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Abstract

We define aformal encoding from higher-order rewriting into first-order rewriting modulo an equational theory £. In partic-
ular, we obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting
modulo an empty equational theory (that is, £ = ). Thisclassincludes of course the A-calculus. Our technique does not rely
on the use of a particular substitution calculus but on an axiomatic framework of explicit substitutions capturing the notion of
substitution in an abstract way. The axiomatic framework specifies the propertiesto be verified by a substitution cal culus used
in the translation. Thus, our encoding can be viewed as a parametric translation from higher-order rewriting into first-order
rewriting, in which the substitution calculus is the parameter of the translation.

Keywords Higher-order rewriting, first-order rewriting, explicit substitutions.

1 Introduction

Higher-order substitution is the core operation of languages based on higher-order rewrite systems.
This operation, which is used to perform the substitution of variables by terms, cannot be expressed
by simple replacement (also known as grafting) of variables asisdone in first-order theories since it
takes place in the context of languages having variable bindings. Issues such as variable capture and
renaming on the one hand, and the complexity of higher-order substitution itself on the other, com-
plicate both the metatheory and the implementation of higher-order rewrite systems. One approach
to minimize this burden is given by calculi with explicit substitutions Higher-order substitution
is rendered as an object-level operation and thus included in the object theory itself. This allows
higher-order systems/formalisms to be expressed in first-order systems/formalisms.

Usually, the process of making the operation of higher-order substitution explicit is accompanied
by selecting an appropriate notation for terms, such as for example de Bruijn indices, that tames the
aforementioned issues of variable capture and renaming. A well-known example of the combined
benefits of de Bruijn indices notation and explicit substitutions is the formulation of different first-
order calculi for the A-calculus[1, 4, 30, 35, 16, 40], which is the paradigmatic exampl e of a higher-
order (term) rewriting system. Other examples are the trandations of higher-order unification to
first-order unification modulo [20], higher-order logic to first-order logic modulo [21], higher-order

Vol. 15 No. 6, © The Author, 2005. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/logcom/exi050



902 Reélating Higher-order and First-order Rewriting

theorem proving to first-order theorem proving modulo [18], etc.

In a previous paper [11] we introduce a HOR (higher-order rewriting) formalism based on de
Bruijn indices (called SERS;5) which does away with «-conversion and establishes precise links
between the SERS formalism [11] and SERS ;5. However, substitution remainsin both formalisms
as ametalevel operation. This becomes a concrete problem in real implementations where substitu-
tions must be denoted by symbols and constructors of the language, and the computational behaviour
of substitutions must be specified by reduction rules belonging to the operational rules of the lan-
guageitself. Thus, in the present articlewe encode al SERS,;p asfirst-order rewriting systemswith
the aid of explicit substitutions.

The case of the A-calculus isinteresting but at the same time not fully representative of the prob-
lems we are faced with when encoding a higher-order system into a first-order setting. For this
particular case it is enough to take care of «-conversion and promote metalevel substitution to the
object-level in order to obtain a first-order rewrite system. Indeed, replacing the usua variable
names by de Bruijn indices and introducing explicit substitutions suffices to yield a first-order re-
write system. However, this is not aways the case for an arbitrary higher-order rewrite system.
In other words, eliminating «-conversion and introducing explicit substitutions is not enough to
yield an equivalent full first-order system (full in the sense of first-order rewriting modulo an empty
equational theory). The reason is that in higher-order rewriting the left-hand side of a rewrite rule
is a higher-order pattern. So we must somehow also encode higher-order pattern matching when
encoding in the first-order framework. The fact that introducing de Bruijn indices plus explicit sub-
stitutions suffices for the A-calculus is saying that for this particular rewrite system higher-order
matching is doing nothing more than what first-order matching could do. Consider the n;5-rewrite
rule:

AMapp(Xa,1))=n., Xe.

One may verify that the term A(app(3, 1)) rewritesto 2. In afirst-order setting with explicit substi-
tution, we have the aternative formulation:

Aapp(X[1],1))— X.

However, in order for the term X[1] to match the subterm 3 we need £-matching, that is, matching
modulo an equational theory £. For an appropriate substitution calculus £ we would need to solve

the equation 3 ;g X|[1]. That isto say, syntactic matching no longer suffices to implement the 145
rule in afirst-order setting since ‘occurs check’ is a feature of higher-order pattern matching which
first-order matching cannot cope with. This may be seen asthe reason why the r45-rule has received
so much attention [45, 24, 14, 29].

Another, perhaps less evident, example is given by the commutation rule Cyg:

imply (VX o, VIXap)— ¢,y true.

The naive trandation to first-order, namely imply(IVX,v3X)— true, is evidently not correct,
so that we take its encoding in the de Bruijn higher-order formalism SERS;p and then translate it
to first order viathe conversion presented in this paper obtaining Cy,:

imply (VX,VIX[2-1- 12])— true.

Now, the rule Cy, has exactly the same intended meaning as the original higher-order rule C: in
order for a term to be an instance of this rule, the term « instantiated for the leftmost X must be
the one instantiated for X[2 - 1- 1], say o/, except that al 1-level and 2-level indicesin a shall be
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interchanged (via the explicit substitution [2 - 1- 72]) in order to obtain a’. Of course, the following
rewriterule C, also doesthe job:

imply (VX2 -1- 12],¥V3AX)— true.

However, note that both Cy, and C7, induce the same rewrite relation on terms.

The goal of this paper is to provide a conversion algorithm for encoding higher-order rewriting
systems into first-order rewriting modulo an equational theory £. A distinctive feature of our al-
gorithm is that we do not attach to the encoding any particular substitution calculus. Instead, we
choose to work with an abstract formulation of substitution calculi, called Basic Substitution Cal-
culi, asdonein [29, 30] to deal with confluence proofs of A-calculi with explicit substitutions. This
macro-based presentation of calculi of explicit substitutions allows us the freedom of choosing from
awide range of calculi of explicit substitution, such as o [1], oy [25], v [4], f [29], d [29], s [35],
¢ [40], when converting a higher-order rewrite system to first order.

The conversion procedure that we propose in this work takes a SERS;5 R and produces a first-
order rewrite system fo(R)yy, where W is some Basic Substitution Calculus (such as for example
o). Itisthe conversion procedure’s responsibility to compute index adjustmentsin order to correctly
encode higher-order pattern matching in the first-order setting. The rewrite rules produced may or
may hot have occurrences of the explicit substitution operator on the LHSSs. In the case that they
do, as in the 45 example, we need matching modulo the induced equational theory of the basic
substitution calculus WW. Otherwise, syntactic matching suffices and thus the SERS;5 R, caled in
this case an essentially first-ordehigher-order rewrite system, can be trandlated to a full first-order
rewrite system, where equational reasoning is not needed at al. Thisis for example the case of the
A-calculus.

The trand ation from higher-order rewriting systems to first-order rewriting modulo an equational
theory £ isinteresting from atheoretical point of view because the expressive power of higher and
first-order formalisms may be compared. However, another more practical issue arises, namely that
of the possibility of transferring resultsdeveloped in the first-order framework to the higher-order
one. This is done for example in [12] for the case of the standardization theorem. Techniques
concerning confluence, termination, completion, evaluation strategies, etc. should be looked at.
Moreover, thisis interesting for two further reasons: On the one hand it is still not fully clear how
to transfer techniques such as dependency pairs[2], semantic labelling [52] or completion [5] to the
higher-order framework, and on the other hand, termination techniques such as RPO for higher-order
systems[28] turn out to be much more complicated than their respective first-order versions[15, 32].
We shall argue that the essentially first-order higher-order systems are better suited for the above
mentioned transfer of properties.

This paper begins by recalling in Section 2 the de Bruijn indices based higher-order rewrite for-
malism SERS,;p (Simplified Expression Reduction Systems with Indices). We introduce in Sec-
tion 3 the first-order rewriting framework with explicit substitutions EXERS(Explicit ERS) which
constitutes the destination formalism of our conversion procedure. This requires defining Basic Sub-
stitution Calculi, adapted to the present setting from [29, 30]. Section 4 introduces the conversion
procedure and illustrates its use with some examples. Thisis followed by a study of the properties
of this procedure: independence of pivot selection (atechnicality concerning the conversion proce-
dure), the simulation proposition and the projection proposition. The simulation proposition states
that fo(R)yy, which is the first-order rewrite system obtained by the conversion procedure, is able
to simulate R-rewriting. Conversely, the projection proposition states that if a rewrites to b in the
system fo(R)w, then W(a) —» W(b), where W(a) denotes the substitution normal form of a ob-
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tained by taking the Basic Substitution Calculus W as arewriting system. More precisely, we shall
see that one fo(R)yy-rewrite step may be encoded as one parallel R-rewrite step. We conclude
by presenting the definition of the essentially first-order higher-order rewriting systems mentioned
previously. This paper is an extended version of the extended abstract published as[10].

Related work

Other approaches to first-order expressions of higher-order formalisms use Nominal Logic. More
precisely, the idea is to consider afirst-order many-sorted logic with equality containing primitives
for renaming via name-swapping for freshness of names and for name-binding. The logic makes use
of the Fraenkel-Mostowski (FM) permutation model of set theory. Some of the more representative
works along this line can be found in [23, 44, 48].

As regards existing higher-order rewrite formalisms based on de Bruijn notation and/or explicit
substitutions to the best of the authors' knowledge there are three: Explicit CRS [8], Explicit Re-
duction SystemisXR.S) [43], and the Calculus of Indexed Names and Named Ind{@gBVNT) [47].
In [8] explicit substitutions ala \x [46, 6] are added to the CR.S formalism as afirst step towards
using higher-order rewriting with explicit substitutions for modelling the evaluation of functional
programsin afaithful way. Since thisis done in avariable name setting a-conversion must be dealt
with asin CRS. Pagano’s XRS congtitutes the first HORS which fuses de Bruijn notation and
explicit substitutions. The formalism XRS is presented as a generalization of the first-order Aog-
calculus[25] to higher-order rewriting and notas afirst-order formulation of higher-order rewriting.
No connection has been established between XR.S and well-known systems such as CRS, ERS and
HRS. Indeed, it isnot clear at all how some seemingly natural rules expressiblein the FR.S formal-
ism, such as for example the n or the C-rule, may be written as an XRS. In the case of CINNI a
similar situation arises, no relation to established HORS in the literature is presented.

2 Thehigher-order framework

This section briefly recalls from [9, 13, 11] the de Bruijn indices based higher-order rewrite formal-
ism SERS g (Simplified Expression Reduction Systems with Indices).

2.1 Metaterms and terms

DEFINITION 2.1 (Labels)

A label is a finite sequence of symbols of an alphabet. A simplelabel is alabel without repeated
symbols. Weuse k, [, [;, . . . to denote arbitrary labels and ¢ for the empty label. If s isasymbol and
l isalabel then the notation s € | meansthat the symbol s appears inthe label [, and a so, we use sl
to denote the new label whose head is s and whose tail isi. Other notations are |!| for the lengthof {
(number of symbolsin ) and at(l, n) for the nth element of [ assuming n < |I|. Also, if s occurs (at
least once) in [ then pos(s, 1) denotes the position of the first occurrenceof s inl. If 6 isafunction
defined on the alphabet of alabel I = s; ... s, then 6(1) denotesthe label 6(s;) ... 6(s,). We may
use alabel asaset (eg. if S isaset then S N[ denotes the intersection of S with the underlying set
determined by 1) if no confusion arises.

DEFINITION 2.2 (Signature)
A SERSp Signature X consists of the following denumerable and digjoint sets.

e A set of binder indicatorsdenoted o, 3, . . ..
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e A set of metavariablesdenoted X, Y7, Z;, . . ., where [ ranges over the set of labels built over
binder indicators .

e A set F of function symbolgquipped with afixed (possibly zero) arity, denoted f, g, h,
e A set B of binder symbolequipped with afixed (non-zero) arity, denoted A, u, v, €, . . ..

DEFINITION 2.3 (Pre-metaterms)
The set of pre-metatermsver X, denoted PMT 4, is defined by the following two-sorted grammar:

metaindices I == 1]8(])
premetaterms A = I|X;| f(A,...,A) | (A, ..., A) | A[A].

The operator e[e] in apre-metaterm A[A] is called a metasubstitution operatoil he binder sym-
bols together with the metasubstitution operator are called binder operatorsthus the metasubstitu-
tion operator is a binder operator (since it has binding power) but is not a binder symbol sinceit is
not an element of B.

The notation I in Definition 2.3 is used to denote some representatiorof the metaindex 1. Thus,
we do not necessarily use natural numbers to represent variables: for example, in Ao, the represen-
tation of 2 istheterm 1[1], which is considered a pure term.

We use A, B, A;, ... to denote pre-metaterms and the convention that S°(1) = 1 and 871 (n) =
S(s’(n)). Asusually donefor indices, we abbreviate s7—1(1) as j. The set of free metavariablesf a
pre-metaterm A, written FMVAR(A), isdefined as expected. For example, FMVAR(f (A X,,Y:)) =
{Xa,Y.}. The set of namesof free metavariables of A is the set FMVAR(A) where each X is
replaced simply by X. We also write, by abuse of notation, FMVAR(A) to denote such a set of
names. For example, we might write FMVAR(f(AX,,Y:)) = {X,Y } whenever thereis no risk of
confusion.

Next we single out a subset of well-formedpre-metaterms which we call metaterms These are
pre-metaterms in which the labels of metavariables are correct with respect to the context in which
they appear and also they ensure that indices like j correspond to bound variables. Indeed, the pre-
metaterms (X ) and £(£(4)) do not make sense for us, and hence are not considered well-formed.

DEFINITION 2.4 (Metaterms)

A premetaterm A € PMT,p over ¥ is said to be a metatermover X iff the predicate W.F (A)
holds, where WF (A) iff WF.(A), and WF;(A) is defined by induction on the structure of the
pre-metaterm A for any label [ asfollows:

(87
(X ) iff |l =k andl isasimple label
e WF(f(Ay,...,Ay))iffforal 1 <i <nwehave WF;(A;)
(£(Aq, ..., Ay)) iff thereexists ¢ I suchthat forall 1 < i < nwehave WFq(A;)
(

Thereforeindices of theform s7(1) may only occur in metatermsif they represent bound variables.
Also, if WF(A), then any metavariable occurring in A must be of the form X, for some label [
(moreover, Ik isasimple label).

EXAMPLE 2.5
Pre-metaterms (X o, A(Y3a,2)) and g(A({c)) are metaterms, whereas pre-metaterms A\(§(Xaa))
and £(2) arenot.
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DEFINITION 2.6 (Linear metaterms)

A de Bruijn pre-metaterm (or metaterm) M islinear if it contains at most one occurrence of any X -
based metavariable. Note that f(A(£Xap), {(AX34)) isnot linear since there are two occurrences
of X -based metavariables, neither is f(AX,,, X, ). However, app(AX,, Ye) islinear.

DEFINITION 2.7 (de Bruijn terms and contexts)
The set of de Bruijn termsver 3, denoted T 45, and the set of de Bruijn contexts over 3 are defined

by:

deBruijnindices n == 1]|8(n)
de Bruijn terms a == n|fla...,a)]&(a,...,a)
deBruijncontexts E == O] f(a,...,E,...,a) | &(a,..., E,... a).

As for metaterms, the notation n in Definition 2.7 is used to denote some representatiorof the
natural number n.

Weusea, b, a;,b;, ... for deBruijntermsand E, F, . .. for de Bruijn contexts. The notion of the
tree associated to a may be defined as for de Bruijn pre-metaterms. We may refer to the binder path
numberof acontext, which isthe number of binders between the O and theroot. Although termsare
aso pre-metaterms, that is Tyg € PMT,4p, note that some terms may not be metaterms, i.e. may
not be well-formed pre-metaterms. Indeed, the valid term £(£(4)) is not a metaterm, however, the
index 4 may be seen as a constant in the pre-metaterm £(£(4)).

