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Abstract

Non-interference is a desirable property of systems in dilengl security architecture, stating that confi-
dential information is not disclosed in public output. Theallenge of studying information flow for assembly
languages is that the control flow constructs that guide tiadyais in high-level languages are not present.
To address this problem, we define a typed assembly langhatades pseudo-instructions to impose a stack
discipline on the control flow of programs. We develop a typgtam for checking that assembly programs
enjoy non-interference and its proof of soundness.

1 Introduction

The confidentiality of information handled by computingteyss is of paramount importance. However, standard
perimeter security mechanisms such as access control ibal dBggnatures fail to address the enforcement of
information-flow policies. On the other hand, languageedastrategies offer a promising approach to information
flow security. In this paper, we study confidentiality for assembly language using a language-based approach
to security via type-theory.

In a multilevel security architecture information can ranigom having low (public) to high (confidential)
security level. Information flow analysis studies whetheattacker can obtain information about the confidential
data by observing the output of the system. The non-inemfex property states that any two executions of
the same program, where only the high-level inputs diffebath executions, does not exhibit any observable
difference in the program’s output.

In this paper we define SIF, a typed assembly language foresecformation flow analysis with security
types. This language contains two pseudo-instructiopssh L andcjmp L, for handling a stack of code
labels indicating the program points where different bheescof code converge, and the type system enforces a
stack policy on those code labels. Our development culméneiith a proof that well-typed SIF programs are
assembled to untyped machine code that satisfy non-inteide.

The type system of SIF detects explicit illegal flows as wsliraplicit illegal flows arising from the control
structure of a program. Other covert channels such as tlassallon termination, timing, and power consumption,
are outside the scope of this paper.

2 SIF, A Typed Assembly Language

Ininformation flow analysis, a security level is associatéith the program countepg) at each program execution
point. This security level is used to detect implicit infation flow from high-level values to low-level values.
Moreover, control flow analysis is crucial in allowing thescsirity level to decrease where there is no risk of illicit
flow of information.



Consider the example in Figure 1(a), wherdnas high security level anz has low security level. Notice
thaty cannot have low security level, since information abrutan be retrieved frony, violating the non-
interference property. Since the execution path depenttseoralue stored in the high-security variakleentering
the branches of thié-then-else changes the security level of tpe to high, indicating that only high-level
variables can be updated. On the other hand, smee modified after both branches, there is no leaking of
information from eithely orx to z. Therefore, the security level of the can be safely lowered.

Sec. level ofpc Li: bnz r,L2 %if x/=0 goto L2
low if x=0 move 12 — 1 %y=1
high then y:=1 jmp L3
high else y:=2 L2: move ro—2 %y= 2
low z:=3 L3: move r3«—3 %z=3
(a) High-level program (b) Assembly program

Figure 1: Example of implicit illegal information flow.

A standard compilation of this example to assembly languaay produce the code shown in Figure 1(b). Note
that the block structure of thi&then-else is lost, and it is not clear where it is safe to lower the sdguri
level of thepc. We address this problem by including in our assembly laggwestack of code labels accessed by
two pseudo-instructiongpush L andcjmp L, to simulate the block structure of high-level languages.

The instructioncpush L pushesL onto the stack whilejmp L first popsL from the stack ifL is already
at the top, and then jumps to the instruction labelledlbyl'he extra label information injmp L allows us to
statically control that the intended label is removed, ébgrpreventing ill structured code.

The SIF code for the example in Figure 1(a) is shown below.chue atl. 7 pushes the labédl3 onto the stack.
The code afL3 corresponds to the instructions following tiighen-else in the source code. Observe that
the code atfL3 can only be executed once, because the instrucfiop L3 at the end of the code pointed to by
L1 (then branch), or at the end di2 (else branch), removes the top of the stack and jumps to the codé=gbi
to by L3. At this point it is safe to lower the security level of the, since updating the low-security registegr
does not leak any information aboyt

L1: Aro: mtj‘?rl : intT,rg st Ty intt, pc: 1} e
cpush L3 % set junction point.3
bnz ry, L2 %if x/=0 goto L2
arithi ro «— 19+ 1 %y:= 1, withre=0
cjmp L3

