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Abstract

In this paper we encode higher-order rewriting with names into higher-order rewriting in de Bruijn notation. This notation
not only is defined for terms (as usually done in the literature) but also for metaterms, which are the syntactical objects
used to express the rewriting rules of higher-order systems. Several examples are discussed. Fundamental properties such as
confluence and normalisation are shown to be preserved.
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1 Introduction

Rewriting is a very powerful method used to model computation where rewrite rules are used to
transform an expression into another simpler expression. The set of results or values of a computa-
tion may be interpreted as those expressions which cannot be rewritten any further.

There are many programming paradigms that can be modelled by rewriting, such as for exam-
ple functional and logic programming, equational reasoning, object-oriented and concurrent pro-
gramming and theorem provers. Rewriting is aso used in mathematical reasoning, specification of
security protocols, resolution constraint methods, transition systems, natural language processing,
operational semantics, algebraic specifications, program transformation, etc.

One of the simplest rewriting formalisms is the so called first-order rewriting systemgésee for
example [16, 15, 19, 7, 29]), where expressions are represented using algebras, and specifications
of operations and properties can be done via a set of equations. In order to obtain a computation
mechanism for the expressions of the algebra, the equations are oriented as rewrite rules.

There is aso a classica rewriting formalism to represent the operations used to manipulate ex-
pressions, namely the A-cal culus, where functions come with rulesto evaluate them. These functions
are considered as ‘first-class citizens': we can apply a function to another function (and in particu-
lar to itself), we can yield a function as the result of another function. The A-calculus, which is a
Turing complete language, turns out to be a model of computation for the functional programming
paradigm.

Both formalisms, namely first-order rewriting and \-calculus, present some interesting character-
istics, which are in some sense complementary. On the one hand, A-calculusis a natural model for
functionality, but it is often not well-adapted to deal efficiently with data structures such as integers,
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lists or trees. In practice, even if it is known how to encodealgebraic data types into the A-calculus,
it is preferable to introduce primitive algebraic structuresinto the A-calculus [9]. On the other hand,
even if some equalities can be encoded into the typed A-calculus (such as for example those which
are necessary to define addition on integers), there are some other equalities that cannot (such as
for example the surjective pairing[2] axiom). Therefore, there is a concrete reason to enrich the
expressive power of asystem like the typed A-calculus by adding either richer typing systems and/or
algebraic rewrite rules.

Last but not least, first-order rewriting is not well-adapted to deal with functions as *first-class
citizens', that is, to write specifications where functions may be used as parameters aswell asresults.
A typical exampleisgiven by aprogram like map.!

All these characteristics together contribute to the foundations of higher-order rewriting systems
(HORS) These systems combine within a unique syntax the formalisms from proof theory, such
as the typed A-calculus, with formalisms arising in algebraic specifications, such as the first-order
rewriting systems. We thus obtain alanguage which is able to model at the same time the notion of
computatiorend that of proof.

Many higher-order rewriting systems exist and work in the area is currently very active. This
research domain may be seen to start with the pioneering work of JW. Klop in his 1980 PhD
thesis [18], where Combinatory Reduction SysterfGR.S) were introduced. Several formalisms
introduced later, of which we mention some, are: Z. Khasidashvili’s Expression Reduction Systems
(ERS) of which an early referenceis [17], T. Nipkow introduces Higher-Order Rewriting Systems
(HRS) in[22], D. Wolfram defines Higher-Order Term Rewriting Systerf&4], V. van Oostrom and
F. van Raamsdonk introduce Higher-Order Term Rewriting Systerf32] as a general higher-order
rewriting formalism encompassing many known formalisms [31, 33] and B. Pagano defines Explicit
Reduction System{(R.S) [23] using de Bruijn notation. van Raamsdonk’s PhD thesis provides a
survey [33].

Higher-order (term) rewriting concerns the transformation of terms in the presence of binding
mechanisms for variables and substitution. In order to explain the technical problems encountered
when working with these systems, let us take as an example the A-calculus, where terms are either
variables (denoted by symbols z,y, z, ...), or applicationshaving the form (M N) representing
the application of the function M to an argument N, or A-abstractionshaving the form Az.M
representing a function with argument « and body M. The transformation rule is the 5-rewrite rule,
which represents the result of applying afunction to an argument.

(M. M)N—g M|z < NJ.

The right-hand side of thisrule makes use of aspecia symbal to denote the substitutioroperation:
Mz «— N] denotes the term which results from substituting N for all free occurrences of = in
M. Subgtitution is a metalevel notion (it lives in the world of our language of discourse) that may
be seen as a consequence of the existence of special symbols called binder symbolghat have the
power to bind variables in terms. This entails that substitution may not be confined to usual first-
order replacement, but rather has to be careful to respect the status (free or bound) of variables
when doing its work. In this sense, it is fair to say that substitution is ‘respectful replacement’
and, as a consequence, it is a mistake to dismiss substitution as a trivial concept: the theory of
higher-order rewriting is considerably more involved than that of first-order rewriting. In particular,
a-conversion is needed to guarantee that substitution is a correct operation; and this comes with a

1The program map can be specified by the equationsmap (£, [1) = [] andmap(f,x::1) = £(x)::map(f,1), where
£ represents any function, [] representsan empty list, and x: : 1 represents anon-empty list having afirst element x followed
by asublist 1.
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cost since automatic renaming of bound variables turns out to be an expensive operation in terms of
consumption of computational resources such as memory and processing time.

This paper aims at getting rid of «-conversion in the substitution process. Although from the
metalevel the execution of a subgtitution is atomic, the cost of computing it strongly depends on
the form of the terms, especialy if unwanted variable capture conflicts must be avoided by renam-
ing bound variables. So this aim has a practical interest since any implementation of higher-order
rewriting must include instructions for computing this notion of substitution. Asillustrated in Sec-
tion 4, there is a standard technique introduced by de Bruijn to get rid of a-conversion. De Bruijn
indices take care of renaming because the representation of variables by indices completely elimi-
nates the capture of variables. However, de Bruijn formalisms have only been studied for particular
systems (and only on the term level) and no general framework of higher-order rewriting with in-
dices has been proposed. We address this problem here by focusing not only on de Bruijn terms
(as usually done in the literature for A\-calculus [21]) but also on de Bruijn metaterms, which are
the syntactical objects used to express the rules of any general higher-order rewrite system formu-
lated in ade Bruijn context. More precisely, we shall introduce a de Bruijn notation for Expression
Reduction Systems, obtaining SERSyp. In fact, we shall formulate a slightly simplified version
of ERS that we shal call Simplified ERS (SERS), better suited for our purposes, and then con-
sider a de Bruijn notation for this formalism. The reason for choosing the ER.S formalism is that
its syntax is close to the ‘usual’ presentation (see for example [2, 13]) of the A-calculus. Thus,
for example, the G-rewrite rule is written in the ERS formalism as app(Ax.M, N)— M|z «— N]
where the higher-order metavariables M and N can be instantiated by any terms, while it is writ-
ten in the CRS formalism as app(lam([x].M (z)), N)— M (N) where the notion of valuation for
higher-order variables is amore involved operation.

