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Abstract
We define a formal encoding from higher-order rewriting into first-order rewriting modulo an equational theory E . In partic-
ular, we obtain a characterization of the class of higher-order rewriting systems which can be encoded by first-order rewriting
modulo an empty equational theory (that is, E = ∅). This class includes of course the λ-calculus. Our technique does not rely
on the use of a particular substitution calculus but on an axiomatic framework of explicit substitutions capturing the notion of
substitution in an abstract way. The axiomatic framework specifies the properties to be verified by a substitution calculus used
in the translation. Thus, our encoding can be viewed as a parametric translation from higher-order rewriting into first-order
rewriting, in which the substitution calculus is the parameter of the translation.
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1 Introduction

Higher-order substitution is the core operation of languages based on higher-order rewrite systems.
This operation, which is used to perform the substitution of variables by terms, cannot be expressed
by simple replacement (also known as grafting) of variables as is done in first-order theories since it
takes place in the context of languages having variable bindings. Issues such as variable capture and
renaming on the one hand, and the complexity of higher-order substitution itself on the other, com-
plicate both the metatheory and the implementation of higher-order rewrite systems. One approach
to minimize this burden is given by calculi with explicit substitutions. Higher-order substitution
is rendered as an object-level operation and thus included in the object theory itself. This allows
higher-order systems/formalisms to be expressed in first-order systems/formalisms.

Usually, the process of making the operation of higher-order substitution explicit is accompanied
by selecting an appropriate notation for terms, such as for example de Bruijn indices, that tames the
aforementioned issues of variable capture and renaming. A well-known example of the combined
benefits of de Bruijn indices notation and explicit substitutions is the formulation of different first-
order calculi for the λ-calculus [1, 4, 30, 35, 16, 40], which is the paradigmatic example of a higher-
order (term) rewriting system. Other examples are the translations of higher-order unification to
first-order unification modulo [20], higher-order logic to first-order logic modulo [21], higher-order
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theorem proving to first-order theorem proving modulo [18], etc.
In a previous paper [11] we introduce a HOR (higher-order rewriting) formalism based on de

Bruijn indices (called SERSdB ) which does away with α-conversion and establishes precise links
between the SERS formalism [11] and SERSdB . However, substitution remains in both formalisms
as a metalevel operation. This becomes a concrete problem in real implementations where substitu-
tions must be denoted by symbols and constructors of the language, and the computational behaviour
of substitutions must be specified by reduction rules belonging to the operational rules of the lan-
guage itself. Thus, in the present article we encode all SERSdB as first-order rewriting systems with
the aid of explicit substitutions.

The case of the λ-calculus is interesting but at the same time not fully representative of the prob-
lems we are faced with when encoding a higher-order system into a first-order setting. For this
particular case it is enough to take care of α-conversion and promote metalevel substitution to the
object-level in order to obtain a first-order rewrite system. Indeed, replacing the usual variable
names by de Bruijn indices and introducing explicit substitutions suffices to yield a first-order re-
write system. However, this is not always the case for an arbitrary higher-order rewrite system.
In other words, eliminating α-conversion and introducing explicit substitutions is not enough to
yield an equivalent full first-order system (full in the sense of first-order rewriting modulo an empty
equational theory). The reason is that in higher-order rewriting the left-hand side of a rewrite rule
is a higher-order pattern. So we must somehow also encode higher-order pattern matching when
encoding in the first-order framework. The fact that introducing de Bruijn indices plus explicit sub-
stitutions suffices for the λ-calculus is saying that for this particular rewrite system higher-order
matching is doing nothing more than what first-order matching could do. Consider the ηdB -rewrite
rule:

λ(app(Xα, 1))→ηdB
Xε.

One may verify that the term λ(app(3, 1)) rewrites to 2. In a first-order setting with explicit substi-
tution, we have the alternative formulation:

λ(app(X[↑], 1))→ X.

However, in order for the term X[↑] to match the subterm 3 we need E-matching, that is, matching
modulo an equational theory E . For an appropriate substitution calculus E we would need to solve

the equation 3 ?=E X[↑]. That is to say, syntactic matching no longer suffices to implement the ηdB

rule in a first-order setting since ‘occurs check’ is a feature of higher-order pattern matching which
first-order matching cannot cope with. This may be seen as the reason why the ηdB -rule has received
so much attention [45, 24, 14, 29].

Another, perhaps less evident, example is given by the commutation rule CdB :

imply(∃∀Xβα,∀∃Xαβ)→CdB
true.

The naı̈ve translation to first-order, namely imply(∃∀X,∀∃X)→ true, is evidently not correct,
so that we take its encoding in the de Bruijn higher-order formalism SERSdB and then translate it
to first order via the conversion presented in this paper obtaining Cfo :

imply(∃∀X,∀∃X[2 · 1· ↑2])→ true.

Now, the rule Cfo has exactly the same intended meaning as the original higher-order rule C: in
order for a term to be an instance of this rule, the term a instantiated for the leftmost X must be
the one instantiated for X[2 · 1· ↑2], say a′, except that all 1-level and 2-level indices in a shall be
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interchanged (via the explicit substitution [2 · 1· ↑2]) in order to obtain a′. Of course, the following
rewrite rule C ′

fo also does the job:

imply(∃∀X[2 · 1· ↑2],∀∃X)→ true.

However, note that both Cfo and C ′
fo induce the same rewrite relation on terms.

The goal of this paper is to provide a conversion algorithm for encoding higher-order rewriting
systems into first-order rewriting modulo an equational theory E . A distinctive feature of our al-
gorithm is that we do not attach to the encoding any particular substitution calculus. Instead, we
choose to work with an abstract formulation of substitution calculi, called Basic Substitution Cal-
culi, as done in [29, 30] to deal with confluence proofs of λ-calculi with explicit substitutions. This
macro-based presentation of calculi of explicit substitutions allows us the freedom of choosing from
a wide range of calculi of explicit substitution, such as σ [1], σ⇑ [25], υ [4], f [29], d [29], s [35],
λφ [40], when converting a higher-order rewrite system to first order.

The conversion procedure that we propose in this work takes a SERSdB R and produces a first-
order rewrite system fo(R)W , whereW is some Basic Substitution Calculus (such as for example
σ). It is the conversion procedure’s responsibility to compute index adjustments in order to correctly
encode higher-order pattern matching in the first-order setting. The rewrite rules produced may or
may not have occurrences of the explicit substitution operator on the LHS s. In the case that they
do, as in the ηdB example, we need matching modulo the induced equational theory of the basic
substitution calculusW . Otherwise, syntactic matching suffices and thus the SERSdB R, called in
this case an essentially first-orderhigher-order rewrite system, can be translated to a full first-order
rewrite system, where equational reasoning is not needed at all. This is for example the case of the
λ-calculus.

The translation from higher-order rewriting systems to first-order rewriting modulo an equational
theory E is interesting from a theoretical point of view because the expressive power of higher and
first-order formalisms may be compared. However, another more practical issue arises, namely that
of the possibility of transferring resultsdeveloped in the first-order framework to the higher-order
one. This is done for example in [12] for the case of the standardization theorem. Techniques
concerning confluence, termination, completion, evaluation strategies, etc. should be looked at.
Moreover, this is interesting for two further reasons: On the one hand it is still not fully clear how
to transfer techniques such as dependency pairs [2], semantic labelling [52] or completion [5] to the
higher-order framework, and on the other hand, termination techniques such as RPO for higher-order
systems [28] turn out to be much more complicated than their respective first-order versions [15, 32].
We shall argue that the essentially first-order higher-order systems are better suited for the above
mentioned transfer of properties.

This paper begins by recalling in Section 2 the de Bruijn indices based higher-order rewrite for-
malism SERSdB (Simplified Expression Reduction Systems with Indices). We introduce in Sec-
tion 3 the first-order rewriting framework with explicit substitutions ExERS(Explicit ERS) which
constitutes the destination formalism of our conversion procedure. This requires defining Basic Sub-
stitution Calculi, adapted to the present setting from [29, 30]. Section 4 introduces the conversion
procedure and illustrates its use with some examples. This is followed by a study of the properties
of this procedure: independence of pivot selection (a technicality concerning the conversion proce-
dure), the simulation proposition and the projection proposition. The simulation proposition states
that fo(R)W , which is the first-order rewrite system obtained by the conversion procedure, is able
to simulate R-rewriting. Conversely, the projection proposition states that if a rewrites to b in the
system fo(R)W , thenW(a) �R W(b), whereW(a) denotes the substitution normal form of a ob-
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tained by taking the Basic Substitution CalculusW as a rewriting system. More precisely, we shall
see that one fo(R)W -rewrite step may be encoded as one parallel R-rewrite step. We conclude
by presenting the definition of the essentially first-order higher-order rewriting systems mentioned
previously. This paper is an extended version of the extended abstract published as [10].

Related work
Other approaches to first-order expressions of higher-order formalisms use Nominal Logic. More
precisely, the idea is to consider a first-order many-sorted logic with equality containing primitives
for renaming via name-swapping for freshness of names and for name-binding. The logic makes use
of the Fraenkel–Mostowski (FM) permutation model of set theory. Some of the more representative
works along this line can be found in [23, 44, 48].

As regards existing higher-order rewrite formalisms based on de Bruijn notation and/or explicit
substitutions to the best of the authors’ knowledge there are three: Explicit CRS [8], Explicit Re-
duction Systems(XRS ) [43], and the Calculus of Indexed Names and Named Indices(CINNI ) [47].
In [8] explicit substitutions à la λx [46, 6] are added to the CRS formalism as a first step towards
using higher-order rewriting with explicit substitutions for modelling the evaluation of functional
programs in a faithful way. Since this is done in a variable name setting α-conversion must be dealt
with as in CRS . Pagano’s XRS constitutes the first HORS which fuses de Bruijn notation and
explicit substitutions. The formalism XRS is presented as a generalization of the first-order λσ⇑-
calculus [25] to higher-order rewriting and notas a first-order formulation of higher-order rewriting.
No connection has been established between XRS and well-known systems such as CRS , ERS and
HRS . Indeed, it is not clear at all how some seemingly natural rules expressible in the ERS formal-
ism, such as for example the η or the C-rule, may be written as an XRS . In the case of CINNI a
similar situation arises, no relation to established HORS in the literature is presented.

2 The higher-order framework

This section briefly recalls from [9, 13, 11] the de Bruijn indices based higher-order rewrite formal-
ism SERSdB (Simplified Expression Reduction Systems with Indices).

2.1 Metaterms and terms
DEFINITION 2.1 (Labels)
A label is a finite sequence of symbols of an alphabet. A simplelabel is a label without repeated
symbols. We use k, l, li, . . . to denote arbitrary labels and ε for the empty label. If s is a symbol and
l is a label then the notation s ∈ l means that the symbol s appears inthe label l, and also, we use sl
to denote the new label whose head is s and whose tail is l. Other notations are |l| for the lengthof l
(number of symbols in l) and at(l, n) for the nth element of l assuming n ≤ |l|. Also, if s occurs (at
least once) in l then pos(s, l) denotes the position of the first occurrenceof s in l. If θ is a function
defined on the alphabet of a label l = s1 . . . sn, then θ(l) denotes the label θ(s1) . . . θ(sn). We may
use a label as a set (e.g. if S is a set then S ∩ l denotes the intersection of S with the underlying set
determined by l) if no confusion arises.

DEFINITION 2.2 (Signature)
A SERSdB signature Σ consists of the following denumerable and disjoint sets.

• A set of binder indicatorsdenoted α, β, . . ..
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• A set of metavariables, denoted Xl, Yl, Zl, . . ., where l ranges over the set of labels built over
binder indicators .

• A set F of function symbolsequipped with a fixed (possibly zero) arity, denoted f, g, h, . . ..

• A set B of binder symbolsequipped with a fixed (non-zero) arity, denoted λ, µ, ν, ξ, . . ..

DEFINITION 2.3 (Pre-metaterms)
The set of pre-metatermsover Σ, denoted PMTdB , is defined by the following two-sorted grammar:

metaindices I ::= 1 | S(I)
pre-metaterms A ::= I | Xl | f(A, . . . , A) | ξ(A, . . . , A) | A[A].

The operator •[•] in a pre-metaterm A[A] is called a metasubstitution operator. The binder sym-
bols together with the metasubstitution operator are called binder operators, thus the metasubstitu-
tion operator is a binder operator (since it has binding power) but is not a binder symbol since it is
not an element of B.

The notation I in Definition 2.3 is used to denote some representationof the metaindex I . Thus,
we do not necessarily use natural numbers to represent variables: for example, in λσ, the represen-
tation of 2 is the term 1[↑], which is considered a pure term.

We use A,B,Ai, . . . to denote pre-metaterms and the convention that S0(1) = 1 and Sj+1(n) =
S(Sj(n)). As usually done for indices, we abbreviate Sj−1(1) as j. The set of free metavariablesof a
pre-metaterm A, written FMVAR(A), is defined as expected. For example, FMVAR(f(λXα, Yε)) =
{Xα, Yε}. The set of namesof free metavariables of A is the set FMVAR(A) where each Xl is
replaced simply by X . We also write, by abuse of notation, FMVAR(A) to denote such a set of
names. For example, we might write FMVAR(f(λXα, Yε)) = {X,Y } whenever there is no risk of
confusion.

Next we single out a subset of well-formedpre-metaterms which we call metaterms. These are
pre-metaterms in which the labels of metavariables are correct with respect to the context in which
they appear and also they ensure that indices like j correspond to bound variables. Indeed, the pre-
metaterms ξ(Xαβ) and ξ(ξ(4)) do not make sense for us, and hence are not considered well-formed.

DEFINITION 2.4 (Metaterms)
A pre-metaterm A ∈ PMTdB over Σ is said to be a metatermover Σ iff the predicate WF (A)
holds, where WF (A) iff WFε(A), and WF l(A) is defined by induction on the structure of the
pre-metaterm A for any label l as follows:

• WF l(Sj(1)) iff j + 1 ≤ |l|
• WF l(Xk) iff l = k and l is a simple label

• WF l(f(A1, . . . , An)) iff for all 1 ≤ i ≤ n we haveWF l(Ai)
• WF l(ξ(A1, . . . , An)) iff there exists α /∈ l such that for all 1 ≤ i ≤ n we haveWFαl(Ai)
• WF l(A1[A2]) iffWF l(A2) and there exists α /∈ l such thatWFαl(A1).

Therefore indices of the form Sj(1) may only occur in metaterms if they represent bound variables.
Also, ifWFk(A), then any metavariable occurring in A must be of the form Xlk for some label l
(moreover, lk is a simple label).

EXAMPLE 2.5
Pre-metaterms ξ(Xα, λ(Yβα, 2)) and g(λ(ξc)) are metaterms, whereas pre-metaterms λ(ξ(Xαα))
and ξ(2) are not.
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DEFINITION 2.6 (Linear metaterms)
A de Bruijn pre-metaterm (or metaterm) M is linear if it contains at most one occurrence of any X-
based metavariable. Note that f(λ(ξXαβ), ξ(λXβα)) is not linear since there are two occurrences
of X-based metavariables, neither is f(λXα, ξXα). However, app(λXα, Yε) is linear.

DEFINITION 2.7 (de Bruijn terms and contexts)
The set of de Bruijn termsover Σ, denoted TdB , and the set of de Bruijn contexts over Σ are defined
by:

de Bruijn indices n ::= 1 | S(n)
de Bruijn terms a ::= n | f(a, . . . , a) | ξ(a, . . . , a)
de Bruijn contexts E ::= � | f(a, . . . , E, . . . , a) | ξ(a, . . . , E, . . . , a).

As for metaterms, the notation n in Definition 2.7 is used to denote some representationof the
natural number n.

We use a, b, ai, bi, . . . for de Bruijn terms and E,F, . . . for de Bruijn contexts. The notion of the
tree associated to a may be defined as for de Bruijn pre-metaterms. We may refer to the binder path
numberof a context, which is the number of binders between the � and the root. Although terms are
also pre-metaterms, that is TdB ⊂ PMTdB , note that some terms may not be metaterms, i.e. may
not be well-formed pre-metaterms. Indeed, the valid term ξ(ξ(4)) is not a metaterm, however, the
index 4 may be seen as a constant in the pre-metaterm ξ(ξ(4)).

DEFINITION 2.8 (Free de Bruijn indices)
We denote by FI (a) the set of free indicesof a de Bruijn term a, which is defined as follows:

FI (n) def= {n}
FI (f(a1, . . . , an)) def=

⋃n
i=1 FI (ai)

FI (ξ(a1, . . . , an)) def= (
⋃n

i=1 FI (ai))\\1

where for every set of indices S, the operation S\\j is defined as {n− j | n ∈ S and n > j}.

