
Non-Interference for a Typed Assembly Language

Ricardo Medel Adriana Compagnoni
Stevens Institute of Technology

Hoboken, NJ

Eduardo Bonelli
LIFIA, Fac. de Informática, UNLP

La Plata (Argentina)

13 May 2005

Abstract

Non-interference is a desirable property of systems in a multilevel security architecture, stating that confi-
dential information is not disclosed in public output. The challenge of studying information flow for assembly
languages is that the control flow constructs that guide the analysis in high-level languages are not present.
To address this problem, we define a typed assembly language that uses pseudo-instructions to impose a stack
discipline on the control flow of programs. We develop a type system for checking that assembly programs
enjoy non-interference and its proof of soundness.

1 Introduction

The confidentiality of information handled by computing systems is of paramount importance. However, standard
perimeter security mechanisms such as access control or digital signatures fail to address the enforcement of
information-flow policies. On the other hand, language-based strategies offer a promising approach to information
flow security. In this paper, we study confidentiality for an assembly language using a language-based approach
to security via type-theory.

In a multilevel security architecture information can range from having low (public) to high (confidential)
security level. Information flow analysis studies whether an attacker can obtain information about the confidential
data by observing the output of the system. The non-interference property states that any two executions of
the same program, where only the high-level inputs differ inboth executions, does not exhibit any observable
difference in the program’s output.

In this paper we define SIF, a typed assembly language for secure information flow analysis with security
types. This language contains two pseudo-instructions,cpush L andcjmp L, for handling a stack of code
labels indicating the program points where different branches of code converge, and the type system enforces a
stack policy on those code labels. Our development culminates with a proof that well-typed SIF programs are
assembled to untyped machine code that satisfy non-interference.

The type system of SIF detects explicit illegal flows as well as implicit illegal flows arising from the control
structure of a program. Other covert channels such as those based on termination, timing, and power consumption,
are outside the scope of this paper.

2 SIF, A Typed Assembly Language

In information flow analysis, a security level is associatedwith the program counter (pc) at each program execution
point. This security level is used to detect implicit information flow from high-level values to low-level values.
Moreover, control flow analysis is crucial in allowing this security level to decrease where there is no risk of illicit
flow of information.

1

Consider the example in Figure 1(a), wherex has high security level andz has low security level. Notice
that y cannot have low security level, since information aboutx can be retrieved fromy , violating the non-
interference property. Since the execution path depends onthe value stored in the high-security variablex , entering
the branches of theif-then-else changes the security level of thepc to high, indicating that only high-level
variables can be updated. On the other hand, sincez is modified after both branches, there is no leaking of
information from eithery or x to z . Therefore, the security level of thepc can be safely lowered.

Sec. level ofpc

low if x=0
high then y:=1
high else y:=2
low z:=3

(a) High-level program

L1 : bnz r1, L2 % if x 6 =0 goto L2

move r2 ← 1 % y:= 1
jmp L3

L2 : move r2 ← 2 % y:= 2
L3 : move r3 ← 3 % z:= 3

(b) Assembly program

Figure 1: Example of implicit illegal information flow.

A standard compilation of this example to assembly languagemay produce the code shown in Figure 1(b). Note
that the block structure of theif-then-else is lost, and it is not clear where it is safe to lower the security
level of thepc. We address this problem by including in our assembly language a stack of code labels accessed by
two pseudo-instructions,cpush L andcjmp L, to simulate the block structure of high-level languages.

The instructioncpush L pushesL onto the stack whilecjmp L first popsL from the stack ifL is already
at the top, and then jumps to the instruction labelled byL. The extra label information incjmp L allows us to
statically control that the intended label is removed, thereby preventing ill structured code.

The SIF code for the example in Figure 1(a) is shown below. Thecode atL1 pushes the labelL3 onto the stack.
The code atL3 corresponds to the instructions following theif-then-else in the source code. Observe that
the code atL3 can only be executed once, because the instructioncjmp L3 at the end of the code pointed to by
L1 (then branch), or at the end ofL2 (else branch), removes the top of the stack and jumps to the code pointed
to by L3 . At this point it is safe to lower the security level of thepc, since updating the low-security registerr3
does not leak any information aboutr1.

L1 : {r0 : int⊥, r1 : int>, r2 : int>, r3 : int⊥, pc : ⊥} ‖ ε
cpush L3 % set junction pointL3

bnz r1, L2 % if x 6 = 0 goto L2
arithi r2 ← r0 + 1 % y:= 1, with r0=0
cjmp L3

L2 : {r0 : int⊥, r2 : int>, r3 : int⊥, pc : >} ‖ L3 · ε
arithi r2 ← r0 + 2 % y:= 2
cjmp L3

L3 : {r0 : int⊥, r3 : int⊥, pc : ⊥} ‖ ε
arithi r3 ← r0 + 3 % z:= 3
halt
eof

Moreover, as in HBAL [1], the type-checking of the program isseparated from the verification of the safety
of the machine configuration where the program is assembled.Thus, following the schema shown below, a type-
checker can verify if a program is safe for execution onany safememory configuration, and the runtime environ-
ment only needs to check that the initial machine configuration is safe before each run.