Our work may be viewed as an interfaceof aprogramming language based on higher-order rewrit-
ing. Since the use of variable names based formalisms are necessary for humans to interact with
computers in a user-friendly way, technical resources like de Bruijn indices and explicit substitu-
tions should live behind the scene, in other words, should be implementation concerns. Moreover, it
isrequired of whatever is behind the scene to be as faithful as possible as regards the formalismiit is
implementing. So akey issueisthe detailed study of the relationship between SERS and SERS;5.
The definitions developed in Sections 4 and 5 give formal translations from higher-order syntax with
names to higher-order syntax with indices and vice versa. These tranglations are extensions to the
higher-order setting of the trandations presented in [10], also studied in [21].

We begin this paper by introducing our work and study scenario, the SERS formalism. After
defining notions such as pre-metaterms, metaterms and terms and their corresponding notions of
substitution, we consider rewrite rules. Valuations are then introduced in order to put rewrite rules
to work. Metaterms are used to specify rewrite rules, and valuations are used to instantiate them in
order to rewrite terms.

The de Bruijn based formaism SERS,p is defined in Section 3, and analogous concepts are
considered in that setting. The key idea of our de Bruijn notation for metaterms is to associate
labels to metavariables in order to denote binding contexts Thus for example, the metaterm with
names f(Aa.(app(X, a)), X) will be translated as the de Bruijn metaterm f(A(app(Xa, 1)), Xe),
where X, denotes a metavariable X, which appears in an empty binding context, and X, denotes
a metavariable X', which appears inside a binding context with a single variable, namely . This
notation turns out to be a natural tool to write higher-order rewrite rules in a de Bruijn context.
Simple examples of such a fact, which we shall consider in this paper, are the n,;5z and the Cyp
rewrite rules, obtained from their respective name versions n and C':2

2The rewrite rule C' expresses that the formula appearing as the first argument of the imply function symbol implies the
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Aa.(app(X, a)) -y X Mapp(Xa, 1)) s Xe
imply(Ba VB.Y,VB.3a.Y) —¢  true imply(IVY34,Y3Y0g) —c,  true

Note that if the rightmost X, of the rule n4p is instantiated by a term a, then the leftmost X,
must be instantiated by another term, say o', which is obtained by incrementing by one al the free
indices in a. On the other hand, if the rightmost Y,z of the rule Cyp is instantiated by a term b,
then the leftmost Y3, must be instantiated by aterm, say &', which is obtained by interchanging all
1-level and 2-level indicesin b. Indeed, the label o3, when compared to the label Ga may be seen
as denoting a permutation of indices.

We undertake the task of carefully comparing the SERS and SERS;p formalisms. Section 4
studies an encoding of SERS into SERS,;z and Section 5 considers the opposite encoding. In
each case, this requires dealing with a static phase by showing how terms and rewrite rules may
be encoded, and a rewrite preservation or dynamical phase in which we must show that valuations,
and hence the induced rewrite relation, may also be encoded appropriately. The SERS 5-t0-SERS
direction shall prove to be technically more demanding than the other. The reason is that we have
a choice for selecting appropriate names for variables and metavariables, and we must rest assured
that the results are not biased by our selection.

Thework presented in this paper isfurther extended in [6] by showing how to encode all SERS 5
as first-order rewriting systems with the aid of explicit substitutions. As a consequence, we obtain
a complete trandation from higher-order rewriting within a formalism with names to first-order
rewriting modulo an equational theory.

This paper is an extended version of the extended abstract published as [4].

Concerning related work, it isworth noticing that other approachesto higher-order formalisms use
Nominal Logic or Higher-order Abstract Syntax. Thefirst oneisaversion of many-sorted first-order
logic with equality containing primitives for renaming via name-swapping, for freshness of names
and for name-binding. The logic makes use of the Fraenkel-Mostowski (FM) permutation model of
set theory. Some of the more representative works along this line can be found in [14, 25, 30].

Higher-order Abstract Syntax (HOAS) incorporates name binding information in a uniform and
language generic way. This is done by representing object-level variables by variables in a meta-
language based on typed A-calculus. The consequence of this representation is that renaming and
substitution is pushed out to the meta-level and that their properties are established once and for all.
Some proposals using HOAS are [24, 11].

2 Simplified expression reduction systems

This section introduces the name based higher-order rewrite formalism SERS. The latter is an ap-
propriate simplification of Khasidashvili's ERS [17] which consists in restricting binders to those
which bind one variable and restricting substitution to simple substitution (in contrast to simultane-
ous or parallel substitution).

DEFINITION 2.1 (Signature)
A SERS-signature X consists of the following denumerable and disjoint sets.

e A set V of variablesdenoted x, v, . . .
e A set of pre-bound o-metavariablde for object) denoted «, 3, . . .

onein the second argument.
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e A set of pre-free o-metavariabledenoted a, 3, ..

e A set of t-metavariablegt for term), denoted X, Y, Z, . ..

e A set F of function symbolgquipped with afixed (possibly zero) arity, denoted f, g, h, . ..
e A set B of binder symbolgquipped with afixed (non-zero) arity, denoted A, u, v, €, . ..

The o-metavariables of the signature is the union of pre-bound and pre-free o-metavariables.
When speaking of metavariables without further qualifiers we refer to o- and t-metavariables. Since
all these a phabets are ordered, given any symbol s we denote O(s) its position in the corresponding
alphabet.

DEFINITION 2.2 (Pre-metaterms)
The set of SERS pre-metatermsver X, denoted PMT, is defined by:

M = al|a|X|f(M,...,M)|€a(M,...,M)| Mo — M].

Arities are respected, i.e. apre-metaterm f(M;, ..., M,) (resp. Ea.(My, ..., M,)) isgenerated
by the grammar only if f (resp. &) hasarity n > 0 (resp. n > 0).

We use M, N, M;, ... to denote pre-metaterms. The operator e[e «— e| in the pre-metaterm
Mo «— My] is called the metasubstitution operatorThe o-metavariable « in a pre-metaterm
of the form a.(My, ..., M,,) or Mi[a — Ms>] is referred to as the formal parameter The set
of binder symbols together with the metasubstitution operator are called binder operatorsthus the
metasubstitution operator isabinder operator (sinceit has binding power) but is notabinder symbol
sinceit isnot an element of B.