DEFINITION 2.9 (de Bruijn substitution and de Bruijn updating function)
The result of substituting a term b for the index n ≥ 1 in a term a is denoted a{{n← b}} and defined
as:

f(a1, . . . , an){{n← b}} def= f(a1{{n← b}}, . . . , an{{n← b}})
ξ(a1, . . . , an){{n← b}} def= ξ(a1{{n + 1← b}}, . . . , an{{n + 1← b}})

m{{n← b}} def=


m− 1 if m > n
Un

0 (b) if m = n
m if m < n

where for i ≥ 0 and n ≥ 1 we define the updating functionsUn
i (•) as follows:

Un
i (f(a1, . . . , an)) def= f(Un

i (a1), . . . ,Un
i (an))

Un
i (ξ(a1, . . . , an)) def= ξ(Un

i+1(a1), . . . ,Un
i+1(an))

Un
i (m) def=

{
m + n− 1 if m > i
m if m ≤ i
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2.2 SERSdB -rewriting

We now consider the rewrite rules of an SERSdB . This includes defining valuations, their validity,
and the term rewrite relation in SERSdB . Rewrite rules are specified with metaterms, whereas the
induced rewrite relation is on terms.

DEFINITION 2.10 (SERSdB )
A de Bruijn rewrite ruleover Σ is a pair of de Bruijn metaterms (L,R) over Σ (also written L→ R)
such that:

• the first symbol (called head symbol) in L is a function symbol or a binder symbol,

• FMVAR(R) ⊆ FMVAR(L), and

• the metasubstitution operator does not occur in L.

Finally, we define a SERSdB to be a pair (Σ,R) where Σ is a SERSdB -signature and R is a set
of SERSdB -rewrite rules over Σ. We often omit Σ and write R instead of (Σ,R), if no confusion
arises.

EXAMPLE 2.11
The λdB -calculus is defined by considering the signature containing the function symbols F =
{app} and binder symbols B = {λ}, together with the SERSdB -rewrite rule:

app(λXα, Yε)→βdB
Xα[Yε].

The λdBηdB -calculus is obtained by adding the SERSdB -rewrite rule: λ(app(Xα, 1))→ηdB
Xε.

DEFINITION 2.12 (de Bruijn valuation)
A de Bruijn valuationκ over Σ is a (partial) function from metavariables to terms. It extends
uniquely to a function κ from the set of pre-metaterms A with FMVAR(A) ⊆ Dom(κ), where
Dom(κ) denotes the domain of κ, to the set of terms as follows:

κ(n) def= n

κ(Xl)
def= κ(Xl)

κ(f(A1, . . . , An)) def= f(κA1, . . . , κAn)

κ(ξ(A1, . . . , An)) def= ξ(κA1, . . . , κAn)

κ(A1[A2])
def= κ(A1){{1← κA2}}.

Note that in the above definition the substitution operator •{{• ← •}} refers to the usual substitu-
tion defined on terms with de Bruijn indices (Definition 2.9).

In the rewrite rule ∃∀Xαβ→Comm′ ∀∃Xβα, a valuation that assigns the de Bruijn index 1 to
the metavariable Xαβ and also to Xβα does not reflect the binder commutation that the labels of
metavariables are expressing. Thus, when defining the rewrite relation on terms induced by a rewrite
rule we must restrict our attention to the subset of all valuations that are coherentwith the contextual
information described by the labels of binder indicators in metavariables. Such valuations are dubbed
valid valuations.

DEFINITION 2.13 (Valid de Bruijn valuation)

• Let a ∈ TdB , l be a label of binder indicators and {x1, x2, . . .} a countable infinite set of variable
names. The value functionValue(l, a) is defined as Value0(l, a) where:
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Valuei(l, n) def=


n if n ≤ i
at(l, n− i) if 0 < n− i ≤ |l|
xn−i−|l| if n− i > |l|

Valuei(l, f(a1, . . . , an)) def= f(Valuei(l, a1), . . . Valuei(l, an))

Valuei(l, ξ(a1, . . . , an)) def= ξ(Valuei+1(l, a1), . . . ,Valuei+1(l, an)).

• A de Bruijn valuation κ over Σ is said to be valid if for every pair of metavariables Xl and Xl′

in Dom(κ), Value(l, κXl) = Value(l′, κXl′). Likewise, we say that a de Bruijn valuation κ is
valid for a rewrite rule(L,R) if every metavariable in (L,R) is in Dom(κ) and for every pair
of metavariables Xl and Xl′ in (L,R), Value(l, κXl) = Value(l′, κXl′).

DEFINITION 2.14 (Rewriting de Bruijn terms)
Let R be a set of de Bruijn rules over Σ and a, b de Bruijn terms over Σ. We say that a R-rewrites
orR-reduces tob, written a→R b, iff there is a de Bruijn rule (L,R) ∈ R and a de Bruijn valuation
κ valid for (L,R) such that a = E[κL] and b = E[κR], where E is a de Bruijn context.

Thus, the term λ(app(λ(app(1, 3)), 1)) rewrites by the ηdB rule to λ(app(1, 2)), using the (valid)
valuation κ = {Xα/λ(app(1, 3),Xε/λ(app(1, 2))}.

To finish this section, we give the notion of orthogonalsystems in the framework of Simplified
Expression Reduction Systems with Indices, which is the natural extension of that of orthogonal
first-order rewrite systems.

DEFINITION 2.15
Let (Σ,R) be a SERSdB .

1. R is non-overlappingif for every rewrite rule (L,R) ∈ R the following holds:
• If a reducible term κ(L) contains an instance of L′ for some other (L′, R′) ∈ R, then this

instance must be already contained in one of the κ(Xl), where Xl is a metavariable of L.
• Likewise if κ(L) properlycontains another instance of L.

2. R is left-linear if all Li are linear (Definition 2.6).

3. R is orthogonalif it is non-overlapping and left-linear.

REMARK 2.16
This presentation of the SERSdB formalism differs slightly from that of [9, 13, 11]. In op. cit.,
in addition to term-metavariables such as Xl, index-metavariables are included. Just like term-
metavariables are instantiated with terms, index-metavariables are instantiated by de Bruijn indices.
Moreover, these indices must be free in the rewrite rule where they appear. The reason for excluding
them in this paper is that they do not enjoy good properties. For example, consider the SERSdB

S = {app(λXα, Yε)→βdB
Xα[Yε], f(α̂)→f c} where app, f, c are function symbols, λ is a binder

symbol and α̂ is an index-metavariable. Although S is orthogonal, it is not confluent. Indeed,
app(λ(f(1)), b) reduces to f(b) by the βdB-rule and to c by the f -rule followed by an application
of the βdB-rule.

3 The first-order framework

In this section we introduce the first-order formalism called Explicit Expression Reduction Systems
(ExERS) used to translate higher-order rewriting systems based on de Bruijn indices into first-order
ones. An ExERSis a first-order rewrite system consisting of:
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• A set of proper rewrite rulesgoverning the behaviour of the function and binder symbols in the
signature.

• A set of substitution rewrite rules, called the substitution calculusgoverning the behaviour of
the substitution symbols in the signature, and used for propagating and performing/eliminating
substitutions.

3.1 Basic substitution calculi

Any set of rewrite rules does not qualify as a substitution calculus so we must indicate under which
conditions this is the case. This is achieved by introducing a general macro-based presentation of
what constitutes a substitution calculus. Any instance of this calculus, obtained by associating some
fixed substitution operatorsto these macros, shall be considered a substitution calculus. This idea
has been introduced by D. Kesner [29, 30] with the aim of providing a unique proof of confluence
encompassing a series of de Bruijn indices based calculi of explicit substitutions. Here we shall ben-
efit from it by reducing higher-order rewriting to a first-order setting where the substitution calculus
may be anycalculus of explicit substitutions fitting the macro-based presentation. Thus we are not
forced to settle with some particular calculus of explicit substitutions.

DEFINITION 3.1 (Substitution declaration and signature)
A substitution declarationis a (possibly empty) word over the alphabet {T,S}. The symbol T is
used to denote the sort Term and S to denote the sort Substitution. A substitution signatureis a set
Γs of substitution symbolsequipped with an arity n and a substitution declaration of length n. We
write σ : w where w ∈ {T,S}n if the substitution symbol σ has arity n and substitution declaration
w. We use ε to denote the empty word.

The substitution declaration declares the sorts of the arguments of substitution symbols.

DEFINITION 3.2 (ExERSterm algebra)
An ExERSsignature is a set Γ = Γf ∪Γb∪Γs where Γf = {f1, f2, . . . , } is a set of function symbols,
Γb = {λ1, λ2, . . .} is a set of binder symbols, Γs a substitution signature such that Γf , Γb and Γs

are pairwise disjoint. Both binder and function symbols come equipped with an arity (non-zero for
binder symbols). Given a set of (term) variables V = {X1,X2, . . .}, the term algebra of an ExERS
of signature Γ generated by V , denoted T , is

indices n ::= 1 | S(n)
terms (T) a ::= X | n | a[s] | f(a1, . . . , an) | ξ(a1, . . . , an)
substitutions (S) s ::= σ(d1, . . . , dn)

where X ranges over V , f over Γf , ξ over Γb, and σ over Γs. The notation n is used to denote
some representationof the natural number n. The arguments of σ are assumed to respect the sorts
prescribed in its substitution declaration (i.e. di is a term or substitution in compliance with its
substitution declaration), and function and binder symbols are assumed to respect their arities too.

Letters a, b, c, . . . and s, si, . . . are used for terms and substitutions, respectively. Letters o, o′, . . .
are used for all objects of the term algebra without making distinction of sorts. The •[•] operator is
called the substitution operator. Binder symbols and substitution operators are considered as having
binding power. We shall use a[s]n to abbreviate a[s] . . . [s] (n-times). Terms without occurrences
of the substitution operator (resp. objects in V) are called pure (resp. ground) terms. Similarly
for contexts. A contextis a ground term with one (and only one) occurrence of a distinguished
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term variable called a ‘hole’ (and denoted �). Letters E,Ei, . . . are used for contexts. The notion
of binder path numberis defined for pure contexts exactly as in the case of de Bruijn contexts
(Definition 2.7). Note that contexts have no variables (except �).

The formalism of ExERSthat we are going to use in order to encode higher-order rewriting con-
sists of two sets of rewrite rules, a set of proper rewrite rules, and a set of substitution rules. Let us
define these two concepts formally.

DEFINITION 3.3 (Substitution macros)
Let Γs be a substitution signature. The following symbols not included in Γs are called substitution
macros: cons : (TS), lift : (S), id : (ε) and shiftj : (ε) for j ≥ 1. We shall abbreviate shift1

by shift . Also, if j ≥ 0 then liftj(s) stands for s if j = 0 and for lift(liftj−1(s)) otherwise.
Furthermore, if j ≥ 1 then cons(a1, . . . , aj , s) stands for cons(a1, . . . cons(aj , s)).

DEFINITION 3.4 (Term rewrite and equational systems)
Let Γ be an ExERSsignature. An equationis a pair of terms L

.= R over Γ such that L and R have
the same sort and a term rewrite ruleis a pair of terms (L,R) over Γ, such that:

1. L and R have the same sort,

2. the head symbol of L is a function or a binder symbol, and

3. the set of variables of L includes those of R.

An equational(resp. term rewrite) systemis a set of equations (resp. term rewrite rules).

As usual, we shall need some mechanism for instantiating rewrite rules.

DEFINITION 3.5 (First-order Valuation)
Let ρ be a (partial) function mapping variables in V to terms. We define a first-order valuationρ as
the unique extension of ρ over the set T such that:

ρ(n) def= n ρ(f(a1, . . . , an)) def= f(ρ(a1), . . . , ρ(an))
ρ(X) def= ρ(X) ρ(ξ(a1, . . . , an)) def= ξ(ρ(a1), . . . , ρ(an))
ρ(a[s]) def= ρ(a)[ρ(s)] ρ(σ(d1, . . . , dn)) def= σ(ρ(d1), . . . , ρ(dn))

We shall often abbreviate ρ as ρ. First-order valuations are required in order to define the rewrite
relation induced by a rewrite system.

DEFINITION 3.6 (Rewriting and Equality)
Let o and o′ be two ground terms of sort T or S. Given a rewrite system R, we say that o rewrites
to o′ in one step, denoted o→R o′, iff o = E[ρL] and o′ = E[ρR] for some first-order valuation
ρ, some context E and some rewrite rule (L,R) in R. We shall use �R to denote the reflexive,
transitive closure of the one-step rewrite relation.

Given an equational system E , we consider the relation =E defined as the least reflexive, symmet-
ric and transitive relation closed under contexts and substitutions and containing all the axioms in E .
If o and o′ are related by =E , then we write o =E o′ and we say that o equalso′ moduloE .

DEFINITION 3.7 (Substitution calculus)
A substitution calculus over an ExERS signatureΓ consists of a set W of first-order term rewrite
rules, and an interpretation of each substitution macro as some combination of substitution symbols
from Γs of corresponding signature. Definition 3.8 requires certain properties for these interpreta-
tions to be considered meaningful.
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We now give some examples of substitution calculi. We use the notation n∗ for S(. . . S(0) . . .)
(the symbol S appearing n times), and we define 
n(t) by induction as follows:


0(t) = id, 
1(t) = t, 
n+1(t) = t ◦ 
n(t)

Calculus Reference Variable n + 1 Substitution Signature
σ [1] 1[
n(↑)] id : (ε), · : (TS), ↑: (ε), ◦ : (SS)
σ⇑ [25] n + 1 id : (ε), · : (TS),⇑: (S), ↑: (ε), ◦ : (SS)
φ [40] 1[↑n∗

] ↑n∗
: (ε), · : (TS), ◦ : (SS)

Calculus shift1 lift1(s) cons(b, s)
σ ↑ 1 · (s◦ ↑) b · s
σ⇑ ↑ ⇑ (s) b · s
φ ↑S(0) 1 · (s◦ ↑S(0)) b · s

The next step is to add further requirements on substitution calculi in order for them to deserve
that name. These conditions are assembled in the definition of a Basic Substitution Calculus.

DEFINITION 3.8 (Basic substitution calculus)
A substitution calculusW over Γ is said to be basicif the following conditions are satisfied:

1. W is complete (strongly normalizing and confluent) over the ground terms in T . We useW(a)
to indicate the uniqueW-normal form of a.

2. W-normal forms of ground terms are pure terms.

3. For each f ∈ Γf and ξ ∈ Γb:

W(f(a1, . . . , an)) = f(W(a1), . . . ,W(an))
W(ξ(a1, . . . , an)) = ξ(W(a1), . . . ,W(an))
W(f(a1, . . . , an)[s]) = f(W(a1[s]), . . . ,W(an[s]))
W(ξ(a1, . . . , an)[s]) = ξ(W(a1[lift(s)]), . . . ,W(an[lift(s)])).

4. For every substitution s, 1[lift(s)] =W 1.

5. For every substitution s and every m ≥ 0, m + 1[lift(s)] =W m[s][shift ].
6. For every term a and substitution s we have 1[cons(a, s)] =W a.

7. For every term a, substitution s, m ≥ 0 we have m + 1[cons(a, s)] =W m[s].
8. For every m, j ≥ 1 we have m[shiftj ] =W m + j.

9. For every ground term a we have a[id ] =W a.

The first three conditions may be seen as primitive conditions that W should satisfy in order to
be called a substitution calculus. The remaining conditions describe the expected behaviour of the
substitution macros.

Examples of basic substitution calculi are σ, σ⇑ and φ, where the set of function and binder
symbols are {app} and {λ}, respectively. Reduction rules of these calculi appear in Figs 1, 2 and
3. We invite the reader to verify that conditions 3 to 9 in Definition 3 are trivial in these three cases.

The reader may have noted that the macro-based presentation of substitution calculi makes use
of parallel substitutions (since cons(•, •) has substitution declaration TS). Nevertheless, the results
presented in this work may be achieved also via a macro-based presentation using a simpler set
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(App) (a b)[s] −→ (a[s] b[s])
(Lambda) (λa)[s] −→ λ(a[1 · (s◦ ↑)])
(Clos) (a[s])[t] −→ a[s ◦ t]
(V arId) 1[id ] −→ 1
(V arCons) 1[a · s] −→ a
(IdL) id ◦ s −→ s
(ShiftId) ↑ ◦id −→ ↑
(ShiftCons) ↑ ◦(a · s) −→ s
(Ass) (s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3)
(Map) (a · s) ◦ t −→ a[t] · (s ◦ t)

FIGURE 1. Reduction rules for σ

(App) (a b)[s] −→ (a[s] b[s])
(Lambda) (λa)[s] −→ λ(a[⇑ (s)])
(Clos) (a[s])[t] −→ a[s ◦ t]
(V arShift1) n[↑] −→ n + 1
(V arShift2) n[↑ ◦s] −→ n + 1[s]
(FV ar) 1[a · s] −→ a
(FV arLift1) 1[⇑ (s)] −→ 1
(FV arLift2) 1[⇑ (s) ◦ t] −→ 1[t]
(RV ar) n + 1[a · s] −→ n[s]
(RV arLift1) n + 1[⇑ (s)] −→ n[s◦ ↑]
(RV arLift2) n + 1[⇑ (s) ◦ t] −→ n[s ◦ (↑ ◦t)]
(Ass) (s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3)
(Map) (a · s) ◦ t −→ a[t] · (s ◦ t)
(Shift) ↑ ◦(a · s) −→ s
(ShiftLift1) ↑ ◦ ⇑ (s) −→ s◦ ↑
(ShiftLift2) ↑ ◦(⇑ (s) ◦ t) −→ s ◦ (↑ ◦t)
(Lift1) ⇑ (s)◦ ⇑ (t) −→ ⇑ (s ◦ t)
(Lift2) ⇑ (s) ◦ (⇑ (t) ◦ u) −→ ⇑ (s ◦ t) ◦ u
(LiftEnv) ⇑ (s) ◦ (a · t) −→ a · (s ◦ t)
(IdL) id ◦ s −→ s
(IdR) s ◦ id −→ s
(LiftId) ⇑ (id) −→ id
(Id) a[id ] −→ a

FIGURE 2. Reduction rules for σ⇑

of substitutions such as for example the one used in [30], where scons(•) (the ‘s’ in scons is for
‘simple’) has substitution declaration T and the macro shiftj is only defined for j = 1. In particular,
remark that the expression scons(a) could be denoted as cons(a, id). Conversely, an expression of
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(App) (a b)[s] −→ (a[s] b[s])
(Lambda) (λa)[s] −→ λ(a[1 · s◦ ↑S(0)])
(Clos) (a[s])[t] −→ a[s ◦ t]
(V arCons) 1[a · s] −→ a
(Id) a[↑0] −→ a
(Map) (a · s) ◦ t −→ a[t] · (s ◦ t)
(IdL) ↑0 ◦s −→ s
(ShiftCons) ↑S(n) ◦(a · s) −→ ↑n ◦s
(ShiftShift) ↑S(n) ◦ ↑m −→ ↑n ◦ ↑S(m)

(Shift1) 1· ↑S(0) −→ ↑0
(Shift2) 1[↑n]· ↑S(n) −→ ↑n

FIGURE 3. Reduction rules for φ

the form a[cons(b1, . . . , bn, shiftj)] could be denoted by the expression

a[liftn(shift)]j [scons(b1[shift ]n−1)] . . . [scons(bn)].