2

Eval

No

Unsafe Code

Typechecker

Unsafe Memory.

No

Yes Yes
Compiler Assembler Is machine safe?

The assembler removescpush L and translatescjmp L into jmp L, an ordinary unconditional jump,
leaving no trace of these pseudo-instructions in the executable code (see the definition of the assembly function
Asm(−) in section 2.4).

2.1 The Type System

We assume given a latticeLsec of security labels[8], with an ordering relationv, least (⊥) and greatest (>)
elements, and join (t) and meet (u) operations. These labels assign security levels to elements of the language
through types. The type expressions of SIF are given by the following grammar:

security labels l ∈ Lsec

security types σ ::= ωl

word types ω ::= int | [τ]
memory location types τ ::= σ × . . .× σ | code

Security types(σ) are word types annotated with a security label. The expression LABL(σ) returns the security
label of a security typeσ. A word type(ω) is either an integer type (int) or a pointer to a memory location type
([τ]). Memory location types(τ) are tuples of security types, or a special typecode . We useτ [c], with c a positive
integer, to refer to thecth word type of the product typeτ . Since the typecode indicates the type of an assembly
instruction, our system distinguishes code from data.

A context(Γ ‖ Λ) contains a register contextΓ and a junction points stackΛ. A junction points stack(Λ) is a
stack of code labels, each representing the convergence point of a fork in the control flow of a program. The empty
stack is denoted byε. A register contextΓ contains type information about registers, mapping them tosecurity
types. We assume a finite set of registers{r0, . . . , rn}, with two dedicated registers:r0, that always holds zero,
andpc, the program counter.

We writeDom(Γ) for the domain of the register contextΓ. The empty context is denoted by{}. The register
context obtained by eliminating fromΓ all pairs withr as first component be denoted byΓ/r, while Γ,Γ′ denotes
the union of register contexts with disjoint domains. We useΓ, r : σ as a shorthand forΓ, {r : σ}, andΓ[r := σ]
as a shorthand forΓ/r, {r : σ}.

Since the program counter is always a pointer to code, we usually write pc : l instead ofpc : [code]l. We also
useΓ(pc) instead of LABL(Γ(pc)).

2.2 Syntax of SIF programs

A program (P) is a sequence of instructions and code labels ended by the directive eof . SIF has standard
assembly language instructions such as arithmetic operations, conditional branching, load, and store, plus pseudo-
instructionscpush andcjmp to handle the stack of code labels.

3

Γ′ ⊆ Γ l v l′

ST RegBank
(Γ, pc : l ‖ Λ) ≤ (Γ′, pc : l′ ‖ Λ)

Ctxt(P) `Σ P
T Halt

Γ ‖ ε `Σ halt ; P

T Eof
Γ ‖ ε `Σ eof

(Γ ‖ Λ) ≤ Σ(L) Σ(L) `Σ P
T Label

Γ ‖ Λ `Σ L; P

(Γ ‖ Λ) ≤ Σ(L) Ctxt(P) `Σ P
T Jmp

Γ ‖ Λ `Σ jmp L; P

(Γ, r : int
l′ , pc : l t l′ ‖ Λ) ≤ Σ(L) Γ, r : int

l′ , pc : l t l′ ‖ Λ `Σ P
T CondBrnch

Γ, r : int
l′ , pc : l ‖ Λ `Σ bnz r, L; P

Γ(rd) = ωld rd, rs, rt 6= pc

Γ(rs) = int ls l t ls t lt v ld
Γ(rt) = int lt Γ, pc : l ‖ Λ `Σ P

T Arith
Γ, pc : l ‖ Λ `Σ arith rd ← rs � rt; P

rd, rs 6= pc

Γ(rd) = ωld l t ls v ld
Γ(rs) = int ls Γ, pc : l ‖ Λ `Σ P

T Arithi
Γ, pc : l ‖ Λ `Σ arithi rd ← rs � i; P

Γ(rs) = [τ]ls rd, rs 6= pc

Γ(rd) = ωld l t ls v lc v ld
τ [c] = ωlc

c Γ, pc : l ‖ Λ `Σ P
T Load

Γ, pc : l ‖ Λ `Σ load rd ← rs[c]; P

Γ(rd) = [τ]ld rd, rs 6= pc

Γ(rs) = τ [c] = ωls l t ld v ls
τ is code -free Γ, pc : l ‖ Λ `Σ P

T Store
Γ, pc : l ‖ Λ `Σ store rd[c]← rs; P

l v Σ(L)(pc) Γ, pc : l ‖ L · Λ `Σ P
T Cpush

Γ, pc : l ‖ Λ `Σ cpush L; P

Σ(L) = Γ′ ‖ Λ Γ′

/pc ⊆ Γ/pc Ctxt(P) `Σ P
T Cjmp

Γ ‖ L · Λ `Σ cjmp L; P

Figure 2: Subtyping for contexts and typing rules for programs.