DEFINITION 2.8 (Free de Bruijn indices)
We denote by FI(a) the set of free indicesof ade Bruijn term a, which is defined as follows:

FI(n) < )
FI(f(ar,...,a0) = Ui, FI(a:)
def n
FI(§(a1,. .. an)) = (Uizg FI(a:))\1
where for every set of indices S, the operation S\\j isdefinedas {n —j | n € Sandn > j}.

DEFINITION 2.9 (de Bruijn substitution and de Bruijn updating function)
The result of substituting aterm b for theindex n > 1 inaterm a isdenoted a{n — b} and defined
as:

flar,...,an)fn —b} < flaifn—0bY, ... anfn — b}
Elat,...,an)fn—b} ¥ lafn+1—0bY, ... ,anfn+1—b})

{ m—1 ifm>n
def

m{n — b} RS Z30) ?;m=n
m ITm<n

wherefor : > 0 and n > 1 we define the updating functions(" (e) asfollows:

uin(f(alv"',an)) = f(uzn(al)’vuzn(an))

Urlar,....an)) = UL (a1),... U (an))

n def m+n—1 ifm>q
U (m) = {m if m < i
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2.2 SERS;p-rewriting

We now consider the rewrite rules of an SERS;g. Thisincludes defining valuations, their validity,
and the term rewrite relation in SERS 5. Rewrite rules are specified with metaterms, whereas the
induced rewrite relation is on terms.

DEFINITION 2.10 (SERSyB)
A de Bruijn rewrite ruleover ¥ isapair of de Bruijn metaterms (L, R) over ¥ (also written L— R)
such that:

o thefirst symbol (called head symbol) in L isafunction symbol or abinder symbol,
e FMVAR(R) C FMVAR(L), and
e the metasubstitution operator does not occur in L.

Finally, we define a SERS,5 to be apair (X, R) where Y isa SERS;g-signature and R is a set
of SERS,p-rewrite rules over ¥. We often omit ¥ and write R instead of (X, R), if no confusion
arises.

EXAMPLE 2.11
The \gp-caculus is defined by considering the signature containing the function symbols F =
{app} and binder symbols B = {\}, together with the SER.S,5-rewrite rule;

app()‘Xou }/;)_)BAB Xa D/e]

The Agpnap-calculusis obtained by adding the SERS;5-rewrite rule: A(app(Xa,1))—0,5 Xe.

NdB

DEFINITION 2.12 (de Bruijn valuation)

A de Bruijn valuationx over ¥ is a (partid) function from metavariables to terms. It extends
uniquely to a function & from the set of pre-metaterms A with FMVAR(A) C Dom(k), where
Dom (k) denotes the domain of , to the set of terms as follows:

) <

R(n = n

(X)) = k(X))
R(f(Ar,...,An)) ¥ FRAL... FA)
RE(AL,... An)) Y ¢(RAL, ... FAL)
7(A1[As)) ©f (AN {1 — RAL).

Note that in the above definition the substitution operator e{{e — e} refersto the usua substitu-
tion defined on terms with de Bruijn indices (Definition 2.9).

In the rewrite rule 3VX,3— comm’ V3X 34, a valuation that assigns the de Bruijn index 1 to
the metavariable X3 and also to X3, does not reflect the binder commutation that the labels of
metavariables are expressing. Thus, when defining the rewrite relation on termsinduced by arewrite
rule we must restrict our attention to the subset of all valuationsthat are coherentwith the contextual
information described by the labels of binder indicatorsin metavariables. Such valuations are dubbed
valid valuations

DEFINITION 2.13 (Valid de Bruijn valuation)

e Leta € Typ, ! bealabel of binder indicatorsand {1, x2, . . .} acountableinfinite set of variable
names. The value functiorValue(l, a) is defined as Value® (1, a) where:
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' ' n ifn <4
Value'(I,n) def at(l,n—1) if0<n—i<]|]
Tn—i—|i ifn—i> ‘l|
Value'(, f(ay,...,an)) = f(Value'(l,a1), ... Value'(l, an))
Value! (1, €(ay, . ... an)) 2 €(Value™'(1,a1),. .., Value' T (1, an)).

e A de Bruijn valuation x over ¥ is said to be valid if for every pair of metavariables X; and X/
in Dom(k), Value(l, kX;) = Value(l’, kX;/). Likewise, we say that a de Bruijn valuation « is
valid for a rewrite rule(L, R) if every metavariablein (L, R) isin Dom(x) and for every pair
of metavariables X; and X/ in (L, R), Value(l, kX;) = Value(l', k X/).

DEFINITION 2.14 (Rewriting de Bruijn terms)

Let R be aset of de Bruijn rules over 32 and a, b de Bruijn terms over 3. We say that a R-rewrites
or R-reduces td, written a—x, b, iff thereisadeBruijnrule (L, R) € R and ade Bruijn vauation
kvalidfor (L, R) suchthat « = E[xL] and b = E[xR], where E isade Bruijn context.

Thus, theterm A(app(A(app(1,3)),1)) rewritesby then,p ruleto A(app(1, 2)), using the (valid)
valuation k = { X, /A(app(1, 3), X/ A(app(1,2))}.

To finish this section, we give the notion of orthogonalsystems in the framework of Simplified
Expression Reduction Systems with Indices, which is the natural extension of that of orthogonal
first-order rewrite systems.

DEFINITION 2.15
Let (Z,R) beaSERSdB.

1. R isnon-overlappingf for every rewriterule (L, R) € R the following holds:
o If areducible term «(L) contains an instance of L’ for some other (L', R’) € R, then this
instance must be already contained in one of the x(X;), where X; isametavariable of L.
e Likewiseif (L) properly contains another instance of L.
2. Risleft-linearif al L; arelinear (Definition 2.6).

3. R isorthogonalif it is non-overlapping and | eft-linear.

REMARK 2.16

This presentation of the SERS,;p formalism differs slightly from that of [9, 13, 11]. In op. cit,
in addition to term-metavariables such as X;, index-metavariables are included. Just like term-
metavariables are instantiated with terms, index-metavariables are instantiated by de Bruijn indices.
Moreover, these indices must be free in the rewrite rule where they appear. The reason for excluding
them in this paper is that they do not enjoy good properties. For example, consider the SERSyp
S = {app(AXo,Ye)—p,, XalYel, f(@)—f ¢} where app, f, c are function symbols, X is a binder
symbol and & is an index-metavariable. Although S is orthogonal, it is not confluent. Indeed,
app(A(f(1)),b) reducesto f(b) by the 8,5-rule and to ¢ by the f-rule followed by an application
of the B4p-rule.

3 Thefirst-order framework

In this section we introduce the first-order formalism called Explicit Expression Reduction Systems
(EXER$ used to translate higher-order rewriting systems based on de Bruijn indices into first-order
ones. An EXERS s afirst-order rewrite system consisting of:
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e A set of proper rewrite ruleggoverning the behaviour of the function and binder symbolsin the
signature.

e A set of substitution rewrite rules, called the substitution calculugjoverning the behaviour of
the substitution symbols in the signature, and used for propagating and performing/eliminating
substitutions.

3.1 Basic substitution calculi

Any set of rewrite rules does not qualify as a substitution calculus so we must indicate under which
conditions this is the case. Thisis achieved by introducing a general macro-based presentation of
what constitutes a substitution calculus. Any instance of this calculus, obtained by associating some
fixed substitution operatorso these macros, shall be considered a substitution calculus. This idea
has been introduced by D. Kesner [29, 30] with the aim of providing a unique proof of confluence
encompassing aseries of de Bruijn indices based calculi of explicit substitutions. Here we shall ben-
efit from it by reducing higher-order rewriting to afirst-order setting where the substitution calculus
may be any calculus of explicit substitutions fitting the macro-based presentation. Thus we are not
forced to settle with some particular calculus of explicit substitutions.

DEFINITION 3.1 (Substitution declaration and signature)

A substitution declarations a (possibly empty) word over the alphabet {T,S}. The symbol T is
used to denote the sort Term and S to denote the sort Substitution. A substitution signaturés a set
'y of substitution symbolequipped with an arity n and a substitution declaration of length n. We
write o : w wherew € {T,S}™ if the substitution symbol ¢ has arity n and substitution declaration
w. We use e to denote the empty word.

The substitution declaration declares the sorts of the arguments of substitution symbols.

DEFINITION 3.2 (EXERSerm algebra)

AnEXERSsignatureisasetT’ = I'y UL, UT's whereI'y = { f1, fa, ..., } isaset of function symbols,
I, = {A1,A2,...} isaset of binder symbols, T'y a substitution signature such that I'y, T}, and T,
are pairwise digoint. Both binder and function symbols come equipped with an arity (non-zero for
binder symbols). Given a set of (term) variablesV = { X1, X5, ...}, theterm algebra of an EXERS
of signature I" generated by V, denoted 7, is

indices n == 1]|8(n)
terms (T) a == X|nla[s]]| flar,...,an) | &(a1,...,a,)
substitutions (S) s u= o(dy,...,d,)

where X ranges over V, f over Iy, £ over Iy, and o over I';. The notation n is used to denote
some representatiorof the natural number n. The arguments of o are assumed to respect the sorts
prescribed in its substitution declaration (i.e. d; is a term or substitution in compliance with its
substitution declaration), and function and binder symbols are assumed to respect their aritiestoo.

Lettersa, b, c,...and s, s;, . .. are used for terms and substitutions, respectively. Letterso, o', . ..
are used for all objects of the term algebra without making distinction of sorts. The e[e] operator is
called the substitution operatarBinder symbols and substitution operators are considered as having
binding power. We shall use a[s]™ to abbreviate a[s]. .. [s] (n-times). Terms without occurrences
of the substitution operator (resp. objects in V) are caled pure (resp. ground terms. Similarly
for contexts. A contextis a ground term with one (and only one) occurrence of a distinguished



910 Relating Higher-order and First-order Rewriting

term variable called a ‘hole’ (and denoted O). Letters F, F;, ... are used for contexts. The notion
of binder path numbers defined for pure contexts exactly as in the case of de Bruijn contexts
(Definition 2.7). Note that contexts have no variables (except O).

The formalism of EXERShat we are going to use in order to encode higher-order rewriting con-
sists of two sets of rewrite rules, a set of proper rewrite rules, and a set of substitution rules. Let us
define these two concepts formally.

DEFINITION 3.3 (Substitution macros)

Let I'; be a substitution signature. The following symbols not included in IT'; are called substitution
macros cons : (TS), lift : (S), id : (¢) and shift’ : (¢) for j > 1. We shall abbreviate shift
by shift. Also, if j > 0 then lift’ (s) stands for s if j = 0 and for lift(lift’ ' (s)) otherwise.
Furthermore, if j > 1 then cons(as, ..., a;, s) standsfor cons(as, ... cons(a;, s)).

DEFINITION 3.4 (Term rewrite and equational systems)
Let I be an EXERSsignature. An equationis a pair of terms L = R over I" such that L and R have
the same sort and aterm rewrite ruleis a pair of terms (L, R) over I, such that:

1. L and R have the same sort,
2. the head symbol of L isafunction or abinder symbol, and
3. the set of variables of L includes those of R.

An equational(resp. term rewritg systemis a set of equations (resp. term rewrite rules).

Asusual, we shall need some mechanism for instantiating rewrite rules.

DEFINITION 3.5 (First-order Valuation)
Let p be a(partial) function mapping variablesin V to terms. We define afirst-order valuationp as
the unique extension of p over the set 7 such that:

pn) < n p(f(ar,...van)) = f(plar),...,plan))
pX) € pX) pE(ar,....an)) = €(par),....plan))
plals) < pla)[p(s)] plo(di,....d) = o(p(dr),...,p(dy))

We shall often abbreviate p as p. First-order valuations are required in order to define the rewrite
relation induced by arewrite system.

DEFINITION 3.6 (Rewriting and Equality)
Let o and o’ be two ground terms of sort T or S. Given arewrite system R, we say that o rewrites
to o’ in one stepdenoted o—x o', iff o = E[pL] and o' = E[pR] for some first-order valuation
p, some context E and some rewrite rule (L, R) in R. We shall use —x to denote the reflexive,
transitive closure of the one-step rewrite relation.

Given an eguational system &, we consider the relation =, defined asthe least reflexive, symmet-
ric and transitive relation closed under contexts and substitutions and containing all the axiomsin £.
If o and o’ arerelated by =¢, then we write o =¢ o’ and we say that o equalso’ modulo€.

DEFINITION 3.7 (Substitution calculus)

A substitution calculus over an EXERS signatiireonsists of a set VW of first-order term rewrite
rules, and an interpretation of each substitution macro as some combination of substitution symbols
from I'y of corresponding signature. Definition 3.8 requires certain properties for these interpreta-
tions to be considered meaningful.
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We now give some examples of substitution calculi. We use the notation n* for S(...S(0)...)
(the symbol S appearing » times), and we define o™ (¢) by induction as follows:

O(t) = id, o (t) = t,0"T1(t) = t 0 o™ (1)

Calculus | Reference | Variablen 41 Substitution Signature
o (1] 1™ ()] id: (¢),-: (TS), 1: (€),0: (SS)
Oq [25] n+1 id: (e),-: (TS),f: (S), T: (€),0: (SS)
¢ [40] 1[1"] 1"7:(9),: (TS),0: (SS)
| Ca|CU|US| shift! | lift' (s) | cons(b, s) |

o 1 1-(s071) b-s

04 1 1 (s) b-s

¢ 1500 | 1. (s0 15(0) h-s

The next step is to add further requirements on substitution calculi in order for them to deserve
that name. These conditions are assembled in the definition of a Basic Substitution Calculus

DEFINITION 3.8 (Basic substitution calculus)
A substitution calculus W over T is said to be basicif the following conditions are satisfied:

1. W is complete (strongly normalizing and confluent) over the ground termsin 7. We use W(a)
to indicate the unigue W-normal form of a.

2. W-normal forms of ground terms are pure terms.

3. Foreach f € I'y and £ € I:
W(f(ala 7an)) = f(W(al)a B} W(an))
W(E(al» aan)) = g(W(al)» 7W(an))
W(f(ar,...,an)[s]) = fOM(ai[s]), ..., W(an[s]))
W((ar,...,an)[s]) = EW(ar[lift(s)]), ... Wan[lift(s)])).

4. For every substitution s, 1[lift(s)] =w 1.

For every substitution s and every m > 0, m + 1[lift(s)] =y m[s][shift].
For every term a and substitution s we have 1[cons(a, s)] =y a.

For every term a, substitution s, m > 0 we have m + 1[cons(a, s)] =w m]s].
For every m, j > 1 we have m/[shift’] =y m + j.

For every ground term a we have alid] =y a.

© o N oy

The first three conditions may be seen as primitive conditions that ¥V should satisfy in order to
be called a substitution calculus. The remaining conditions describe the expected behaviour of the
substitution macros.

Examples of basic substitution calculi are o, oy and ¢, where the set of function and binder
symbols are {app} and {\}, respectively. Reduction rules of these calculi appear in Figs 1, 2 and
3. Weinvite the reader to verify that conditions 3 to 9 in Definition 3 aretrivia in these three cases.