SERS and ERS differ in their treatment of substitution since in ERS binders and metasubsti-
tutions are defined on multiple o-metavariables. Pre-metatermslike (o ... ay. (M, . .., M,,) and
Moy ... < My, ..., M| arepossiblein ERS, with the underlying assumption that o, . . . , ag
are al distinct and with the underlying semantics that M|« ... «— My,..., M} denotes the
usual (multiple) substitution. It is well known that multiple substitution can be encoded by simple
substitution. Indeed, M« ... oy «— My,..., My] can be encoded as the pre-metaterm Mo —
Billag < Ba] ... [ax «— Bk][B1 «— Mi][B2 «— My]...[Bk < My], where fq,. .., 0y arefreshpre-
bound o-metavariables. Asfor £ ... a.(My, ..., M,,) it may be encoded with the help of two
binder symbols ¢ and &’ of arity 1 and m respectively, obtaining £a; . (Eas. (. . . & ag.(My, ..., My,))).
There isalso anotion of scopeindicator in ER.S, used to express in which arguments of the binder
variables are bound. Scope indicators are not considered in SERS since they do not seem to con-
tribute to the expressive power of ERS.

We sometimes identify a pre-metaterm with its associated tree

e Thetree of ametavariable o, @ or X isthe tree with the single node «, @ or X, respectively.

o If T1,...,T, arethetreesof My,..., M,, respectively, then thetree of f(M1,..., M,) isthat
of Figure 1(a).

o If Ty,..., T, arethetrees of My,..., M,, respectively, then the tree of a.(M;,...,M,) is
that of Figure 1(b).

o If T, T, are the trees of My, Mo, respectively, then the tree of M;[a — My] is that of Fig-
ure 1(c).

Thetree of f(My,..., M,) hasthe expected form, however the tree of M;[a — M>] may seem
somewhat odd since there are two nodes above the tree of A1;. Thereason isthat the metasubstitution
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operator isasymmetric in that itsleft argument M/ isconsidered to be under abinding effect whereas
M, isnot. Wewould like this to be reflected in the structure of the tree, enabling usto look ‘ above’
aposition in atree to know under which binders it occurs.

f Sa /sub\
Tl Tn j_'1 Tn []a T2
Ty
@ (b) (©

FIGURE 1. Pre-metaterms as trees

A position isaword over the a phabet IN of natural numbers; we use ¢ to denote the empty word.
Given apre-metaterm M and a position p, we define the subterm ofd/ at positionp as follows:

M. = M
f(My,...,M)ip = M, forie{l...n}
fOé.(Ml,...,Mn)|i_p = Mi‘pv forZE{ln}
Mo Nll11p = Mj,

Mo < N2, = N|,.

The set of occurrences ofV in M isthe set containing all the positions p of M such that M|, = N.
We say that NV occurs at position p in M iff M|, = N. The parameter pattof a position p in M is
thelist containing al the (pre-bound) o-metavariables occurring in the path from p to the root of M,
in that order. Likewise, we may define the parameter path of an occurrence of N in M.

EXAMPLE 2.3

If M = f(£a.X,Y ), then X occursat position 1.1 and Y at position 2. The parameter path of 1.1 (or
just X) is a and the parameter path of 2 (or just Y) ise. If M = uB.(X[a — M\y.(g(8, 9(v, Z2))]),
then the pre-metaterm Av.(g(5, g(v, Z))) occurs at position 1.2 and g(v, Z) occurs at position
1.2.1.2; the parameter path of 1.2 (or just Ay.(g9(8,9(v, Z)))) is 3, the parameter path of 1.2.1.2

isvyps.

The following definitions introduce the set of metaterms Metaterms are pre-metaterms that are
well-formedin the sense that they prevent the use of the same name for two different occurrences
of aformal parameter appearing in the parameter path of a given pre-metaterm. In other words, all
the formal parameters appearing in the parameter path of a pre-metaterm must be different. Also, it
guarantees that pre-bound o-metavariables only occur bound.

DEFINITION 2.4 (Labels)
A label is a finite sequence of symbols of an alphabet. A simplelabel is alabel without repeated
symbols. Weuse k, [, [;, . . . to denote arbitrary labels and ¢ for the empty label. If s isasymbol and
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l isalabel then the notation s € | meansthat the symbol s appears irthe label [, and a so, we use sl
to denote the new label whose head is s and whose tail isi. Other notations are |!| for the lengthof {
(number of symbolsin ) and at(l, n) for the nth element of [ assuming n < |I|. Also, if s occurs (at
least once) in [ then pos(s, 1) denotes the position of the first occurrenceof s inl. If 6 isafunction
defined on the alphabet of alabel I = sy ... s, then 6(1) denotesthe label 6(sq) . .. 6(s,,). We may
use alabel asaset (eg. if S isaset then S N denotesthe intersection of S with the underlying set
determined by 1) if no confusion arises.

DEFINITION 2.5 (Metaterms)

A pre-metaterm M € PMT over X issaid to be ametaternover X iff the predicate W.F (M) holds,
where WF (M) iff WF (M) holds, and WF;(M) is defined by induction on the structure of the
pre-metaterm M for any label [ asfollows:

e WF(a)iffa el

e WF(a) and WF;(X) hold iff [ isasimplelabel

e WF(f(My,...,My,))iffforal 1 <i < nwehave WF;(M;)

e WF((a.(My, ..., My,)) iffa ¢ landforal 1 <i<nwehave WF,;(M;)

e WF (Mo« My)) iff a ¢ | and WF;(My) and WF ., (M;).
EXAMPLE 2.6 R
The pre-metaterms f(£a. X, Aa.Y), f(8, A\a.Y') and g(Aa.(£(.c)) are metaterms, however the pre-
metaterms f (o, . X) and f(ﬁ, Aa.(a.X)) arenot.

In the sequel, pre-bound (resp. pre-free) o-metavariables occurring in metaterms are simply re-
ferred to as bound (resp. free) o-metavariables. Also, we assume whenever possible, some fixed
signature 3 and hence speak of pre-metaterms or metaterms instead of pre-metaterms over 3 or
metaterms over 3. Aswe shall see, metaterms are used to specify rewrite rules.

DEFINITION 2.7 (Free metavariables of pre-metaterms)
If M is a pre-metaterm, then FMVAR(M) denotes the set of free metavariablesf M, which is
defined as follows:

FMVAR(X) ¢ {x} FMVAR(e) % {a} FMVAR®G) % {a}

(
FMVAR(f(Mi, ..., M,)) % Ur, FMVAR(M,)
FMVAR(éa. (M, . .., My)) % (P, FMVAR(M,)) \ {a}
FMVAR(Mi[a — My)) % (FMVAR(M:)\ {a}) U FMVAR(M>).
The set of bound metavariables of a pre-metaterm M, written BMVAR(M ), is defined as ex-
pected. Note that only pre-bound o-metavariables may occur bound in a metaterm, metavariables
of the form a or X; always occur free (if they occur at all) in a metaterm. We denote the set of all

the metavariables of a metaterm or a pre-metaterm M by MVAR(M). So we have MVAR(M) =
FMVAR(M) U BMVAR(M).