L2: {ro:intt,ra:int’ rs:intt pc: T} L8 -¢
arithi ro «— 19 + 2 %y:: 2
cjmp LS

L8: {ro:intt,rz:intt,pc: L} €
arithi r3 <19+ 3 %z.= 3
halt
eof

Moreover, as in HBAL [1], the type-checking of the progranséparated from the verification of the safety
of the machine configuration where the program is assemfleds, following the schema shown below, a type-
checker can verify if a program is safe for executionaoly safememory configuration, and the runtime environ-
ment only needs to check that the initial machine configonais safe before each run.
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The assembler removepush L and translatesijmp L into jmp L, an ordinary unconditional jump,
leaving no trace of these pseudo-instructions in the eabériicode (see the definition of the assembly function
Asm(—) in section 2.4).

2.1 The Type System

We assume given a lattic8sec Of security labels[8], with an ordering relatioriC, least (L) and greatestT)
elements, and join.() and meet[() operations. These labels assign security levels to elenwnihe language
through types. The type expressions of SIF are given by tlenimg grammar:

security labels Il €  Lsec

security types o = W

word types w = int | [7]

memory location types T = oX...xo | code

Security typego) are word types annotated with a security label. The exjmedsaBL (o) returns the security
label of a security type. A word type(w) is either an integer typeix{t) or a pointer to a memory location type
([7])- Memory location typeér) are tuples of security types, or a special tgpele . We user|[c], with ¢ a positive
integer, to refer to the!” word type of the product type. Since the typeode indicates the type of an assembly
instruction, our system distinguishes code from data.

A context(T" || A) contains a register contektand a junction points stack. A junction points stackA) is a
stack of code labels, each representing the convergenoedgdai fork in the control flow of a program. The empty
stack is denoted by. A register contexf” contains type information about registers, mapping theseturity
types. We assume a finite set of registérs, ..., r,}, with two dedicated registersy, that always holds zero,
andpc, the program counter.

We write Dom (T") for the domain of the register contekt The empty context is denoted Ky. The register
context obtained by eliminating froi all pairs withr as first component be denoted By, while T', I denotes
the union of register contexts with disjoint domains. We Lise: ¢ as a shorthand fdr, {r : ¢}, andl'[r := o]
as a shorthand fdr ., {r : o}.

Since the program counter is always a pointer to code, welysudte pc : I instead ofpc : [code |'. We also
usel'(pc) instead of laBL (I'(pc)).

2.2 Syntax of SIF programs

A program (P) is a sequence of instructions and code labels ended by thetide eof . SIF has standard
assembly language instructions such as arithmetic opasatconditional branching, load, and store, plus pseudo-
instructionscpush andcjmp to handle the stack of code labels.



rcr ct Ctxt(P) ks P

ST_RegBank T_Halt 7I‘ N . T_Eof
(T,pc: 1| A) < (T,pc: 1" || A) [ebs halt ;P e s eo
(T[A)<S(L) %(L) Fu P (T|A) <%(L) Ctxt(P) bx P
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T_CondBrnch
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Dypc:l||A by arith  rg—7rs©Org; P Dypc: || A by arithi rqa<—Ts ®1; P
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= whe D.pc:l||A by P is code -free I,pc:l||A s P
7ld = we el > T_Load T peil > T_Store
T,pc:l||A Fx load rq « rgc]; P D,pc:l||A ks store rglc] < rs; P
ICX(L)(pc) T,pc:l||L-AFs P S(L)=T"|A T CTjpe Ctxt(P) b P
T_Cpush T_Cjmp
Iypc:l||A Fs cpush L; P T||L-AFs cjmp L; P

Figure 2: Subtyping for contexts and typing rules for progsa

program P == eof | L;P | p;P

instructions p == halt | jmp L | bnz r L
| load 7«7l | store rlc]—r
| arith r—ror | arithi re—rQoi
| cpush L | cjmp L

operations ~© = + | — | = | /

We usec to indicate an offset, andto indicate integer literals. We assume an infinite enuniersét of code
labels. Intuitively, the instructiogpush L pushes the junction point represented by the code lalmlto the
stack, while the instructiosjmp L behaves as a pop and a jump.Lifs at the top of the stack, it popgsand
then jumps to the instruction labeldd

2.3 Typing rules

A signature(X) is a mapping assigning contexts to labels. The coriigXt) contains the typing assumptions for
the registers in the program point pointed to by the ldbeThe judgment” | A s P is a typing judgment for
a SIF programP, with signatureX, in a contexf” || A. We say that a prograt is well-typedif Cixt(P) Fy P,
whereCtxt(P) is the partial function defined a€txt(L; P) = X(L), Ctxt(eof ) = {} || .

