2008.

[3] T. Murphy, “High-performance computing in high schools?”, IEEE
Distributed Systems Online, vol. 8, no. 8, pp. 1–3, 2007.

[4] A.-C. J. C. T. Force, “Computer science curriculum 2008: An interim
revision of cs 2001”, tech. rep., ACM Press, Dec 2008.

[5] C. Ivica, J. T. Riley and C. Shubert, “StarHPC - Teaching Parallel
Programming within Elastic Compute Cloud”, Proceedings of the ITI
2009 31st. Int. Conf. on Information Technology Interfaces, 353-356,
2009.

[6] B. Rague, “Teaching parallel thinking to the next generation of
programmers”, Journal of Education, Informatics and Cybernetics, vol.
1, no. 1, pp. 43–48, 2009.

[7] T. R. Gross, “Breadth in depth: a 1st year introduction to parallel
programming”, in Proceedings of the 42nd ACM technical symposium
on Computer science education, pp. 435–440, 2011.

[8] A. De Giusti, “Algoritmos, datos y programas con aplicaciones en
Pascal, Delphi y Visual Da Vinci”, Pearson Education and Prentice Hall,
1 ed., 2001.

[9] A. De Giusti, L. Lanzarini and M.C. Madoz, “Abstract machines in a
first course of computer science”, Proceedings of 11th International
Symposium “Computer at the University” – Zagreb – Yugoslavia – Pp.
283-291 – 1990.

[10] S. Carr, J. Mayo, and C.-k. Shene, “Threadmentor: a pedagogical tool
for multithreaded programming”, ACM Journal of Educational
Resources, vol. 3, pp. 1–30, March 2003.

[11] H. Farian, K. M. Anne, and M. Haas, “Teaching high-performance
computing in the undergraduate college cs curriculum”, Journal of
Computing Sciences in Colleges, vol. 23, no. 3, pp. 135–142, 2008.

[12] C. W. Kessler, “Teaching parallel programming early”, in Proceedings
of Workshop on Developing Computer Science Education: How Can It
Be Done?, p. 6, March 2006.

[13] F. Leibovich, L. De Giusti, M. Naiouf, “Parallel Algorithms on Clusters
of Multicores: Comparing Message Passing vs Hybrid Programming”,
WorldComp’11, July 2011.

298