EXAMPLE 2.8

Let M be the metaterm f(3,\a.Y). Then FMVAR(M) = {B,Y}, BMVAR(M) = {a},
and MVAR(M) = {B,Y,a}. If M is the metaterm f(3, \a.c)) then FMVAR(M) = {3},
BMVAR(M) = {a} and MVAR(M) = {a, 3}.

DEFINITION 2.9 (Terms and contexts)

The set of SERS termsover 3, denoted T, and contextsare defined by:
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Terms t ou= x| flt.. )] Ex(t, .. 0)
Contexts C == O] f(t,...,C,...,t) | &x.(t,...,C,... 1)

where O denotesa‘hole’. Weuse s, t, t;, . . . for termsand C, D for contexts. Contexts are just terms
with exactly one occurrence of ahole. The x in x is called a binding variable We remark that in
contrast to other formalisms dealing with higher-order rewriting such as CRS, the set of termsis
not contained in the set of pre-metaterms since the set of variables and the set of o-metavariables
are digoint. Terms are obtained from metaterms by suitable instantiation of t-metavariables and
o-metavariables.

With C[t] we denote the term obtained by replacing ¢ for the hole O in the context C'. Note that
this operation may introduce variable capture. The notion of parameter path makes also sense for
contexts, whereit is defined as expected and where the only occurrence considered isthat of the hole.
Thus, we define the parameter pathof a context as the list containing &l the variables occurring in
the path from the hole O to the root of the context. For example, the parameter path of the context
Fz.(z,&y.(h(y,0)))) isthe sequence yz.

The set of free and bound variables of terms and contexts are defined as expected. We write FV ()
and BV (t) for the set of free and bound variables, respectively, of the term ¢. Similar notation is
used for the free and bound variables of a context. Substitution on terms can be defined as follows:
DEFINITION 2.10 ((Restricted) substitution on terms)

The (restricted) substitutionf aterm ¢ for avariable = in aterm s, denoted s{x < ¢}, is defined:

x{x — t} Lfy
def .
ylz — t} =y, ifx#y

Flstvesa){z =t ¥ flsifo —t), ..., sp{z —t})

&y.(s1,- .. sn){x — t} & &y.(si{x —t},...,sp{x —t})
ifx#y, and(y ¢ FV(t)ora & U, FV(si)).

Note that this notion of substitution does notappeal to a-conversion (renaming of bound variables
as defined below) in order to avoid variable capture. Therefore this notion of restricted substitution
isnot defined for all terms (hence its name). For example ({y.x){x « y} isnot defined and neither
is (§x.z){z < y}. When defining the rewrite relation on terms induced by rewrite rules we take
a-conversion into consideration in order to guarantee that any substitution to be performed may
be completed with restricted substitution. This allows us to ‘localize’ «-conversion when applying
rewriterules.

«a-conversion on terms is the smallest reflexive, symmetric and transitive relation closed by con-
texts verifying the following equality:

(@) &x.(s1,---,8n) =a &y.(si{x—vy},...,s.{x —y})

wherex # y and y isfreshin&x.(s1,. .., sp).

Note that since y doesnot occur in sy, . . ., s, Substitution isaways defined. Weuse s =, t to say
that the terms s and ¢ are a-convertible. This conversion is sound in the sense that s =, ¢t implies
FV(s) = FV (t).

The notion of a-conversion for terms has a corresponding one for pre-metaterms which we call
v-equivalencéw for variant). However, this requires first introducing restricted substitution for pre-
metaterms.

DEFINITION 2.11 ((Restricted) substitution on pre-metaterms)
The (restricted) substitution of a pre-metaterm @ for an o-metavariable « in a pre-metaterm P,
denoted P <+ @ >, isdefined as:
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def

a<<a—Q> =qQ
B<a—Q> L8 ifap
B <a—Q> L3
X <a—Q> def x

def

f(My,....M,) <a—Q> = f(M) <a—Q>,...,M, <a—Q>)
def

(EB.(My, ..., M) <a—Q> = £B.(My <a—Q>,..., M, <a—Q>)

if « # g and (8¢ FMVAR(Q) or a ¢ J;_;, FMVAR(M;))
(Mi[B — M) <a—Q> (M <a—Q>)[3 — My <a—Q>]

if a # g and (B¢ FMVAR(Q) or a ¢ FMVAR(M;)).

The intuitive meaning of two v-equivalent pre-metaterms is that they are able to receive the same
set of potential ‘valuations' (Definition 2.19). Thus for example, as one would expect, A\a. X #,
AB.X because when o and X are replaced by =, and 3 isreplaced by y, one obtains A\x.x and \y.z,
which are not a-convertible. However, since pre-metaterms contain t-metavariables, the notion of
v-equivalence is not straightforward as the notion of a-conversion in the case of terms. More on the
intuitive idea of v-equivalence will be said below.

DEFINITION 2.12 (v-equivalence for pre-metaterms)
Given pre-metaterms M and N, we say that M isv-equivalento N, iff M =, N where =, isthe
smallest reflexive, symmetric and transitive relation closed by metacontexts® verifying:

(vl)  a.(Py,...,P,) =, &0.(PL<a—p>...P, <a—p3>)
(v2)  Pila— R =, P <a—p> 8« P

where P;, for 1 < i < n, does not contain t-metavariablesfor 1 < ¢ < n, and

(vl)  a, arepre-bound o-metavariable st. « # (8 and 8 does not occur in Py, ..., P,, and
(v2) a, 3 are pre-bound o-metavariable st. o # (§ and 3 does not occur in P;.

EXAMPLE 2.13
. =, AB.6, da.f =, AB.f, but A\a. X #, A\3.X, and A\B.\a. X #, Aa.\G.X.

Note that pre-metaterms may be seen as contexts where the holes of a context are represented by
t-metavariables. However, metaterms are not treated as first class citizensasin [3].

We now address the rewrite rules of a SERS. The rewrite rules are specified using metaterms,
whereas the rewrite relation is defined on terms.

DEFINITION 2.14 (SERS)

A SERS-rewrite ruleover X isapair of metaterms (G, D) over X (also written G— D) such that:
e thefirst symbol (called headsymbol) in G isafunction symbol or a binder symbol,
e FMVAR(D) C FMVAR(G), and
e (G contains no occurrence of the metasubstitution operator.

Finally, we define a SERS as a pair (X, R) where ¥ is a SERS-signature and R is a set of
SERS-rewrite rules over ¥. We often omit ¥ and write R instead of (X, R), if no confusion arises.