program P ::= eof | L; P | p; P
instructions p ::= halt | jmp L | bnz r, L

| load r← r[c] | store r[c]← r
| arith r ← r � r | arithi r ← r � i
| cpush L | cjmp L

operations � ::= + | − | ∗ | /

We usec to indicate an offset, andi to indicate integer literals. We assume an infinite enumerable set of code
labels. Intuitively, the instructioncpush L pushes the junction point represented by the code labelL onto the
stack, while the instructioncjmp L behaves as a pop and a jump. IfL is at the top of the stack, it popsL and
then jumps to the instruction labeledL.

2.3 Typing rules

A signature(Σ) is a mapping assigning contexts to labels. The contextΣ(L) contains the typing assumptions for
the registers in the program point pointed to by the labelL. The judgmentΓ ‖ Λ `Σ P is a typing judgment for
a SIF programP , with signatureΣ, in a contextΓ ‖ Λ. We say that a programP is well-typedif Ctxt(P) `Σ P ,
whereCtxt(P) is the partial function defined as:Ctxt(L; P) = Σ(L), Ctxt(eof) = {} ‖ ε.

The typing rules for SIF programs, shown in Figure 2, are designed to prevent illegal flows of information. The
directiveeof is treated as ahalt instruction. So, rulesT Eof andT Halt ensure that the stack is empty.

RuleT Label requires that the current context be compatible with the context expected at the position of the
label, as defined in the signature (Σ) of the program. Jumps and conditional jumps are typed by rulesT Jmp and
T CondBrnch. In both rules the current context has to be compatible with the context expected at the destination
code. InT CondBrnch, both the code pointed to byL and the remaining programP are considered destinations

4

of the jump included in this operation. In order to avoid implicit flows of information, the security level of thepc

in the destination code should not be lower than the current security level and the security level of the register (r)
that controls the branching.

In T Arith the security level of the source registers and thepc should not exceed the security level of the target
register to avoid explicit flows of information. The security level of rd can actually be lowered to reflect its new
contents, but, to avoid implicit information flows, it cannot be lowered beyond the level of thepc. Similarly for
T Arithi, T Load andT Store. In T Load, an additional condition establishes that the security level of the pointer
to the heap has to be lower than or equal to the security level of the word to be read.

The ruleT Cpush controls whethercpush L can add the code labelL to the stack. SinceL is going to be
consumed by acjmp L instruction, its security level should not be lower than thecurrent level of thepc. The
cjmp L instruction jumps to the junction point pointed to by labelL. Furthermore, to prevent ill structured
programs the ruleT Cjmp forces the code labelL to be at the top of the stack, and the current context has to be
compatible with the one expected at the destination code. However, since acjmp instruction allows the security
level to be lowered, there are no conditions on its security level.

2.4 Type soundness of SIF

In this section we define a semantics for the untyped assemblyinstructions operating on a machine model, we give
an interpretation for SIF types which captures the way typesare implemented in memory, and finally we prove that
the execution of a well-typed SIF program modifies a type-safe configuration into another type-safe configuration.

Let Reg = {0, 1, . . . ,Rmax} be the register indices, with two dedicated registers:R(0) = 0, andR(pc) is
the program counter. LetLoc ⊆ Z be the set of memory locations on our machine,Wrd be the set of machine
words that can stand for integers or locations, andCode be the set of machine words which can stand for machine
instructions. To simplify the presentation, we assume thatWrd is disjoint fromCode; so, our model keeps code
separate from data.

A machine configurationM is a pair(H,R) whereH : Loc ⇁ Wrd] Code is a heap configuration, and
R : Reg→Wrd is a register configuration.

Given a programP , a machine assembled forP is a machine configuration which contains a representation
of the assembly program, with machine instructions stored in some designated contiguous portion of the heap.
SupposingP = p1; . . . ; pn, the assembly process defines a functionPAdr : 1, . . . , n → Loc which gives the
destination location for the code when assembling the typedinstructionpu, where1 ≤ u ≤ n. For each of the
locations` whereP is stored,H(`) ∈ Code. The assembly process also defines the functionLAdr(L), which
assigns to each label inP the heap location where the code pointed to by the label was assembled.