The reader may have noted that the macro-based presentation of substitution calculi makes use
of parallel substitutions (since cons(e, ) has substitution declaration TS). Nevertheless, the results
presented in this work may be achieved also via a macro-based presentation using a simpler set
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FIGURE 1. Reduction rulesfor o
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— sof
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— i (sot)
—  f(sot)
— a-(sot)
— s

— s

— id

— a

FIGURE 2. Reduction rulesfor o,

of substitutions such as for example the one used in [30], where scons(e) (the ‘s’ in scons is for
‘simple’) has substitution declaration T and the macro shift’ isonly defined for j = 1. In particular,
remark that the expression scons(a) could be denoted as cons(a, id). Conversely, an expression of
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(App) (a b)[s] —  (a[s] bs
(Lambda) (Aa)ls] — a1 - so 7500))
(Clos) (als])[t] — a[sof]
(VarCons) 1]a - 8] — a

(1d) a1 —

(Map) (a-$)ot  — alf (s00)
(IdL) 10 0s — s
(ShiftCons) 15" o(a-s) — 1" os
(ShiftShift) 150 oqm — — (7o 78(m)
(Shiftl) 1. 18(0) — 10
(Shift2) A g

FIGURE 3. Reduction rulesfor ¢

the form a[cons(by, . . ., by, shift’ )] could be denoted by the expression
allift" (shift)]? [scons(by [shift]™~1)] ... [scons(by)].

DEFINITION 3.9 (EXERSand FEXERS$

Let T bean EXERSsignature, W abasic substitution calculusover I' and R aset of term rewriterules.

If each rule of R hassort T then Ry def (T, R, W) iscalled an Explicit Expression Reduction Sys-

tem (EXERS$. If, in addition, the LHS of each rulein R contains no occurrences of the substitution
operator e[e], then Ry iscalled a Fully Explicit Expression Reduction System (FEXERS.

Sincerewriting in SERS 5 only takes place on terms, and first-order term rewriting systems will
be used to simulate higher-order rewriting, al the rules of aterm rewrite system R are assumed to
have sort T. However, rewrite rules of W may have any sort (i.e. T or S).

ExamMPLE 3.10

Consider the signature I" where I’y = {app} and I;, = {A} and I'; is any substitution signature.
Let W be a basic substitution calculus over T' and let R be the set containing the term rewrite
rule {app(A\X,Y)—g,, X[cons(Y,id)]}. Then we have that R,y is an FEXERS and for R’ :
R U {A(app(X[shift],1))—y,, X}, R}y isan EXERS

Rewriting in an EXERSR,y, isfirst-order rewriting in R modulo W-equality. In contrast, rewriting
inaFEXERSR,yy isjust first-order rewritingin R U W.

DEFINITION 3.11 (EXERSand FEXERSrewriting)

Let Ryy be an EXERSR'yy a FEXERSand o, o’ ground terms of sort S or T. We say that o Ry -
reducesor rewrites too’, written o—r,,, o', iff 0=y o' (i.e. there exist ground terms o; and o}
of the same sort as o, o’ such that 0 =y 01— 0] =y 0'); and o R}, -reducesor rewrites too’ iff

O—R/'UW 0/.

We apologize for the abuse of notation: o—x /)y o' could intuitively suggest that it is equivalence
classes of termsthat are rewritten, however, as defined above, thisis not the case. Instead, it isterms
that are rewritten.
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EXAMPLE 3.12

Fix W to be the o-calculus and consider the FEXERSR,, of Example 3.10. Then we have
1lapp(AL, ) -id]—x, 1[1[c-id]-id]. Also, A(app(3,1))—r: 2, where R, isthat of Example 3.10.
This follows from observing that A(app(3,1)) =, A(app(2[1],1)) =4, 2.

3.2 Properties of basic substitution calculi

This subsection takes a look at properties enjoyed by basic substitution calculi and introduces a
condition called the Schemd30]. Basic substitution calculi satisfying the scheme ease inductive
reasoning when proving properties over them without compromising the genericity achieved by the
macro-based presentation.

DEFINITION 3.13 (The Scheme)
We say that a basic substitution calculus VW obeys the Schemeff for every index m and every
substitution symbol o € T's of arity ¢ one of the following two conditions hold:

1. ThereexistsadeBruijnindex n, positive numbersi, , . .., i, (r > 0) and substitutionsu,, . . ., ux
(k > 0) such that
o1 <iy,..., i, < gandadl thei;saredistinct;
e foraloy,...,op wehave: mlo(o1,...,0q)] =w nfo;,]...[0i J[u1]. .. [ug].
2. Thereexistsan index ¢ (1 < i < ¢) such that for al o1, ..., 0, we have: mjo(o1,...,04)] =w
0;.
We assume these equations to be well-typed: whenever the first case holds, then o;,,...,0; are

substitutions, whenever the second case holds, o; isof sort T.

EXAMPLE 3.14
Examples of calculi satisfying the schemeare o, oy, v, f and d [29, 30].

We now take a quick look at some properties of arbitrary basic substitution calculi. On a first
reading the reader may wish to skim over this section and proceed to the main section of this paper,
namely Section 4.

LEMMA 3.15 (Behaviour of substitutionsin basic substitution calculi)
Let VW be abasic substitution calculus and m > 1.

.- e tramg Ny m — n[s|[shift]" ifm>n
1. For al n > 0 and substitution s in S: m[lift" (s)] =w { m if m < n.
2. Fordln >m>1landadltermsay,...,a,: m[cons(ai,...,an,s)] =w am.

3. For al puretermsa, b and m > 1: af{m — b} =y a[lift™ * (cons(b,id))).

The first and third items of Lemma 3.15 are proved in [30], the second item follows from the
definition of abasic substitution calculus. For the proof of the following lemmathe reader isreferred
to[30].

LEMMA 3.16
Let W be abasic substitution calculus, a a pureterm and s aterm of sort S. For every m > n > 0
we have a[shift]™[lift™ (s)] =w a[lift™ " (s)][shift]™.

LEMMA 3.17
Let VW be a basic substitution calculus, a a pure term, and b a term of sort T. For every n > 0,
allift" (shift)][lift" (cons(b, id))] =w a.
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PROOF. The proof of thisfact uses the following result:
If W isabasic substitution calculus, ¢ isaterm of sort T and s aterm of sort S. Then for every
m>1landn >0

m ifm<n+1

m —n — 1[s][shift]” ifm>n+1
m[lift" (cons(c, s))] =w {

c[shift]™ ifm=n+1.

||
LEMMA 3.18 (Substitution commutation)
Let W be abasic substitution calculus, a apure term, b any term, s aterm of sort S. Then for every
m > n > 0 we have:
allift™ (cons (b, id))][lift™ (s)] = a[lift™ ™ (s)][lift™ (cons(b[lift™ " (s)], id))].

PROOF. By induction on the structure of a. See[30]. [ |

4 The Conversion Procedure

We now present the Conversion Proceduren algorithm to translate any higher-order rewrite system
in the formalism SERS,p to afirst-order EXERS The Conversion Procedure is somewhat involved
since several conditions, mainly related to the labels of metavariables, must be met in order for
a valuation to be admitted as valid (Definition 2.13). Consider for instance the n,z-rewrite rule
Mapp(Xa,1))— X.. The condition on valuationsin SERS,5 in order to participate in the induced
rewrite relation on terms is that they be valid, as we have seen in Section 2. Validity ensures, in
this case, that the metavariable X, is not instantiated to the index 1. The Conversion Procedure
has to guarantee that this holds in a first-order setting. The idea is to replace all occurrences of
metavariables X; by a first-order variable X followed by an appropriate index-adjusting explicit
substitutionwhich computes valid valuations. Thus, the output would be: A(app(X [shift],1))— X.
However thisisjust a ssimple case, and in the genera situation, incorporating shift macros will not
suffice. A witnessto thisfact isthe commutation of binders rule in the introduction to this paper.

We first give the conversion rules of the translation, then we prove its properties in Section 5.

In order to define the conversion procedure we need two key notions that are essential to correctly
mani pulate all the metavariables appearing in ade Bruijn rewriting rule. Thefirst notion, called bind-
ing alowance, gives the common binder indicators appearing in al the labels of the metavariables of
arule. If this binding alowance is empty, then the conversion is trivial, otherwise, we have to take
into account the position in which these binder indicators occur to correctly define the conversion.
Thisis done viathe second notion called the shifting index.

DEFINITION 4.1 (Binding allowance)

Let A be a metaterm and {X;,,..., X, } the set of al the metavariables with name X occurring
in A. Then, the binding allowance ofX in A, noted Ba(X), is the set (", /;. Likewise, we
define the binding allowance ofX in a rule (L, R), written Ba(;, g (X), asthe set (;__, /; where
{X1,,-.., X, } istheset of al metavariables with thename X in L or R.

EXAMPLE 4.2

Let A = f(£Xa, 9(EXXBa,EX X0y )), thenBas (X) = {a}.

DEFINITION 4.3 (Shifting index)
Let A be a metaterm, X; a metavariable occurring in A, and ¢ a position in [. The shifting index
determined byX; at position:, denoted Sh(X;, ¢), isdefined as

sh(Xp,i) X |{j|at(l,)) ¢Baa(X),j € 1.i—1}|
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Thus Sh(X, ) is just the total number of binder indicatorsin ! at positions 1..; — 1 that do not
belong to Ba 4 (X'). Remark that Sh(X;,1) isalwaysO0.

EXAMPLE 4.4
If A is the metaterm f(£Xo, 9(EAX B0, EAX0y)), then Sh(X,,1) = Sh(X.,,2) = 0 and
Sh(Xng) = 1.

Consider therewriterule A(A(Xog))— A(A(Xgo)) and avaid valuation for thisrule x. If £k maps
the metavariable X, to aterm a, then by the condition of validity it must be the case that it maps
X3 to the term b resulting from o where al 1-level and 2-level indices have been interchanged.
For example, if « = 1 thenb = 2 and if a = A2 then b = A3. Therefore, the conversion of the
aforementioned rule would be

AQAX) = AAX[2-1- (T o D)) (4.1)

In this discussion our focus was set on the metavariable X, g in the sense that « was assumed valid
if the term to which X, is mapped was a suitable transformation of the one to which X3 is
mapped by . However, we may also state that « is valid if the term it maps to X, is a suitable
transformation of the one to which X, is mapped by . In this case, the conversion of the rewrite
rule would be

AAX[2-1- (10 D))= AAX). (42)

As a consequence, for each metavariable name in a rewrite rule, the metavariable that is set into
focus determines the form that the conversion of this rule shall take (see also Example 4.13). The
metavariable that is set into focus is called the pivot metavariable.

DEFINITION 4.5 (Pivot)
Let (L, R) bea SERS p-rewriterule and {X;,,..., X, } the set of al X-based metavariables in
(L, R). If Baz, r)(X) # 0, then X;, for some j € 1..n iscalled an (X -based) pivotf

L || < || forall i € 1..n, and
2. Xy, € Lyor X;; € Rand [l;] < [I;] for al X;; € FMVAR(L).

A pivot set for a rewrite rulg L, R) is a set of pivot metavariables, one for each name X in L
such that Ba(;, z)(X) # ). This notion extends to a set of rewrite rules as expected.

A pivot set for (L, R) fixesametavariable for each metavariable name having anon-empty binding
allowance. Note that Definition 4.5 admits the existence of more than one X -based pivot metavari-
able. We shall prove (Proposition 4.14), however, that the induced rewrite relation is unique, thus
it is not biased by any particular choice of pivots. Nevertheless, the fact remains that the converted
rewriterule in each case differs substantially. For example, therule (4.1) isafirst-order rulein which
syntactic matching suffices in order to apply it. However, the rule (4.2) regquires matching modulo
the equational theory of the substitution calculus. In order to favour the former over the latter in our
definition of pivot we select a metavariable with shortest l1abel on the LHS whenever possible. As
aconsequence, rule (4.2) is no longer obtainable since X g, is not considered avalid X -based pivot
according to Definition 4.5.

EXAMPLE 4.6
Both metavariables X3 and X g, can be chosen as X -based pivot in the rewrite rule

Implies(IVX o3, Y3 X 30)— true
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In the rewrite rule f(Ye, g(AX g, A X 3a)— &(Xa, Ya) the metavariable X, isthe only possible
X-based pivot. Also, since the binding allowance of Y in this rewrite rule is the empty set, no
Y -based metavariable is declared as pivot.

Let us recall some notation from Definition 2.1. If [ = a7 ..., isalabd of binder indicators
then at(l,7) = «; fori € 1..n. Also, pos(a, ) = i where isthe smallest number in 1..n such that
a = «y, and is undefined otherwise.

DEFINITION 4.7 (Conversion of metavariables)
Consider a SERSyp-rewriterule (L, R) and a pivot set for (L, R). We consider the following cases
for every metavariable name X occurring in L:

1. Ba(;, g)(X) = 0. Then convert each metavariable X; in (L, R) to the term X|[shift"], and those
metavariables X; with [ = e simply to X.
This shall allow, for example, the rewrite rule f(A(app(Xa,1), X¢))— X, to be converted to
the first-order rewriterule f (A(app(X|[shift],1), X))— X.

2.Bap,r)(X) = {B1,...,Bm} withm > 0. Let X; be the pivot metavariable for X given
by the hypothesis. We convert al occurrences of a metavariable X, in (L, R) to the term
X[cons(by, ..., by, shift’)] where j = |k| + |l \ Ba(z, g)(X)|. The b;s depend on whether
X}, isapivot metavariable or not, as described below.

As an optimization, in the particular case that the resulting term X{[cons(b1, ..., by, shift?)] is
of the form X [cons(1, ..., |i|, shift"")], we simply convert X, to X.
The substitution cons(by, . .., by, shiﬁj), is coined the index-adjusting substitution correspond-

ing to X}, and each b; is defined as follows:
(a) if Xy isthepivot (hencel = k), then

by — 1 if at(l,l) S Ba(L’R)(X)
"= Ul +1+Sh(X;,i) ifat(l,q) ¢ Bacp, ) (X).

(b) if X} isnot the pivot then

b — pos(6n, k) ifi = }?os(ﬂh,l) for some 3;, € Ba(L7R)(X)
! |E| + 1+ Sh(X;,i) otherwise.

Recall that at(l,¢) returns the symbol in label [ at position ¢ with 1 < ¢ < |I|, and pos(«, 1)
returns the position of o in the label [ assumingitisin .

Note that for an index-adjusting substitution cons(by, ..., by, shiftj) each b; is a distinct de
Bruijn index and less than or equal to j. Substitutions of this form, in the particular case where
we fix the basic substitution calculus to o, have been called pattern substitutions in [19], where
unification of higher-order patterns via explicit substitutions is studied.

Now that we know how to convert metavariables we can address the conversion of rewrite rules.
Before proceeding we recall that the name of a metavariable X; is X and that by abuse of notation
we write FMVAR(A) to denote the set of al the names of the free metavariables of M.

DEFINITION 4.8 (Conversion of rewrite rules)
Let (L, R) be a SERSp-rewrite rule and let P be a pivot set for (L, R). The conversion of the

rewrite rule (L, R) via P, denoted Cp(L, R), is defined as Cp(L, R) < (¢'F(L),c\F) (R))
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WhereC (L R)( A) isdefined by induction on A, where FMVAR(A) C FMVAR(L), as:

ci (n) &

= n
smft‘“  ifBag p)(X) =0andl # e
ot X[cons(by, ..., by, shift’)] if Bacy, r)(X) # 0 and
CI(DL’R)(XZ) = cons(by, ..., by, shift’) #
cons(1, \l|,shzftl”)
otherW|se
CO P (f(Ar, ..., An)) { cy s (A),....co(A,))
“R €. ) = s(c;L R><A1>,.--7C§f (A4n)
CEf (A1 [A,)) = (A [cons(CE (Ay), id)).

Theterm X{[cons(by, ..., by, shift’)] on the RHS of the second clause is the index-adjusting sub-
stitution computed in Definition 4.7.

It should be noted how the de Bruijn metasubstitution operator e[e] is converted to the term sub-
stitution operator e|e].