DEFINITION 3.9 (ExERSand FExERS)
Let Γ be an ExERSsignature,W a basic substitution calculus over Γ andR a set of term rewrite rules.

If each rule ofR has sort T thenRW
def= (Γ,R,W) is called an Explicit Expression Reduction Sys-

tem (ExERS). If, in addition, the LHS of each rule in R contains no occurrences of the substitution
operator •[•], thenRW is called a Fully Explicit Expression Reduction System (FExERS).

Since rewriting in SERSdB only takes place on terms, and first-order term rewriting systems will
be used to simulate higher-order rewriting, all the rules of a term rewrite system R are assumed to
have sort T. However, rewrite rules ofW may have any sort (i.e. T or S).

EXAMPLE 3.10
Consider the signature Γ where Γf = {app} and Γb = {λ} and Γs is any substitution signature.
Let W be a basic substitution calculus over Γ and let R be the set containing the term rewrite
rule {app(λX, Y )→βdB

X[cons(Y, id)]}. Then we have that RW is an FExERS, and for R′ :
R∪ {λ(app(X[shift ], 1))→ηdB

X},R′
W is an ExERS.

Rewriting in an ExERSRW is first-order rewriting inRmoduloW-equality. In contrast, rewriting
in a FExERSRW is just first-order rewriting inR∪W .

DEFINITION 3.11 (ExERSand FExERS-rewriting)
Let RW be an ExERS, R′W a FExERSand o, o′ ground terms of sort S or T. We say that o RW -
reducesor rewrites too′, written o→RW o′, iff o→R/W o′ (i.e. there exist ground terms o1 and o′1
of the same sort as o, o′ such that o =W o1→R o′1 =W o′); and o R′

W -reducesor rewrites too′ iff
o→R′∪W o′.

We apologize for the abuse of notation: o→R/W o′ could intuitively suggest that it is equivalence
classes of terms that are rewritten, however, as defined above, this is not the case. Instead, it is terms
that are rewritten.
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EXAMPLE 3.12
Fix W to be the σ-calculus and consider the FExERSRσ of Example 3.10. Then we have
1[app(λ1, c) · id ]→Rσ

1[1[c · id ] · id ]. Also, λ(app(3, 1))→R′
σ

2, whereR′
σ is that of Example 3.10.

This follows from observing that λ(app(3, 1)) =σ λ(app(2[↑], 1))→ηdB
2.

3.2 Properties of basic substitution calculi

This subsection takes a look at properties enjoyed by basic substitution calculi and introduces a
condition called the Scheme[30]. Basic substitution calculi satisfying the scheme ease inductive
reasoning when proving properties over them without compromising the genericity achieved by the
macro-based presentation.

DEFINITION 3.13 (The Scheme)
We say that a basic substitution calculus W obeys the Schemeiff for every index m and every
substitution symbol σ ∈ Γs of arity q one of the following two conditions hold:

1. There exists a de Bruijn index n, positive numbers i1, . . . , ir (r ≥ 0) and substitutions u1, . . . , uk

(k ≥ 0) such that
• 1 ≤ i1, . . . , ir ≤ q and all the ijs are distinct;
• for all o1, . . . , oq we have: m[σ(o1, . . . , oq)] =W n[oi1 ] . . . [oir

][u1] . . . [uk].
2. There exists an index i (1 ≤ i ≤ q) such that for all o1, . . . , oq we have: m[σ(o1, . . . , oq)] =W

oi.

We assume these equations to be well-typed: whenever the first case holds, then oi1 , . . . , oir
are

substitutions, whenever the second case holds, oi is of sort T.

EXAMPLE 3.14
Examples of calculi satisfying the scheme are σ, σ⇑, υ, f and d [29, 30].

We now take a quick look at some properties of arbitrary basic substitution calculi. On a first
reading the reader may wish to skim over this section and proceed to the main section of this paper,
namely Section 4.

LEMMA 3.15 (Behaviour of substitutions in basic substitution calculi)
LetW be a basic substitution calculus and m ≥ 1.

1. For all n ≥ 0 and substitution s in S: m[liftn(s)] =W

{
m− n[s][shift ]n if m > n
m if m ≤ n.

2. For all n ≥ m ≥ 1 and all terms a1, . . . , an: m[cons(a1, . . . , an, s)] =W am.

3. For all pure terms a, b and m ≥ 1: a{{m← b}} =W a[liftm−1(cons(b, id))].

The first and third items of Lemma 3.15 are proved in [30], the second item follows from the
definition of a basic substitution calculus. For the proof of the following lemma the reader is referred
to [30].

LEMMA 3.16
LetW be a basic substitution calculus, a a pure term and s a term of sort S. For every m ≥ n ≥ 0
we have a[shift ]n[liftm(s)] =W a[liftm−n(s)][shift ]n.

LEMMA 3.17
Let W be a basic substitution calculus, a a pure term, and b a term of sort T. For every n ≥ 0,
a[liftn(shift)][liftn(cons(b, id))] =W a.
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PROOF. The proof of this fact uses the following result:
IfW is a basic substitution calculus, c is a term of sort T and s a term of sort S. Then for every

m ≥ 1 and n ≥ 0

m[liftn(cons(c, s))] =W


m− n− 1[s][shift ]n if m > n + 1
m if m < n + 1
c[shift ]n if m = n + 1.

LEMMA 3.18 (Substitution commutation)
LetW be a basic substitution calculus, a a pure term, b any term, s a term of sort S. Then for every
m ≥ n ≥ 0 we have:

a[liftn(cons(b, id))][liftm(s)] =W a[liftm+1(s)][liftn(cons(b[liftm−n(s)], id))].

PROOF. By induction on the structure of a. See [30].

4 The Conversion Procedure

We now present the Conversion Procedure, an algorithm to translate any higher-order rewrite system
in the formalism SERSdB to a first-order ExERS. The Conversion Procedure is somewhat involved
since several conditions, mainly related to the labels of metavariables, must be met in order for
a valuation to be admitted as valid (Definition 2.13). Consider for instance the ηdB -rewrite rule
λ(app(Xα, 1))→ Xε. The condition on valuations in SERSdB in order to participate in the induced
rewrite relation on terms is that they be valid, as we have seen in Section 2. Validity ensures, in
this case, that the metavariable Xα is not instantiated to the index 1. The Conversion Procedure
has to guarantee that this holds in a first-order setting. The idea is to replace all occurrences of
metavariables Xl by a first-order variable X followed by an appropriate index-adjusting explicit
substitutionwhich computes valid valuations. Thus, the output would be: λ(app(X[shift ], 1))→ X .
However this is just a simple case, and in the general situation, incorporating shift macros will not
suffice. A witness to this fact is the commutation of binders rule in the introduction to this paper.

We first give the conversion rules of the translation, then we prove its properties in Section 5.
In order to define the conversion procedure we need two key notions that are essential to correctly

manipulate all the metavariables appearing in a de Bruijn rewriting rule. The first notion, called bind-
ing allowance, gives the common binder indicators appearing in all the labels of the metavariables of
a rule. If this binding allowance is empty, then the conversion is trivial, otherwise, we have to take
into account the position in which these binder indicators occur to correctly define the conversion.
This is done via the second notion called the shifting index.

DEFINITION 4.1 (Binding allowance)
Let A be a metaterm and {Xl1 , . . . , Xln} the set of all the metavariables with name X occurring
in A. Then, the binding allowance ofX in A, noted BaA(X), is the set

⋂n
i=1 li. Likewise, we

define the binding allowance ofX in a rule (L,R), written Ba(L,R)(X), as the set
⋂n

i=1 li where
{Xl1 , . . . , Xln} is the set of all metavariables with the name X in L or R.

EXAMPLE 4.2
Let A = f(ξXα, g(ξλXβα, ξλXαγ)), then BaA(X) = {α}.
DEFINITION 4.3 (Shifting index)
Let A be a metaterm, Xl a metavariable occurring in A, and i a position in l. The shifting index
determined byXl at positioni, denoted Sh(Xl, i), is defined as

Sh(Xl, i)
def= |{j | at(l, j) /∈ BaA(X), j ∈ 1..i− 1}|
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Thus Sh(Xl, i) is just the total number of binder indicators in l at positions 1..i − 1 that do not
belong to BaA(X). Remark that Sh(Xl, 1) is always 0.

EXAMPLE 4.4
If A is the metaterm f(ξXα, g(ξλXβα, ξλXαγ)), then Sh(Xα, 1) = Sh(Xαγ , 2) = 0 and
Sh(Xβα, 2) = 1.

Consider the rewrite rule λ(λ(Xαβ))→ λ(λ(Xβα)) and a valid valuation for this rule κ. If κ maps
the metavariable Xαβ to a term a, then by the condition of validity it must be the case that it maps
Xβα to the term b resulting from a where all 1-level and 2-level indices have been interchanged.
For example, if a = 1 then b = 2 and if a = λ2 then b = λ3. Therefore, the conversion of the
aforementioned rule would be

λ(λX)→ λ(λ(X[2 · 1 · (↑ ◦ ↑)])). (4.1)

In this discussion our focus was set on the metavariable Xαβ in the sense that κ was assumed valid
if the term to which Xβα is mapped was a suitable transformation of the one to which Xαβ is
mapped by κ. However, we may also state that κ is valid if the term it maps to Xαβ is a suitable
transformation of the one to which Xβα is mapped by κ. In this case, the conversion of the rewrite
rule would be

λ(λ(X[2 · 1 · (↑ ◦ ↑)]))→ λ(λX). (4.2)

As a consequence, for each metavariable name in a rewrite rule, the metavariable that is set into
focus determines the form that the conversion of this rule shall take (see also Example 4.13). The
metavariable that is set into focus is called the pivot metavariable.

DEFINITION 4.5 (Pivot)
Let (L,R) be a SERSdB -rewrite rule and {Xl1 , . . . , Xln} the set of all X-based metavariables in
(L,R). If Ba(L,R)(X) �= ∅, then Xlj for some j ∈ 1..n is called an (X-based) pivotif

1. |lj | ≤ |li| for all i ∈ 1..n, and

2. Xlj ∈ L, or Xlj ∈ R and |lj | < |li| for all Xli ∈ FMVAR(L).

A pivot set for a rewrite rule(L,R) is a set of pivot metavariables, one for each name X in L
such that Ba(L,R)(X) �= ∅. This notion extends to a set of rewrite rules as expected.

A pivot set for (L,R) fixes a metavariable for each metavariable name having a non-empty binding
allowance. Note that Definition 4.5 admits the existence of more than one X-based pivot metavari-
able. We shall prove (Proposition 4.14), however, that the induced rewrite relation is unique, thus
it is not biased by any particular choice of pivots. Nevertheless, the fact remains that the converted
rewrite rule in each case differs substantially. For example, the rule (4.1) is a first-order rule in which
syntactic matching suffices in order to apply it. However, the rule (4.2) requires matching modulo
the equational theory of the substitution calculus. In order to favour the former over the latter in our
definition of pivot we select a metavariable with shortest label on the LHS whenever possible. As
a consequence, rule (4.2) is no longer obtainable since Xβα is not considered a valid X-based pivot
according to Definition 4.5.

EXAMPLE 4.6
Both metavariables Xαβ and Xβα can be chosen as X-based pivot in the rewrite rule

Implies(∃∀Xαβ ,∀∃Xβα)→ true



Relating Higher-order and First-order Rewriting 917

In the rewrite rule f(Yε, g(λξXαβ , λξXβα)→ ξ(Xα, Yα) the metavariable Xα is the only possible
X-based pivot. Also, since the binding allowance of Y in this rewrite rule is the empty set, no
Y -based metavariable is declared as pivot.

Let us recall some notation from Definition 2.1. If l = α1 . . . αn is a label of binder indicators
then at(l, i) = αi for i ∈ 1..n. Also, pos(α, l) = i where i is the smallest number in 1..n such that
α = αi, and is undefined otherwise.

DEFINITION 4.7 (Conversion of metavariables)
Consider a SERSdB -rewrite rule (L,R) and a pivot set for (L,R). We consider the following cases
for every metavariable name X occurring in L:

1. Ba(L,R)(X) = ∅. Then convert each metavariable Xl in (L,R) to the term X[shift |l|], and those
metavariables Xl with l = ε simply to X .
This shall allow, for example, the rewrite rule f(λ(app(Xα, 1),Xε))→ Xε to be converted to
the first-order rewrite rule f(λ(app(X[shift ], 1),X))→ X .

2. Ba(L,R)(X) = {β1, . . . , βm} with m > 0. Let Xl be the pivot metavariable for X given
by the hypothesis. We convert all occurrences of a metavariable Xk in (L,R) to the term
X[cons(b1, . . . , b|l|, shift

j)] where j = |k| + |l \ Ba(L,R)(X)|. The bis depend on whether
Xk is a pivot metavariable or not, as described below.
As an optimization, in the particular case that the resulting term X[cons(b1, . . . , b|l|, shift

j)] is

of the form X[cons(1, . . . , |l|, shift |l|)], we simply convert Xk to X .
The substitution cons(b1, . . . , b|l|, shift

j), is coined the index-adjusting substitution correspond-
ing toXk, and each bi is defined as follows:

(a) if Xk is the pivot (hence l = k), then

bi =
{

i if at(l, i) ∈ Ba(L,R)(X)
|l|+ 1 + Sh(Xl, i) if at(l, i) /∈ Ba(L,R)(X).

(b) if Xk is not the pivot then

bi =
{

pos(βh, k) if i = pos(βh, l) for some βh ∈ Ba(L,R)(X)
|k|+ 1 + Sh(Xl, i) otherwise.

Recall that at(l, i) returns the symbol in label l at position i with 1 ≤ i ≤ |l|, and pos(α, l)
returns the position of α in the label l assuming it is in l.

Note that for an index-adjusting substitution cons(b1, . . . , b|l|, shift
j) each bi is a distinct de

Bruijn index and less than or equal to j. Substitutions of this form, in the particular case where
we fix the basic substitution calculus to σ, have been called pattern substitutions in [19], where
unification of higher-order patterns via explicit substitutions is studied.

Now that we know how to convert metavariables we can address the conversion of rewrite rules.
Before proceeding we recall that the name of a metavariable Xl is X and that by abuse of notation
we write FMVAR(A) to denote the set of all the names of the free metavariables of M .

DEFINITION 4.8 (Conversion of rewrite rules)
Let (L,R) be a SERSdB -rewrite rule and let P be a pivot set for (L,R). The conversion of the

rewrite rule (L,R) via P , denoted CP (L,R), is defined as CP (L,R) def= (C(L,R)
P (L), C(L,R)

P (R))
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where C(L,R)
P (A) is defined by induction on A, where FMVAR(A) ⊆ FMVAR(L), as:

C(L,R)
P (n) def= n

C(L,R)
P (Xl)

def=


X[shift |l|] if Ba(L,R)(X) = ∅ and l �= ε

X[cons(b1, . . . , b|l|, shift
j)] if Ba(L,R)(X) �= ∅ and

cons(b1, . . . , b|l|, shift
j) �=

cons(1, . . . , |l|, shift |l|)
X otherwise

C(L,R)
P (f(A1, . . . , An)) def= f(C(L,R)

P (A1), . . . , C(L,R)
P (An))

C(L,R)
P (ξ(A1, . . . , An)) def= ξ(C(L,R)

P (A1), . . . , C(L,R)
P (An))

C(L,R)
P (A1[A2])

def= C(L,R)
P (A1)[cons(C(L,R)

P (A2), id)].