Given a machine configurationM = (H,R), we define amachine transitionM −→ M ′, as follows: First,
M ′ differs fromM by incrementingR(pc) according to the length of the instruction inH(R(pc)); then, the
transformation given in the table below is applied to obtainthe new heapH ′, or register bankR′. The operations
on r0 have no effect.

jmp L R′ = R[pc := LAdr(L)]

bnz r, L R′ =

{

R, if R(r) = 0
R[pc := LAdr(L)], otherwise

arith rd ← rs � rt R′ = R[rd := R(rs) � R(rt)]
arithi rd ← rs � i R′ = R[rd := R(rs) � i]
load rd ← rs[c] R′ = R[rd := H(R(rs) + c)]
store rd[c]← rs H ′ = H [R(rd) + c := R(rs)]

Asm(pu) stands for the sequence of untyped machine instructions which is the result of assembling a typed
assembly instructionpu:

Asm(L) = ε Asm(eof) = halt Asm(cpush L) = ε Asm(cjmp L) = jmp L Asm(pu) = pu

5

We writeM
Asm(pu)
−→ M ′, if M executes toM ′ through the instructions inAsm(pu), by zero or one transitions in

M . The reflexive and transitive closure of this relation is defined by the following rules.

Refl
M =⇒M

M1
Asm(pu)
−→ M2

Incl
M1 =⇒M2

M1 =⇒M2 M2 =⇒M3
Trans

M1 =⇒M3

2.4.1 Imposing Types on the Model

A heap contextψ is a function that maps heap locations to security types. A heap context contains type information
about the heap locations required to type the registers.Dom(ψ) denotes the domain of the heap contextψ. The
empty context is denoted by{}. We writeψ[` := τ] for the heap context resulting from updatingψ with ` : τ . Two
heap contextsψ andψ′ arecompatible, denotedcompat(ψ,ψ′), if for all ` ∈ Dom(ψ)∩Dom(ψ′), ψ(`) = ψ′(`).
The following rules assign types to heap locations:

H(`) ∈ Code
T HLocCode

H ; {` : code } |= ` : code hloc

H(`) ∈ Wrd
T HLocInt

H ; {` : int l} |= ` : int l hloc

H(`) ∈Wrd compat(ψ, {` : [τ]l}) H ;ψ |= H(`) : τ hloc
T HLocPtr

H ;ψ ∪ {` : [τ]l} |= ` : [τ]l hloc

compat(ψ, ψ′) H ;ψ |= ` : τ hloc
W HLoc

H ;ψ ∪ ψ′ |= ` : τ hloc

mi = size(σ0) + . . .+ size(σi−1) H ;ψ |= `+mi : σi hloc for all 0 ≤ i ≤ n
T HLocProd

H ;ψ |= ` : σ0 × . . .× σn hloc

In order to define the notion of satisfiability of contexts by machine configurations, we need to define a satisfi-
ability relation for registers.

r 6= pc
T RegInt

M |={} r : int l reg

H ;ψ |= R(r) : τ hloc
T RegPtr

(H,R) |=ψ r : [τ]l reg

(H,R) |=ψ r : σ reg compat(ψ, ψ′)
W Reg

(H,R) |=ψ∪ψ′ r : σ reg

A machine configurationM satisfiesa typing assignmentΓ with a heap typing contextψ (writtenM |=ψ Γ)
if and only if for each registerri ∈ Dom(Γ), M satisfies the typing statementM |=ψi

ri : Γ(ri) reg, the heap
contextsψi are pairwise compatible, andψ = ∪∀iψi.

A machine configurationM = (H,R) is in final stateif H(R(pc)) = halt . We define an approximation to
the execution of a typed programP = p1; . . . ; pn by relating the execution of the code locations in the machineM
with the control paths in the program by means of the relationpu pv, which holds between pairs of instructions
indexed by the set:

{(i, i+ 1) | pi 6= jmp , cjmp , and i < n}
∪

{(i, j + 1) | pi = jmp L, bnz r, L, or cjmp L, and pj = L}.

pu
∗
 pv denotes the reflexive and transitive closure ofpu pv.

2.4.2 Type Soundness

In this section we show that our type system ensures that the reduction rules preserve type safety. The soundness
results imply that if the initial memory satisfies the initial typing assumptions of the program, then each memory
configuration reachable from the initial memory satisfies the typing assumptions of its current instruction.