EXAMPLE 4.9
Below we present some examples of conversion of rules. We have fixed WV to be the o -calculus.

SERS; g-rewriterule Converted rewriterule
Mapp(Xa,1))— X, AMapp(X[1],1))— X
AMA(Xap))— MA(XBa)) AAX) = AA(X[2-1-(To 1))

FA(Xap)); AAMXpa))) = AX5) | FMAXT o 1)), MAXTT e T1)))— AMXTT])

app(AX o, Ye)— 35, XalYe] app(AX,Y)— X[Y - id]

Regarding pivot selection:

1. thefirst rule requires no X -based pivot since the binding allowance of X isempty,

2. inthe second rule X, 5 is selected as X -based pivot,

3. the third rule requires no X -based pivot since the binding allowance of X isempty,

4. the fourth rule requires no Y -based pivot, however, the occurrence of X, onthe LHS is selected
as X -based pivot.

Note that if the SERS,g-rewrite rule (L, R) which isinput to the Conversion Procedure is such
that for every name X in (L, R) thereisalabel [ with all metavariablesin (L, R) of the form X,
then al X; arereplaced simply by X. Thisisthe case of 3,5 of Example 4.9.
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EXAMPLE 4.10 (Foldl)
Let us represent the usual foldl-recursion scheme over lists. Consider the EXERSsignature contain-

ing Ty = {nil, const!, foldl} and T, = {&}. Then the foldl-rewrite system:

foldl(&(§(Xap)), Ye, nil) - Y
fOldl(f(f(Xa@)),Ye,COTLSt(Ze,WE)) - fOIdl(g(g(Xaﬁ))vXaﬁ[yﬁ][zf]vWG)
is converted to
foldl(&(¢(X)), Y, nil) - Y

foldl(£(&(X), Y, const(Z,W)) —  foldl(§(&(X)), X[cons(Y[1], id)][cons(Z,id)], W).

ExAMPLE 4.11 (Natural numbers recursor)
Consider the EXERSsignature containing the function symbolsI'y = {zero, suc, rec} and binder
symbolsT', = {&}. Then the rec-rewrite system:

rec(§(§(Xap)), Ye, zer0) - Y
rec(§(§(Xap)), Ye, suc(Ze)) —  XaplZpllrec(€(§(Xap)), Ye, Ze)]

is converted to

rec(£(£(X)), Y, zero) — Y
rec(§(£(X)), Y, suc(2)) —  X[cons(Z[1], id)][cons(rec({(§(X)), Y, Z), id)].

Also, observe that if we replace our cons(e, ) macro by a scons(e) of substitution declaration
T as defined in [29, 30] then the last clause of Definition 4.8 converts a metaterm of the form A[B]
into A[scons(B)], yielding first-order systems based on substitution calculi, such as v, which do not
implement parallel substitution.

The system resulting from the Conversion Procedure is coded as an EXERS a framework for
defining first-order rewriting systems where YW-matching is used. Moreover, if it is possible, an
ExERSmay further be coded as a FEXERSDefinition 3.9) where reduction is defined on first-order
terms and matching is just syntactic first-order matching, obtaining a full first-order system

DEFINITION 4.12 (Conversion Procedure)

Let " be an EXERSsignature, let R bea SERS,p, and let W be a substitution calculus over T'. The
Conversion Procedureonsists in selecting a pivot set for each rewrite rule in R and converting all
itsrewrite rules as dictated by Definition 4.8. The resulting set of rewrite rulesiswritten fo(R). The
EXERSfo(R)yy is called afirst order-versiorof R.

In what follows we shall assume given some fixed basic substitution calculus YW. Thus, given a
SERS 5 R we shall speak of thefirst-order version of R.

Of course, we must also consider pivot selection and how it affects the conversion procedure.
Assume given somerewrite rule (L, R) and different pivot sets P and @ for thisrule. It is clear that
Cp(L,R) and Cq(L, R) arenot identical.

EXAMPLE 4.13
Consider the following binder-commutation rule

imply (VX g, VIXap)— ¢ true.

LAlthough cons isthe usual abbreviation for the list constructor, we shall use const so as not to cause confusion with the
cons-macro.
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If we select X g, asthe X -based pivot we obtain the following conversion of C:
imply(VX,VAX[2- 1- 1°])—> ¢, true.

However, X3 may aso be selected as an X -based pivot metavariable. In this case, the resulting
converted rewrite rule will be different: imply(IVX[2 - 1- T2],V3X)—>cf/0 true

Nevertheless, the rewrite relation generated by both of these converted rewrite rulesisidentical.

PROPOSITION 4.14 (Pivot Selection)
Let (L, R) bea SERS p-rewriterule and let P and ) be different pivot sets for thisrule. Then the
rewrite relation generated by both Cp(L, R) and Cq (L, R) areidentical.

Proposition 4.14 is important, for it makes clear that the Conversion Procedure is not biased by
the selection of pivot sets (as regards the induced rewrite relation). Thus, in full precision, only now
may we speak of the first-order version of a SERS;g R. The proof of this proposition is rather
technical and is relegated to the appendix.

5 Propertiesof the Conversion Procedure

This section studies the connection between higher-order rewriting and first-order rewriting mod-
ulo. Section 5.1 shows that the Simulation Propositiortnolds: any higher-order rewrite step may be
simulated or implemented by first-order rewriting. Section 5.2 considers the Projection Proposition
namely, that rewrite steps in the first-order version of a higher-order system R can be projected in
R. Finaly, we give in Section 5.3 a syntactical characterization of higher-order rewriting systems
that can be trandlated into first-order rewriting systems modulo an empty theory. We shall see that,
for example, the A-calculus is covered by this characterization.

5.1 The Simulation Proposition

In order to simulate higher-order rewriting in afirst-order framework we have to deal with the con-
version of valid valuationsinto first-order valuations. Recall that valuations are the devices through
which SERS,g-rewrite rules are instantiated in order to obtain the induced rewrite relation. Like-
wise, first-order valuations are used for instantiating first-order rewrite rules, i.e. EXERSrewrite
rules. For converting valuations to first-order valuations two families of index-adjustment opera-
tions are required, decrementors and adjusters.

Consider a metavariable X; in a SERS z-rewrite rule (L, R), and suppose we are given a valid
de Bruijn valuation . Let X[cons(by,..., by, shift’)] be the conversion of the metavariable X;
(Definition 4.7) where k is the label of the X -based pivot metavariable. We shall seek to define a
first-order valuation p such that the value that p assignsto X satisfies the following equation:

p(X)[cons(by, ..., by, shift’)] =w k(X)). (5.1

The term assigned to p(.X) is obtained by computing, cons(by, ..., by, shift!)~1, an ‘inverse’ sub-
stitution of cons(by, ..., by, shift’) from k(X;) so that:

p(X) = Kk(Xy)[cons(by, ..., b, shift)) 1.

In the case that |k| = 0 the inverse substitution of shift’ is computed by the so called decremen-
tors (Definition 5.1). Otherwise, it is computed by the adjusters(Definition 5.3). Decrementors
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and adjusters are then used for defining the conversion of a valid valuation « (Definition 5.6). Fi-
nally, Lemma 5.7 proves that the aforementioned conversion of « behaves as expected, namely that
equation (5.1) is verified.

DEFINITION 5.1 (Decrementors) 4
For every 7,7 > 0 and de Bruijn ground term a we define D (a) as follows:

4 def n ifn<i+y
Di(n) = {u ifn > it
Dl(flar-..an)) = f(D}(a)...D(an))
Di(¢(ar...a,)) ¥ &DL(a1)... DL (an)).

LEMMA 5.2 (Decrementors)
Let (L, R) bea SERS p-rewrite rule, X;, X; metavariablesin (L, R) and x a valuation valid for
(L,R). Forali>0,if

1. kX; = DJa] for some pure context D having binder path number i,
2. Value'(l,a) = Value'(k, b), and
3. the binding allowance of X in (L, R) isthe empty set (i.e. Ba(z z)(X) = 0),

then DV () [1ift! (shift*!)] =y b.
PROOF. By induction on a.

e a = n. We have three further cases to consider:

1. n < i. Then DI\ (n)[lift? (shift™")] = nltift! (shift'*1] =L 3150 5 Now by Hypothe-
sis2 we have Value' (I, n) = n = Value'(k, b) and therefore b = n and we are done.

2.4 < n < i+|l. Since by Hypothesis 2 we have Value'(I,n) = at(l,n — i) = Value'(k,b),
it must be the case that b = m withi < m < i+ |k| and at(l,n — i) = at(k,m — 7).
However by Hypothesis 3 there must be some X in (L, R) such that at(l,n — i) ¢ I’
Therefore Value(l’, kX)) # Value(l, kX;) follows by Definition 2.13 (since at(l,n — )
occursin Value(l, kX)) but at(l,n — ¢) does not occur in Value(l’, kX)), contradicting the
assumption that » isvalid.

3.n > i+ |l|. Wereason asfollows:

D () 1t (shift ™)) = (n — |UD[ift" (shift )
=y B (] — ) [shaft ) [shigt)
:eveﬁmmon 3.8(8) M)[shzﬂ]

=W n— |l + |k|
The last equality follows from i applications of Definition 3.8(8).
By Hypothesis 2 we have Value'(l,n) = x,,_;_; = Value'(k, b) and therefore b = m with
m > i+ |k|andn —i—|l|] = m —1i— |k|. Fromthisit followsthat n — |I| = m — |k| and we
are done.

ea= f(ay,...,a,). Then

DI (a) [Lift? (shift*)] =
SO (@) ift (shift ™), D () lift (shift )
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by condition 3 of Definition 3.8.
By Hypothesis 2 we have that b = f(b1,...,b,) with Value'(l,a;) = Value'(k,b;) for al
1 < j < n. Then theinduction hypothesis yields D!l (a;)[lift! (shift™)] = b; for j € 1.n
and we may conclude the case.

e a=¢(as,...,ay,). By condition 3 of Definition 3.8

DY (a)[lift" (shift™)] =y €D () it (shaft ™)), ... DI (an) [ft (shift ™).

Finally, by Hypothesis 2, b = £(by,...,b,) with Value'™ (1,a;) = Value't!(k,b;) for al
1 < 5 < n. Theinduction hypothesis concludes the case.

||
DEFINITION 5.3 (Adjusters)
Let X; be a pivot metavariable in a SERS g-rewriterule (L, R), ¢ > 1, a ade Bruijn ground term
and let cons(by, . .., by, shift! 1T\ (X)1) be the index-adjusting substitution corresponding to
X;. Then Al(a) is defined as follows:

n ifn<i

n ifat(l,n —1i) € Ba gy (X)and0 <n —i < |l
Al(n) def ) undefined ?f at(l,n —1i) ¢ Bagp py(X)and0 <n —i <[]

pos(n —i,by...by) +i W[l <n—i <|l| 4|1\ Bar,r)(X)]

n—|l\Ba(LyR)(X)\ ifn—i> |l|+|l\Ba(LyR)(X)\

A(f(ar-..an)) = f(Alar)... Al(an))
Ab(E(ar - an)) EE(AL (ar) ... AL (an))-

LEMMA 5.4 (Well-definedness of Adjusters)

Consider a SERSyp-rewrite rule (L, R) and some pivot set P for (L, R). Let X; € (L, R) be the
X -based pivot metavariable for some X € FMVAR(L), and let x be a valuation valid for (L, R).
Forall i > 0, if

1. kX; = Ela] for some pure context £ with ¢ the binding path number of E, and
2. the binding allowance of X in (L, R) isnot empty (i.e. Ba(z, p)(X) # 0),

then Al (a) is defined.

PROOF. By induction on a. We shall only consider the base case, the others follow by using the
induction hypothesis. Suppose a = n. We have four further cases to consider:

1. n < 4. Then thereisno problem.

2.1 < n < i+|l]. Theonly case of conflictisif at(l,n — i) ¢ Ba(z, r)(X). Then there must
exist X in L such that at(l,n — i) ¢ I’. Consequently Value(l, kX;) # Value(l’, kX;/) since
at(l,n — ¢) occurs in Value(l, kX;) but at(l,n — ¢) does not occur in Value(l’, kX;/). This
contradicts the assumption that « isvalid for (L, R).

3.l <n—i <|l|+ I\ Bay,g)(X)]. Then we must verify that pos(n —4,b; ... by) is defined.
Now letr = |l \ Ba(z, g)(X)| then by Definition 4.7 there are subindices j; < ... < j, suchthat
bj, = |l| +1+Sh(X;,51),...,b;, = |I| + 1+ Sh(Xy, ). By noting that 1 4 Sh(X, j,) = ¢
forq e 1...r wearedone.
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4.n —i> || + |\ Ba(y,gy(X)|. This case presents no problems.
i

LEMMA 5.5 (Adjusters)

Consider a SERSqp-rewrite rule (L, R) and some pivot set P for (L, R). Let X; € (L, R) bethe
X -based pivot metavariable for some X € FMVAR(L), let X, € (L, R), and let x be avaluation
validfor (L, R). Foral ¢ > 0, if

1. kX; = DJa] for some pure context D having binder path number equal to ¢,
2. Value'(l, a) = Value'(k, b), and
3. the binding allowance of X in (L, R) isnot empty (i.e. Ba(z, g)(X) # 0),

then Al (a)[lift'(s)] =y bwheres = cons(cy, ..., cp, shift!FI 108, m (X1 jstheindex-adjusting
substitution corresponding to X.

PROOF. Let j = |k| + |l \ Baz,r)(X)|. We proceed by induction on a.

e a = n. We have four further cases to consider:
1.n < 4. Then ' _
Al(n)[lift’ (cons(ca, . .., ey, shift?))] =

ﬂ[lifti(cons(cl, ceep), shiﬂj))} :{j\fmma 8:15(1)

By Hypothesis 2, Value' (I, n) = n = Value'(k, b) and therefore b = n and we are done.
2.1 < n <i+]|l|. Here we consider the two cases:.
—at(l,n —1i) € Baz, g)(X). Wereason asfollows

Aé(ﬁ)[lifti(cons(cl, RRNNETE Shzft]))]
_ Q[lifti(cons(cl, coep), Shift-j))]

:5\'] 8:15(1) (n—i)[cons(ci,. .., cp, shift’)][shift]’
=w Cn—i[shift]’
= c+i (fore,—; = ¢).

So we are left to verify that ¢ + i = b. _

By Hypothesis 2, Value'(l,n) = at(l,n — i) = Value'(k,b) and therefore b = m with
i<m<|k|+iandat(l,n —1i) = at(k,m —i).

We consider where ¢,,_; = ¢ might ‘come from’.

(@ n — i = pos(Bp,1) with 8, € Ba(, z)(X) and c,,—; = pos(fn, k). But then by Hypoth-
esis 2 and the fact that £ is a simple label we must have ¢,,_; = m — 4, which concludes
the case.

(b) Thereisno By € Ba(y,r)(X) withn — i = pos(fy,1). This contradicts our assumption
thm at(l, n — Z) S Ba(L}R)(X).

Notethat in the particular casethat X;, = X;,thenc,_; =n —iandwehaven —i+i = n.

—at(l,n — i) ¢ Barz, r)(X). By well-definedness of adjusters (Lemma 5.4) this case is not

possible.
3.l <n—i < |I[ + I\ Bagz,r)(X)|. Then
Al (n)[lift* (cons(cy, . . ., s shiﬁj))]
= (pos(n —i,dy ...dy)) +9)[lift" (cons(cy, . .., ¢y, shift”))]
=w pos(n—i,dy...djy)[cons(ci,...,cy, shz'ftj)] [shift]?