The typing rules for SIF programs, shown in Figure 2, aregiesi to prevent illegal flows of information. The
directiveeof is treated as halt instruction. So, rule3 _Eof andT_Halt ensure that the stack is empty.

Rule T_Label requires that the current context be compatible with thdesdrexpected at the position of the
label, as defined in the signatug)(of the program. Jumps and conditional jumps are typed ®smilJmp and
T_CondBrnch. In both rules the current context has to be compatible viighcontext expected at the destination
code. InT_CondBrnch, both the code pointed to bl and the remaining prograth are considered destinations



of the jump included in this operation. In order to avoid implflows of information, the security level of ths
in the destination code should not be lower than the cureurity level and the security level of the registey (
that controls the branching.

In T_Arith the security level of the source registers andgbishould not exceed the security level of the target
register to avoid explicit flows of information. The securiével of 4 can actually be lowered to reflect its new
contents, but, to avoid implicit information flows, it carrize lowered beyond the level of tipe. Similarly for
T _Arithi, T_Load andT Store. In T_Load, an additional condition establishes that the securitgllef/the pointer
to the heap has to be lower than or equal to the security Iétkkavord to be read.

The ruleT_Cpush controls whethecpush L can add the code labél to the stack. Sincé. is going to be
consumed by &jmp L instruction, its security level should not be lower than terent level of thepc. The
cjmp L instruction jumps to the junction point pointed to by laldel Furthermore, to prevent ill structured
programs the rul@ _Cjmp forces the code labdl to be at the top of the stack, and the current context has to be
compatible with the one expected at the destination codeveMer, since &jmp instruction allows the security
level to be lowered, there are no conditions on its secueitgll

2.4 Type soundness of SIF

In this section we define a semantics for the untyped assangihyctions operating on a machine model, we give
an interpretation for SIF types which captures the way tgsesmplemented in memory, and finally we prove that
the execution of a well-typed SIF program modifies a type-sahfiguration into another type-safe configuration.

Let Reg = {0,1,...,Rnax} be the register indices, with two dedicated registd®$0) = 0, and R(pc) is
the program counter. Léioc C Z be the set of memory locations on our machigd be the set of machine
words that can stand for integers or locations, @nde be the set of machine words which can stand for machine
instructions. To simplify the presentation, we assume Wiat is disjoint from Code; so, our model keeps code
separate from data.

A machine configurationV/ is a pair(H, R) where H : Loc — Wrd W Code is a heap configuration, and
R : Reg — Wrd is a register configuration.

Given a programP, a machine assembled fd? is a machine configuration which contains a representation
of the assembly program, with machine instructions stonesome designated contiguous portion of the heap.
SupposingP = p1;...;pn,, the assembly process defines a functfdar : 1,...,n — Loc which gives the
destination location for the code when assembling the typstiuctionp,,, wherel < u < n. For each of the
locations? where P is stored,H (¢) € Code. The assembly process also defines the fundtiddr(L), which
assigns to each label iR the heap location where the code pointed to by the label vwesraded.

Given a machine configuratioh/ = (H, R), we define anachine transitiom\/ — M’, as follows: First,

M’ differs from M by incrementingR(pc) according to the length of the instruction fi(R(pc)); then, the
transformation given in the table below is applied to obthmnew heag’, or register bank?’. The operations
onrg have no effect.

jmp L R’ = R[pc := LAdr(L)]
, R, if R(r)=0
bnz v, L = { R[pc := LAdr(L)], otherwise
arth  rg«—r, Or R’ = R[rg := R(rs) ® R(rt)]
arithi  rqg 171,01 R' = R[rq = R(rs) © 1]
load 74« 75[c] R = R[rq := H(R(rs) + ¢)]
store  rgfc] < 7 H' = H[R(rq) + ¢ := R(rs)]