6

The typing assumptions of each instruction of a program can be obtained from the initial context by the type-
checking process. For a well-typed programP = p1; . . . pu; . . . ; pn, the derivationCtxt(P) `Σ P determines a
sequence of contextsΓ1 ‖ Λ1, . . . ,Γn ‖ Λn from sub-derivations of the formΓu ‖ Λu `Σ pu; pu+1; . . . ; pn.

A machine configuration is considered type-safe if it satisfies the typing assumptions of its current instruction.
Given a well-typed programP = p1; . . . pu; . . . ; pn and a heap contextψ, we sayM = (H,R) is type safe atu
for P withψ if M is assembled forP ; R(pc) = PAdr(u); andM |=ψ Γu.

We prove two meta-theoretic results Progress and Subject Reduction. Progress (Theorem 1) establishes that a
non-final-state type safe machine can always progress to a new machine by executing a well-typed instruction, and
Subject Reduction (Theorem 2) establishes that if a type safe machine progresses to another machine, the resulting
machine is also type safe.

Theorem 1 (Progress)
Suppose a well-typed programP = p1; . . . pu; . . . ; pn and a machine configurationM type safe atu. Then there

existsM ′ such thatM
Asm(pu)
−→ M ′, orM is in final state.

Theorem 2 (Subject Reduction)
SupposeP = p1; . . . pu; . . . ; pn is a well-typed program and(H,R) is a machine configuration type safe atu, and

(H,R)
Asm(pu)
−→ M ′. Then there existspv ∈ P such thatpu pv andM ′ is type safe atv.

The proof of this theorem proceeds by case analysis on the current instructionpu, analyzing each of the possible
instructions that followpu, based on the definition of program transitions. See the companion technical report [13]
for details.

3 Non-Interference

Given an arbitrary (but fixed) security levelζ of anobserver, non-interference states that computed low-security
values (v ζ) should not be affected by high-security input values (6v ζ). In order to prove that a programP
satisfies non-interference one must show that any two terminating executions fired from indistinguishable (from the
point of view of the observer) machine configurations yield indistinguishable configurations of the same security
observation level.

In order to establish what it means for machine configurations to be indistinguishable from an observer’s point
of view whose security level isζ, we define aζ-indistinguishability relation for machine configurations.

The following definitions assume a given security levelζ, two machine configurationsM1 = (H1, R1) and
M2 = (H2, R2), two heap contextsψ1 andψ2, and two register contextsΓ1 andΓ2, such thatM1 |=ψ1

Γ1 and
M2 |=ψ2

Γ2.
Two register banks areζ-indistinguishable if the observable registers in one bankare also observable in the

other, and the contents of these registers are alsoζ-indistinguishable.

Definition 3.1 (ζ-indistinguishability of register banks)
Two register banksR1 andR2 areζ-indistinguishable, written�H1:ψ1,H2:ψ2

R1 : Γ1 ≈ζ R2 : Γ2 regBank, if for
all r ∈ Dom(Γ1) ∪Dom(Γ2), with r 6= pc:

LABL (Γ1(r)) v ζ or LABL (Γ2(r)) v ζ implies







r ∈ Dom(R1) ∩Dom(R2) ∩Dom(Γ1) ∩Dom(Γ2),
Γ1(r) = Γ2(r), and
�H1:ψ1,H2:ψ2

R1(r) ≈ζ R2(r) : Γ1(r) val

Two word valuesv1 andv2 of typeωl are consideredζ-indistinguishable, written�H1:ψ1,H2:ψ2
v1 ≈ζ v2 : ωl val,

if l v ζ implies that both values are equal. In case of pointers to heap locations, the locations have to be alsoζ-
indistinguishable.

7

Two heap values̀1 and`2 of typeτ are consideredζ-indistinguishable, written�H1:ψ1,H2:ψ2
`1 ≈ζ `2 : τ hval,

if `1 ∈ H1, `2 ∈ H2, and either the typeτ is code and`1 = `2, or τ = σ1 × . . . × σn and each pair of offset
locations`1 +mi and`2 +mi (with mi as in ruleT HLocProd) areζ-indistinguishable, orτ is a word type with
a security labell andl v ζ implies that both values are equal.

LowAxiom
�Σε ≈ζ ε Low

Σ(L)(pc) v ζ �Σ Λ1 ≈ζ Λ2 Low
LowLow

�ΣL · Λ1 ≈ζ L · Λ2 Low

Σ(L1)(pc) 6v ζ Σ(L2)(pc) 6v ζ �Σ Λ1 ≈ζ Λ2 Low
LowHigh

�ΣL1 · Λ1 ≈ζ L2 · Λ2 cstackLow

�ΣΛ1 ≈ζ Λ2 Low
HighAxiom

�ΣΛ1 ≈ζ Λ2 High

Σ(L)(pc) 6v ζ �Σ Λ1 ≈ζ Λ2 High
HighLeft

�ΣL · Λ1 ≈ζ Λ2 High

Σ(L)(pc) 6v ζ �Σ Λ1 ≈ζ Λ2 High
HighRight

�ΣΛ1 ≈ζ L · Λ2 High

Figure 3:ζ-indistinguishability of junction points stacks.