% CT'[Shift]i
=w c+i(fore, =c¢)
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wherer = pos(n —i,d; ... dj). Notethat Lemma5.4 is used here.
So we are left to verify that ¢ + i = b.
We must consider where ¢, might ‘come from’:

(@ r = pos(Bn,1) with 3, € Baz r)(X) and ¢, = pos(B, k). Then clearly, at(l,r) €
Ba(z,g)(X). However, since r = pos(n — i,d; ...dy) thismeansthat d,. = n —i. Also,
recall that we are currently considering the case d, = n — i wheren — ¢ > |{|. But then by
Definition 4.7 at(l,r) ¢ Ba(z, r)(X) contradicting our knowledge of the opposite fact.

(0) ¢ = |k| + 14 Sh(X;, 7).

Now note that it is not possible for d, = r (and hence at(l,r) € Ba(z, g) (X)) since then we
may reason asinitem3a Sod, = n—i = |I| + 1+ Sh(X;,r) (*). Recall that we are |eft
to verify that |k| + 1 + Sh(X;,r) + i =b.
Now by Hypothesis 2 we have Value' (I, n) = @,,_;_ ;| = Value'(k, b) and therefore b = m
withm > i+|k| andn—i—|l] = m—i—|k|. Fromthisit followsthat n—|l| = m — |k|. SO
now we must seethat |k| + 1+ Sh(X;,r) +¢=n—|l|+|k|, or simply 1+ Sh(X;,r) +i =
n — |I|. Thisfollowsfrom (*).

Note that in the particular case where X, = X, thenc¢, = n —iandwehaven — i+ i = n.

4.n —i> |I] + |\ Barz,p)(X)|. Wereason asfollows

Aé(n)[lifti(cons(cl, RRNNETE shift?))]
= (n — |1\ Barz, ) (X[t (cons(cy, . . ., s shift’))]
=w (n—[l\Bag,g) (X)| —i)[cons(ci,..., ey, shiftj)}[shift]i
=w n—|l\Bagy p)(X)| —i—[l|+[k| + [l \Ba, r)(X)| +i
= n— |l + |kl

Note that in the particular case that X, = X;, we have k = [ and the result holds directly.
Otherwise, by Hypothesis 2, Value'(l,n) = x,,_;_; = Value'(k,b) and therefore b = m
withm > i + |k| andn — i — ||| = m — i — |k|. From thisit followsthat n — |I| = m — |k|
and we may conclude the case.
ea= f(ay,...,a,) (thecasea = £(ay, ..., a,) issimilar to this one and hence is ommitted). In
thiscase, if ¢ = cons(cy, ..., cp, shift?), then

AL (a)[lift' ()] =w f(AL(ar)[Lft (1)), .., AL (an) [lift' (£)]).

By Hypothesis 2, b = f(by,...,b,) with Value’(l,a;) = Value'(k,b;) foral 1 < j < n. The
induction hypothesis concludes the case.

We know how to convert SERS,p-rewrite rules. In order to prove our simulation result we must
convert SERS,p-vauations. As already stated, this makes use of decrementors and adjusters.

DEFINITION 5.6 (Valuation conversion)
Let (L, R) bea SERSyp-rewriterule, x avalid valuation for (L, R) and P a pivot set for (L, R).
The conversion of; via P is defined as the first-order valuation p where for each X € FMVAR(L):
e CaseBay, i) (X) = 0. Then p(X) % DY/l (xX;) where X, is any metavariable from L. Validity
of x impliesthat p does not depend on the particular metavariable X; chosen. A formal proof of
this fact may be found in the appendix (LemmaA.3, taking D = 0).
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e CaseBa(, ) (X) = {B1, ..., Bn} Withn > 0. Then we define p(X) <" AL (xX;) where X, is
the X -based pivot metavariable as dictated by P.

We need one final result before considering the simulation proposition, namely the one that states
that the valuation conversion as defined above indeed verifies equation (5.1). Its proof relies on the
Decrementors Lemma and the Adjustors Lemma and may be found in the appendix.

LEMMA 5.7
Let (L, R) bea SERS p-rewrite rule, x avalid valuation for (L, R) and 7 the conversion of x via
P for some pivot set P for (L, R). If L = C[A] for some metacontext C' and metaterm A, then

p(CF(A)) = kA. Likewise, if R = C[A] then p(C ™ (A)) =y k(A).

PROPOSITION 5.8 (Simulation Proposition)
Let R bea SERS,p and let fo(R)y beitsfirst-order version. Suppose a—x b then

L if fo(R)w isan EXERShen a— s, () w b;
2. if fo(R)y isaFEXERShen a— s,(r) © =y b where o denotes relation composition.

PROOF. For thefirst item, suppose a—x b. Then there must bea SERS z-rewriterule (L, R) € R,
avaluation « valid for (L, R) and a pure context E such that « = E[xL] and b = E[kR]. Let
(L', R") = Cp(L, R) be the converted version of rule (L, R) viasome pivot set P for (L, R). Letp
be the conversion of « via P (Definition 5.6). By Lemma5.7 we have;

1. (L") =y kL and
2. 5(R') =y KR.

Thus from p(L") =y kL and p(R') =y xR we have E[p(L")] =y E[xL] and E[p(R")] =w
E[xR], respectively. Finally, we have on the the one hand a = E[xL] =y E[p(L')], 0 a =w
E[p(L")], and onthe other, b = E[xR] = E[p(R')], s0b =y E[p(R’)].

Asfor the seconditem notethat if fo(R)yy isaFEXERShen L’ isapureterm. Also, by definition,
k isapure first-order valuation. Thusp(L') = xL. And p(R') —» kR since kR is a pure term.
Thereforewe have a = E[sL] = E[p(L')]|— /gy E[p(R')] »w E[kR].

i

5.2 The projection proposition

We now wish to prove that derivations in an EXERSor FEXERSfo(R)yy may be projected into
derivations in R. This ensures in some sense that we did not add meaningless computations in
the trandlated first-order system. As a consequence we prove that fo(R ),y is conservative over R
(Definition 5.17).

We shall first begin by showing that if @ =, ry b, then for any term s of sort S we have
W(als]) =(r,r) W(b[s]). Intuitively, a =, ry b meansthat a rewrites to b by applying a number
of parallel (L, R)-rewrite steps (Definition 5.11).

LEMMA 5.9
Let A be a pre-metaterm and suppose W.F(A). Consider a valuation « such that MVAR(A) C

Dom(r). Then W((xA)[lift!*!(s)]) = 1x A where 1, is avaluation defined as:

(X)W X [Lift ™ ()])

for all [ such that X;;, occursin A.
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PROOF. By induction on A.

e A = n. Notethat since WF,(n) we have n < |k|. Then LHS = W((rkn)[lift'*!(s)]) =
W(n[lift"™ (s)]) = n = uun = RHS.

o A= X Thensince WF,(Xy) wehave k = k' and LHS = W((sXy)[lift"" (s)]) = 1 A.

o A= f(A,...,A,). Then

LHS =Pefinition383)  rOW((kA))[Lft*1(s)]), ..., W((£A)[Lft*(5)]))

:W f(thA, ... 0 Ay)
= flrAy, .. i Ay)

where i = |}, ¢}.. Notethat if X,, € Dom(s}) N Dom(s] ) for j,j/ € 1..n with j # ;' then
H(Xp) = i (Xp).
e A=¢(Aq,...,A,). By hypothesisthereisan o such that W.F .1 (A;) foral ¢ € 1..n. Then

LHS =Pefinition 386 ¢(W((rA)[HfM (s)]), ., W((RAR)[1ifE ™ (5)]))
:w 5(1’}1}9‘417 RS LZkAn)
== f(LakAly ey LakAn)

where 1, = Ui, ¢% .. Notethat if X, € Dom( )ﬂDom( )for] j' € 1l.nwithj # 5
then Lik(Xp) = Lo:k(Xp)-

By the well-formedness predicate we know that since any metavariablein A; hasthe form X,
for somelabel p wehave i (A4;) = tarA; forali € 1..n. More precisely, in the definition of ¢,
let p be alabel such that X, isametavariablein A; for some i € 1..n, then in the definition
of v, wetakep’ = po and obtain vy, (X k) = tak(Xpak). Hence we may continue as follows:

E(tarAr, -y tanAn) = E(Ar, .. 1 Ay) = 1A

e A = Ay[As]. By hypothesisthereis an a such that WF .1 (A1), and WF 1 (As). Then

LHS = W((k(AL[Aa])) [t (5)])
= W((RALL — A )1t (s)))
—Lemma 3.15(3) W((H [COTLS(IQAQ, Zd)])[hﬂlk‘( )])
=Lemma 3.18 W((HAl)[lift‘km( )][cons((rAz)[lift!* (s)], id)])
= WOV((r AV [1ift 7 (5)]) [cons OW((r A2) [1ift* (), id)])
=Lemma 3.15(3) W )

((RAD L™ ()DL — Wk A2)[1ift ) (s))) }
ok (A1 — e (A2) }

K(ADET — e (A2) }

k(A1[A2]).

The before last equality may be justified as in the previous case.

~

=i.h.

~

~

We now verify that the valuation . from Lemma5.9 (k = ¢) isavalid vauation assuming « is,
and hence can be used in rewriting terms. More precisely,
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LEMMA 5.10
Let x beavalid valuation for a SERS,p-rewriterule (L, R) and let s be any substitution. Then ¢ is
asovalid for (L, R), where o(X;) < W((kX))[lift"!(5)]) for all X, in (L, R).

PrROOF. This follows from the following more general result by considering the casei = 0. Let a, b
be pure terms. Then for all i > 0, Value'(k1,a) = Value®(k2,b) implies

Value® (k1, W(a[lift ™17 (s)])) = Value® (ko, W(B[LiftF21F (5)])).

Thelatter is proved by induction on a. We shall consider the case where a is an index for the other
cases follow by using the induction hypothesis. Let a = n, we consider three further subcases:

en <i Thenb=nand
Value' (k1, W(a[lift™ 17 (s)])) = n = Value® (ko, W(b[lift *2177 (5)])).

The latter holds by Lemma 3.15 (1), and therefore, the result holds.
oi<n<|k|+i Thenb=mwithi < m < |kz| +iand at(k1,n — i) = at(ks,m — 7). We
have W (a[lift""! 7% (s)]) = n and W(b[lift""*!*" (s)]) = m, by Lemma3.15(1). Thus, we have

Value® (ky, W(a[lift ¥+ (s))))
= at(ky,n—1)
= at(ky,m—1)
= Value' (ko, WO[Lift*21+(5)])).

en > |ki| +i. Thenb = m withm > |ke| + i and z,,_jx,|—; = Tpy—|k,|—i- ThEN we reason as
follows: . _
W(allift™ i (s)]) = W(n — [ka| — i[s][shift] 1 1+7)
= WW(n — [k — i[s])[shift]*1 7).
And likewise,

W(b[liﬁ|k2\+i(5)]) = W(W[S}[Shiﬁ]\kg\+i) |
= W(W(W[s])[shz’ft]"”'“).

Now W(n — |k1| —i[s]) = W(m — |ka| — i[s]), sSincen — |k1| — i =m — |ka| — i.

Observation: Value® (k1, W (a[shift]*117%)) = Value’ (k2, W(a[shift]*2+%)) holds for any pure
term a. Thismay be verified by induction on a and using condition 8 of the definition of aBasic
Substitution Calculus (Definition 3.8).

By the observation we may conclude the case.

|
DEFINITION 5.11 (Parallel SERS 5-rewriting)
Let R bea SERS 5 and let a and b be de Bruijn terms. We say that ¢ R-rewrites in parallelto b iff
a =xr b, where the latter relation is defined as:
rvaidfor (L,R) € R
p——— (refl) (red)
kL =R KR

a; = b, foradll<i<n a; =r b, fordll<i<n
(clos-f) (clos-b)
flag, ... an) Sr fby, ..., bp) (ay, ... an) =R &(b1, ..., bn)
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Notethat —r C =g C —»g, and that = isreflexive. Inthe case of R = {(L, R)} we shall
abbreviate a = basa =z, r) b.

LEMMA 5.12
Let a,b be pureterms and let (L, R) be a SERS p-rewriterule. If a = ) b, then for any term s
of sort S we have W(a[s]) =(1,r) W(b[s]).

PROOF. By induction on the derivation of a =, g) b.

e refl. Then the result holds trivialy.

e red. Thena can bewritten as kL = L{X;* /cX;*,... X/ /s X"} where X]' ... X" are
all the metavariablesin L, and  isavalid valuation for (L, R). We have

Wials]) = LEXS WX (), X WX ()]}

So define 1. X’ f W((kX)))[lift"!(s)]). Since v is valid for (L, R) by Lemma5.10, an appli-
cation of red allows us to conclude: W(als]) =(r,r) t(R) =Lemma 5.90k=c) W((KR)[s]) =
W(bls)).

e clos-f. Then by the induction hypothesis we have W(a;[s]) =1, ry W(bs[s]) foral 1 <i <
n. We conclude using clos-f W(f(a1,...,as)[s]) = fOW(a1]s ]) s Wlan[s])) =w.r)
FOVbls]). .., W(ba[s]) = W(F ..., b)[s]):

e clos-b. Asinthecase clos-f.

Note that in particular Lemma 5.12 holds when a— ;) b since the one-step rewrite relation
is included in the parallel rewrite relation: if a—(; g) b, then for any term s of sort S we have
W(als]) =(z,r) W(bls]).

LEMMA 5.13 (Projecting first-order valuations)
Let (L, R) bea SERS p-rewriterule, (L', R") = Cp(L, R) for some pivot set P for (L, R), let p be
afirst-order valuation for (L', R').

Define the valuation « as:

KX L W(EEH (X))
For any metaterm A, W(p(C'2(A))) = kA.

PROOF. By induction on A.

e A=n.Then LHS = W(p(n)) =n = kn = RHS.

o A= Xk Then LHS = W( (C(L R (Xk))) —hypothesis HXk-
o A= f(Ai,..., A,). Then

LHS —Definition 3.8(3)

FOV@EES ™ (AD), ... W EES ™ (4,))) =i
f(kAy,...,kA,) = RHS.

e A=¢(Ay,..., A,). Asthe previous case.
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e A=A, [AQ] Then
LHS = W(EECE ™ (A1[Aq])))
= WBECY ™ (A1) [cons(B(CY™ (A2)), id)])
WW (™ (A1) [cons(W(p(CE ™ (A2))), id)])

__Definition 3.8(1)

—ih. W(kA1[cons(kAs, id)])
=Lemma3.153) KAL{1l — kA2}

— r(A1[Az])

_ RHS.

In order to use the valuation of Lemma 5.13 we need to prove that it isvalid.

LEMMA 5.14 (From first-order valuations to valid val uations)
Consider rewriterule (L, R) inthe SERS,p formalism, metavariables X}, , X}, occurringin (L, R)
and a designated pivot metavariable X;. Let p be afirst-order valuation. Then

Value(ky, W(p(X[s1]))) = Value(kz, W(p(X[s2])))

where
e 51 = cons(by, ..., by, shiftlklH'l\Ba(LR’(X)l) and
e 55 = cons(c,...,c, shiftlszll\Ba‘L*R)(X)l)

are the index-adjusting substitutions (using pivot X;) of X, and X}, , respectively.

PROOF. In order to prove this property we show a more general one stating that for all pure term a
and for al ¢ > 0 we have:

Value' (k1, W(a[lift'(s1)])) = Value® (kz, W(allift'(s2)]))
with s; and s, the index-adjusting substitutions as before.