The term X[cons(b1, . . . , b|l|, shift
j)] on the RHS of the second clause is the index-adjusting sub-

stitution computed in Definition 4.7.

It should be noted how the de Bruijn metasubstitution operator •[•] is converted to the term sub-
stitution operator •[•].

EXAMPLE 4.9
Below we present some examples of conversion of rules. We have fixedW to be the σ⇑-calculus.

SERSdB -rewrite rule Converted rewrite rule

λ(app(Xα, 1))→ Xε λ(app(X[↑], 1))→ X

λ(λ(Xαβ))→ λ(λ(Xβα)) λ(λX)→ λ(λ(X[2 · 1 · (↑ ◦ ↑)]))

f(λ(λ(Xαβ)), λ(λ(Xβα)))→ λ(Xγ) f(λ(λ(X[↑ ◦ ↑])), λ(λ(X[↑ ◦ ↑])))→ λ(X[↑])

app(λXα, Yε)→βdB
Xα[Yε] app(λX, Y )→ X[Y · id ]

Regarding pivot selection:

1. the first rule requires no X-based pivot since the binding allowance of X is empty,

2. in the second rule Xαβ is selected as X-based pivot,

3. the third rule requires no X-based pivot since the binding allowance of X is empty,

4. the fourth rule requires no Y -based pivot, however, the occurrence of Xα on the LHS is selected
as X-based pivot.

Note that if the SERSdB -rewrite rule (L,R) which is input to the Conversion Procedure is such
that for every name X in (L,R) there is a label l with all metavariables in (L,R) of the form Xl,
then all Xl are replaced simply by X . This is the case of βdB of Example 4.9.
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EXAMPLE 4.10 (Foldl)
Let us represent the usual foldl -recursion scheme over lists. Consider the ExERSsignature contain-
ing Γf = {nil , const1, foldl} and Γb = {ξ}. Then the foldl -rewrite system:

foldl(ξ(ξ(Xαβ)), Yε,nil) → Yε

foldl(ξ(ξ(Xαβ)), Yε, const(Zε,Wε)) → foldl(ξ(ξ(Xαβ)),Xαβ [Yβ ][Zε],Wε)

is converted to

foldl(ξ(ξ(X)), Y,nil) → Y
foldl(ξ(ξ(X)), Y, const(Z,W )) → foldl(ξ(ξ(X)),X[cons(Y [↑], id)][cons(Z, id)],W ).

EXAMPLE 4.11 (Natural numbers recursor)
Consider the ExERSsignature containing the function symbols Γf = {zero, suc, rec} and binder
symbols Γb = {ξ}. Then the rec-rewrite system:

rec(ξ(ξ(Xαβ)), Yε, zero) → Yε

rec(ξ(ξ(Xαβ)), Yε, suc(Zε)) → Xαβ [Zβ ][rec(ξ(ξ(Xαβ)), Yε, Zε)]

is converted to

rec(ξ(ξ(X)), Y, zero) → Y
rec(ξ(ξ(X)), Y, suc(Z)) → X[cons(Z[↑], id)][cons(rec(ξ(ξ(X)), Y, Z), id)].

Also, observe that if we replace our cons(•, •) macro by a scons(•) of substitution declaration
T as defined in [29, 30] then the last clause of Definition 4.8 converts a metaterm of the form A[B]
into A[scons(B)], yielding first-order systems based on substitution calculi, such as υ, which do not
implement parallel substitution.

The system resulting from the Conversion Procedure is coded as an ExERS, a framework for
defining first-order rewriting systems where W-matching is used. Moreover, if it is possible, an
ExERSmay further be coded as a FExERS(Definition 3.9) where reduction is defined on first-order
terms and matching is just syntactic first-order matching, obtaining a full first-order system.

DEFINITION 4.12 (Conversion Procedure)
Let Γ be an ExERSsignature, letR be a SERSdB , and letW be a substitution calculus over Γ. The
Conversion Procedureconsists in selecting a pivot set for each rewrite rule in R and converting all
its rewrite rules as dictated by Definition 4.8. The resulting set of rewrite rules is written fo(R). The
ExERSfo(R)W is called a first order-versionofR.

In what follows we shall assume given some fixed basic substitution calculus W . Thus, given a
SERSdB R we shall speak of thefirst-order version ofR.

Of course, we must also consider pivot selection and how it affects the conversion procedure.
Assume given some rewrite rule (L,R) and different pivot sets P and Q for this rule. It is clear that
CP (L,R) and CQ(L,R) are not identical.

EXAMPLE 4.13
Consider the following binder-commutation rule

imply(∃∀Xβα,∀∃Xαβ)→C true.

1Although cons is the usual abbreviation for the list constructor, we shall use const so as not to cause confusion with the
cons-macro.
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If we select Xβα as the X-based pivot we obtain the following conversion of C:

imply(∃∀X,∀∃X[2 · 1· ↑2])→Cfo
true.

However, Xαβ may also be selected as an X-based pivot metavariable. In this case, the resulting
converted rewrite rule will be different: imply(∃∀X[2 · 1· ↑2],∀∃X)→C ′

fo
true

Nevertheless, the rewrite relation generated by both of these converted rewrite rules is identical.

PROPOSITION 4.14 (Pivot Selection)
Let (L,R) be a SERSdB -rewrite rule and let P and Q be different pivot sets for this rule. Then the
rewrite relation generated by both CP (L,R) and CQ(L,R) are identical.

Proposition 4.14 is important, for it makes clear that the Conversion Procedure is not biased by
the selection of pivot sets (as regards the induced rewrite relation). Thus, in full precision, only now
may we speak of the first-order version of a SERSdB R. The proof of this proposition is rather
technical and is relegated to the appendix.

5 Properties of the Conversion Procedure

This section studies the connection between higher-order rewriting and first-order rewriting mod-
ulo. Section 5.1 shows that the Simulation Propositionholds: any higher-order rewrite step may be
simulated or implemented by first-order rewriting. Section 5.2 considers the Projection Proposition,
namely, that rewrite steps in the first-order version of a higher-order system R can be projected in
R. Finally, we give in Section 5.3 a syntactical characterization of higher-order rewriting systems
that can be translated into first-order rewriting systems modulo an empty theory. We shall see that,
for example, the λ-calculus is covered by this characterization.

5.1 The Simulation Proposition

In order to simulate higher-order rewriting in a first-order framework we have to deal with the con-
version of valid valuations into first-order valuations. Recall that valuations are the devices through
which SERSdB -rewrite rules are instantiated in order to obtain the induced rewrite relation. Like-
wise, first-order valuations are used for instantiating first-order rewrite rules, i.e. ExERS-rewrite
rules. For converting valuations to first-order valuations two families of index-adjustment opera-
tions are required, decrementors and adjusters.

Consider a metavariable Xl in a SERSdB -rewrite rule (L,R), and suppose we are given a valid
de Bruijn valuation κ. Let X[cons(b1, . . . , b|k|, shift

j)] be the conversion of the metavariable Xl

(Definition 4.7) where k is the label of the X-based pivot metavariable. We shall seek to define a
first-order valuation ρ such that the value that ρ assigns to X satisfies the following equation:

ρ(X)[cons(b1, . . . , b|k|, shift
j)] =W κ(Xl). (5.1)

The term assigned to ρ(X) is obtained by computing, cons(b1, . . . , b|k|, shift
j)−1, an ‘inverse’ sub-

stitution of cons(b1, . . . , b|k|, shift
j) from κ(Xl) so that:

ρ(X) = κ(Xl)[cons(b1, . . . , b|k|, shift
j)−1].

In the case that |k| = 0 the inverse substitution of shiftj is computed by the so called decremen-
tors (Definition 5.1). Otherwise, it is computed by the adjusters(Definition 5.3). Decrementors
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and adjusters are then used for defining the conversion of a valid valuation κ (Definition 5.6). Fi-
nally, Lemma 5.7 proves that the aforementioned conversion of κ behaves as expected, namely that
equation (5.1) is verified.

DEFINITION 5.1 (Decrementors)
For every i, j ≥ 0 and de Bruijn ground term a we define Dj

i (a) as follows:

Dj
i (n) def=

{
n if n ≤ i + j
n− j if n > i + j

Dj
i (f(a1 . . . an)) def= f(Dj

i (a1) . . .Dj
i (an))

Dj
i (ξ(a1 . . . an)) def= ξ(Dj

i+1(a1) . . .Dj
i+1(an)).

LEMMA 5.2 (Decrementors)
Let (L,R) be a SERSdB -rewrite rule, Xl,Xk metavariables in (L,R) and κ a valuation valid for
(L,R). For all i ≥ 0, if

1. κXl = D[a] for some pure context D having binder path number i,

2. Valuei(l, a) = Valuei(k, b), and

3. the binding allowance of X in (L,R) is the empty set (i.e. Ba(L,R)(X) = ∅),

then D|l|
i (a)[lift i(shift |k|)] =W b.

PROOF. By induction on a.

• a = n. We have three further cases to consider:
1. n ≤ i. Then D|l|

i (n)[lift i(shift |k|)] = n[lift i(shift |k|)] =Lemma 3.15(1)
W n. Now by Hypothe-

sis 2 we have Valuei(l, n) = n = Valuei(k, b) and therefore b = n and we are done.
2. i < n ≤ i + |l|. Since by Hypothesis 2 we have Valuei(l, n) = at(l, n − i) = Valuei(k, b),

it must be the case that b = m with i < m ≤ i + |k| and at(l, n − i) = at(k,m − i).
However by Hypothesis 3 there must be some Xl′ in (L,R) such that at(l, n − i) /∈ l′.
Therefore Value(l′, κXl′) �= Value(l, κXl) follows by Definition 2.13 (since at(l, n − i)
occurs in Value(l, κXl) but at(l, n − i) does not occur in Value(l′, κXl′)), contradicting the
assumption that κ is valid.

3. n > i + |l|. We reason as follows:

D|l|
i (n)[lift i(shift |k|)] = (n− |l|)[lift i(shift |k|)]

=Lemma. 3.15(1)
W (n− |l| − i)[shift |k|][shift ]i

=Definition 3.8(8)
W (n− |l| − i + |k|)[shift ]i

=W n− |l|+ |k|

The last equality follows from i applications of Definition 3.8(8).
By Hypothesis 2 we have Valuei(l, n) = xn−i−|l| = Valuei(k, b) and therefore b = m with
m > i + |k| and n− i− |l| = m− i− |k|. From this it follows that n− |l| = m− |k| and we
are done.

• a = f(a1, . . . , an). Then

D|l|
i (a)[lift i(shift |k|)] =W

f(D|l|
i (a1)[lift i(shift |k|)], . . . ,D|l|

i (an)[lift i(shift |k|)])
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by condition 3 of Definition 3.8.
By Hypothesis 2 we have that b = f(b1, . . . , bn) with Valuei(l, aj) = Valuei(k, bj) for all

1 ≤ j ≤ n. Then the induction hypothesis yields D|l|
i (aj)[lift i(shift |k|)] =W bj for j ∈ 1..n

and we may conclude the case.

• a = ξ(a1, . . . , an). By condition 3 of Definition 3.8

D|l|
i (a)[lift i(shift |k|)] =W ξ(D|l|

i+1(a1)[lift i+1(shift |k|)], . . . ,D|l|
i+1(an)[lift i+1(shift |k|)]).

Finally, by Hypothesis 2, b = ξ(b1, . . . , bn) with Valuei+1(l, aj) = Valuei+1(k, bj) for all
1 ≤ j ≤ n. The induction hypothesis concludes the case.

DEFINITION 5.3 (Adjusters)
Let Xl be a pivot metavariable in a SERSdB -rewrite rule (L,R), i ≥ 1, a a de Bruijn ground term

and let cons(b1, . . . , b|l|, shift
|l|+|l\Ba(L,R)(X)|) be the index-adjusting substitution corresponding to

Xl. Then Al
i(a) is defined as follows:

Al
i(n) def=


n if n ≤ i
n if at(l, n− i) ∈ Ba(L,R)(X) and 0 < n− i ≤ |l|
undefined if at(l, n− i) /∈ Ba(L,R)(X) and 0 < n− i ≤ |l|
pos(n− i, b1 . . . b|l|) + i if |l| < n− i ≤ |l|+ |l \ Ba(L,R)(X)|
n− |l \ Ba(L,R)(X)| if n− i > |l|+ |l \ Ba(L,R)(X)|

Al
i(f(a1 . . . an)) def= f(Al

i(a1) . . .Al
i(an))

Al
i(ξ(a1 . . . an)) def= ξ(Al

i+1(a1) . . .Al
i+1(an)).

LEMMA 5.4 (Well-definedness of Adjusters)
Consider a SERSdB -rewrite rule (L,R) and some pivot set P for (L,R). Let Xl ∈ (L,R) be the
X-based pivot metavariable for some X ∈ FMVAR(L), and let κ be a valuation valid for (L,R).
For all i ≥ 0, if

1. κXl = E[a] for some pure context E with i the binding path number of E, and

2. the binding allowance of X in (L,R) is not empty (i.e. Ba(L,R)(X) �= ∅),

then Al
i(a) is defined.

PROOF. By induction on a. We shall only consider the base case, the others follow by using the
induction hypothesis. Suppose a = n. We have four further cases to consider:

1. n ≤ i. Then there is no problem.

2. i < n ≤ i + |l|. The only case of conflict is if at(l, n − i) /∈ Ba(L,R)(X). Then there must
exist Xl′ in L such that at(l, n − i) /∈ l′. Consequently Value(l, κXl) �= Value(l′, κXl′) since
at(l, n − i) occurs in Value(l, κXl) but at(l, n − i) does not occur in Value(l′, κXl′). This
contradicts the assumption that κ is valid for (L,R).

3. |l| < n− i ≤ |l|+ |l \ Ba(L,R)(X)|. Then we must verify that pos(n− i, b1 . . . b|l|) is defined.
Now let r = |l \ Ba(L,R)(X)| then by Definition 4.7 there are subindices j1 < . . . < jr such that
bj1 = |l|+ 1 + Sh(Xl, j1), . . . , bjr

= |l|+ 1 + Sh(Xl, jr). By noting that 1 + Sh(Xl, jq) = q
for q ∈ 1 . . . r we are done.
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4. n− i > |l|+ |l \ Ba(L,R)(X)|. This case presents no problems.

LEMMA 5.5 (Adjusters)
Consider a SERSdB -rewrite rule (L,R) and some pivot set P for (L,R). Let Xl ∈ (L,R) be the
X-based pivot metavariable for some X ∈ FMVAR(L), let Xk ∈ (L,R), and let κ be a valuation
valid for (L,R). For all i ≥ 0, if

1. κXl = D[a] for some pure context D having binder path number equal to i,

2. Valuei(l, a) = Valuei(k, b), and

3. the binding allowance of X in (L,R) is not empty (i.e. Ba(L,R)(X) �= ∅),

thenAl
i(a)[lift i(s)] =W b where s = cons(c1, . . . , c|l|, shift

|k|+|l\Ba(L,R)(X)|) is the index-adjusting
substitution corresponding to Xk.

PROOF. Let j = |k|+ |l \ Ba(L,R)(X)|. We proceed by induction on a.

• a = n. We have four further cases to consider:
1. n ≤ i. Then

Al
i(n)[lift i(cons(c1, . . . , c|l|, shift

j))] =
n[lift i(cons(c1, . . . , c|l|, shift

j))] =Lemma 3.15(1)
W n.

By Hypothesis 2, Valuei(l, n) = n = Valuei(k, b) and therefore b = n and we are done.
2. i < n ≤ i + |l|. Here we consider the two cases:

– at(l, n− i) ∈ Ba(L,R)(X). We reason as follows

Al
i(n)[lift i(cons(c1, . . . , c|l|, shift

j))]
= n[lift i(cons(c1, . . . , c|l|, shift

j))]
=L. 3.15(1)

W (n− i)[cons(c1, . . . , c|l|, shift
j)][shift ]i

=W cn−i[shift ]i

=W c + i (for cn−i = c).

So we are left to verify that c + i = b.
By Hypothesis 2, Valuei(l, n) = at(l, n − i) = Valuei(k, b) and therefore b = m with
i < m ≤ |k|+ i and at(l, n− i) = at(k,m− i).
We consider where cn−i = c might ‘come from’.

(a) n − i = pos(βh, l) with βh ∈ Ba(L,R)(X) and cn−i = pos(βh, k). But then by Hypoth-
esis 2 and the fact that k is a simple label we must have cn−i = m− i, which concludes
the case.

(b) There is no βh ∈ Ba(L,R)(X) with n − i = pos(βh, l). This contradicts our assumption
that at(l, n− i) ∈ Ba(L,R)(X).