The proof of our main result, the Non-Interference Theorem 3, requires two notions of indistinguishability of
stacks (Low and High). If one execution of a program brancheson a condition while the other does not, the
junction points stacks may differ in each of the paths followed by the executions. If the security level of thepc is
low in one execution, then it has to be low in the other execution as well, and the executions must be identical. The
first three rules of Figure 3 define the relation of low-indistinguishability for stacks. In low-security executions
the associated stacks mus be of the same size, and each code label in the stack of the first execution must be
indistinguishable from that of the corresponding element in the second one.

If the security level of thepc of one of the two executions is high, then the other one must behigh too. The
executions are likely to be running different instructions, and thus the associated stacks may have different sizes.
However, we need to ensure that both executions follow branches of the same condition. This is done by requiring
that both associated stacks have a common (low-indistinguishable) sub-stack. The second three rules of Figure 3
define the relation of high-indistinguishability for stacks. Also note that, as imposed by the typing rules, the code
labels added to the stack associated to high-security branches are of high-security level.

Finally, we define the relation of indistinguishability of two machine con from the point of view of an observer
of level ζ.

Definition 3.2
Two machine configurationsM1 = (H1, R1) andM2 = (H2, R2) areζ-indistinguishable, denoted by the judg-
ment�PM1 : Γ1,Λ1, ψ1 ≈ζ M2 : Γ2,Λ2, ψ2 mConfig, if and only if

1. M1 |=ψ1
Γ1 andM2 |=ψ2

Γ2,

2. M1 andM2 are assembled forP at the same addresses,

3. �H1:ψ1,H2:ψ2
R1 : Γ1 ≈ζ R2 : Γ2 regBank, and

4. either

(a) Γ1(pc) = Γ2(pc) v ζ andR1(pc) = R2(pc) and�ΣΛ1 ≈ζ Λ2 Low, or

(b) Γ1(pc) 6v ζ andΓ2(pc) 6v ζ and�ΣΛ1 ≈ζ Λ2 High.

8

Note that both machine configurations must be consistent with their corresponding typing assignments, and
they must be executing the code resulting from assemblingP .

We may now state the non-interference theorem establishingthat starting from two indistinguishable machine
configurations assembled for the same programP , if each execution terminates, the resulting machine configura-
tions remain indistinguishable.

In the following theorem and lemmas, for any instructionpi in a well-typed programP = p1; . . . ; pn, the
contextΓi ‖ Λi is obtained from the judmentΓi ‖ Λi `Σ pi; pn, which is derived by a sub-derivation of
Ctxt(P) `Σ P .

Theorem 3 (Non-Interference)
Let P = p1; . . . ; pn be a well-typed program,M1 = (H1, R1) andM2 = (H2, R2) be machine configurations
such that both aretype safeat 1 forP with ψ and

�PM1 : Γ1, ε, ψ ≈ζ M2 : Γ1, ε, ψ mConfig.

If M1 =⇒M ′
1 andM2 =⇒M ′

2, withM ′
1 andM ′

2 in final state, then

�PM
′

1 : Γv, ε, ψ1 ≈ζ M
′

2 : Γw, ε, ψ2 mConfig.

The technical challenge that lies in the proof of this theorem is that theζ-indistinguishability of configurations
holds after each transition step. The proof is developed in two stages. First it is proved that twoζ-indistinguishable
configurations that have a low (and identical) level for thepc can reduce in alock step fashionin a manner invariant
to theζ-indistinguishability property. This is stated by the following lemma.

Lemma 1 (Low-PC step)
LetP = p1; . . . ; pn be a well-typed program, such thatpv1 andpv2 are inP ,M1 = (H1, R1) andM2 = (H2, R2)
be machine configurations. Suppose

1. M1 is type safe atv1 andM2 is type safe atv2, for P with ψ1 andψ2, respectively,

2. �PM1 : Γv1,Λv1 , ψ1 ≈ζ M2 : Γv2,Λv2 , ψ2 mConfig,

3. Γv1(pc) v ζ andΓv2(pc) v ζ,

4. M1
Asm(pv1

)
−→ M ′

1, and

5. there existspw1
in P such thatpv1 pw1

, andM ′
1 is type safe atw1 with ψ3.