We shall assume that X, # X; and X, # X;. The case where X, = X; or X, = X, is
analogous. We proceed by induction on a.

e a = n. We have three subcases to consider.
—n < i. Thenby Lemma3.15 (1) Value'(ky, n) = n = Value'(k2, n).
—i < n < |I| +i. Now we consider two further cases:
* n — 1 = pos (0, 1) for some B, € Ba(, r)(X).
Then b,,_; = pos(Br, k1) and ¢,,—; = pos(Bh, k2) by Definition 4.7.
Therefore Value' (k1, by,—; 4 i) = By = Value' (kz, cn_; + 7).
+ Thereisno (3, € Baz, gy(X) suchthat n — i = pos (B, 1).
Thenb,,_; = |k‘1| + 1+ Sh(Xl,n — ’L) andc,,_; = |k‘2| + 1+ Sh(Xl, n— l)
Hence, Value’ (k1, by—i + 1) = Z1sn(x1,n—i) = Value' (ka, cpi + ).
—n > [I| + 4. Then W(a[lift'(s1)]) = n — || + k1| + |l \ Ba(z,gy(X)| and we also have

W(allift' (s2)]) = n — [I| + |k2| + |1 \ Baz, gy (X)|. Asaconsequence

Value' (k1.1 — |I| + [ka| + |1\ Baz,m) (X))

= Tn—i—|U+\Bacz, 7y (X))
= Value'(kz,n — [I] + |k2| 4 |1 \ Bacz,r) (X)])-
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ea= f(a,...,a,). Then

Value' (k1, W(allift'(s1)])) A
= Value® (k:l, W(aq [lift" (sl)]), ol W(an[liftz(sl)]))) 4
= f(Value'(k1, W (al[lzft (s1)]), - .., Value' (k1, W(an[lift" (s1)])))
=ih f(VaIue (ko, W (al[lzft (s2)]), - - -, Value' (ko, W(a,[lift' (s2)])))
= Value' (ko, W(a[lift' (s2)])).

e a=¢(ay,. .., a,). Similar to the previous case.

Now in order to obtain the general result of the lemma we remark that W is a basic substitution
calculus, so that it has unique normal forms and in particular W(p(X)[s1]) = W(W(p(X))][s1])-
Also, by condition 2 of Definition 3.8 we have that WW(p(X)) is a pure term and therefore we can
takea = W(p(X)) andi = 0. .

LEMMA 5.15 (Projection of EXERSrewriting)
Let W be a basic substitution calculus satisfying the scheme. Let o be aterm of W of sort T or S.
Let (L/, R/) = CP([/7 R) If O_)(L’,R’) 0,, theﬂ

1 if oisof sort T then W(o) =, )y W(0');
2. for every pureterm d of sort T such that o isaterm of sort S, and every n > 0,

W(d[lift" (0)]) = (z,r) W(d[lift" (o).

PrRoOF. We show simultaneously the two items by induction on the lexicographic ordering on pairs
(0, d), where the orders on the components are given by the lengths of their respective terms?.

e 0 is a de Bruijn index or a substitution constant. Then both items hold vacuoudly since by
definition the LHS of a SERS;g-rewrite rule must have a function or binder symbol as head
symbol. Thus o isanormal form.

eo0=f(ay,...,an)0ro==¢&as,...,a,). Thereisnothing to prove for the second item. For the
first item we consider two cases.

— Suppose the reduction is at theroot. Then o = pL'. Define x for al X, € L as;

F S WEEe ™ (X))

Note that x isavalid valuation by Lemma 5.14, and also, W(pL') = kL by Lemma5.13. So
wL j(L,R) KR =Lemma 5.13 W(ﬁR/) = W(Ol).
— Suppose the reduction isinternal. Then we use the induction hypothesis.
e 0 = a[s]. Thereis nothing to prove for the second item. Since reduction at the root of the term
is not possible, we consider the following two cases for the first property:
— o' = d'[s] witha— /gy a. By thei.h. W(a) =1, r) W(a'). Then

W(als]) = WW(a)[s]) = (z,r)y WV(a')[s])

by applying Lemma5.12.

2The length of an index is 1.
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-0’ = a[s'| with s— (1, p/) s’. Since W(a) is apure term we have that
W(o) = WOW(a)[s]) Z(1,ry WWV(a)[s']) = W(0)

by the induction hypothesis of item 2 since (s, d) < (a[s], d).

e 0 is a substitution o(s1,...,5;5,...,8,) (¢ > 0), and o' = o(s1,...,s},...,54), where
sj—(1,r) 8;- Thereis nothing to prove for the first property since o is not a term. For the
second property we proceed by induction on d.

—d= f(di,...,dn)0ord =¢(dy,...,d,) then the property holds by the induction hypothesis
since (o,d;) < (o,d) foral 1 < i < n, and applying clos-£f or clos-b.

—d = m. Wemust verify that for all n. > 0: W(m[lift" (0)]) =1,ry W(m[lift" (0")]).
We proceed by induction on n.
1. If n = 0, then we proceed by cases as dictated by the definition of the scheme (Defini-

tion 3.13).
(8) Suppose there exists ade Bruijn index r, indices iy, ..., 4, (p > 0) and also substitutions
u1,...,u; (k> 0)suchthat 1 <iy,...,i, < g, thei;'sareall distinct and for s; ... s,
mlo(sy,...8q¢)] =w r[si] ... [si,][u1] ... [ug].

g & {i1, ... ip ), thenW(m[o']) = W(r[ss,] ... [si,][u1] . .. [ux]) and the property is
trivial since W(m/[o]) = W(m/[0']).

i.If j € {i1,...,ip}, let ussay j = i, then the term W(m/[o']) is equal to the term
W(rlsi,] ... [s},]. - [si,)[w] - [ux]) @add W(r[s;,]. .. [si,_,]) = e isapure term by
Definition 3.8(2). Since (s;,,€e) < (o(s1,...,8;,...,84), m), we can apply the induc-
tion hypothesis (2) to obtain:

Wielsi,]) =(,r) Wlelsi,])-

Now, theterm W(e[s;, ]) is pure, so that we can repeatedly apply Lemmab5.12 to obtain:

W(mlo]) = WW(elsi,])[sin ] - [si,][ua] - [u])
=r) WOVCels), Dlsinga]- - [si,lfua] - - fur])
= W(m[o']).
(b) Suppose there exists an index ¢ with 1 < ¢ < ¢ such that for s; ...s, we have that
m[o(s1,...5¢)] =w Si.

i. If i # j, then theterm W(m/[o']) isalso equal to W(s;) and the property istrivial since
W(m[o]) = W(m[o']).

ii. Ifi = j, then W(m[o']) = W(s);) (where s; is aterm because the equations are well-
typed) and (s;,m) < (o(s1,...,$;,...,5¢), m), S0 the property holds by the induction
hypothesis (1) since W(mlo]) = W(s;) = (1.r) W(s}) = W(mlo']).

2. I1f n > 0, then we consider two cases:
(@) if m < n, then by Lemma 3.15(1) we obtain:

W(mllift" (0)]) = m = W(ml[lift" (o')])
(b) if m > n, then by Lemma 3.15(1) we obtain:
W(mllift™ (0)]) = W(m — 1[lift"~" (0)][shift])

and
W(mllift™ (o')]) = W(m — 1[lift" = (o')][shift])
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Since indices are equivalent w.r.t our ordering, (o(s1,...,5;,...,54),m) = (o(s1,...,
Sj,...,5q), m — 1), and then the induction hypothesis on » can be applied to obtain

W(m = 1[lift" " (0)]) =, m) W(m = 1[ft" ™" (o")]).

Since every W-normal form is a pure term by Definition 3.8(2), we may finally apply
Lemmab.12, so that

W(m[lift"(0)]) = W(W(m = 1[ft" " (0)])[shift])
) WOV — 1[Lft" (o)) [shift])
= W(m[lift" (o")]).

||
PROPOSITION 5.16 (Projection Proposition)
Let R be a SERS,p and let fo(R)y be its first-order version where W is a basic substitution
calculus satisfying the scheme. If a—,(z),,, b, then W(a) =z W(b).

PROOF. We consider two cases, one for EXERSrewriting and one for FEXER Srewriting.

EXERSrewriting Suppose that a— s, (), b using rewrite rule (L', R') = Cp(L, R) where P is

apivot set for (L, R) € R, acontext E and first-order valuation p. Thusa =y, E[p(L’)] and
b=w E[p(R)].
Since E[p(L)|—=(/,ry E[p(R')], we conclude that W(E[p(L")]) =(r,ry W(E[p(R')]) by
Lemma5.15. Also since a =y, E[p(L')]) we know that W(a) = W(E[p(L)]), likewise we
know that W(b) = W(E[p(R)))). Finally, W(a) = W(E[B(L))) 1.z WE[P(R)]) =
W(b) as desired.

FEXERSrewriting Suppose fo(R) isa FEXERSand that a— s,(r)uw b. Thenif a—y b the result
holdstrivially. Thus et usassumethat a—y, () b using rewriterule (L', R') = Cp(L, R) where
Pisapivot set for (L, R) € R, acontext E and first-order valuation p. Then a = E[p(L’)] and
b= E[p(R')]. Now since E[p(L’)]—,ry E[p(R')] then by Lemma 5.15 we may conclude
tht W(a) = W(E[p(L)]) =15 W(E[(R')]) = W(b) as desired.

i
Since =g C—x, we may replace W(a) =g W(b) by W(a) -z W(b) in the statement of the

Projection Proposition.

DEFINITION 5.17

Let R and S be binary relations defined over sets A and B with A C B, respectively. We say S is

conservative oveR if aSbimpliesaRb for dl a € A.

Noting that W(a) = a for pure terms a (Definition 3.8(2)) we may conclude.

COROLLARY 5.18 (Conservativity)
Let R be a SERS 5. Then fo(R)yy-rewriting is conservative over R-rewriting, that is to say, if

a —=o(R)yy bfora,bpureterms, thena —g b.

5.3 Essentially first-order HORS

Thislast subsection provides avery simple syntactical criterion that can be used to decideif agiven
higher-order rewrite system can be translated into afull first-order rewrite system (modulo an empty
equational theory). In particular, we can check that many higher-order calculi in the literature, such
as the lambda calculus, verify this property.
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DEFINITION 5.19 (Essentialy first-order HORS)
A SERS s R is called essentially first-ordeif the first-order version of R, namely fo(R)wy, isa
FEXERSor W abasic substitution calculus.

Recall from Section 3 (Definition 3.9) that an EXERSExplicit Expression Reduction System) R
isa FEXERS(Fully Explicit Expression Reduction System), if the LHS of each rulein R contains
no occurrences of the substitution operator e[e].

DEFINITION 5.20 (fo-condition)
A SERSp R satisfiesthe fo-conditionif every rewriterule (L, R) in R satisfies: for every name X
inLletX;,,...,X;, beall the X-based metavariablesin L, then

11l =1y... =1, and (the underlying set of) [, isBa(;, r)(X), and
2. fordl X3, € Rwehave |k| > |l1].

In the above definition notethat [y = I ... = [,, meansthat labels I4, ..., [, must be identical
(for example a3 # [a). Also, by Definition 2.10, [, is simple, in other words, it does not have
repeated elements.

ExXAMPLE 5.21

Consider the A 45-calculus consisting of thesolerule: app(A X, Ye)—35,, XaolYe]. The 8qp-caculus
setisfies the fo-condition. However, the 74, rule A(app(Xq,1))— X, does not satisfy the fo-
condition: the label of X, in A(app(Xa, 1)) does not coincide with the binding allowance of X

iNNay (Baix(app(xa.1)),x)(X) = 0).

Proposition 5.22 puts forward the importance of the fo-condition. Its proof relies on a close
inspection of the Conversion Procedure.

PrROPOSITION 5.22
Let R beaSERS 5. Then R satisfies the fo-condition iff R is essentially first-order.

Further examples of essentiadly first-order SERS g arethe foldl-rewrite system of Example 4.10
and the natural numbers recursor rewrite system rec of Example 4.11.

Note that many results on higher-order systems (e.g. perpetuality [34], standardization [37]) re-
quire left-linearity (a metavariable may occur at most once on the LHS of arewrite rule), and fully-
extendedness or locali(yf a metavariable X (¢4, .. ., t,) occurs on the LHS of arewrite rule then
t1,...,t, isthelist of variables bound above it). The reader may find it interesting to observe that
these conditions together seem to imply the fo-condition. A proof of this fact would require either
developing the results of thiswork in the above mentioned HORS or via some suitable translation to
the SERS;p formalism, and isleft to future work.

Of course, all first-order rewriting systems are essentialy first-order SERS 5. indeed al meta-
variables in first-order rewriting systems carry ¢ as label. Hence the latter systems need not be | eft-
linear. Also, an orthogonal SERS;g (Definition 2.15) need not be essentially first-order, the prime
example of thisfact being the rewrite system consisting of the sole rule n,5. Thisis summarized in
Figure 4.

It seemsfair tosay that a SERS ;5 systemisessentialy first-order if higher-order pattern matching
may be reduced to syntactic first-order matching. We claim that essentially first-order SERS;p
systems are appropriate for transferring results from first-order systems. A first step towards this
claim can be found in [12] where the Standardization Theorem is transferred from (left-linear) first-
order rewriting systems to essentially first-order higher-order rewriting systems.



934 Relating Higher-order and First-order Rewriting
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FIGURE 4. Essentialy first-order systems

6 Other Higher-order rewriting formalisms

Besides SERS and ERS, many other HOR formalisms have been extensively studied. Two of
these are JW. Klop's CRS [33] and T. Nipkow's HRS [42]. Figure 5 illustrates how the g-rule is
represented in each of these formalisms. In this section we relate higher-order rewriting inthe HRS
formalism and first-order rewriting. Since CRS areaparticular caseof HR.S [50] we shall also relate
CRS and first-order rewriting. After a brief overview of the HRS formalism we propose a rather
simple two-step conversion procedure, the HRS-conversion procedure, which converts any HR.S
to a corresponding first-order rewrite system in which rewriting takes place modulo a first-order
equational theory. We then extend this procedure with three additional steps in order to specialize
it to the case of pattern HRS (see below). Some comments on differences between the HRS-
conversion procedure and the one developed in Section 4 for SERS are interwoven.

app(lam([z]X (2)),Y)— X (V) (CRS)
app(lam(Az.x z),y)— xy (HRS)
app(ra.X,Y)— X|a < Y] (SERS)

FIGURE 5. The g-rulein various HOR formalisms

As mentioned in the introduction to this paper the reason we have studied the SERS formalism
is that we find its notation appealing in that it alows a representation of rewrite rules which is
close to the usual informal presentation. This is particularly evident in the representation of the
G-rewrite rule. Although no formal relation between SERS and CRS, that we know of, has been
established in the literature, we believe that choosing between SERS or CRS is largely a matter
of taste. However, HRS differs from both of these formalisms since HRS is a typedformalism
allowing the representation of rewrite systems of arbitrary types. Indeed, CRS (and SERS) are
second-order rewrite systems [50] whereas an HR.S may be of any order.

An HRS consists of an alphabet F of symbols (each equipped with a type) and a set of HRS-
rewriterules’R. Term formation isspecified using the simply typed lambdacalculus. Typedqr, v, ...)
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are built from a non-empty set of base types and the binary type constructor —. Weuse7; — 7 as
a shorthand for thetype 4y — » — ... — 7, — 7 where 7 is a base type and — associates to
theright. For every type = we assume a denumerable infinite number of variablesz, y, z, . . . of that
type. The set of pretermsof type 7 over the signature F is formed from the following rules:

1. x : 7 if xisavariable of type 7.

2. f: 7 for every function symbolf € F of type 7.
ifz:mmand M : nthen \e. M : 7 — 7.
4ifM:71 - mandN :1mpthen M N : 1.