Note that in the particular case that Xk = Xl, then cn−i = n− i and we have n− i+ i = n.
– at(l, n − i) /∈ Ba(L,R)(X). By well-definedness of adjusters (Lemma 5.4) this case is not

possible.
3. |l| < n− i ≤ |l|+ |l \ Ba(L,R)(X)|. Then

Al
i(n)[lift i(cons(c1, . . . , c|l|, shift

j))]
= (pos(n− i, d1 . . . d|l|) + i)[lift i(cons(c1, . . . , c|l|, shift

j))]
=W pos(n− i, d1 . . . d|l|)[cons(c1, . . . , c|l|, shift

j)][shift ]i

=W cr[shift ]i

=W c + i (for cr = c)
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where r = pos(n− i, d1 . . . d|l|). Note that Lemma 5.4 is used here.
So we are left to verify that c + i = b.
We must consider where cr might ‘come from’:

(a) r = pos(βh, l) with βh ∈ Ba(L,R)(X) and cr = pos(βh, k). Then clearly, at(l, r) ∈
Ba(L,R)(X). However, since r = pos(n − i, d1 . . . d|l|) this means that dr = n− i. Also,
recall that we are currently considering the case dr = n− i where n− i > |l|. But then by
Definition 4.7 at(l, r) /∈ Ba(L,R)(X) contradicting our knowledge of the opposite fact.

(b) cr = |k|+ 1 + Sh(Xl, r).
Now note that it is not possible for dr = r (and hence at(l, r) ∈ Ba(L,R)(X)) since then we
may reason as in item 3a. So dr = n− i = |l|+ 1 + Sh(Xl, r) (*). Recall that we are left
to verify that |k|+ 1 + Sh(Xl, r) + i = b.
Now by Hypothesis 2 we have Valuei(l, n) = xn−i−|l| = Valuei(k, b) and therefore b = m
with m > i+ |k| and n− i−|l| = m− i−|k|. From this it follows that n−|l| = m−|k|. So
now we must see that |k|+ 1 + Sh(Xl, r) + i = n− |l|+ |k|, or simply 1 + Sh(Xl, r) + i =
n− |l|. This follows from (*).

Note that in the particular case where Xk = Xl, then cr = n− i and we have n− i + i = n.
4. n− i > |l|+ |l \ Ba(L,R)(X)|. We reason as follows

Al
i(n)[lift i(cons(c1, . . . , c|l|, shift

j))]
= (n− |l \ Ba(L,R)(X)|)[lift i(cons(c1, . . . , c|l|, shift

j))]
=W (n− |l \ Ba(L,R)(X)| − i)[cons(c1, . . . , c|l|, shift

j)][shift ]i

=W n− |l \ Ba(L,R)(X)| − i− |l|+ |k|+ |l \ Ba(L,R)(X)|+ i

= n− |l|+ |k|.

Note that in the particular case that Xk = Xl, we have k = l and the result holds directly.
Otherwise, by Hypothesis 2, Valuei(l, n) = xn−i−|l| = Valuei(k, b) and therefore b = m
with m > i + |k| and n − i − |l| = m − i− |k|. From this it follows that n − |l| = m − |k|
and we may conclude the case.

• a = f(a1, . . . , an) (the case a = ξ(a1, . . . , an) is similar to this one and hence is ommitted). In
this case, if t = cons(c1, . . . , c|l|, shift

j), then

Al
i(a)[lift i(t)] =W f(Al

i(a1)[lift i(t)], . . . ,Al
i(an)[lift i(t)]).

By Hypothesis 2, b = f(b1, . . . , bn) with Valuei(l, aj) = Valuei(k, bj) for all 1 ≤ j ≤ n. The
induction hypothesis concludes the case.

We know how to convert SERSdB -rewrite rules. In order to prove our simulation result we must
convert SERSdB -valuations. As already stated, this makes use of decrementors and adjusters.

DEFINITION 5.6 (Valuation conversion)
Let (L,R) be a SERSdB -rewrite rule, κ a valid valuation for (L,R) and P a pivot set for (L,R).
The conversion ofκ via P is defined as the first-order valuation ρ where for each X ∈ FMVAR(L):

• Case Ba(L,R)(X) = ∅. Then ρ(X) def= D|l|
0 (κXl) where Xl is any metavariable from L. Validity

of κ implies that ρ does not depend on the particular metavariable Xl chosen. A formal proof of
this fact may be found in the appendix (Lemma A.3, taking D = �).
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• Case Ba(L,R)(X) = {β1, . . . , βn} with n > 0. Then we define ρ(X) def= Al
0(κXl) where Xl is

the X-based pivot metavariable as dictated by P .

We need one final result before considering the simulation proposition, namely the one that states
that the valuation conversion as defined above indeed verifies equation (5.1). Its proof relies on the
Decrementors Lemma and the Adjustors Lemma and may be found in the appendix.

LEMMA 5.7
Let (L,R) be a SERSdB -rewrite rule, κ a valid valuation for (L,R) and ρ the conversion of κ via
P for some pivot set P for (L,R). If L = C[A] for some metacontext C and metaterm A, then
ρ(C(L,R)

P (A)) =W κA. Likewise, if R = C[A] then ρ(C(L,R)
P (A)) =W κ(A).

PROPOSITION 5.8 (Simulation Proposition)
LetR be a SERSdB and let fo(R)W be its first-order version. Suppose a→R b then

1. if fo(R)W is an ExERSthen a→fo(R)/W b;

2. if fo(R)W is a FExERSthen a→fo(R) ◦�W b where ◦ denotes relation composition.

PROOF. For the first item, suppose a→R b. Then there must be a SERSdB -rewrite rule (L,R) ∈ R,
a valuation κ valid for (L,R) and a pure context E such that a = E[κL] and b = E[κR]. Let
(L′, R′) = CP (L,R) be the converted version of rule (L,R) via some pivot set P for (L,R). Let ρ
be the conversion of κ via P (Definition 5.6). By Lemma 5.7 we have:

1. ρ(L′) =W κL and

2. ρ(R′) =W κR.

Thus from ρ(L′) =W κL and ρ(R′) =W κR we have E[ρ(L′)] =W E[κL] and E[ρ(R′)] =W
E[κR], respectively. Finally, we have on the the one hand a = E[κL] =W E[ρ(L′)], so a =W
E[ρ(L′)], and on the other, b = E[κR] =W E[ρ(R′)], so b =W E[ρ(R′)].

As for the second item note that if fo(R)W is a FExERSthen L′ is a pure term. Also, by definition,
κ is a pure first-order valuation. Thus ρ(L′) = κL. And ρ(R′) �W κR since κR is a pure term.
Therefore we have a = E[κL] = E[ρ(L′)]→(L′,R′) E[ρ(R′)] �W E[κR].

5.2 The projection proposition

We now wish to prove that derivations in an ExERSor FExERSfo(R)W may be projected into
derivations in R. This ensures in some sense that we did not add meaningless computations in
the translated first-order system. As a consequence we prove that fo(R)W is conservative over R
(Definition 5.17).

We shall first begin by showing that if a ⇒(L,R) b, then for any term s of sort S we have
W(a[s]) ⇒(L,R) W(b[s]). Intuitively, a ⇒(L,R) b means that a rewrites to b by applying a number
of parallel (L,R)-rewrite steps (Definition 5.11).

LEMMA 5.9
Let A be a pre-metaterm and suppose WFk(A). Consider a valuation κ such that MVAR(A) ⊆
Dom(κ). ThenW((κA)[lift |k|(s)]) = ιkA where ιk is a valuation defined as:

ιk(Xlk) def= W((κXlk)[lift |lk|(s)])

for all l such that Xlk occurs in A.
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PROOF. By induction on A.

• A = n. Note that since WFk(n) we have n ≤ |k|. Then LHS = W((κn)[lift |k|(s)]) =
W(n[lift |k|(s)]) = n = ιkn = RHS .

• A = Xk′ . Then sinceWFk(Xk′) we have k = k′ and LHS =W((κXk)[lift |k|(s)]) = ιkA.

• A = f(A1, . . . , An). Then

LHS =Definition 3.8(3) f(W((κA1)[lift |k|(s)]), . . . ,W((κAn)[lift |k|(s)]))
=i.h.

W f(ι1kA1, . . . , ι
n
kAn)

= f(ιkA1, . . . , ιkAn)
= RHS

where ιk =
⋃n

i=1 ιik. Note that if Xp ∈ Dom(ιjk) ∩ Dom(ιj
′

k ) for j, j′ ∈ 1..n with j �= j′ then

ιjk(Xp) = ιj
′

k (Xp).
• A = ξ(A1, . . . , An). By hypothesis there is an α such thatWFαk(Ai) for all i ∈ 1..n. Then

LHS =Definition 3.8(3) ξ(W((κA1)[lift |k|+1(s)]), . . . ,W((κAn)[lift |k|+1(s)]))
=i.h.

W ξ(ι1αkA1, . . . , ι
n
αkAn)

= ξ(ιαkA1, . . . , ιαkAn)

where ιαk =
⋃n

i=1 ιiαk. Note that if Xp ∈ Dom(ιjαk) ∩ Dom(ιj
′

αk) for j, j′ ∈ 1..n with j �= j′

then ιjαk(Xp) = ιj
′

αk(Xp).
By the well-formedness predicate we know that since any metavariable in Ai has the form Xpαk

for some label p we have ιk(Ai) = ιαkAi for all i ∈ 1..n. More precisely, in the definition of ιαk

let p be a label such that Xpαk is a metavariable in Ai for some i ∈ 1..n, then in the definition
of ιk we take p′ = pα and obtain ιk(Xp′k) = ιαk(Xpαk). Hence we may continue as follows:

ξ(ιαkA1, . . . , ιαkAn) = ξ(ιkA1, . . . , ιkAn) = ιkA

• A = A1[A2]. By hypothesis there is an α such thatWFαk(A1), andWFk(A2). Then

LHS = W((κ(A1[A2]))[lift |k|(s)])
= W((κA1{{1← κA2}})[lift |k|(s)])
=Lemma 3.15(3) W((κA1[cons(κA2, id)])[lift |k|(s)])
=Lemma 3.18 W((κA1)[lift |k|+1(s)][cons((κA2)[lift |k|(s)], id)])
= W(W((κA1)[lift |k|+1(s)])[cons(W((κA2)[lift |k|(s)]), id)])
=Lemma 3.15(3) W((κA1)[lift |k|+1(s)]){{1←W((κA2)[lift |k|(s)])}}
=i.h. ιαk(A1){{1← ιk(A2)}}
= ιk(A1){{1← ιk(A2)}}
= ιk(A1[A2]).

The before last equality may be justified as in the previous case.

We now verify that the valuation ι from Lemma 5.9 (k = ε) is a valid valuation assuming κ is,
and hence can be used in rewriting terms. More precisely,
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LEMMA 5.10
Let κ be a valid valuation for a SERSdB -rewrite rule (L,R) and let s be any substitution. Then ι is

also valid for (L,R), where ι(Xl)
def= W((κXl)[lift |l|(s)]) for all Xl in (L,R).

PROOF. This follows from the following more general result by considering the case i = 0. Let a, b
be pure terms. Then for all i ≥ 0, Valuei(k1, a) = Valuei(k2, b) implies

Valuei(k1,W(a[lift |k1|+i(s)])) = Valuei(k2,W(b[lift |k2|+i(s)])).

The latter is proved by induction on a. We shall consider the case where a is an index for the other
cases follow by using the induction hypothesis. Let a = n, we consider three further subcases:

• n ≤ i. Then b = n and

Valuei(k1,W(a[lift |k1|+i(s)])) = n = Valuei(k2,W(b[lift |k2|+i(s)])).

The latter holds by Lemma 3.15 (1), and therefore, the result holds.

• i < n ≤ |k1| + i. Then b = m with i < m ≤ |k2| + i and at(k1, n − i) = at(k2,m − i). We
haveW(a[lift |k1|+i(s)]) = n andW(b[lift |k2|+i(s)]) = m, by Lemma 3.15(1). Thus, we have

Valuei(k1,W(a[lift |k1|+i(s)]))
= at(k1, n− i)
= at(k2,m− i)
= Valuei(k2,W(b[lift |k2|+i(s)])).

• n > |k1| + i. Then b = m with m > |k2| + i and xn−|k1|−i = xm−|k2|−i. Then we reason as
follows:

W(a[lift |k1|+i(s)]) = W(n− |k1| − i[s][shift ]|k1|+i)
= W(W(n− |k1| − i[s])[shift ]|k1|+i).

And likewise,

W(b[lift |k2|+i(s)]) = W(m− |k2| − i[s][shift ]|k2|+i)
= W(W(m− |k2| − i[s])[shift ]|k2|+i).

NowW(n− |k1| − i[s]) =W(m− |k2| − i[s]), since n− |k1| − i = m− |k2| − i.

Observation: Valuei(k1,W(a[shift ]|k1|+i)) = Valuei(k2,W(a[shift ]|k2|+i)) holds for any pure
term a. This may be verified by induction on a and using condition 8 of the definition of a Basic
Substitution Calculus (Definition 3.8).

By the observation we may conclude the case.

DEFINITION 5.11 (Parallel SERSdB -rewriting)
LetR be a SERSdB and let a and b be de Bruijn terms. We say that aR-rewrites in parallelto b iff
a ⇒R b, where the latter relation is defined as:

(refl)
a ⇒R a

κ valid for (L,R) ∈ R
(red)

κL ⇒R κR

ai ⇒R bi for all 1 ≤ i ≤ n
(clos-f)

f(a1, . . . , an) ⇒R f(b1, . . . , bn)

ai ⇒R bi for all 1 ≤ i ≤ n
(clos-b)

ξ(a1, . . . , an) ⇒R ξ(b1, . . . , bn)
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Note that→R ⊆ ⇒R ⊆ �R, and that ⇒R is reflexive. In the case of R = {(L,R)} we shall
abbreviate a ⇒R b as a ⇒(L,R) b.

LEMMA 5.12
Let a, b be pure terms and let (L,R) be a SERSdB -rewrite rule. If a ⇒(L,R) b, then for any term s
of sort S we haveW(a[s]) ⇒(L,R) W(b[s]).

PROOF. By induction on the derivation of a ⇒(L,R) b.

• refl. Then the result holds trivially.

• red. Then a can be written as κL = L{Xi1
l1

/κXi1
l1

, . . . , Xin

ln
/κXin

ln
}, where Xi1

l1
, . . . , Xin

ln
are

all the metavariables in L, and κ is a valid valuation for (L,R). We have

W(a[s]) = L{Xi1
l1

/W((κXi1
l1

)[lift |l1|(s)]), . . . ,Xin

ln
/W((κXin

ln
)[lift |ln|(s)])}.

So define ιX
ij

lj

def= W((κX
ij

lj
)[lift |lj |(s)]). Since ι is valid for (L,R) by Lemma 5.10, an appli-

cation of red allows us to conclude: W(a[s]) ⇒(L,R) ι(R) =Lemma 5.9(k=ε) W((κR)[s]) =
W(b[s]).
• clos-f. Then by the induction hypothesis we haveW(ai[s]) ⇒(L,R) W(bi[s]) for all 1 ≤ i ≤

n. We conclude using clos-f W(f(a1, . . . , an)[s]) = f(W(a1[s]), . . . ,W(an[s])) ⇒(L,R)

f(W(b1[s]), . . . ,W(bn[s])) =W(f(b1, . . . , bn)[s]).
• clos-b. As in the case clos-f.

Note that in particular Lemma 5.12 holds when a→(L,R) b since the one-step rewrite relation
is included in the parallel rewrite relation: if a→(L,R) b, then for any term s of sort S we have
W(a[s]) ⇒(L,R) W(b[s]).

LEMMA 5.13 (Projecting first-order valuations)
Let (L,R) be a SERSdB -rewrite rule, (L′, R′) = CP (L,R) for some pivot set P for (L,R), let ρ be
a first-order valuation for (L′, R′).

Define the valuation κ as:
κXk

def= W(ρ(C(L,R)
P (Xk))).

For any metaterm A,W(ρ(C(L,R)
P (A))) = κA.

PROOF. By induction on A.

• A = n. Then LHS =W(ρ(n)) = n = κn = RHS .

• A = Xk. Then LHS =W(ρ(C(L,R)
P (Xk))) =hypothesis κXk.

• A = f(A1, . . . , An). Then

LHS =Definition 3.8(3)

f(W(ρ(C(L,R)
P (A1))), . . . ,W(ρ(C(L,R)

P (An)))) =i.h.
W

f(κA1, . . . , κAn) = RHS .

• A = ξ(A1, . . . , An). As the previous case.
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• A = A1[A2]. Then

LHS = W(ρ(C(L,R)
P (A1[A2])))

= W(ρ(C(L,R)
P (A1))[cons(ρ(C(L,R)

P (A2)), id)])
=Definition 3.8(1) W(W(ρ(C(L,R)

P (A1)))[cons(W(ρ(C(L,R)
P (A2))), id)])

=i.h.
W W(κA1[cons(κA2, id)])

=Lemma 3.15(3) κA1{{1← κA2}}
= κ(A1[A2])
= RHS .

In order to use the valuation of Lemma 5.13 we need to prove that it is valid.