3Metacontexts are defined analogously to contexts. Thenotion of * parameter path of acontext’ is extended to metacontexts
as expected.
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EXAMPLE 2.15
The A-calculusis defined by considering the signature containing the function symbols 7 = {app}
and binder symbols B = {\}, together with the SERS-rewrite rule:

app(Aa. X, Y)—g X[a — Y.
The An-calculus is obtained by adding the following SERS-rewrite rule: Ao (app(X, o)) —, X.

EXAMPLE 2.16
The Ax-calculus [8, 27] is defined by considering the signature containing the function symbols
F = {app, subs} and binder symbols B = {\, o}, together with the fallowing SERS-rewrite rules:

app(Aa.X,Y) —Beta  Subs(ca.X,Y)
subs(oa.(app(X,Y)), Z) —app  app(subs(ca.X,Z), subs(oa.Y, Z))
subs(ca.\G.(X), Z) —Lam  AB.(subs(ca.X, 7))

subs(ca.a, Z) —Var 2L

subs(aaﬁ, Z) —rGe B

EXAMPLE 2.17
The MA-calculus [28] is defined by considering the signature containing the function symbols 7 =
{app} and binder symbols B = {\, A}, together with the following SERS-rewrite rules:

app(Aa. X, Z) —Beta X|a — Z]
app(Aa. X, Z) — Al AB.(X|a — My.(app(B, app(v, Z)))])
Aa.(app(a, X)) —az X

Aa.(app(a, (AB.(app(a, X)) —as X

EXAMPLE 2.18
A further example is the system for foldl recursion scheme over lists, containing the function sym-
bols F = {foldl, nil, cons}, the binder symbol B = {£} and the rewrite rules:

foldl(éa.(6.X),Y, nil) —n Y
foldl(éa.(£8.X),Y, cons(Z,W)) —p  foldl(éa.(§6.X), X[a < Y]|[B — Z],W).

We now proceed to define the way in which rewrite rules are instantiated in order to obtain the
induced rewrite relation on terms. Thisimplies defining how the ‘holes' in the metaterms of therule,
represented by t-metavariables and o-metavariables, are replaced by terms and variables, respec-
tively. Thus valuationsare introduced followed by some additional conditions imposed on these
valuationsin order to single out the ‘good’ valuations (referred to as admissible valuatior)srom the
‘bad’ ones.

DEFINITION 2.19 (Vauation)
A variable assignmenis a (partial) function 6, from o-metavariables to variables* with finite do-

main, such that for every pair of o-metavariables «, 3 we have 0, # 0, 3 (pre-bound and pre-free
o-metavariables are assigned different variables). A term assignmeris a (partial) function 6; from
t-metavariables to terms with finite domain.

A valuationd over X isapair of (partia) functions (6,,, 8;) where 6, is avariable assignment and
0, isaterm assignment. It defines a function on metavariables, also denoted 6, as expected:

def

fa 0,
oo E 6,4
0xX ' g.x

“We write indistinctly 8, () or 6, o to denote application of 6, to an o-metavariable o
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A valuation § may be extended in aunique way to the set of pre-metaterms M such that MVAR(M) C
Dom/(0), where Dom(6) denotes the domain of 6, as follows:

(f(MlaaMn)) déf f(aMlvagM”)

[4
0(¢a.(My, ..., M,)) €0,0.(OMy, ..., 0M,)
O(M o — My)) C (M) (0,0 — M)

def

We shall not distinguish between ¢ and @ if no ambiguities arise. Also, we sometimes write §( M)
thereby implicitly assuming that MVAR(M ) C Dom(6).

Returning to theintuition behind v-equivalenceheideaisthat it can betranslated into a-conversion
in the sense that M =, N implies M =, ON for any valuation 6 such that 60 and ON
are defined. Indeed, coming back to Example 2.13 and taking = {«/z,8/y, X/x}, we have
O ha.a) = dz.x =, Myy = 0(A8.0) and O(\a.f) = dx.f =4 Ay.f = 0(A\B.f). However
O(Aa.X) = dr.x #4 Ay.x = 0(A0.X) and O(\G.ha. X) = Ay z.x #4 Az y.x = 0(AaAG.X).

As the reader may have observed, a valuation computes a metasubstitution operator by executing
metalevel substitution. However, since metalevel substitution isrestricted in that no a-conversionis
allowed to take place, we must require the valuation to be capable of executing all metasubstitution
operatorsin a given pre-metaterm.

DEFINITION 2.20 (Safe valuations)

Let M be a pre-metaterm over ¥ and 6 a vauation over . We say that 6 is safe forM if
MVAR(M) C Dom(#) and OM is defined, i.e. the substitutions generated by the last clause of
Definition 2.19 can be computed. Likewise, if (G, D) is arewrite rule, we say that 6 is safe for
(G, D) if 0D isdefined and MVAR(G) C Dom(0).

Note that if the notion of substitution we are dealing with were not restricted, then «-conversion
could be required in order to apply a valuation to a pre-metaterm. Also, for any valuation 6 and
pre-metaterm M with MVAR(M) C Dom(#) that contains no occurrences of the metasubstitution
operator, it turnsout that 6 issafefor M. Thus, weonly ask 6 to be safefor D (not ) in the previous
definition.

Thefollowing condition isthe classical notion of admissibilityused in higher-order rewriting [33]
to avoid inconsistencies in rewrite steps. It runs under the name ‘variable-capture-freeness’ in
the case of ERS [20] and aims at ruling out certain valuations which after instantiating a rewrite
rule leave some free and bound occurrences of the same variable. An example is the rewrite rule
Aa.X— X and the valuation which assigns x to « and X. The resulting rewrite step is Ax.x—
which has an occurrence of z that is bound on the left and an occurrence of x that isfree on the right.

DEFINITION 2.21 (Path condition for t-metavariables)

Let X be at-metavariable. Consider al the occurrences py,...,p, of X in (G, D), and their re-
spective parameter pathsiy, .. ., [, inthetrees corresponding to G and D. A vauation 6 verifiesthe
path conditionfor X in (G, D) if for every z € FV(0X)

e either: forall 1 < i < nwehavex € 0(1;)
eor:forall <i<nwehavez ¢ 6(1;).

This definition may be read as: one occurrence of = € FV (X)) with X in (G, D) isin the scope
of some binding occurrence of z iff every occurrence of X in (G, D) is in the scope of a bound
o-metavariable o with o = 2. For example, consider the SERS rule Aa.(§6.X)— £6.X and the
valuations ¢, = {a/x, 8/y, X/z} and 02 = {a/x, B/y, X/x}. Then 0, verifies the path condition
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for X, but 6, does not since when instantiating the rewrite rule with 6, the variable 2 shall occur
both bound (on the LHS) and free (on the RHS).