Asm(p,) stands for the sequence of untyped machine instructionshwkithe result of assembling a typed
assembly instructiop,,:

Asm(L) = e Asm(eof )= halt Asm(cpush L)=¢€¢ Asm(cimp L)=jmp L Asm(p,)=pu



: Asm(p. : . o L
We write M "% 017 if M executes taf” through the instructions iAsm(p,,), by zero or one transitions in

M. The reflexive and transitive closure of this relation is mkedi by the following rules.

Refl My ) A My = My My = M;
Iv; v € Incl Trans
= M, = M, My = M3

2.4.1 Imposing Types on the Model

A heap context is a function that maps heap locations to security types.apltentext contains type information
about the heap locations required to type the registBisn () denotes the domain of the heap contextThe
empty context is denoted Hy}. We writew[¢ := 7] for the heap context resulting from updatifgvith ¢ : 7. Two
heap context® andv’ arecompatible denoteccompat (v, ¢), if for all £ € Dom () " Dom(¢'), ¥ (£) = ¢’ (£).
The following rules assign types to heap locations:

H(¢) € Code H(¢) € Wrd
T_HLocCode T_HLoclInt
H;{¢:code} = ¢:code hloc H;{:int'} = ¢ : int! hloc
H(¢) € Wrd  compat(z, {£ : [r]! H; H(¢) : 7 hloc compat(y, ') H;y = £: 7 hloc
(£) pat(¢, {£: [7]'}) Hivp = H(() T HlocPtr (1, 9") = W_HLoc
H;pu{l:[r]'}y = ¢ [r]" hloc H;yp Uy L7 hloc

mi:SiZE(O'Q)—F...'FSiZE{UZ‘,l) H:y ’Zf—l—mi:ai hloc forall0<:<mn
H;oypELl:09%x...%x 0y, hloc

T_HLocProd

In order to define the notion of satisfiability of contexts bgchine configurations, we need to define a satisfi-
ability relation for registers.

r # pc H;v = R(r) : 7 hloc (H,R) =y r:0reg compat(y,y’)
T_Reglnt T_RegPtr W_Reg
M g reint' reg (H,R) [=y 7 [7] reg (H,R) =ypuy 7 0 reg

A machine configuration/ satisfiesa typing assignmeni with a heap typing contexp (written A/ =, T')
if and only if for each register; € Dom(I'), M satisfies the typing statememf =, r; : I'(r;) reg, the heap
contextsy; are pairwise compatible, antl= Uy;1);.

A machine configuratiod/ = (H, R) is in final stateif H(R(pc)) = halt . We define an approximation to
the execution of a typed prograf= p1;...; p, by relating the execution of the code locations in the mazhin
with the control paths in the program by means of the relagipr- p,,, which holds between pairs of instructions
indexed by the set:

{(#,i+1) | p; Zjmp,cimp, andi < n}
U
{(t,j+1) | pp=Jjmp L,bnz r L, orcimp L, andp; = L}.

pu ~ p, denotes the reflexive and transitive closureof~ p,,.

2.4.2 Type Soundness

In this section we show that our type system ensures thatthetion rules preserve type safety. The soundness
results imply that if the initial memory satisfies the inlitigping assumptions of the program, then each memory
configuration reachable from the initial memory satisfiestiiping assumptions of its current instruction.



The typing assumptions of each instruction of a program eaoltained from the initial context by the type-
checking process. For a well-typed progr&m= p1;...py;- .. ;pn, the derivationCtxt(P) by P determines a
sequence of contexis; || Aq, ..., || A, from sub-derivations of the fordl, || Ay, Fsx pu; Dutis-- -5 Pn-

A machine configuration is considered type-safe if it sa&ssthe typing assumptions of its current instruction.
Given a well-typed progran® = pi;...py;...;p, and a heap context, we sayM = (H, R) is type safe au
for P with ¢ if M is assembled foP; R(pc) = PAdr(u); andM = T,.

We prove two meta-theoretic results Progress and Subjetiid®en. Progress (Theorem 1) establishes that a
non-final-state type safe machine can always progress & avaehine by executing a well-typed instruction, and
Subject Reduction (Theorem 2) establishes that if a typereathine progresses to another machine, the resulting
machine is also type safe.