LEMMA 5.14 (From first-order valuations to valid valuations)
Consider rewrite rule (L,R) in the SERSdB formalism, metavariables Xk1 , Xk2 occurring in (L,R)
and a designated pivot metavariable Xl. Let ρ be a first-order valuation. Then

Value(k1,W(ρ(X[s1]))) = Value(k2,W(ρ(X[s2])))

where

• s1 = cons(b1, . . . , b|l|, shift
|k1|+|l\Ba(L,R)(X)|) and

• s2 = cons(c1, . . . , c|l|, shift
|k2|+|l\Ba(L,R)(X)|)

are the index-adjusting substitutions (using pivot Xl) of Xk1 and Xk2 , respectively.

PROOF. In order to prove this property we show a more general one stating that for all pure term a
and for all i ≥ 0 we have:

Valuei(k1,W(a[lift i(s1)])) = Valuei(k2,W(a[lift i(s2)]))

with s1 and s2 the index-adjusting substitutions as before.
We shall assume that Xk1 �= Xl and Xk2 �= Xl. The case where Xk1 = Xl or Xk2 = Xl is

analogous. We proceed by induction on a.

• a = n. We have three subcases to consider.
– n ≤ i. Then by Lemma 3.15 (1) Valuei(k1, n) = n = Valuei(k2, n).
– i < n ≤ |l|+ i. Now we consider two further cases:
∗ n− i = pos(βh, l) for some βh ∈ Ba(L,R)(X).

Then bn−i = pos(βh, k1) and cn−i = pos(βh, k2) by Definition 4.7.

Therefore Valuei(k1, bn−i + i) = βh = Valuei(k2, cn−i + i).
∗ There is no βh ∈ Ba(L,R)(X) such that n− i = pos(βh, l).

Then bn−i = |k1|+ 1 + Sh(Xl, n− i) and cn−i = |k2|+ 1 + Sh(Xl, n− i).
Hence, Valuei(k1, bn−i + i) = x1+Sh(Xl,n−i) = Valuei(k2, cn−i + i).

– n > |l| + i. Then W(a[lift i(s1)]) = n− |l|+ |k1|+ |l \ Ba(L,R)(X)| and we also have

W(a[lift i(s2)]) = n− |l|+ |k2|+ |l \ Ba(L,R)(X)|. As a consequence

Valuei(k1, n− |l|+ |k1|+ |l \ Ba(L,R)(X)|)
= xn−i−|l|+|l\Ba(L,R)(X)|
= Valuei(k2, n− |l|+ |k2|+ |l \ Ba(L,R)(X)|).
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• a = f(a1, . . . , an). Then

Valuei(k1,W(a[lift i(s1)]))
= Valuei(k1, f(W(a1[lift i(s1)]), . . . ,W(an[lift i(s1)])))
= f(Valuei(k1,W(a1[lift i(s1)])), . . . ,Valuei(k1,W(an[lift i(s1)])))
=ih f(Valuei(k2,W(a1[lift i(s2)])), . . . ,Valuei(k2,W(an[lift i(s2)])))
= Valuei(k2,W(a[lift i(s2)])).

• a = ξ(a1, . . . , an). Similar to the previous case.

Now in order to obtain the general result of the lemma we remark thatW is a basic substitution
calculus, so that it has unique normal forms and in particular W(ρ(X)[s1]) = W(W(ρ(X))[s1]).
Also, by condition 2 of Definition 3.8 we have that W(ρ(X)) is a pure term and therefore we can
take a =W(ρ(X)) and i = 0.

LEMMA 5.15 (Projection of ExERS-rewriting)
LetW be a basic substitution calculus satisfying the scheme. Let o be a term ofW of sort T or S.
Let (L′, R′) = CP (L,R). If o→(L′,R′) o′, then

1. if o is of sort T thenW(o) ⇒(L,R) W(o′);
2. for every pure term d of sort T such that o is a term of sort S, and every n ≥ 0,
W(d[liftn(o)]) ⇒(L,R) W(d[liftn(o′)]).

PROOF. We show simultaneously the two items by induction on the lexicographic ordering on pairs
(o, d), where the orders on the components are given by the lengths of their respective terms2.

• o is a de Bruijn index or a substitution constant. Then both items hold vacuously since by
definition the LHS of a SERSdB -rewrite rule must have a function or binder symbol as head
symbol. Thus o is a normal form.

• o = f(a1, . . . , an) or o = ξ(a1, . . . , an). There is nothing to prove for the second item. For the
first item we consider two cases.
– Suppose the reduction is at the root. Then o = ρL′. Define κ for all Xk ∈ L as:

κXk
def= W(ρ(C(L,R)

P (Xk))).

Note that κ is a valid valuation by Lemma 5.14, and also,W(ρL′) = κL by Lemma 5.13. So
κL ⇒(L,R) κR =Lemma 5.13 W(ρR′) =W(o′).

– Suppose the reduction is internal. Then we use the induction hypothesis.

• o = a[s]. There is nothing to prove for the second item. Since reduction at the root of the term
is not possible, we consider the following two cases for the first property:
– o′ = a′[s] with a→(L′,R′) a′. By the i.h. W(a) ⇒(L,R) W(a′). Then

W(a[s]) =W(W(a)[s]) ⇒(L,R) W(W(a′)[s])

by applying Lemma 5.12.

2The length of an index is 1.
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– o′ = a[s′] with s→(L′,R′) s′. SinceW(a) is a pure term we have that

W(o) =W(W(a)[s]) ⇒(L,R) W(W(a)[s′]) =W(o′)

by the induction hypothesis of item 2 since (s, d) < (a[s], d).
• o is a substitution σ(s1, . . . , sj , . . . , sq) (q > 0), and o′ = σ(s1, . . . , s

′
j , . . . , sq), where

sj→(L′,R′) s′j . There is nothing to prove for the first property since o is not a term. For the
second property we proceed by induction on d.
– d = f(d1, . . . , dn) or d = ξ(d1, . . . , dn) then the property holds by the induction hypothesis

since (o, di) < (o, d) for all 1 ≤ i ≤ n, and applying clos-f or clos-b.
– d = m. We must verify that for all n ≥ 0: W(m[liftn(o)]) ⇒(L,R) W(m[liftn(o′)]).

We proceed by induction on n.
1. If n = 0, then we proceed by cases as dictated by the definition of the scheme (Defini-

tion 3.13).
(a) Suppose there exists a de Bruijn index r, indices i1, . . . , ip (p ≥ 0) and also substitutions

u1, . . . , uk (k ≥ 0) such that 1 ≤ i1, . . . , ip ≤ q, the ij’s are all distinct and for s1 . . . sq,
m[σ(s1, . . . sq)] =W r[si1 ] . . . [sip

][u1] . . . [uk].
i. If j /∈ {i1, . . . , ip}, thenW(m[o′]) =W(r[si1 ] . . . [sip

][u1] . . . [uk]) and the property is
trivial sinceW(m[o]) =W(m[o′]).

ii. If j ∈ {i1, . . . , ip}, let us say j = ih, then the term W(m[o′]) is equal to the term
W(r[si1 ] . . . [s

′
ih

] . . . [sip
][u1] . . . [uk]) and W(r[si1 ] . . . [sih−1 ]) = e is a pure term by

Definition 3.8(2). Since (sih
, e) < (σ(s1, . . . , sj , . . . , sq),m), we can apply the induc-

tion hypothesis (2) to obtain:

W(e[sih
]) ⇒(L,R) W(e[s′ih

]).

Now, the termW(e[sih
]) is pure, so that we can repeatedly apply Lemma 5.12 to obtain:

W(m[o]) = W(W(e[sih
])[sih+1 ] . . . [sip

][u1] . . . [uk])
⇒(L,R) W(W(e[s′ih

])[sih+1 ] . . . [sip
][u1] . . . [uk])

= W(m[o′]).

(b) Suppose there exists an index i with 1 ≤ i ≤ q such that for s1 . . . sq we have that
m[σ(s1, . . . sq)] =W si.
i. If i �= j, then the termW(m[o′]) is also equal toW(si) and the property is trivial since
W(m[o]) =W(m[o′]).

ii. If i = j, thenW(m[o′]) = W(s′j) (where sj is a term because the equations are well-
typed) and (sj ,m) < (σ(s1, . . . , sj , . . . , sq),m), so the property holds by the induction
hypothesis (1) sinceW(m[o]) =W(sj) ⇒(L,R) W(s′j) =W(m[o′]).

2. If n > 0, then we consider two cases:
(a) if m ≤ n, then by Lemma 3.15(1) we obtain:

W(m[liftn(o)]) = m =W(m[liftn(o′)])

(b) if m > n, then by Lemma 3.15(1) we obtain:

W(m[liftn(o)]) =W(m− 1[liftn−1(o)][shift ])

and
W(m[liftn(o′)]) =W(m− 1[liftn−1(o′)][shift ])
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Since indices are equivalent w.r.t our ordering, (σ(s1, . . . , sj , . . . , sq),m) = (σ(s1, . . . ,
sj , . . . , sq),m− 1), and then the induction hypothesis on n can be applied to obtain

W(m− 1[liftn−1(o)]) ⇒(L,R) W(m− 1[liftn−1(o′)]).

Since every W-normal form is a pure term by Definition 3.8(2), we may finally apply
Lemma 5.12, so that

W(m[liftn(o)]) = W(W(m− 1[liftn−1(o)])[shift ])
⇒(L,R) W(W(m− 1[liftn−1(o′)])[shift ])
= W(m[liftn(o′)]).

PROPOSITION 5.16 (Projection Proposition)
Let R be a SERSdB and let fo(R)W be its first-order version where W is a basic substitution
calculus satisfying the scheme. If a→fo(R)W b, thenW(a) ⇒R W(b).

PROOF. We consider two cases, one for ExERS-rewriting and one for FExERS-rewriting.

ExERS-rewriting Suppose that a→fo(R)/W b using rewrite rule (L′, R′) = CP (L,R) where P is
a pivot set for (L,R) ∈ R, a context E and first-order valuation ρ. Thus a =W E[ρ(L′)] and
b =W E[ρ(R′)].
Since E[ρ(L′)]→(L′,R′) E[ρ(R′)], we conclude that W(E[ρ(L′)]) ⇒(L,R) W(E[ρ(R′)]) by
Lemma 5.15. Also since a =W E[ρ(L′)]) we know that W(a) = W(E[ρ(L′)]), likewise we
know that W(b) = W(E[ρ(R′)]). Finally, W(a) = W(E[ρ(L′)]) ⇒(L,R) W(E[ρ(R′)]) =
W(b) as desired.

FExERS-rewriting Suppose fo(R) is a FExERSand that a→fo(R)∪W b. Then if a→W b the result
holds trivially. Thus let us assume that a→fo(R) b using rewrite rule (L′, R′) = CP (L,R) where
P is a pivot set for (L,R) ∈ R, a context E and first-order valuation ρ. Then a = E[ρ(L′)] and
b = E[ρ(R′)]. Now since E[ρ(L′)]→(L′,R′) E[ρ(R′)] then by Lemma 5.15 we may conclude
thatW(a) =W(E[ρ(L′)]) ⇒(L,R) W(E[ρ(R′)]) =W(b) as desired.

Since ⇒R⊆�R, we may replaceW(a) ⇒R W(b) byW(a) �R W(b) in the statement of the
Projection Proposition.

DEFINITION 5.17
Let R and S be binary relations defined over sets A and B with A ⊆ B, respectively. We say S is
conservative overR if aSb implies aRb for all a ∈ A.

Noting thatW(a) = a for pure terms a (Definition 3.8(2)) we may conclude.

COROLLARY 5.18 (Conservativity)
Let R be a SERSdB . Then fo(R)W -rewriting is conservative over R-rewriting, that is to say, if

a
∗−→fo(R)W b for a, b pure terms, then a

∗−→R b.

5.3 Essentially first-order HORS

This last subsection provides a very simple syntactical criterion that can be used to decide if a given
higher-order rewrite system can be translated into a full first-order rewrite system (modulo an empty
equational theory). In particular, we can check that many higher-order calculi in the literature, such
as the lambda calculus, verify this property.
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DEFINITION 5.19 (Essentially first-order HORS)
A SERSdB R is called essentially first-orderif the first-order version of R, namely fo(R)W , is a
FExERSforW a basic substitution calculus.

Recall from Section 3 (Definition 3.9) that an ExERS(Explicit Expression Reduction System) R
is a FExERS(Fully Explicit Expression Reduction System), if the LHS of each rule in R contains
no occurrences of the substitution operator •[•].

DEFINITION 5.20 (fo-condition)
A SERSdB R satisfies the fo-conditionif every rewrite rule (L,R) inR satisfies: for every name X
in L let Xl1 , . . . , Xln be all the X-based metavariables in L, then

1. l1 = l2 . . . = ln and (the underlying set of) l1 is Ba(L,R)(X), and

2. for all Xk ∈ R we have |k| ≥ |l1|.

In the above definition note that l1 = l2 . . . = ln means that labels l1, . . . , ln must be identical
(for example αβ �= βα). Also, by Definition 2.10, l1 is simple, in other words, it does not have
repeated elements.

EXAMPLE 5.21
Consider the λdB -calculus consisting of the sole rule: app(λXα, Yε)→βdB

Xα[Yε]. The βdB -calculus
satisfies the fo-condition. However, the ηdb rule λ(app(Xα, 1))→ Xε does not satisfy the fo-
condition: the label of Xα in λ(app(Xα, 1)) does not coincide with the binding allowance of X
in ηdb (Ba(λ(app(Xα,1)),Xε)(X) = ∅).

Proposition 5.22 puts forward the importance of the fo-condition. Its proof relies on a close
inspection of the Conversion Procedure.

PROPOSITION 5.22
LetR be a SERSdB . ThenR satisfies the fo-condition iffR is essentially first-order.

Further examples of essentially first-order SERSdB are the foldl -rewrite system of Example 4.10
and the natural numbers recursor rewrite system rec of Example 4.11.

Note that many results on higher-order systems (e.g. perpetuality [34], standardization [37]) re-
quire left-linearity (a metavariable may occur at most once on the LHS of a rewrite rule), and fully-
extendedness or locality(if a metavariable X(t1, . . . , tn) occurs on the LHS of a rewrite rule then
t1, . . . , tn is the list of variables bound above it). The reader may find it interesting to observe that
these conditions together seem to imply the fo-condition. A proof of this fact would require either
developing the results of this work in the above mentioned HORS or via some suitable translation to
the SERSdB formalism, and is left to future work.

Of course, all first-order rewriting systems are essentially first-order SERSdB : indeed all meta-
variables in first-order rewriting systems carry ε as label. Hence the latter systems need not be left-
linear. Also, an orthogonal SERSdB (Definition 2.15) need not be essentially first-order, the prime
example of this fact being the rewrite system consisting of the sole rule ηdB . This is summarized in
Figure 4.

It seems fair to say that a SERSdB system is essentially first-order if higher-order pattern matching
may be reduced to syntactic first-order matching. We claim that essentially first-order SERSdB

systems are appropriate for transferring results from first-order systems. A first step towards this
claim can be found in [12] where the Standardization Theorem is transferred from (left-linear) first-
order rewriting systems to essentially first-order higher-order rewriting systems.
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FIGURE 4. Essentially first-order systems

6 Other Higher-order rewriting formalisms

Besides SERS and ERS , many other HOR formalisms have been extensively studied. Two of
these are J-W. Klop’s CRS [33] and T. Nipkow’s HRS [42]. Figure 5 illustrates how the β-rule is
represented in each of these formalisms. In this section we relate higher-order rewriting in the HRS
formalism and first-order rewriting. Since CRS are a particular case of HRS [50] we shall also relate
CRS and first-order rewriting. After a brief overview of the HRS formalism we propose a rather
simple two-step conversion procedure, the HRS -conversion procedure, which converts any HRS
to a corresponding first-order rewrite system in which rewriting takes place modulo a first-order
equational theory. We then extend this procedure with three additional steps in order to specialize
it to the case of pattern HRS (see below). Some comments on differences between the HRS -
conversion procedure and the one developed in Section 4 for SERS are interwoven.

app(lam([z]X(z)), Y )→ X(Y ) (CRS )
app(lam(λz.x z), y)→ x y (HRS )
app(λα.X, Y )→ X[α← Y ] (SERS )

FIGURE 5. The β-rule in various HOR formalisms

As mentioned in the introduction to this paper the reason we have studied the SERS formalism
is that we find its notation appealing in that it allows a representation of rewrite rules which is
close to the usual informal presentation. This is particularly evident in the representation of the
β-rewrite rule. Although no formal relation between SERS and CRS , that we know of, has been
established in the literature, we believe that choosing between SERS or CRS is largely a matter
of taste. However, HRS differs from both of these formalisms since HRS is a typed formalism
allowing the representation of rewrite systems of arbitrary types. Indeed, CRS (and SERS ) are
second-order rewrite systems [50] whereas an HRS may be of any order.

An HRS consists of an alphabet F of symbols (each equipped with a type) and a set of HRS -
rewrite rulesR. Term formation is specified using the simply typed lambda calculus. Types(τ, υ, . . .)
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are built from a non-empty set of base types and the binary type constructor→. We use τi → τ as
a shorthand for the type τ1 → τ2 → ... → τn → τ where τ is a base type and → associates to
the right. For every type τ we assume a denumerable infinite number of variablesx, y, z, . . . of that
type. The set of pretermsof type τ over the signature F is formed from the following rules:

1. x : τ if x is a variable of type τ .