Note that our formalism alows us to specify the restricted garbage collection rule rGc of Ax
(Example 2.16) as originally donein [27], while formalisms such as CR.S force one to change this
rule to a stronger one, namely Gc, written as subs(ca.X, Z)— . X, where the path condition
(Definition 2.21) on valuations guarantees that if 6(X) = ¢, then 6(«) cannot bein FV (¢).

We may then single out the ‘good’ valuations by the following notion of admissible valuations.

DEFINITION 2.22 (Admissible valuations)
A valuation 6 over 3 isadmissible for a rewrite rul¢G, D) over X iff the following conditions hold:

e §issafefor (G, D),
e if o« and 3 occur in (G, D) with « # (3, then 6, # 6,3, and
o ¢ verifies the path condition for every t-metavariablein (G, D).

Note that an admissible valuation is safe by definition, but a safe valuation may not be admissible.
As an example, consider the n-contraction rule Az.app(X,z)— X if z ¢ FV(X). As mentioned
in Example 2.15, it can be expressed in the SERS formalism as the rule Aa.app(X, a)—, X. All
valuations are (trivially) safefor 7 since there is no metasubstitution operator onthe RHS. However,
the path condition could fail. Indeed, consider the valuation ¢ = {«/z, X/x}: athough trivialy
safe, it is not admissible since the path condition is not verified: « € («) but = ¢ 6(e) (x occurs
bound on the LHS and free on the RHS). In the case of the SERS representation of n, the path
condition is in charge of verifying the above-mentioned well-known condition on n-contraction,
namely that the variable instantiated for o not occur free in the term instantiated for X .

Having defined rewrite rules and (admissible) valuations we find ourselves ready to present the
rewrite relation induced on terms by arewriterule.

DEFINITION 2.23 (Rewriting relation)

Let (X,R) bea SERS and s,t terms over ¥.. We say that s R-rewritesor R-reduces ta, written
s—g t,iff thereexistsarewriterule (G, D) € R, anadmissiblevaluation § for (G, D) and a context
C suchthat s =, C[0G] andt =, C[0D].

We shall occasionally drop the subscript in the rewrite relation when it is clear from the context.
Asin first-order rewriting, rewriting does not create new variables.

LEMMA 2.24
Lets,t € T. If s—g t,then FV(¢) C FV(s).

3 Simplified expression reduction systemswith indices

This section introduces the de Bruijn indices based higher-order rewrite formalism SERS,;5. We
follow Section 2 and introduce de Bruijn metaterms, de Bruijn terms, de Bruijn valuation, and finally,
de Bruijn rewriting. In order to distinguish a concept defined for the SERS formalism from its
corresponding version (if it exists) in the SERS;5 formalism we may prefix it using the qualifying
term ‘de Bruijn’, e.g. ‘de Bruijn metaterms’.

DEFINITION 3.1 (de Bruijn signature)
A SERS;p signature . consists of the following denumerable and digjoint sets.

e A set of binder indicatorsdenoted o, 3, . . .
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e A set of i-metavariabledi for index) denoted &, 3, .

e A set of t-metavariablegt for term), denoted X, Y}, Z;, . . ., where ! ranges over the set of labels
built over binder indicators.

e A set F of function symbolequipped with afixed (possibly zero) arity, denoted f, g, h, . ..
e A set B of binder symbolquipped with afixed (non-zero) arity, denoted A, i1, v, &, . ..

We remark that the set of binder indicators is exactly the set of pre-bound o-metavariables intro-
duced in Definition 2.1. The reason for using the same alphabet in both formalisms will become
clear in Section 4, but intuitively, we need a mechanism to annotate binding paths in the de Bruijn
setting to distinguish metaterms like £5.(£a.X) and £a.(£6.X) appearing in the same rule when
trandated into a SERSyg system.

DEFINITION 3.2 (de Bruijn pre-metaterms)
The set of de Bruijn pre-metatermever the SERS,;p signature X, denoted PMT 43, is defined by
the following two-sorted grammar:

metaindices I == 1]s()]a
pre-metaterms A T Xi | f(A,...;A) | &(A, ..., A) | A[A]

The operator e[e] in a pre-metaterm A[A] is called the de Bruijn metasubstitution operatof he
binder symbols together with the de Bruijn metasubstitution operator are called binder operators
Thus the de Bruijn metasubstitution operator is a binder operator (since it has binding power) but is
notahinder symbol sinceit is not an element of 5.

We use A, B, A;, ... to denote de Bruijn pre-metaterms and the convention that s°(1) = 1,
s%(@) = a and s7t1(n) = S(s’(n)). Asusudly done for indices, we shall abbreviate S7=1(1)
as j. Positions may be defined by associating a tree to each de Bruijn pre-metaterm, as was done
in the case of SERS. As one might expect, the tree associated to A must have one of the forms
depicted in Figure 2. The *sub’ in the rightmost tree may be seen as a dummy function symbol.

f '3 sub

A AAN

T, - T, T, - T,

T

FIGURE 2. de Bruijn pre-metaterms as trees

Although the formal mechanism used to translate pre-metaterms with names into pre-metaterms
with de Bruijn indices will be given in Section 4, let us introduce some intuitive ideas in order
to justify the syntax used for i-metavariables. In the formalism SERS there is a clear distinc-
tion between free and bound o-metavariables. This fact must also be reflected in SERS,5, where
bound o-metavariables are represented with indices and free o-metavariables are represented with i-
metavariables (this distinction between free and bound variablesis also used in some formalizations
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of A\-calculus[26]). However, free variables (or indices) in SERS 5 appear dwaysin abinding con-
text, so that a de Bruijn valuation of such variables has to reflect the adjustment needed to represent
the same variables but in a different context. This can be done by prefixing the i-metavariable by
as many operators S as necessary. As an example consider the pre-metaterm ga.B. If we trandlate
it to £3, then a de Bruijn valuation like k = {3/1} binds the variable whereas this is completely
impossible in the name formalism thanks to the conditions imposed on a name valuation (condition
on variable assignmentsin Definition 2.19). Our solution is then to trandate the pre-metaterm ga.B
by g(s(B)) in such away that when instantiating some index for /3 there is no capture of variables
in the resulting term. The solution adopted here for trandlating pre-free o-metavariables into the de
Bruijn formalism isin some sense what is called pre-cooking® in [12].

Asin the SERS formalism, we also need here a notion of well-formed pre-metaterm. The first
motivation is to guarantee that labels of t-metavariables are correct w.r.t the context in which they
appear, the second one is to ensure that indices like j (resp. s7(@)) correspond to bound (resp. free)
variables. Indeed, the pre-metaterms £(X o), £(£(4)) and £(@) shall not make sense for us, and
hence shall not be considered well-formed.