Theorem 1 (Progress)
Suppose a well-typed prograf = p1;...py;- . .;p, and a machine configuratialf type safe at.. Then there
existsM’ such thatts “2%") M’, or M is infinal state
Theorem 2 (Subject Reduction)
Suppose’ = p1;...py; - - - ;pn iS @awell-typed program andd, R) is a machine configuration type safeuaand
(H,R) Asm(p.) M'. Then there existg, € P such thap, ~ p, andM’ is type safe at.

The proof of this theorem proceeds by case analysis on thertunstructiorp,,, analyzing each of the possible
instructions that followp,,, based on the definition of program transitions. See the aoiop technical report [13]
for details.

3 Non-Interference

Given an arbitrary (but fixed) security levélof an observer non-interference states that computed low-security
values € () should not be affected by high-security input valugs (). In order to prove that a program
satisfies non-interference one must show that any two tetimmexecutions fired from indistinguishable (from the
point of view of the observer) machine configurations yieldistinguishable configurations of the same security
observation level.

In order to establish what it means for machine configuratiorbe indistinguishable from an observer’s point
of view whose security level i§, we define & -indistinguishability relation for machine configuratgn

The following definitions assume a given security leyetwo machine configurationd/; = (H;, R;) and
M, = (Hs, R»), two heap contexts); and», and two register contexfs; andI'y, such thatV; =, I'; and
M; g, Ta.

Two register banks aré-indistinguishable if the observable registers in one bargkalso observable in the
other, and the contents of these registers arec@ladistinguishable.

Definition 3.1 ((-indistinguishability of register banks)
Two register banks?; and R, are(-indistinguishable, written> s, ., m,.4, 121 : I't =¢ R : I's regBank, if for
all r € Dom(I'1) U Dom(I'y), with r # pc:

r € Dom(Ry) N Dom(Rz2) N Dom(T'1) N Dom(T'2),
LABL(Ty(r)) C ¢ or LABL(T'y(r)) E ¢ impliesg T';(r) =T'y(r), and
‘>H111111-,H211112R1 (T) ¢ RQ(T) : Fl(r) val

Two word values; andu, of typew' are considered-indistinguishable, writtep- Hiy Hoba V1 N2 U2 whval,
if I C ¢ implies that both values are equal. In case of pointers tp hazations, the locations have to be afso
indistinguishable.



Two heap valueg, and/, of typer are considered-indistinguishable, written> g7, ., f,:9,¢1 ¢ £2 : 7 hval,
if /1 € Hy, ¢o € Hy, and either the type is code and/¢; = /5, or7 = 01 X ... X 0, and each pair of offset
locations?¢y + m; and/y + m; (with m; as in ruleT _HLocProd) are(-indistinguishable, or is a word type with
a security label andi C ¢ implies that both values are equal.
LowAxiom S(L)(pc) °¢ s A =¢ A Low

— LowLow
>ye ~¢ € Low >sL- Ay ~¢ L- Az Low

S(L1)(pe) Z ¢ N(L2)(pc) Z ¢ s A =¢ Az Low

>xLy - Ay =¢ Lz - Az cstackLow

LowHigh

>yl ¢ Ao Low Z(L)(pc) Z¢ e M ¢ A2 High
—— HighAxiom HighLeft
>l ¢ Ao High >wlL - A ¢ Ao High

E(L)(pc) L ¢ s A1 =¢ Az High

HighRight
>xA; ~¢ L- Az High

Figure 3:(-indistinguishability of junction points stacks.

The proof of our main result, the Non-Interference Theoremeguires two notions of indistinguishability of
stacks (Low and High). If one execution of a program branatres condition while the other does not, the
junction points stacks may differ in each of the paths foavby the executions. If the security level of theis
low in one execution, then it has to be low in the other execugis well, and the executions must be identical. The
first three rules of Figure 3 define the relation of low-inidigtiishability for stacks. In low-security executions
the associated stacks mus be of the same size, and each betlenlthe stack of the first execution must be
indistinguishable from that of the corresponding elemenhé second one.