2. f : τ for every function symbolf ∈ F of type τ .

3. if x : τ1 and M : τ2 then λx.M : τ1 → τ2.

4. if M : τ1 → τ2 and N : τ1 then M N : τ2.

If M : τ can be derived from these rules, then we say that M is a preterm of type τ . A preterm
of the form f M1 . . . Mn is sometimes written f(M1, . . . ,Mn). Also, α-equivalent preterms are
identified. A context is a preterm with one occurrence of a hole �. The long η-normal formof a
preterm is obtained by repeatedly replacing C[M ] by C[λx.M x] where M is of type τ1 → τ2, x of
type τ1 does no occur free in M , M is not an abstraction and the occurrence of the hole � in C is not
functional (i.e. it does not occur as the left part of an application). This process is called restricted
η-expansiondue to the latter conditions which guarantee that no β-redexes are created. The long
βη-normal formof a preterm may be computed by taking the long η-normal form of its β-normal
form. A termis a preterm in long βη-normal form.

A rewrite ruleis a pair of terms (L,R) such that:

1. L and R are of the same base type,

2. L is of the form f(M1, . . . ,Mn), and

3. all free variables3 in R also occur in L.

A term M satisfies the pattern conditionif every free variable x in M occurs in the form
xM1 . . . Mn with each Mi η-equivalent (i.e. equal modulo η) to distinct bound variables, for
i ∈ 1..n. For example, λx.y x satisfies the pattern condition, however all of λx.y x x, λx.y z,
and λx.y cons(zero, x) do not. If (L,R) is a rewrite rule and L satisfies the pattern condition, then
(L,R) is a pattern rewrite rule. A set of pattern rewrite rules is called a PatternHRS , abbrevi-
ated PRS . The pattern condition guarantees that the induced rewrite relation is decidable because
unification of patterns is decidable [39].

EXAMPLE 6.1
An example of an HRS -rewrite rule (taken from [36]) is:

f(λx.y cons(zero, x))→ f(λx.y x).

It is an example of a rewrite rule whose LHS is not a pattern. The net effect of its execution is
that of replacing all cons-headers whose tail is the bound variable x under f with the bound variable
x. Note that if there are occurrences of the bound variable x under f which do not occur under the
form cons(zero, x), then the rule is not applicable4.

An example of a pattern rewrite rule is the β-rule of Figure 5. We assume there is only one base
type 0 (the type of the ‘terms’). The alphabet consists of the two function symbols app : 0→ 0→ 0
and lam : (0 → 0) → 0. The free variable x is of type 0 → 0 and y of type 0. See Figure 6(b) for
another example of a pattern rewrite rule.

3The notion of free variable is defined as usual [3].
4For instance this rule is not applicable to the term f(λx.g(x, cons(zero, x))).
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Given that β together with restricted η-expansion is confluent and terminating on the set of
preterms [26, 27] every preterm has a unique long βη-normal form. Thus we may restrict the induced
rewrite relation to terms without loss of generality.

An assignmentis a finite mapping from variables to terms of the same type. An assignment κ may
be extended to a mapping from terms to terms, with the aid of the usual variable convention of the
λ-calculus, as follows:

fκ def= f f ∈ F
xκ def= κ(x)
(λx.M)κ def= λx.Mκ

(M N)κ def= Mκ Nκ

Note that this extension of an assignment requires variable renaming in order to avoid unwanted
capture of free variables. Thus it is not simple replacement. Also observe that κ does not reduce
β-redexes.

Let M↓β denote the β-normal form of the preterm M . The rewrite relation induced by an HRS -
rewrite rule (L,R), is defined as:

C[Lκ↓β ]→(L,R) C[Rκ↓β ]

where C is any context.

6.1 ConvertingHRS

HRS -rewriting and first-order rewriting is related by the HRS -conversion procedureand is de-
scribed in this subsection. Since HRS is a typed rewriting formalism we would require a corre-
sponding typed substitution calculus in order to implement an HRS -rewrite step in a first-order
setting. Moreover, since substitution at the metalevel in an HRS is implemented by the full typed
lambda calculus the notion of basic substitution calculi (Definition 3.8) would have to be extended to
include a Beta-rewrite rule (λM)N→ M [cons(N, id)]. Such substitution calculi have been studied
in [29, 30, 49, 51]. Although such extensions of substitution calculi present no major problems, for
expository reasons we shall restrict ourselves to the λσ-calculus implementation of the simply typed
lambda calculus.

The HRS -conversion procedure consists of the following two steps:

Step 1. (de Bruijn indices notation)
Let •dB be the function that translates HRS terms into de Bruijn terms: bound variables are
replaced by de Bruijn indices and free variables (which in the HRS formalism correspond to the
metavariables of the SERS formalism) are left unaltered.
The result of applying Step 1 to an HRS rewrite rule (L,R) (resp. valuation κ) is a rewrite rule
(LdB , RdB ) (resp. valuation κdB ) in the HRSdB formalism. The latter formalism is the naı̈ve
de Bruijn variant of the HRS formalism and is defined as expected; similar comments apply to
notions such as βdB -reduction, ηdB -reduction and the corresponding notions of normal form and
long normal form. Note that the HRSdB formalism is still a higher-order rewrite formalism, it
relies on metalevel substitution and in order to instantiate rewrite rules valuations must do some
index adjusting on the metalevel.
The following holds:

M = C[Lκ↓β ] →(L,R) C[Rκ↓β ] = N (6.1)
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iff

MdB = CdB [LκdB

dB↓βdB
] →(LdB ,RdB ) CdB [RκdB

dB↓βdB
] = NdB . (6.2)

Observe that κ in (6.1) must be careful to rename whenever necessary in order to obtain Lκ (and
Rκ). The de Bruijn valuation κdB does not constitute a simple replacement operation either since
in order to obtain LκdB

dB in (6.2) it must do some index adjustment.
See Figure 6 for examples.

Step 2. (pre-cooking [17])
Each free variable x in (LdB , RdB ) resulting from applying Step 1 to (L,R) is replaced by
the term x[↑k] where k is the number of binders above that occurrence of x in (LdB , RdB ).
The resulting rewrite rule (L2, R2)5 is now a first-order rewrite rule in that the induced rewrite
relation is obtained by applying valuations that have become simple replacement; rewriting is
now first-order rewriting modulo λσ. Therefore, item (6.2) in the equivalence mentioned in Step
1 can now be replaced by:

MdB =λσ CdB [Lκ2
2 ]︸ ︷︷ ︸

matching phase

→(L2 ,R2 ) CdB [Rκ2
2 ] =λσ NdB︸ ︷︷ ︸

substitution phase
(6.3)

κdB and κ2 share the same underlying assignment. However, κdB has to do some index adjust-
ment when traversing the structure of a term, whereas κ2 does no such adjustment, it simply
replaces the free variables by their corresponding terms.
Note that since MdB is in βdB -normal form and λσ is confluent (on ground terms) we may
replace the matching phase in (6.3) by CdB [Lκ2

2 ] �λσ MdB and, similarly, the substitution
phase by CdB [Rκ2

2 ] �λσ NdB , where the notation N �λσ N ′ is used to say that N λσ-rewrites
to the λσ-normal form of N ′. This notion is well-defined since λσ is weakly normalizing [41, 22]
(and confluent as already mentioned).
See Figure 6.

f(λx.y cons(zero, x))→ f(λx.y x)

Step 1
��

f(λ(y cons(zero, 1)))→ f(λ(y 1))

Step 2
��

f(λ(y[↑] cons(zero, 1)))→ f(λ(y[↑] 1))

f(λx.g(λy.z x y))→ g(λy.f(λx.z x y))

Step 1
��

f(λ(g(λ(z 2 1))))→ g(λ(f(λ(z 1 2))))

Step 2
��

f(λ(g(λ(z[↑2] 2 1))))→ g(λ(f(λ(z[↑2] 1 2))))

(a) (b)

FIGURE 6. Examples of HRS -conversion procedure

5We use LdB for the result of applying Step 1 to L, L2 for the result of applying steps 1 and 2 to L, . . ., and L5 for the
result of applying steps 1 to 5 to L.
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REMARK 6.2
The acute reader may have noted that the Simulation Proposition (Proposition 5.8) for SERS uses
rewriting modulo the substitution calculus σ (and not (typed) λσ as in (6.3) of Step 2) for the
substitution phase. This is coherent with two facts: the observation made in [50] that HRS have
more ‘rewriting power’ than CRS , and the fact that CRS and SERS are equivalent formalisms.
A similar comment applies to the matching phase in (6.3) of Step 2: the HRS formalism allows
terms of any order and thus requires higher-order matching whereas SERS is a second-order pattern
rewriting formalism which relies on second-order pattern matching.

6.2 ConvertingPRS

The rewrite system which results from applying steps 1 and 2 is a first-order rewriting system mod-
ulo a (first-order) equational theory. However, the matching phase (see (6.3) in Step 2) could be
simplified incrementally in two ways.

• Beta-simplification. Suppose an application of the form x[↑k] a1 . . . an occurs in (L2, R2) with
x a free variable of type τi → τ . Then since κdB assigns terms in long βdBηdB -normal form
to free variables we may assume that κ2(x) = λ . . . λa where there are exactly n lambda
binders above a. Therefore, we could be tempted to replace the aforementioned application
by x′[cons(an, . . . cons(a1, ↑k))] where x′ is some free-variable of type τ . This would be done
in order to simplify the matching phase in (6.3) of Step 2 by eliminating the Beta-steps: This

phase would be replaced by CdB [Lκ′
2

2 ] �σ MdB , where κ′
2(x) = a (and similarly for the other

variables in the domain of κ′
2).

However, this simplification is not possible in general since σ may create Beta-redexes. Nev-
ertheless, in the particular case that all the (ηdB -normal forms of the) ais are de Bruijn in-
dices, then only ‘trivial’ Beta-redexes can be created [50, Prop.4.8a] in the reduction from
a[cons(an, . . . cons(a1, ↑k))] to its λσ-normal form. By ‘trivial’ we mean a Beta-redex of the
form ai c for some term c in some λσ-reduct of a[cons(an, . . . cons(a1, ↑k))].
• Full simplification.If the matching phase in (6.3) of Step 2 were replaceable by syntactic identity

MdB = CdB [Lκ2
2 ] then we would be in a first-order setting where syntactic matching suffices:

the equational theory λσ would not be necessary for matching. We shall see that in some cases
this is possible (see Step 4 and Step 5 below).

As remarked in the Beta-simplification entry the full λσ is required in the matching phase in order
to simulate HRS -rewriting in a first-order setting. However, if we restrict attention to the subclass of
patternHRS then Beta-simplification is applicable. Thus the PRS -conversion procedure consists
of Step 1 and Step 2 of the HRS -conversion procedure together with additional steps, namely steps
3, 4 and 5. Step 3 implements Beta-simplification of the matching phase whereas Step 4 and Step
5 considers full simplification.

Figure 6(b) presents the PRS -rewrite rule we shall use as an example in this subsection. This rule
models binder commutation. Below it, we depict the rules resulting from applying Step 1 and Step
2 to it.

Step 3. (Beta-simplification)
Let (L2, R2) be the result of applying steps 1 and 2 to the PRS -rewrite rule (L,R).
1. Replace all the applications of the form x[↑k] a1 . . . an in R2 where x is a free-variable of type

τi → τ by x′[cons(an, . . . cons(a1, ↑k))]. The type of x′ is τ . This simplification is justified
by observing that (λ . . . λa)[↑k] a1 . . . an =λσ a[cons(an, . . . cons(a1, ↑k))] where there are
exactly n lambda binders above a and a, a1, . . . , an are de Bruijn terms.
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2. Replace all the applications of the form x[↑k] a1 . . . an in L2 (note that k ≥ n) where x
is a free-variable of type τi → τ by x′[cons(an ↓ηdB

, . . . cons(a1 ↓ηdB
, ↑k))]. The type

of x′ is τ . This simplification is justified by observing that ((λ . . . λa)[↑k] a1 . . . an)↓λσ=
(a[cons(an↓ηdB

, . . . cons(a1↓ηdB
, ↑k))])↓σ where there are exactly n lambda binders above a,

a is in long βdBηdB -normal form and the (ηdB -normal forms of the) ais are de Bruijn indices.
Let (L3, R3) be the resulting rule. Then:

M = C[Lκ↓β ] →(L,R) C[Rκ↓β ] = N (6.4)

iff

MdB σ� CdB [Lκ3
3 ] →(L3 ,R3 ) CdB [Rκ3

3 ] �λσ NdB (6.5)

κ3 results from κ2 as follows: if x : τi → τ is in the domain of κ2, and thus κ2(x) = λ . . . λa
where there are n lambda binders above a, then in that case we define κ3(x′) = a.
Figure 7 applies Step 3 to the last rule of Figure 6(b).

f(λ(g(λ(z[↑2] 2 1))))→ g(λ(f(λ(z[↑2] 1 2))))

Step 3
��

f(λ(g(λ(z′[cons(1, cons(2, ↑2))]))))→ g(λ(f(λ(z′[cons(2, cons(1, ↑2))]))))

Step 4
��

f(λ(g(λz′)))→ g(λ(f(λ(z′[cons(2, cons(1, ↑2))]))))

FIGURE 7. Example of HRS -conversion procedure (cont.)

Step 4. (Naı̈ve full-simplification)
For every term of the form x′[cons(an, . . . cons(a1, ↑k))] in L3 where the ais are de Bruijn
indices, if it is of the form x′[cons(1, . . . cons(k, ↑k))] then replace it by the free variable x′.
In other words, throw away the substitution [cons(1, . . . cons(k, ↑k))] since it behaves as the
identity substitution6. Let (L4, R4) be the resulting rewrite rule (note that R4 = R3). If no
explicit substitutions in L4 remain then we may replace the matching phase in (6.5) of Step 3 by
syntactical identity:

MdB = CdB [Lκ4
4 ] →(L4 ,R4 ) CdB [Rκ4

4 ] �λσ NdB (6.6)

where κ4 = κ3.
See Figure 7 for an example.

Let R be a PRS and let R4 be the result of applying the PRS -conversion procedure to R. We
could sayR is essentially first-orderif there are no explicit substitution operators in the LHS s of the
rewrite rules inR4. However, this is not fully convincing. Consider the following two PRS -rewrite
rules:

6In the sense that for any pure term a and for all k > 0 (we assume ↑0= id): a =σ a[id ] =σ a[cons(1, . . . cons(k, ↑k
))].
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f(λx.g(λy.z x y)) →c1
g(λy.f(λx.z x y))

f(λx.g(λy.z y x)) →c2
g(λy.f(λx.z y x)).

They both induce the same rewrite relation and differ only in the way the free variable z is applied
to the bound variables x and y. However, the first rule satisfies the definition of essentially first-order
given above but the second does not. Indeed, steps 1 to 4 applied to the rule c2 yields:

f(λ(g(λ(z′[cons(2, cons(1, ↑2))]))))→ g(λ(f(λ(z′[cons(1, cons(2, ↑2))]))))

as the term z′[cons(2, cons(1, ↑2))] cannot be replaced by z′ using Step 4.
We may observe that the free variable z in the LHS of c1 and c2 is applied to all the bound

variables above it. Therefore, from the point of view of the induced rewrite relation, the order in
which they are applied is irrelevant. Indeed, if we were to rearrange z y x on the LHS of c2 to z x y
(and apply such a transformation also to the RHS of c2), then we would obtain c1. And, as already
observed, the induced rewrite relation remains unaltered. As a matter of fact, the SERS -Conversion
Procedure does exactly this: the user fixes an order on the indices representing bound variables by
selecting a pivot metavariable.

As a consequence, we shall add a new step, Step 5, to the PRS -Conversion Procedure in order to
attain a more convincing notion of essentially first-order PRS .

Step 5. (Full-simplification)
Let x′ be a variable in L4 occurring m times and suppose that every occurrence i of x′ with
1 ≤ i ≤ m is embraced by a substitution of the form x′

i[cons(ai
k, . . . cons(ai

1, ↑k))] where
k > 0 is the number of binders above x′

i and the (ηdB -normal forms of) ai
k, . . . , ai

1s are de
Bruijn indices. Note that:
• the simplification in Step 4 was surely not applied to one of these occurrences for then there

would be no substitution embracing it (k > 0 would not be possible); therefore none of the
x′

i[cons(ai
k, . . . cons(ai

1, ↑k))] is of the form x′
i[cons(1, . . . cons(k, ↑k))],

• the number of binders above all the occurrences of x′ is the same and equal to k, and
• due to the pattern-condition, for every 1 ≤ i ≤ m the indices ai

j with 1 ≤ j ≤ k are distinct
bound indices (i.e. (ai

k, . . . , ai
1) is a permutation of (1, . . . , k)).