DEFINITION 3.3 (de Bruijn metaterms)

A pre-metaterm A € PMT,p over ¥ is said to be a metatermover X iff the predicate WF (A)
holds, where WF (A) iff WF.(A), and WF;(A) is defined by induction on the structure of the
pre-metaterm A for any label [ asfollows:

e WF(S7(1))iff j+1 < i

e WF,(s’(a)) iff j = |I| and  isasimple |abel

e WF(Xy)iffl =k andlisasimplelabel

e WF(f(A1,...,Ay))iffforal 1 <i <nwehave WF;(A;)

e WF(&£(Ay, ..., Ay)) iff thereexistsa ¢ 1 such that for al 1 < i < n wehave WF,;(A;)

e WF(A1[Aq)) iff WF;(Ay) and thereexists o ¢ [ such that WF,;(A1).

Thereforeindices of theform S7(1) may only occur in metatermsiif they represent bound variables
and well-formed metaindices of the form S7 (&) always represent afree variable. Also, if WF(A),
then any metavariable occurring in A must be of the form X, for some label I (moreover, Ik is

asimple label). Note that when considering WF; (M) and WF;(A) it is Definitions 2.5 and 3.3
which are referenced, respectively.

EXAMPLE 3.4 R
The pre-metaterms £(X o, A(Y3a,2)), f(5, A(Ya,S(@))) and g(A(&c)) are metaterms, however the
pre-metaterms £(S(@), £(X5)), ME(Xaa)), f(B. A(E(S(B)))) arenct.

DEFINITION 3.5 (Free de Bruijn metavariables)
Let A be a de Bruijn pre-metaterm. The set of free metavariablesf A, written FMVAR(A), is
defined as:

~ I~ o~

def
FMVAR(1 =
(1) et ! FMVAR(f(A1,. .., An)) < UL, FMVAR(A;)
FMVAR(S(I)) = FMVAR(I) def |
o def FMVAR({(Ay,...,A,)) = U, FMVAR(4;)
FMVAR(a) = {a} def
FMVAR(A;[As3]) = FMVAR(A;) UFMVAR(A3)

FMVAR(X;) % {x,}

5The pre-cooking function takes a Ao-term with t-metavariables and suffixes them with as many explicit shift opera-
tors[1] asthe number of binders present in its parameter path. This avoids variable capture when the higher-order unification
procedure finds solutions for the t-metavariables.
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The set of namesof free metavariables of A is the set FMVAR(A) where each X is replaced
smply by X. We also write, by abuse of notation, FMVAR(A) to denote such a set of names.
For example, FMVAR(f(AX,, Y., @)) = {X,Y,a}. We use MVAR(A) to denote the set of all
metavariables of the de Bruijn pre-metaterm A.

DEFINITION 3.6 (de Bruijn terms and de Bruijn contexts)
The set of de Bruijn termsver X, denoted T3, and the set of de Bruijn contexts over ¥ are defined

by:

deBruijnindices n == 1|8S(n)
de Bruijn terms a == n|fla,...,a)]&(a,...,a)
deBruijncontexts E == O] f(a,...,E,...,a) | &(a,..., E,... a).

Weusea, b, a;,b;, ... for de Bruijntermsand E, F, . .. for de Bruijn contexts. The notion of the
tree associated to a may be defined as for de Bruijn pre-metaterms. We may refer to the binder path
numberof a context, which is the number of binders between the O and the root. In contrast to
Definition 2.9, we have here that de Bruijn terms are also de Bruijn pre-metaterms, that is, T 5 C
PMT 5, dthough note that some de Bruijn terms may not be de Bruijn metaterms, i.e. may not be
well-formed de Bruijn pre-metaterms. Indeed, the valid term £(£(4)) is not a metaterm, however,
the index 4 may be seen as a constant in the pre-metaterm £(£(4)). If an arbitrary free variable is
wished to be represented in a metaterm, then i-metavariables should be used.

DEFINITION 3.7 (Free de Bruijn indices)
The set of free indicesof ade Bruijn term a, written Fl (), is defined as follows:

FI(n) 3 n}
Fl(f(al,...,an)) = Ui:1 Fl(ai)
Fl(E(ar, .. an) (UL, Fl(a)\1

where for every set of indices S, the operation S\\j isdefinedas{n —j | n € Sandn > j}.

When encoding SERS 5 systems as SERS systems we shall need to speak of the free variable
names (objects in V, from the definition of a SERS signature) associated to the free de Bruijn
indices. For example, if a = £(1,2,3), then Fl(a) = {1,2}. The named variable associated to the
freeindex 1 isz, and likewise for 2 it iszo. In general, we write NAMES(SS) for the names of the
variableswhoseindices are in the set S. For example, NAMES(Fl(a)) = {1, 22}

DEFINITION 3.8 (de Bruijn substitution and de Bruijn updating function)
Theresult of substituting aterm b for theindex n > 1 in aterm a isdenoted a{n < b} and defined
as:

flar,...,an){n < b} def flarfn < b}, ..., anf{n < b})
lar,...,an)fn <=0} = &afn+1<0b},...;anf{n+1<0d})

m—1 ifm>n
m{n «— b} = upd) ifm=n

m ifm<n
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wherefor i > 0 andn > 1 we define the updating functiong(! (e) as follows:

Due to the various notions of substitution and replacement introduced so far, we give in Figure 3

ur

?

ur

3

(f(al,...
(f(ah...

(m)

abrief synopsis of the situation.

s n))
,n))

f(uin(al)7 ce vuzn(an))

E(Uﬁ_l(al), cee 71/{1'73-1(@”))
m+n-—1

{

m

ifm>1
if m <i.

(Operator | Names | deBruijn || Terms | Metaterms || Explicit | Implicit [ Def. |
tl{a: — tQ} \/ \/ \/ Def. 2.10
M <a— My> v v N Def. 2.11
1 [As)] V; IV 7 Def. 3.2
a1 {n — a2} Vv N4 vV Def. 3.8

We now consider the rewrite rules of a SERS;5. Thisincludes defining valuations, their validity,
and the term rewrite relation in SERS,;5. Rewrite rules are specified with de Bruijn metaterms,

FIGURE 3. Notions of substitution

whereas the induced rewrite relation is on de Bruijn terms.

DEFINITION 3.9 (SERSyR)

A de Bruijn rewrite ruleover X isapair of de Bruijn metaterms (L, R) over X (also written L— R)

such that:

o thefirst symbol (called head symboal) in L is a function symbol or a binder symbol,

e FMVAR(R) C FMVAR(L), and
o the metasubstitution operator does not occur in L.

Finally, we define a SERS,5 to be apair (X, R) where ¥ isa SERS z-signature and R is a set

of SERS,g-rewrite rules over .

As in the case of SERS, we shall often omit 3 and write R instead of (X, R), if no confusion

arises.