If the security level of thepc of one of the two executions is high, then the other one mustidgie too. The
executions are likely to be running different instructipasd thus the associated stacks may have different sizes.
However, we need to ensure that both executions follow resof the same condition. This is done by requiring
that both associated stacks have a common (low-indisshgbie) sub-stack. The second three rules of Figure 3
define the relation of high-indistinguishability for staclkAlso note that, as imposed by the typing rules, the code
labels added to the stack associated to high-security bezrere of high-security level.

Finally, we define the relation of indistinguishability @@ machine con from the point of view of an observer
of level €.

Definition 3.2
Two machine configurationd/; = (H;, Ry) and M, = (Hs, Ry) are(-indistinguishable denoted by the judg-
ment>p My : 'y, Ay, 91 =¢ M : I'y, Ay, p2 mConfig, if and only if

1. My =y, ' andM; =y, To,

2. M7 and M, are assembled faP at the same addresses,
3. D Hy i Hopo B 2 T &¢ Ry I'y regBank, and

4. either

(@) T'i(pc) = I'a(pc) C ¢ andR;(pc) = Ra(pc) and>x Ay ~¢ Ay Low, or
(b) I'i(pc) £ ¢andTl'y(pc) £ ¢ and>x Ay ~¢ Ay High.



Note that both machine configurations must be consistertit thiir corresponding typing assignments, and
they must be executing the code resulting from assemlsting

We may now state the non-interference theorem establighatgstarting from two indistinguishable machine
configurations assembled for the same progfanf each execution terminates, the resulting machine cordig
tions remain indistinguishable.

In the following theorem and lemmas, for any instructignin a well-typed programP = pi;...;p,, the
contextl'; || A; is obtained from the judment; | A; Fs  pi; pn, Which is derived by a sub-derivation of
Ctxt(P) Fx P.

Theorem 3 (Non-Interference)
Let P = p1;...;p, be a well-typed program)/; = (H;, Ry) and My = (Hs, Re) be machine configurations
such that both argype safeat 1 for P with ¢ and

>pMp :T1,€,90 ¢ My : T'1,€,1 mConfig.
If M, = M{ and My = M, with M7 and M in final state then
>pM : Ty, 6,91 m¢ My : Ty, €, 109 mConfig.

The technical challenge that lies in the proof of this theore that thel-indistinguishability of configurations
holds after each transition step. The proof is developeddrstages. Firstit is proved that tweindistinguishable
configurations that have a low (and identical) level forjgthe€an reduce in bbck step fashion a manner invariant
to the(-indistinguishability property. This is stated by the @lling lemma.

Lemma 1 (Low-PC step)
Let P = py;...;p, be awell-typed program, such that andp,, are inP, M, = (Hy, Ry) andMs = (Ha, R)
be machine configurations. Suppose

1. M, is type safe at; and M5 is type safe ato, for P with 1 andvys, respectively,
2. >pM : FvlyAvl , 1 ¢ M - FU2, Av27¢2 mConfig,
3. I'y,(pc) C ¢ andTy, (pc) E ¢,

Asm(py
4. v, M 4 and

5. there exist®,,, in P such thap,,, ~~ p,,, andM] is type safe atv; with 3.

Then, there exists a configuratidd,, such that:

(b) there exist®,,, in P such thap,, ~ p.,, andM; is type safe atvy with 4, and
() >pM] : Ty, Ay, V3 ¢ My < Ty, Ay, 04 mConfig.

When the level of thec is low, the programs execute the same instructions (witlsiplysdifferent heap and
register bank). They may be seen todymchronizedand each reduction step made by one is emulated with a
reduction of the same instruction by the other. The regytirachines must bgindistinguishable.

However, a conditional branchiiz ) may cause the execution to fork on a high value. As a conseguéoth
of their pc become high and we must provide proof that there are spimdistinguishable machines to which
they reduce. Then, the second stage of the proof consistsowfisg that every reduction step of one execution
whosepc has a high-security level can be met with a number of reduditeps (possibly none) from the other
execution such that they reach indistinguishable configuma. The High-PC Step Lemma states such result.