If M : 7 can be derived from these rules, then we say that M is a preterm of type . A preterm
of the form f M; ... M, is sometimes written f (M, ..., M,). Also, a-equivalent preterms are
identified. A context is a preterm with one occurrence of a hole O. The long n-normal formof a
preterm is obtained by repeatedly replacing C[M] by C[\x.M z] where M is of type 11 — 7o, « Of
type m, does no occur freein M, M isnot an abstraction and the occurrence of the hole O in C' isnot
functional (i.e. it does not occur as the left part of an application). This processis called restricted
n-expansiondue to the latter conditions which guarantee that no 3-redexes are created. The long
Bn-normal formof a preterm may be computed by taking the long n-normal form of its 5-normal
form. A termisapreterm in long Gn-normal form.

A rewrite ruleisapair of terms (L, R) such that:

1. L and R are of the same base type,
2. Lisof theform f(My, ..., M,), and
3. all free variables® in R also occur in L.

A term M sdtisfies the pattern conditionif every free variable = in M occurs in the form
x My ... M, with each M; n-equivalent (i.e. equa modulo n) to distinct bound variables, for
i € l..n. For example, \x.yz satisfies the pattern condition, however al of \z.y z z, Ax.y z,
and Az.y cons(zero,x) donot. If (L, R) isarewrite rule and L satisfies the pattern condition, then
(L, R) is a pattern rewrite rule A set of pattern rewrite rules is caled a Pattern HR.S, abbrevi-
ated PRS. The pattern condition guarantees that the induced rewrite relation is decidable because
unification of patternsis decidable [39].

EXAMPLE 6.1
An example of an HRS-rewrite rule (taken from [36]) is:

f(Az.y cons(zero,x))— f(Az.yx).

It is an example of arewrite rule whose LHS is not a pattern. The net effect of its execution is
that of replacing all cons-headerswhosetail isthe bound variable = under f with the bound variable
x. Note that if there are occurrences of the bound variable = under f which do not occur under the
form cons(zero, x), then the ruleis not applicable®.

An example of a pattern rewrite rule is the 5-rule of Figure 5. We assume there is only one base
type O (the type of the ‘terms’). The alphabet consists of the two function symbols app : 0 — 0 — 0
and lam : (0 — 0) — 0. Thefree variable = is of type 0 — 0 and y of type 0. See Figure 6(b) for
another example of a pattern rewrite rule.

3The notion of free variable is defined as usual [3].
“4For instance this rule is not applicable to the term f(\z.g(z, cons(zero, x))).
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Given that 5 together with restricted n-expansion is confluent and terminating on the set of
preterms[26, 27] every preterm hasaunique long Gn-normal form. Thuswe may restrict theinduced
rewrite relation to terms without loss of generality.

An assignmenis afinite mapping from variables to terms of the same type. An assignment x may
be extended to a mapping from terms to terms, with the aid of the usual variable convention of the
A-calculus, asfollows:

f =g ferF
K def

x = k(x)

Oz M)s X aae
(MN)y € peNe

Note that this extension of an assignment requires variable renaming in order to avoid unwanted
capture of free variables. Thusit is not simple replacement. Also observe that x does not reduce
(-redexes.

Let M | 3 denote the 3-normal form of the preterm M. The rewrite relation induced by an HR.S-
rewriterule (L, R), is defined as:

ClL"Lgl=(1,r) C[R"] 4]

where C isany context.

6.1 ConvertingdRS

HRS-rewriting and first-order rewriting is related by the HRS-conversion procedurand is de-
scribed in this subsection. Since HR.S is a typed rewriting formalism we would require a corre-
sponding typed substitution calculus in order to implement an HRS-rewrite step in a first-order
setting. Moreover, since substitution at the metalevel in an HR.S is implemented by the full typed
lambda cal culus the notion of basic substitution calculi (Definition 3.8) would have to be extended to
includea Beta-rewriterule (AM )N — M [cons(N, id)]. Such substitution calculi have been studied
in[29, 30, 49, 51]. Although such extensions of substitution calculi present no major problems, for
expository reasons we shall restrict ourselves to the Ao-calculus implementation of the simply typed
lambda calculus.
The HRS-conversion procedure consists of the following two steps:

Step 1. (de Bruijn indices notation)
Let o;5 be the function that trandates HR.S terms into de Bruijn terms. bound variables are
replaced by de Bruijn indices and free variables (which in the HR.S formalism correspond to the
metavariables of the SER.S formalism) are left unaltered.
The result of applying Step 1to an HRS rewriterule (L, R) (resp. valuation ) isarewriterule
(Lap, Rip) (resp. valuation xyp) in the HRSp formalism. The latter formalism is the naive
de Bruijn variant of the HR.S formalism and is defined as expected; similar comments apply to
notions such as 3,45 -reduction, 745 -reduction and the corresponding notions of normal form and
long normal form. Note that the HRS,p formalism is till a higher-order rewrite formalism, it
relies on metalevel substitution and in order to instantiate rewrite rules valuations must do some
index adjusting on the metalevel.
The following holds:

M = C[L*ls) —ur CIRlg = N (6.2)
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iff

Mup = CdB[LZ,dglﬁdB] 7 (Lap,Rap) CdB[nglﬁda} = Ngg. (62)

Observethat « in (6.1) must be careful to rename whenever necessary in order to obtain L* (and
R"). ThedeBruijn valuation x45 does not constitute asimple replacement operation either since
in order to obtain ;%2 in (6.2) it must do some index adjustment.

See Figure 6 for examples.

Step 2. (pre-cooking [17])
Each free variable x in (L;p, Rip) resulting from applying Step 1 to (L, R) is replaced by
the term x[T’f] where k is the number of binders above that occurrence of x in (Lyg, Rip).
The resulting rewrite rule (Lo, R2)® is now afirst-order rewrite rule in that the induced rewrite
relation is obtained by applying valuations that have become simple replacement; rewriting is
now first-order rewriting modulo Ao. Therefore, item (6.2) in the equivalence mentioned in Step
1 can now be replaced by:

Map =xo Cap[L5*] —(r,,r,) Cap[R5*] =xo Naip

matching phase substitution phase

(6.3)

kg and ko share the same underlying assignment. However, ;5 has to do some index adjust-
ment when traversing the structure of a term, whereas o, does no such adjustment, it smply
replaces the free variables by their corresponding terms.

Note that since Myp isin B4p-norma form and Ao is confluent (on ground terms) we may
replace the matching phase in (6.3) by Cyp[L5?] —x, Mgp and, similarly, the substitution
phaseby Cyp[R5?] —xo Nup, Wherethenotation N — ,, N’ isused to say that N \o-rewrites
tothe Ao-normal form of N’. Thisnotioniswell-defined since Ao isweakly normalizing [41, 22]
(and confluent as already mentioned).

See Figure 6.
fQz.y cons(zero, z))— f(Ax.yx) fOz.gMy.zzy))— g hy.f(Ax.zzy))
Step 1< Step 1
f(Ay cons(zero, 1)))— f(A(y 1)) FMg(A(z2D)))— 9(A(f(A(212))))
Step 2< Step 2
FA[1] cons(zero, 1)))— FA(w[TIL)) f(Mg(M=[12]21)))— g(A(f(M=[1%]12))))
(a) (b)

FIGURE 6. Examples of HR.S-conversion procedure

SWe use L, for the result of applying Step 1to L, Lo for the result of applying steps1and 2to L, . . ., and L for the
result of applying steps1to5to L.
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REMARK 6.2

The acute reader may have noted that the Simulation Proposition (Proposition 5.8) for SERS uses
rewriting modulo the substitution calculus o (and not (typed) Ao as in (6.3) of Step 2) for the
substitution phase. This is coherent with two facts: the observation made in [50] that HRS have
more ‘rewriting power’ than CRS, and the fact that CRS and SERS are equivalent formalisms.
A similar comment applies to the matching phase in (6.3) of Step 2: the HR.S formalism allows
terms of any order and thus requires higher-order matching whereas SERS is a second-order pattern
rewriting formalism which relies on second-order pattern matching.

6.2 ConvertingPRS

The rewrite system which results from applying steps 1 and 2 is afirst-order rewriting system mod-
ulo a (first-order) equational theory. However, the matching phase (see (6.3) in Step 2) could be
simplified incrementally in two ways.

e Beta-simplification Suppose an application of the form z[1*]a; ... a,, occursin (L, Ry) with

x afree variable of type 7 — 7. Then since ryp assigns termsin long By5n45-normal form
to free variables we may assume that k2(z) = A...Aa where there are exactly n lambda
binders above a. Therefore, we could be tempted to replace the aforementioned application
by 2’ [cons(ay, . .. cons(ay, 1%))] where 2’ is some free-variable of type 7. Thiswould be done
in order to simplify the matching phase in (6.3) of Step 2 by eliminating the Beta-steps: This
phase would be replaced by Cyp [Lgé] —o Mg, where k5 (z) = a (and similarly for the other
variablesin the domain of ).
However, this simplification is not possible in general since o may create Beta-redexes. Nev-
ertheless, in the particular case that al the (nyp-normal forms of the) a;s are de Bruijn in-
dices, then only ‘trivial’ Beta-redexes can be created [50, Prop.4.8a] in the reduction from
a[cons(ay, . ..cons(ay, T%))] to its A\o-normal form. By ‘trivial’ we mean a Beta-redex of the
form a; c for some term ¢ in some Ao-reduct of a[cons(ay, . .. cons(ay, 1%))].

e Full simplification.|f the matching phasein (6.3) of Step 2 were replaceable by syntacticidentity
Map = Cyp[L5?] then we would be in afirst-order setting where syntactic matching suffices:
the equational theory Ao would not be necessary for matching. We shall see that in some cases
thisis possible (see Step 4 and Step 5 below).

Asremarked in the Beta-simplification entry the full Ao isrequired in the matching phasein order
to simulate HR.S-rewriting in afirst-order setting. However, if we restrict attention to the subclass of
pattern HRS then Beta-simplification is applicable. Thus the PR.S-conversion procedure consists
of Step 1 and Step 2 of the HR.S-conversion procedure together with additional steps, namely steps
3,4 and 5. Step 3 implements Beta-simplification of the matching phase whereas Step 4 and Step
5 considers full simplification.

Figure 6(b) presentsthe PRS-rewrite rule we shall use as an examplein this subsection. Thisrule
models binder commutation. Below it, we depict the rules resulting from applying Step 1 and Step
2toit.

Step 3. (Beta-simplification)
Let (Lo, R2) betheresult of applying steps 1 and 2 to the PRS-rewriterule (L, R).
1. Replaceall the applications of theform z[1*] a; . .. a, in R, where z isafree-variable of type
7; — 7 by 2'[cons(an, . . . cons(a1, T%))]. Thetype of 2’ is 7. This simplification is justified
by observing that (\... \a)[1*]a; ... an =, alcons(a,,...cons(ai, %))] where there are
exactly n lambdabinders above ¢ and a, a4, . . ., a,, are de Bruijn terms.
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2. Replace al the applications of the form z[1*]a; ... a, in Ly (note that k& > n) where
is a free-variable of type 77 — 7 by 2'[cons(an |y, ... cons(ar Ly, T%))]. The type
of 2/ is 7. This simplification is justified by observing that ((\...\a)[1*]a; ... an) lxe=
(afcons(anlp,y, - - - cons(ailn,,, 1%))]) |- where there are exactly n lambda binders above a,
aisinlong B4pnqp-normal form and the (ny5-normal forms of the) a;s are de Bruijn indices.

Let (L3, R3) bethe resulting rule. Then:

M = C[L"|lg] —@r C[R"g] = N (6.4)
iff
Myp o~ CaplL5*] —(1,r,) Cap[R5°] —xo Nuap (6.5)

k3 results from ko asfollows: if z : 7; — 7 isinthedomain of ko, and thus ka(z) = A... Aa
where there are n lambda binders above a, then in that case we define k3 (') = a.

Figure 7 applies Step 3 to thelast rule of Figure 6(b).

FgOAET120)))— 9(Mf(A(2[17]12))))

FA(g(A(#'[eons(L, cons(2,12))]))))— g(A(f(A(2'[cons(2, cons(1,12))]))))
Step 4<
FA(z

FMg(A=))— "[cons(2, cons(1,1))]))))

FIGURE 7. Example of HR.S-conversion procedure (cont.)

Step 4. (Naive full-simplification)
For every term of the form z’[cons(ay, . .. cons(a1, T%))] in Ly where the a;s are de Bruijn
indices, if it is of the form 2'[cons(L, ... cons(k, T¥))] then replace it by the free variable z’.
In other words, throw away the substitution [cons(L, . .. cons(k, T¥))] since it behaves as the
identity substitution®. Let (L4, R,) be the resulting rewrite rule (note that R, = Rs3). If no
explicit substitutionsin L4 remain then we may replace the matching phase in (6.5) of Step 3 by
syntactical identity:

Myp = Cyp[Ly*] —,.r,) CaBlRy*] —xo Nip (6.6)

where k4 = k3.
See Figure 7 for an example.

Let R bea PRS and let R4 be the result of applying the PR.S-conversion procedure to R. We
could say R isessentially first-ordeif there are no explicit substitution operatorsin the LHS's of the
rewrite rulesin R4. However, thisis not fully convincing. Consider the following two PR.S-rewrite
rules:

61n the sense that for any pureterm a and for al k > 0 (we assume 1°= id): a = alid] = a[cons(l, .. .cons(k, 1%

)]
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fQz.g(\yzzy)) —¢  gMy.fAz22Y))

fQz.gAy.zyz)) —e, 9Ny f(Az.2y2)).

They both induce the same rewrite relation and differ only in the way the free variable z is applied
to the bound variables x and y. However, thefirst rule satisfies the definition of essentially first-order
given above but the second does not. Indeed, steps 1 to 4 applied to therule ¢, yields:

FgA (' [cons(2, cons(L,1%)))))) = gA(f(A(2'[cons(L, cons(2,1%))]))))

astheterm z/[cons(2, cons(1, 12))] cannot be replaced by 2’ using Step 4.

We may observe that the free variable z in the LHS of ¢; and ¢, is applied to all the bound
variables above it. Therefore, from the point of view of the induced rewrite relation, the order in
which they are applied isirrelevant. Indeed, if we wereto rearrange z y x onthe LHS of co tozx y
(and apply such atransformation aso to the RHS of ¢;), then we would obtain ¢;. And, as already
observed, the induced rewrite relation remains unaltered. Asamatter of fact, the SER.S-Conversion
Procedure does exactly this. the user fixes an order on the indices representing bound variables by
selecting a pivot metavariable.

As aconseguence, we shall add a new step, Step 5, to the PRS-Conversion Procedure in order to
attain amore convincing notion of essentially first-order PRS.

Step 5. (Full-simplification)

Let 2’ be avariable in L, occurring m times and suppose that every occurrence ¢ of =’ with

1 <4 < m is embraced by a substitution of the form z%[cons(at, ...cons(at, 1%))] where

k > 0 is the number of binders above 2/ and the (n45-normal forms of) ai,...,a}s are de

Bruijn indices. Note that:

e the smplification in Step 4 was surely not applied to one of these occurrences for then there
would be no substitution embracing it (¢ > 0 would not be possible); therefore none of the
zl[cons(al, .. .cons(at, 1%))] isof theform z[cons(L, . .. cons(k, T%))],

e the number of binders above all the occurrences of 2’ isthe same and equal to &, and

e due to the pattern-condition, for every 1 < ¢ < m theindices aj- with1 < j < k aredistinct

bound indices (i.e. (at,...,a}) isapermutation of (1,...,k)).
Pick any occurrence ' [cons(at, . ..cons(at, 1%))], the pivot occurrence of’. Let 7 be the
permutation of (at,...,a}) suchthat w(ai,...,al) = (1,...,k).