Pick any occurrence x′
i[cons(ai

k, . . . cons(ai
1, ↑k))], the pivot occurrence ofx′. Let π be the

permutation of (ai
k, . . . , ai

1) such that π(ai
k, . . . , ai

1) = (1, . . . , k).
1. replace x′

i[cons(ai
k, . . . cons(ai

1, ↑k))] by x′
i,

2. replace x′
j [cons(aj

k, . . . cons(aj
1, ↑k))] for j �= i by x′

i[cons(bj
k, . . . cons(bj

1, ↑k))] where

(bj
k, . . . , bj

1) = π(aj
k, . . . , aj

1), and
3. replace all substitutions of the form x′

i[cons(ck, . . . cons(c1, ↑n))] in R4 (note that in R4 we
could have k �= n) by x′

i[cons(dk, . . . cons(d1, ↑n))] where (dk, . . . , d1) = π(ck, . . . , c1).
As the reader may note the rewrite relations induced by (L4, R4) and (L5, R5) are identical.

Let us now define a PRS R to be essentially first-orderif there are no explicit substitution oper-
ators in the LHS s of the rewrite rules in R5, where R5 is the system resulting from applying steps
1 to 5 toR. This time, applying steps 1 to 5 to the rule c2 yields:

f(λ(g(λz′)))→ g(λ(f(λ(z′[cons(2, cons(1, ↑2))])))).

The permutation π in this example is the one that interchanges the first and second elements of (2, 1):
π(2, 1) = (1, 2). Thus we may correctly deduce that c2 is an essentially first-order PRS .
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7 Conclusions

We have presented an encoding of higher-order term rewriting systems with indices into first-order
rewriting systems modulo an equational theory. This equational theory models the substitution pro-
cess. The encoding has furthermore allowed us to identify in a simple syntactical manner, via the
so-called fo-condition, a class of HORS that are fully first-order in that they may be encoded as
first-order rewriting systems modulo an empty equational theory. This amounts to incorporating,
into the first-order notion of reduction, not only the computation of substitutions but also the higher-
order (pattern) matching process. It is fair to say that a higher-order rewrite system satisfying this
condition requires a simple matching process, in contrast to those that do not satisfy this condition
(such as the λβη-calculus). Other syntactical restrictions, such as linearity and locality, imposed on
higher-order rewriting systems (see for example [31, 37]) in order to reason about their properties
are closely related to the fo-condition.

Moreover, this encoding has been achieved by working with a general presentation of substitution
calculi rather than dealing with some particular substitution calculus. Any calculus of explicit sub-
stitutions satisfying this general presentation based on macros will serve its purpose, namely that of
modelling matching and substitution.

Some further research directions are summarized below:

• As already mentioned, the encoding opens up the possibility of transferring results concerning
confluence, termination, completion, evaluation strategies, implementation techniques, etc. from
the first-order framework to the higher-order framework. A first step in this direction is studied
in [38, 12] where the standardization property is lifted form first-order to higher-order rewriting.
Thus, the translation proposed in this paper to encode higher-order rewriting could provide a
new means for studying properties of higher-order rewriting through corresponding results in
the first-order setting.

• Given a SERSdB R note that the LHS s of rules in fo(R) may contain occurrences of the substi-
tution operator (pattern substitutions). It would be interesting to deal with pattern substitutions
and ‘regular’ term substitutions (those arising from the conversion of the de Bruijn metasub-
stitution operator •[•]) as different substitution operators at the object-level. This would neatly
separate the explicit matching computation from that of the usual substitution replacing terms
for variables.

• Given a SERSdB R which enjoys termination, what are the abstract properties to be imposed on
its first-order version fo(R)W in order for it to be terminating too? This point concerns both the
basic substitution calculus W and the substitutions generated by the rules of R. A first step in
this direction is done in [7] for the explicit version of CRS with names, where the substitution
calculus is x.
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Appendix

A On pivot selection
It is clear that CP (L, R) and CQ(L, R) shall not be identical. Nevertheless, the rewrite relation generated by both of these
converted rewrite rules is identical.

Before proving this proposition, let us consider a rewrite rule (L, R) and let Xl1 , . . . , Xln be all the X-based meta-
variables in (L, R) with Ba(L,R)(X) �= ∅. Let Xl1 and Xl2 be two possible X-based pivots for (L, R). Note that we must
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have either Xl1 , Xl2 ∈ L, or Xl1 , Xl2 ∈ R (in which case |k| > |l1| and |k| > |l2| for all Xk ∈ L). Also, we have
|l1| = |l2|, a fact that shall be made use of freely below.

Let us consider two different conversions (a) and (b) as dictated by Definition 4.7 taking any metavariable Xli for 1 ≤
i ≤ n and yielding a first-order term:

(a) Xli � X[cons(ai
1, . . . , ai

|l1|, shift
|li|+|l1\Ba(L,R)(X)|)]

and

(b) Xli � X[cons(bi
1, . . . , bi

|l2|, shift
|li|+|l2\Ba(L,R)(X)|)].

Note that clause 1 of Definition 4.7 does not present itself since the case of interest is when Ba(L,R)(X) �= ∅.
The first translation (a) corresponds to the conversion dictated assuming Xl1 as the pivot, while the second translation (b)

assumes that Xl2 is the pivot.

On an informal account, the substitution cons(ai
1, . . . , ai

|l1|, shift
|li|+|l1\Ba(L,R)(X)|) may be seen as representing

a function fi from indices to indices (hence assuming X is only instantiated with indices). Likewise, cons(bi
1, . . . , bi

|l2|,

shift |li|+|l2\Ba(L,R)(X)|) represents a function gi. We shall therefore be intersted in finding a function h which may be rep-
resented by a pattern substitution such that fi = gi◦h. We shall see that the pattern substitution cons(c1, . . . , c|l1|, shift

|l1|)
defined below satisfies this requirement. Define the following indices cj for all 1 ≤ j ≤ |l1|:

cj =

{
a2

j if at(l1, j) ∈ Ba(L,R)(X)

pos(a2
j , b11...b1|l1|) otherwise.

(A.1)

REMARK A.1
Note that the second clause of the definition of cj is defined. Indeed, if at(l1, j) /∈ Ba(L,R)(X) then a2

j = |l2| + 1 +
Sh(Xl1 , j) and since |l1| = |l2|, l1 and l2 are simple labels and Ba(L,R)(X) �= ∅ both l1 and l2 have the same number of
o-metavariables not included in Ba(L,R)(X). Thus there exists j′ ∈ 1..|l1| such that b1

j′ = |l1| + 1 + Sh(Xl2 , j′) with

Sh(Xl2 , j′) = Sh(Xl1 , j), and hence a2
j = b1

j′ .

The relation between the two translations (a) and (b) given above can be summarized by the following result:

LEMMA A.2
Let n be the number of X-based metavariables in (L, R) and let Xl1 and Xl2 be two distinct pivots for (L, R). Let h ≥ 0
and 1 ≤ i ≤ n. Take any first-order valuation ρ and indices ai

j (1 ≤ j ≤ |l1|) and bi
j (1 ≤ j ≤ |l2|) as indicated above in

the translations (a) and (b). Then

(ρX)[lifth(sai )]

=W (ρX)[lifth(s)][lifth(sbi )]

where
• s = cons(c1, . . . , c|l1|, shift

|l1|) is defined in equation A.1,

• sai = cons(ai
1, . . . , ai

|l1|, shift
|li|+|l1\Ba(L,R)(X)|) and

• sbi = cons(bi
1, . . . , bi

|l2|, shift
|li|+|l2\Ba(L,R)(X)|).

PROOF. We proceed by induction onW(ρX).
• W(ρX) = j. We consider three subcases:

– j ≤ h. Then Lemma 3.15 (1) allows us to conclude this case.
– h < j ≤ |l1|+ h. Then

LHS =W j − h[sai ][shift ]h =W ai
j−h + h

RHS =W cj−h[sbi ][shift ]h.

We shall consider two further cases. Recall that Xl1 is an X-based pivot for conversion (a) and Xl2 is an X-based pivot
for conversion (b).

1. i = 1. Suppose
∗ at(l1, j − h) = β ∈ Ba(L,R)(X). Then

RHS = a2
j−h[sb1 ][shift ]h

= pos(β, l2)[sb1 ][shift ]h

=W b1
pos(β,l2)

+ h

= pos(β, l1) + h

= j − h + h

=W LHS
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Recall that all labels are simple (no repeated elements).
∗ at(l1, j − h) /∈ Ba(L,R)(X).

RHS
= pos(a2

j−h, b11..b1|l1|)[sb1 ][shift ]h

= pos(|l2|+ 1 + Sh(Xl1 , j − h), b11..b1|l1|)[sb1 ][shift ]h

=W |l2|+ 1 + Sh(Xl1 , j − h) + h

= |l1|+ 1 + Sh(Xl1 , j − h) + h

=W LHS

2. i ≥ 2. Suppose
∗ at(l1, j − h) = β ∈ Ba(L,R)(X). Then

RHS = a2
j−h[sbi ][shift ]h

= pos(β, l2)[sbi ][shift ]h

=W bi
pos(β,l2)

+ h

= pos(β, li) + h
=W LHS

The last step follows from case 2(b) of Definition 4.7 since Xli is a not the pivot metavariable occurrence for
conversion (a), for any i ≥ 2.
∗ at(l1, j − h) /∈ Ba(L,R)(X). Then LHS =W |li|+ 1 + Sh(Xl1 , j − h) + h. Also,

RHS
= pos(a2

j−h, b11..b1|l1|)[sbi ][shift ]h

= pos(|l2|+ 1 + Sh(Xl1 , j − h), b11..b1|l1|)[sbi ][shift ]h.

Now since |l2| + 1 + Sh(Xl1 , j − h) > |l1| and |l1| = |l2| there must be some 1 ≤ j′ ≤ |l1| such that
b1
j′ = |l1| + 1 + Sh(Xl2 , j′) (and hence at(l2, j′) /∈ Ba(L,R)(X)) with Sh(Xl1 , j − h) = Sh(Xl2 , j′) (see

Remark A.1). Thus we may continue as follows:

pos(|l2|+ 1 + Sh(Xl1 , j − h), b11..b1|l1|)[sbi ][shift ]h

= j′[sbi ][shift ]h

=W bi
j′ + h

= |li|+ 1 + Sh(Xl2 , j′) + h.

The last equality follows from the fact that at(l2, j′) /∈ Ba(L,R)(X).
– j > |l1|+ h. Then

LHS
=W j − h[sai ][shift ]h

=W j − h− |l1|+ |li|+ |l1 \ Ba(L,R)(X)|+ h

= j − |l1|+ |li|+ |l1 \ Ba(L,R)(X)|
= j − |l2|+ |li|+ |l2 \ Ba(L,R)(X)|
=W j[lifth(sbi )]

=W j − h[s][shift ]h[lifth(sbi )]

=W RHS

• W(ρX) = f(d1, . . . , dn). We use the induction hypothesis.

• W(ρX) = ξ(d1, . . . , dn). Then by the induction hypothesis we have

dj [lift
h+1(sai )] =W dj [lift

h+1(s)][lifth+1(sbi)]

for all j ∈ 1..n which allows us to conclude the case.
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PROOF. [of Proposition 4.14] Let (L1, R1)
def
= CP (L, R) and (L2, R2)

def
= CQ(L, R). Suppose that a→(L1 ,R1 ) b. Then

there exists a context E and a first-order valuation ρ such that a =W E[ρ(L1)] and b =W E[ρ(R1)].

For all X ∈ FMVAR(L) define the first-order valuation η as: ηX
def
= ρ(X)[s] where s = cons(c1, . . . , c|l1|, shift

|l1|)
and the cis are defined in equation A.1. Consider now an occurrence of a metavariable Xli ∈ (L, R) where {Xl1 , . . . , Xln}
are all the X-based metavariables in (L, R).
• If Ba(L,R)(X) = ∅ then both conversions shall convert Xli to the term X[shift |li|]. This case needs no further consid-

eration.

• If Ba(L,R)(X) �= ∅ then each conversion shall convert Xli to (possibly) different terms: X[sai ] on the one hand, and on
the other X[sbi ]. Here we may apply Lemma A.2 and obtain:

(ρX)[sai ] =W (ηX)[sbi ].

If conversion (a) deployed the identity optimization then

sai = cons(1, . . . , |l1|, shift |l1|)

and Xli is converted to X . We may then make use of the fact that

ρX =W (ρX)[cons(1, . . . , |li|, shift |li|)]

and resort to Lemma A.2 as above. A similar observation holds for the (b) conversion.
Therefore we may obtain ρ(L1) =W η(L2) and ρ(R1) =W η(R2), so that a =W E[ρ(L1)] =W E[η(L2)] and

b =W E[ρ(R1)] =W E[η(R2)], i.e. a→(L2 ,R2 ) b.

Valuation Conversion
LEMMA A.3
Consider a SERSdB -rewrite rule (L, R), metavariables Xl, Xk ∈ (L, R), and a valuation κ valid for (L, R). For all i ≥ 0,
if
1. κXl = D[a] for some pure context D having binder path number i,

2. Valuei(l, a) = Valuei(k, b), and

3. the binding allowance of X in (L, R) is the empty set (i.e. Ba(L,R)(X) = ∅),
then D|l|

i (a) = D|k|
i (b).

PROOF. By induction on a.
• a = n. We consider the following cases:

– n ≤ i + |l|. Then D|l|
i (a) = n. If n ≤ i then since Valuei(l, a) = n = Valuei(k, b), we have b = n and the result

holds.
Otherwise, if i < n ≤ i + |l| then since by Hypothesis 2 we have Valuei(l, n) = at(l, n − i) = Valuei(k, b) we
must have b = m with i < m ≤ i + |k| and at(l, n − i) = at(k, m − i). But by Hypothesis 3 there must be some
Xl′ in (L, R) such that at(l, n − i) /∈ l′, and hence Value(l′, κXl′ ) �= Value(l, κXl) by the definition of the value
function Definition 2.13 (since at(l, n−i) occurs in Value(l, κXl) but at(l, n−i) does not occur in Value(l′, κXl′ )),
contradicting the assumption that κ is valid.

– n > i + |l|. Then D|l|
i (a) = n− |l|. Also, since Valuei(l, a) = xn−i−|l| = Valuei(k, b), we have b = m with

m > |k|+ i and n− |l| − i = m− |k| − i. Then D|k|
i (b) = m− |k| and the result holds.

• a = f(a1, . . . , an). Then D|l|
i (a) = f(D|l|

i (a1), . . . ,D|l|
i (an)).

Now by Hypothesis 2 we have that b = f(b1, . . . , bn) with Valuei(l, aj) = Valuei(k, bj) for all 1 ≤ j ≤ n. Then the

induction hypothesis yields D|l|
i (aj) = D|k|

i (bj) for j ∈ 1..n and we may conclude the case by Definition 5.1.

• a = ξ(a1, . . . , an). Then D|l|
i (a) = ξ(D|l|

i+1(a1), . . . ,D|l|
i+1(an)).

Now by Hypothesis 2 we have that b = ξ(b1, . . . , bn) with Valuei+1(l, aj) = Valuei+1(k, bj) for all 1 ≤ j ≤ n. Then
the induction hypothesis concludes the case.

PROOF. [of Lemma 5.7] Both items are proved by induction on A.
• A = n. Then LHS = ρ(n) = n = κn = RHS .
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• A = Xk . Note that since Xk is a subterm of a metaterm (i.e. a well-formed pre-metaterm) k is a simple label. According
to Definition 4.8 we have three subcases to consider:
1. Ba(L,R)(X) = ∅. We reason as follows

LHS = ρ(X[shift |k|])
= ρ(X)[shift |k|]
=Definition 5.6 D|l|

0 (κXl)[shift
|k|]

=Lemma 5.2
W κXk

where Xl is any metavariable from L.
2. Ba(L,R)(X) �= ∅ and cons(b1, . . . , b|l|, shiftj) �= cons(1, . . . , |l|, shift |l|) where Xl is the X-based pivot metavari-

able as dictated by P . We reason as follows:

LHS = ρ(X[cons(b1, . . . , b|l|, shiftj)])

= ρ(X)[cons(b1, . . . , b|l|, shiftj)]

= Al
0(κXl)[cons(b1, . . . , b|l|, shiftj)]

=Lemma 5.5
W κXk.

3. Ba(L,R)(X) �= ∅ and cons(b1, . . . , b|l|, shiftj) = cons(1, . . . , |l|, shift |l|) where Xl is the X-based pivot metavari-
able as dictated by P . We reason as follows:

LHS = ρ(X)
= Al

0(κXl)

=W Al
0(κXl)[cons(1, . . . , |l|, shift |l|)]

=Lemma 5.5
W κXk.

Note that the third equality holds by the fact that cons(1, . . . , |l|, shift |l|) behaves as the identity substitution.

• A = f(A1, . . . , An) or A = ξ(A1, . . . , An). Then for the first case we have

LHS = f(ρ(C(L,R)
P (A1)), . . . , ρ(C(L,R)

P (An))) =i.h.
W f(κA1, . . . , κAn) = RHS .

The second case is similar.

• A = A1[A2]. Then

LHS = ρ(C(L,R)
P (A1[A2]))

= ρ(C(L,R)
P (A1))[cons(ρ(C(L,R)

P (A2)), id)]
=i.h.

W (κA1)[cons(κA2, id)]

=Lemma 3.15(3) κA1{{1← κA2}}
= κ(A1[A2])
= RHS
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