Lemma 2 (High-PC Step)
Let P = py;...;p, be a well-typed program, such that, andp,, are inP, andM; = (Hy, R;) and My =
(H2, R2) be machine configurations. Suppose

1. M, is type safe at; and M, is type safe ato, for P with ¢; ands, respectively.
2. >pMj : FvlyAvl , 1 ¢ M - FU2, Av2,1/12 mConfig,

3. T'y, (pc) Z ¢ andly, (pc) & ¢,

Asm(py
4. m, M 4 and

5. there exist®,,, in P such thap,, ~~ p,,, andMj is type safe atv; with 3.

Then, either the configuratiah/, diverges or there exists a machine configurafiéhsuch that
(a) My = M),

(b) there exist®,,, in P such thap,, ~ p.,, and My} is type safe atv, with 4, and

() >pM] : Ty, Ay, Y3 ¢ MY 2 Ty, Auy, 04 mConfig.

The main technical difficulty here is the proof of the case mibee execution doesamp instruction that low-
ers thepc level. In this case, the other execution should, in a numbsteps, also reduce itg: level accordingly.
This is guaranteed by two facts. First, high-indistingaisle stacks share a sub-stack whose top is the label to the
junction point where thec level is reduced and both executions converge. Secondtypalt programs reach
final states only with an empty stack, having visited all digels indicated by the junction point stack.

4 Related Work

Information flow analysis has been an active research arnb& ipast three decades [18]. Pioneering work by Bell
and LaPadula [4], Feiertag et al. [9], Denning and Denning[8Neumann et al. [17], and Biba [5] set the basis
of multilevel security by defining a model of information flomhere subjects and objects have a security level
from a lattice of security levels. Such a lattice is instrataé in representing a security policy where a subject
cannot read objects of level higher than its level, and incamvrite objects at levels lower than its level.

The notion ofnon-interferencewvas first introduced by Goguen and Meseguer [10], and theséoban a sig-
nificant amount of research on type systems for confidetytitdr high-level languages including Volpano and
Smith [20], and Banerjee and Naumann [2]. Type systems fedéwel languages have been an active subject of
study for several years now, including TAL [14], STAL [15];TBL [21], Alias Types [19], and HBAL [1].

In his PhD thesis [16], Necula already suggests informatiow analysis as an open research area at the
assembly language level. Zdancewic and Myers [22] presémivdevel, secure calculus with ordered linear
continuations. An earlier version of our type system wagpinesl by that work. However, we discovered that
in a typed assembly language it is enough to have a junctiamt ptack instead of mimicking ordered linear
continuations. Barthe et al. [3] define a JVM-like low-lel@mhguage with a heap and an operand stack. The type
system is parameterized by control dependence regionsit andssumed that there exist functions that obtain
such regions. In contrast, SIF allows such regions to beesspd in the language by using code labels and its
well-formedness to be verified during type-checking. Crral. [6] define a low-level calculus for information
flow analysis, however, their calculus has the structurimgstructif-then-else , unlike SIF that uses typed
pseudo-instructions that are assembled to standard neaicisitnuctions.
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5 Conclusions and Future Work

We defined SIF, a typed assembly language for secure infamtiw analysis. Besides the standard features,
such as heap and register bank, SIF introduces a stack ofialoels in order to simulate at the assembly level
the block structure of high-level languages. The type sysiaarantees that well-typed programs assembled on
type-safe machine configurations satisfy the non-interfee property: for a security level if two type-safe
machine configuration argindistinguishable, then the resulting machine configanst after execution are also
¢-indistinguishable.

An alternative to our approach is to have a list of the progpimts where the security level of the can
be lowered safely. This option delegates the security amsalyf where thepc level can be safely lowered to a
previous step (that may use, for example, a function to &tiewwontrol dependence regions [12]). This delegation
introduces a new trusted structure into the type systemitypersystem, however, does not need to trust the well-
formation of such a list. Moreover, even the signatuté gttached to SIF programs is untrusted in our setting,
since, as we explained in section 2.3, its information abloeiisecurity level of thec is checked in the rules for
cpush andcjmp in order to prevent illegal information flows.

We are currently developing a version of our language thaudes a runtime stack, in order to define a stack-
based compilation function from a high-level imperativegnamming language to SIF.

Acknowledgments:We are grateful to Pablo Garralda, Healfdene Goguen, Daaighidinn, and Alejandro Russo
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project CAREER: A formally verified environment for the productidnsecure software- #0093362 and the
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