1. replace z}[cons(al, . .. cons(ai, T%))] by z/,

2. replace x;-_[cons(ai., . con_s(a{7 TR))] for j # i by xé[cons(bi, ...cons(bl,1%))] where
(bl,...,b7) =n(ay,...,al), and

3. replace all substitutions of the form «/[cons(cg, . . . cons(c1,1™))] in Ry (note that in Ry we
could have k # n) by z[cons(dg, . .. cons(dy, T™))] where (dg, . ..,d1) = w(ck,...,c1).

Asthe reader may note the rewrite relationsinduced by (L4, R4) and (L5, R5) areidentical.

Let usnow definea PRS R to be essentially first-ordeif there are no explicit substitution oper-
atorsin the LHSs of the rewrite rulesin R5, where R 5 is the system resulting from applying steps
1to5toR. Thistime, applying steps 1to 5 to the rule ¢; yields:

FMgA=))) = g (f (A2 [cons(2, cons(1,1%))]))))-

The permutation 7 in this exampleisthe one that interchanges the first and second elements of (2, 1):
7(2,1) = (1,2). Thuswe may correctly deduce that ¢, isan essentialy first-order PRS.
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7 Conclusions

We have presented an encoding of higher-order term rewriting systems with indices into first-order
rewriting systems modulo an equational theory. This equational theory models the substitution pro-
cess. The encoding has furthermore allowed us to identify in a simple syntactical manner, via the
so-caled fo-condition a class of HORS that are fully first-order in that they may be encoded as
first-order rewriting systems modulo an empty equational theory. This amounts to incorporating,
into the first-order notion of reduction, not only the computation of substitutions but also the higher-
order (pattern) matching process. It isfair to say that a higher-order rewrite system satisfying this
condition requires a simple matching process, in contrast to those that do not satisfy this condition
(such as the Agn-calculus). Other syntactical restrictions, such as linearity and locality, imposed on
higher-order rewriting systems (see for example [31, 37]) in order to reason about their properties
are closely related to the fo-condition

Moreover, this encoding has been achieved by working with ageneral presentation of substitution
calculi rather than dealing with some particular substitution calculus. Any calculus of explicit sub-
stitutions satisfying this general presentation based on macros will serve its purpose, namely that of
modelling matching and substitution.

Some further research directions are summarized below:

e As aready mentioned, the encoding opens up the possibility of transferring results concerning
confluence, termination, completion, evaluation strategies, implementation techniques, etc. from
the first-order framework to the higher-order framework. A first step in this direction is studied
in [38, 12] where the standardization property islifted form first-order to higher-order rewriting.
Thus, the trandation proposed in this paper to encode higher-order rewriting could provide a
new means for studying properties of higher-order rewriting through corresponding results in
the first-order setting.

e Givena SERS, R notethat the LHSsof rulesin fo(R) may contain occurrences of the substi-
tution operator (pattern substitutions). It would be interesting to deal with pattern substitutions
and ‘regular’ term substitutions (those arising from the conversion of the de Bruijn metasub-
stitution operator e[e]) as different substitution operators at the object-level. Thiswould neatly
separate the explicit matching computation from that of the usual substitution replacing terms
for variables.

Givena SERS 5 R which enjoys termination, what are the abstract properties to be imposed on
itsfirst-order version fo(R )y in order for it to be terminating too? This point concerns both the
basic substitution calculus W and the substitutions generated by the rules of R. A first step in
this direction is done in [7] for the explicit version of CR.S with names, where the substitution
caculusisx.
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Appendix

A On pivot selection

Itisclear that Cp(L, R) and Cq (L, R) shall not be identical. Nevertheless, the rewrite relation generated by both of these
converted rewrite rulesisidentical.
Before proving this proposition, let us consider a rewrite rule (L, R) and let X;,, ..., X;, beall the X-based meta-

n

variablesin (L, R) withBa(, gy (X) # 0. Let X;, and X;, betwo possible X -based pivotsfor (L, R). Note that we must
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have either X;,, X;, € L, or X;,,X;, € R (inwhich case |k| > |l1] and |k| > |l2| for dl X}, € L). Also, we have
|i1] = |l2|, afact that shall be made use of freely below.

Let us consider two different conversions (&) and (b) as dictated by Definition 4.7 taking any metavariable X;, for 1 <
1 < n and yielding afirst-order term:

@ X; ~ X[cons(a’i,...,afll‘,shift‘li|+“1\Ba(L=R)(X)|)}
and
) X, ~ X[cons(bli,..,,b‘il?‘,shiftlll‘HlQ\Ba(L,R)(X)‘)].

Note that clause 1 of Definition 4.7 does not present itself since the case of interest iswhenBa(;, ) (X) # 0.

Thefirst trandation (&) corresponds to the conversion dictated assuming X;, asthe pivot, while the second translation (b)
assumes that X, isthe pivot.

On an informal account, the substitution cons(a, ..., alim,shz‘ft”'iH”l\Ba(L,R)(X”) may be seen as representing
afunction f; from indices to indices (hence assuming X is only instantiated with indices). Likewise, cons(bzi, ceey b\ile

shift!li1 112 \Bacz, =) GOy yepresents afunction g;. We shall therefore beintersted in finding afunction & which may be rep-
resented by apattern substitution suchthat f; = g;oh. Weshall seethat the pattern substitution cons(ci, . . . , ¢y, |, shift!'1])
defined below satisfies this requirement. Define the following indices¢; foral 1 < j < |I1]:

o2 ifat(l1,7) € Ba(r,p) (X)
cj = J 7

) (A1)
pos(a?,b%...blllll) otherwise.

REMARK A.1
Note that the second clause of the definition of c; is defined. Indeed, if at(l1,5) ¢ Ba(y, gr)(X) then a? =|lo| +1+
Sh(X1,,7) andsince 1] = |l2|, 1 and I aresimplelabelsand Ba;, ) (X) # 0 both 11 and I have the same number of
o-metavariables not included in Ba(, zy(X). Thusthere exists j/ € 1..|11| such that bjl., = |l1] + 1 4+ Sh(Xy,, ") with
Sh(Xy,,j') = Sh(Xy,, ), and hencea? = b,.

The relation between the two tranglations (&) and (b) given above can be summarized by the following result:

LEMMA A.2

Let n be the number of X -based metavariablesin (L, R) and let X;, and X;, be two distinct pivotsfor (L, R). Leth > 0
and 1 < < n. Take any first-order valuation p and indices a (1 < j < [i1]) and b (1 < j < [l2]) asindicated abovein
the trandations (a) and (b). Then

(pX)[lift" (s,1)]
=w  (pX)[lift"(s)][lift" (s:)]

where

o s = cons(c,.--,Cly s shift!'11) is defined in equation A.1,
® s, = cans(ai, ey a"ill‘, shift”iH”l\Ba(L,R)(X)‘) and
o 5, = cons(bt ...,blilzl,shift”’i‘+”2\B3(L>R)(X)|).

PROOF. We proceed by induction on W(pX).
® W(pX) = j. We consider three subcases:
— 7 < h. Then Lemma 3.15 (1) allows us to conclude this case.
—h <j<|li]+ h. Then
LHS =w j—h[s,llshift]" =w a}_, +h
RHS = Cj,h[sbz‘”shifﬂh.
We shall consider two further cases. Recall that X;, isan X -based pivot for conversion (a) and X, isan X -based pivot
for conversion (b).
1. i = 1. Suppose
* at(ll,j — h) =pe€ Ba(LyR)(X). Then

RHS = a?_h[sbﬂ [shift]"

pos (B, l2)[s,1] [shift]"
Dpos(,12) T
pos(B,l1) +h
j—h+h

LHS

I
S

Il
S
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Recall that all labels are simple (no repeated elements).
* at(ll,j — h) §§ Ba(L,R)(X)'

RHS
pos(a?_h, bi..b‘llll)[sw][shift]h
pos(|l2| + 1+ Sh(X;,,j5 — h), b%..bllll‘)[sbl][shift]h

=w |l2| +1+8h(Xy,,j —h) +h

|| +1+8h(Xy,,j—h)+h

=y LHS

2.1 > 2. Suppose

* at(l1,j — h) = B € Bacz, gy (X). Then

RHS = a?ih[sb,z][shift]h
pos (3, 12)[syi ][ shift)"
W bos(ay) T
pOS(/B, ll) + h
w LHS

The last step follows from case 2(b) of Definition 4.7 since X, is a not the pivot metavariable occurrence for

conversion (a), forany ¢ > 2

* at(ll,j — h) §é Ba(L,R)(X)' Then LHS =W |l1‘ +1+ Sh(Xll,j — h) + h. AlS),

RHS
pos(a?_h7 bl..bL syl [shift]™

[11]

pos(|lz| + 1 + Sh(Xy,,5 — h),bl..bl | )[sy:][shift]".

[i1]

Now since |l2| + 1 + Sh(X;,,5 — h) > |l1] and |l1] = |I2] there must be some 1 < j < |iy| such that
bjl./ = |l1] + 1+ Sh(Xy,,j") (and hence at(l2,j’) ¢ Ba(r, g)(X)) with Sh(X;,,j — h) = Sh(X;,,j') (see
Remark A.1). Thus we may continue as follows:

pos(lia] + 1+ Sh(Xi,,j — ), b1bL syl [shifi]*
7' [syil[shift]"

w b;., +h

‘lz| + 14+ Sh(XlQ,j,) + h.

[1]

The last equality follows from the fact that at(I2, j') ¢ Ba(z, r)(X).

—j > |l1| + h. Then

LHS

J = h[sg:][shift]"

J—h =1+ L]+l \Bap, g)(X)| + h
J =l + L] + [l \ Bagg, gy (X)]

J = ll2| + | + |l2 \ Ba(g, gy (X)]

1" (s0)]

3 — hs][shift)" [lift" (sy:)]

RHS

o W(pX) = f(di,...,dn). Weusetheinduction hypothesis.
o W(pX) =¢&(d1,...,dn). Then by theinduction hypothesis we have

d; [lft" T (s0)] =w dy[lfe" ()] [ft" T (s0)]

foral 7 € 1..n which alows usto conclude the case.
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PROOF. [of Proposition 4.14] Let (L1, R1) “<' Cp(L, R) and (La, R2) ' Co(L, R). Supposethat a— (1, ,) b. Then
there exists a context £ and afirst-order valuation p such that a =y, E[p(L1)] andb =y, E[p(R1)].

Foral X € FMVAR(L) define thefirst-order valuation  as: 7.X % p(X)[s] where s = cons(cy, . . ., cpy |, shiftlal)
andthe c; s are defined in equation A.1. Consider now an occurrence of ametavariable X;, € (L, R) where {X;,,..., X;,, }
are al the X -based metavariablesin (L, R).

o If Ba(y, p)(X) = 0 then both conversions shall convert X;, to the term X[shaft!i]]. This case needs no further consid-
eration.
o If Bacr, gy (X) # @ then each conversion shall convert X;; to (possibly) different terms: X s ;] on the one hand, and on
the other X [s,:]. Here we may apply LemmaA.2 and obtain:
(pX)[sqi] = (nX)[spi]-
If conversion (a) deployed the identity optimization then

Sqi = cons(1,...,|l1], shiftlh

and X, isconverted to X'. We may then make use of the fact that

pX =y (pX)[cons(1,. .., L], shift!i))

and resort to LemmaA.2 as above. A similar observation holds for the (b) conversion.
Therefore we may obtain p(L1? =w n(L2) and p(R1) =y n(R2), o that a =y E[p(L1)] =w E[n(L2)] and
b=w Elp(1)] =w E[n(R2)],i.e a—(, gr,) b
|

Valuation Conversion

LEMMA A.3
Consider a SERS g-rewriterule (L, R), metavariables X;, X € (L, R), and avauation x valid for (L, R). Forall i > 0,
if
1. kX; = D]a] for some pure context D having binder path number 7,
2. Value®(l,a) = Value®(k, b), and
3. the binding allowance of X in (L, R) isthe empty set (i.e. Ba(r, g)(X) = 0),
then D' (a) = DI ().

PROOF. By induction on a.
e a = n. We consider the following cases:
—n <i+[l]. Then D\'/(a) = n. If n < i then since Value‘ (I, a) = n = Value'(k, b), we have b = n and the result
holds.
Otherwise, if i < n < i + |I| then since by Hypothesis 2 we have Value®(l,n) = at(l,n — i) = Value®(k, b) we
must haveb = m withi < m < i+ |k| and at(l,n — i) = at(k, m — 4). But by Hypothesis 3 there must be some
X in (L, R) such that at(l,n — ) ¢ I’, and hence Value(l’, k X}/ ) # Value(l, kX;) by the definition of the value
function Definition 2.13 (since at (I, n —) occursin Value(l, s X;) but at (I, n — ) doesnot occur in Value(l', K X;1)),
contradicting the assumption that « isvalid.
—n > i+ |i|. Then D!'(a) = n — |i|. Also, since Value'(l,a) = ,,_;_|; = Value'(k,b), we have b = m with
m > |k| +iadn — |I| —i = m — |k| —i. Then D!* (b) = m — |k| and the resuit holds.

ea=f(a1,...,an). Then D' (a) = (D' (a1),..., D" (an)).
Now by Hypothesis 2 we havethat b = f(b1, ..., by ) with Value(l,a;) = Value®(k,b;) foral 1 < j < n. Thenthe
induction hypothesisyields Dy‘ (aj) = le‘ (by) for j € 1..n and we may conclude the case by Definition 5.1.

o a=¢(ar,...,an). Then D! (a) = ¢! (a1),..., D] (an)).
Now by Hypothesis 2 we havethat b = £(b1, . . ., by ) With Value'*1(l, a;) = Valuet*1(k,b;) foral 1 < j < n. Then
the induction hypothesis concludes the case. x

PROOF. [of Lemma5.7] Both items are proved by induction on A.
e A=n.Then LHS = p(n) =n = xkn = RHS.



Relating Higher-order and First-order Rewriting 947

e A = X.. Notethat since X, isasubterm of ametaterm (i.e. awell-formed pre-metaterm) k isasimplelabel. According
to Definition 4.8 we have three subcases to consider:

1. Ba(z,, gy (X) = 0. Wereason asfollows

LHS = B(X [shaft/*1])
= P(X)[shift!*1]

l .
= Definition 5.6 D(l) : (HXl)[Shlft‘kw
:Lvlvemma 5.2 kX,

where X isany metavariable from L.

2. Ba(p, r)(X) # O and cons(by, . .., by, shift!) # cons(1,.. ., |I], shift!'l) where X isthe X -based pivot metavari-
able as dictated by P. We reason as follows:

LHS = ﬁ(X[cons(bl,...,bm,shiftj)])
= p(X)[cons(bi, ..., by, shiftd)]

= Al (kXy)[cons(b, . .., by, shift])]
:‘L/\?mma 5.5 K,Xk.

3. Ba(y, gy (X) # 0and cons(bi, ..., by, shift?) = cons(1, ..., I, shift!!l) where X isthe X -based pivot metavari-
able asdictated by P. We reason as follows:

LHS = B(X)
- Aé)(H'Xl)

=w ALk X)) eons (1., [i], shift!!)]
:%mma 5.5 Iﬂ?X}C.

Note that the third equality holds by the fact that cons(1, . . ., |I], shift!!l) behaves as the identity substitution.
o A= f(A1,...,Ap)or A=¢(A1,...,Ay). Thenfor thefirst case we have

LHS = f(B(Cy ™ (A1), .., B(CH ™ (An))) =4 [(kAL, ..., kAR) = RHS.

The second case is similar.
o A= A1[A2]. Then

LHS = p(C ) (A1[A2)))
= ey (A1) [cons(p(CE ™ (A2)), id)]
=ih (kA1)[cons(kAz, id)]
—Lemma 3.15(3) K?Al‘ﬂl — HAQH’

r(A1[A2])

= RHS
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