Then, there exists a configurationM ′
2 such that:

(a) M2
Asm(pv2

)
−→ M ′

2,

(b) there existspw2
in P such thatpv2 pw2

, andM ′
2 is type safe atw2 with ψ4, and

(c) �PM
′
1 : Γw1

,Λw2
, ψ3 ≈ζ M

′
2 : Γw2

,Λw2
, ψ4 mConfig.

When the level of thepc is low, the programs execute the same instructions (with possibly different heap and
register bank). They may be seen to besynchronizedand each reduction step made by one is emulated with a
reduction of the same instruction by the other. The resulting machines must beζ-indistinguishable.

However, a conditional branch (bnz) may cause the execution to fork on a high value. As a consequence, both
of their pc become high and we must provide proof that there are someζ-indistinguishable machines to which
they reduce. Then, the second stage of the proof consists of showing that every reduction step of one execution
whosepc has a high-security level can be met with a number of reduction steps (possibly none) from the other
execution such that they reach indistinguishable configurations. The High-PC Step Lemma states such result.

9

Lemma 2 (High-PC Step)
Let P = p1; . . . ; pn be a well-typed program, such thatpv1 andpv2 are inP , andM1 = (H1, R1) andM2 =
(H2, R2) be machine configurations. Suppose

1. M1 is type safe atv1 andM2 is type safe atv2, for P with ψ1 andψ2, respectively.

2. �PM1 : Γv1,Λv1 , ψ1 ≈ζ M2 : Γv2,Λv2 , ψ2 mConfig,

3. Γv1(pc) 6v ζ andΓv2(pc) 6v ζ,

4. M1
Asm(pv1

)
−→ M ′

1, and

5. there existspw1
in P such thatpv1 pw1

andM ′
1 is type safe atw1 with ψ3.

Then, either the configurationM2 diverges or there exists a machine configurationM ′
2 such that

(a) M2 =⇒M ′
2,

(b) there existspw2
in P such thatpv2

∗
 pw2

andM ′
2 is type safe atw2 with ψ4, and

(c) �PM
′
1 : Γw1

,Λw1
, ψ3 ≈ζ M

′
2 : Γw2

,Λw2
, ψ4 mConfig.

The main technical difficulty here is the proof of the case when one execution does acjmp instruction that low-
ers thepc level. In this case, the other execution should, in a number of steps, also reduce itspc level accordingly.
This is guaranteed by two facts. First, high-indistinguishable stacks share a sub-stack whose top is the label to the
junction point where thepc level is reduced and both executions converge. Second, well-typed programs reach
final states only with an empty stack, having visited all the labels indicated by the junction point stack.

4 Related Work

Information flow analysis has been an active research area inthe past three decades [18]. Pioneering work by Bell
and LaPadula [4], Feiertag et al. [9], Denning and Denning [8, 7], Neumann et al. [17], and Biba [5] set the basis
of multilevel security by defining a model of information flowwhere subjects and objects have a security level
from a lattice of security levels. Such a lattice is instrumental in representing a security policy where a subject
cannot read objects of level higher than its level, and it cannot write objects at levels lower than its level.

The notion ofnon-interferencewas first introduced by Goguen and Meseguer [10], and there has been a sig-
nificant amount of research on type systems for confidentiality for high-level languages including Volpano and
Smith [20], and Banerjee and Naumann [2]. Type systems for low-level languages have been an active subject of
study for several years now, including TAL [14], STAL [15], DTAL [21], Alias Types [19], and HBAL [1].

In his PhD thesis [16], Necula already suggests informationflow analysis as an open research area at the
assembly language level. Zdancewic and Myers [22] present alow-level, secure calculus with ordered linear
continuations. An earlier version of our type system was inspired by that work. However, we discovered that
in a typed assembly language it is enough to have a junction point stack instead of mimicking ordered linear
continuations. Barthe et al. [3] define a JVM-like low-levellanguage with a heap and an operand stack. The type
system is parameterized by control dependence regions, andit is assumed that there exist functions that obtain
such regions. In contrast, SIF allows such regions to be expressed in the language by using code labels and its
well-formedness to be verified during type-checking. Craryet al. [6] define a low-level calculus for information
flow analysis, however, their calculus has the structuring constructif-then-else , unlike SIF that uses typed
pseudo-instructions that are assembled to standard machine instructions.

10

5 Conclusions and Future Work

We defined SIF, a typed assembly language for secure information flow analysis. Besides the standard features,
such as heap and register bank, SIF introduces a stack of codelabels in order to simulate at the assembly level
the block structure of high-level languages. The type system guarantees that well-typed programs assembled on
type-safe machine configurations satisfy the non-interference property: for a security levelζ, if two type-safe
machine configuration areζ-indistinguishable, then the resulting machine configurations after execution are also
ζ-indistinguishable.

An alternative to our approach is to have a list of the programpoints where the security level of thepc can
be lowered safely. This option delegates the security analysis of where thepc level can be safely lowered to a
previous step (that may use, for example, a function to calculate control dependence regions [12]). This delegation
introduces a new trusted structure into the type system. Ourtype system, however, does not need to trust the well-
formation of such a list. Moreover, even the signature (Σ) attached to SIF programs is untrusted in our setting,
since, as we explained in section 2.3, its information aboutthe security level of thepc is checked in the rules for
cpush andcjmp in order to prevent illegal information flows.

We are currently developing a version of our language that includes a runtime stack, in order to define a stack-
based compilation function from a high-level imperative programming language to SIF.

Acknowledgments:We are grateful to Pablo Garralda, Healfdene Goguen, David Naumann, and Alejandro Russo
for enlightening discussions and comments on previous drafts. This work was partially supported by theNSF
project CAREER: A formally verified environment for the production of secure software– #0093362 and the
Stevens Technogenesis Fund.

References
[1] David Aspinall and Adriana B. Compagnoni. Heap bounded assembly language.Journal of Automated Reasoning, Special Issue on

Proof-Carrying Code, 31(3-4):261–302, 2003.

[2] A. Banerjee and D. Naumann. Secure information flow and pointer confinement in a java-like language. InProceedings of Fifteenth
IEEE Computer Security Foundations - CSFW, pages 253–267, June 2002.

[3] G. Barthe, A. Basu, and T. Rezk. Security types preserving compilation. InProceedings of VMCAI’04, volume 2937 ofLecture
Notes in Computer Science. Springer-Verlag, 2004.

[4] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations and model. Technical Report Technical Report MTR
2547 v2, MITRE, November 1973.

[5] K. Biba. Integrity considerations for secure computer systems. Technical Report ESD-TR-76-372, USAF Electronic Systems Divi-
sion, Bedford, MA, April 1977.

[6] Karl Crary, Aleksey Kliger, and Frank Pfenning. A monadic analysis of information flow security with mutable state. Technical
Report CMU-CS-03-164, Carnegie Mellon University, September 2003.

[7] D. E. Denning and P. J. Denning. Certification of programsfor secure information flow.Communications of the ACM, 20(7):504–513,
July 1977.

[8] Dorothy E. Denning. A lattice model of secure information flow. Communications of the ACM, 19(5):236–242, May 1976.

[9] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system design. In6th ACM Symp. Operating System
Principles, pages 57–65, November 1977.

[10] J. A. Goguen and J. Meseguer. Security policy and security models. InProceedings of the Symposium on Security and Privacy, pages
11–20. IEEE Press, 1982.

[11] Daniel Hedin and David Sands. Timing aware informationflow security for a javacard-like bytecode. InProceedings of BYTECODE,
ETAPS’05, to appear, 2005.

[12] Xavier Leroy. Java bytecode verification: an overview.In G. Berry, H. Comon, and A. Finkel, editors,Proceedings of CAV’01,
volume 2102, pages 265–285. Springer-Verlag, 2001.

11

[13] Ricardo Medel, Adriana Compagnoni, and Eduardo Bonelli. A typed assembly language for secure information flow analysis.
http: //www.cs.stevens.edu/˜ rmedel/hbal/publications/sifTec hReport.ps , 2005.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed Assembly Language.ACM Transactions on Programming
Languages and Systems, 21(3):528–569, May 1999.

[15] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly language. InSecond International Workshop
on Types in Compilation, pages 95–117, Kyoto, March 1998. Published in Xavier Leroyand Atsushi Ohori, editors,Lecture Notes in
Computer Science, volume 1473, pages 28-52. Springer-Verlag, 1998.

[16] George Necula.Compiling with Proofs. PhD thesis, Carnegie Mellon University, September 1998.

[17] Peter G. Neumman, Richard J. Feiertag, Karl N. Levitt, and Lawrence Robinson. Software development and proofs of multi-level
security. InProceedings of the 2nd International Conference on Software Engineering, pages 421–428. IEEE Computer Society,
October 1976.

[18] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas in Communications, 21(1),
2003.

[19] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Gert Smolka, editor,Ninth European Symposium on Program-
ming, volume 1782 ofLNCS, pages 366–381. Springer-Verlag, April 2000.

[20] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. InTAPSOFT, pages 607–621, 1997.

[21] Hongwei Xi and Robert Harper. A dependently typed assembly language. Technical Report OGI-CSE-99-008, Oregon Graduate
Institute of Science and Technology, July 1999.

[22] S. Zdancewic and A. Myers. Secure information flow via linear continuations.Higher Order and Symbolic Computation, 15(2–3),
2002.

12