ExAMPLE 3.10
The A\gp-calculus is defined by considering the signature containing the function symbols F =
{app} and binder symbols B = {\}, together with the SERS ;5-rewrite rule;

The Aypnap-calculusis obtained by adding the SERS ;5 -rewrite rule: A(app(Xa, 1))

app(/\Xom Ye)_wlm Xa [Ye]

See also Examples 4.7 and 4.8.

DEFINITION 3.11 (de Bruijn valuation)

A de Bruijn valuationx over ¥ isapair of (partial) functions (k;, x:) where k; is a function from
i-metavariables to positive integers greater than 0, and x; is a function from t-metavariables to de

B Xe.
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Bruijn terms. It defines a function on metaindices and ¢-metavariables, also denoted «, as expected:

def

Kkl 1
kS(I) X s(k)
~ def ~

KO = K;jQ

def
Iin = IitXl .

A valuation x determines in a unique way a function & from the set of pre-metaterms A with
FMVAR(A) C Dom(k), where Dom(x) denotes the domain of &, to the set of terms as follows:

(F(A1,...,An)) ¥ FRAL,... EA,)

RE(Ar,... An)) Y ¢®A,, ... FAL)
F(A1[As)) C R(AN{1 — RALY.

Note that in the above definition the substitution operator e{{e — e} refersto the usua substitu-
tion defined on terms with de Bruijn indices (Definition 3.8).
In order to motivate the notion of valid de Bruijn valuation consider the following rule:

o (§8.X)—r £B.(Sa. X).

Evenif trandation of rewrite rulesinto de Bruijn rewrite rules has not been defined yet (Section 4),
one may guess that a reasonable trandation would be the following rule:

§(€(Xpa)) =i E(E(Xap)),

which indicates that 5 (resp. «) is the first bound occurrence in the LHS (resp. RHS) while a
(resp. () is the second bound occurrence in the LHS (resp. RHS). Now, if X isinstantiated by
x, a by x and § by y in the SERS system, then we have an r-rewrite step £z.(Sy.x)— Cy.(Ex.x).
However, to reflect this fact in the corresponding SERS 5 System we need to instantiate X 5, by 2
and X, 3 by 1, thusobtaining an r 45-rewrite step £ (¢ 2)— £(¢ 1). Thisclearly showsthat de Bruijn
t-metavariables having the same name but different label cannot be instantiated arbitrarily as they
have to reflect the renaming of variables which isindicated by their labels. Indeed, the goal pursued
by the labels of metavariables is that of incorporating ‘context’ information as a defining part of a
metavariable. As a consequence, we must verify that the terms substituted for every occurrence of
a fixed metavariable coincide ‘modulo’ their corresponding context. Dealing with such notion of
‘coherence’ of substitutions in a de Bruijn formalism is also present in other formalisms but in a
more restricted form. Thus for example, as mentioned before, a pre-cooking function isused in [12]
in order to avoid variable capture in the higher-order unification procedure. In XRS[23] the notions
of binding arity and pseudo-binding arity are introduced in order to take into account the parameter
path of the different occurrences of t-metavariables appearing in a rewrite rule. Then (roughly) it
is required that the binding arity of at-metavariable on the LHS of arewrite rule (rewrite rules are
required to be | eft-linear) equalsthe pseudo-binding arity of the same t-metavariable occurring on the
RHS of therule. Our notion of ‘coherence’ isimplemented with valid valuations(Definition 3.13)
and it turns out to be more general than the solutions proposed in [12] and [23].

DEFINITION 3.12 (Value function)
Let a € Ty4p and [ be alabel of binder indicators. We define the value functionValue(l,a) as
Value® (1, a) where;
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' ' n ifn<g
Value' (I,n) e at(l,n—1i) ifO<n—i<]|l]
Tp—i—|l| ifn—1> ‘l|
Value' (1, f(ai, ..., an)) def f(Value'(1,ay), ... Value' (1, ay,))
Value'(1,&(ar, ... an)) def E(Value™ (1, ay),. .., Value'™ (1, a,)).

The function Value(l, a) interprets the de Bruijn term a in an [-context: bound indices are left
untouched, free indices referring to the [-context are replaced by the corresponding binder indicator
and the remaining free indices are replaced by their corresponding variable names. It might be
observed that if repeated binder indicators are allowed in the label [ of Definition 3.12, then this
intuition would not seem to hold. Indeed, for our purposes the case of interest is when the label [
is simple. Nevertheless, many auxiliary results may be proved without this requirement, thus we
prefer not to restrict this definition prematurely (by requiring / to be simple). Finaly, note also
that Value®(1,n) may return three different kinds of results. This is just a technical resource to
make easier later proofs. Indeed, we have for example Value(a3,£(f(3,1))) = £(f(5,1)) =

Value (B, £(f(2,1))) and Value(e, f(€1,A2)) = f(&1, Az1) # f(EL, Aa) = Value (o, f(£1, A2)).

DEFINITION 3.13 (Valid de Bruijn valuation)

A de Bruijn valuation  over ¥ is said to be valid if for every pair of t-metavariables X; and X in
Dom(k) we have Value(l, kX;) = Value(l', kXy/). Likewise, we say that ade Bruijn valuation x
isvalid for a rewrite rule(L, R) if every metavariablein (L, R) isin Dom (k) and for every pair of
t-metavariables X; and X/ in (L, R) we have Value(l, kX;) = Value(l', k Xy/).

It is interesting to note that there is no concept analogous to safeness (Definition 2.20) as used
for named SERS due to the use of de Bruijn indices. Also, the last condition in the definition of
an admissible valuation (Definition 2.22) is subsumed by the above Definition 3.13 in the setting of
SERS 5.

EXAMPLE 3.14
Returning to the above mentioned example we have that k = {X3,/2, Xos/1} isvdidfor therule
rqp Since Value(Ba, 2) = a = Value(af, 1).

Another interesting example is the n-contraction rule Az.app(X,z)— X if x ¢ FV(X). Recall
from Section 2 that it can be expressed in the SERS formalism, without conditions, as the rule
Aaapp(X, a)—, X. Inthe SERSqp formalism it may be expressed as A(app(Xa, 1)) =1, Xe.

Observe that this kind of rule cannot be expressed in the XRS formalism since it does not verify
the binding arity condition. Our formalism allows usto writeruleslike n 45 because valid valuations
will test for coherence of values. Indeed, an admissible valuation for 7 is a valuation 6 such that
60X does not contain a free occurrence of 6(«). This is exactly the condition used in any usua
formalization of the n-rule. A valid valuation « for ngg could, for example, be a valuation x =
{Xa/m, X /n} suchthat Value(a, kXy) = Value(e, kX.), thatis, m = 1 isnot possible, and n is
necessarily m — 1.

To summarize, valid valuations guarantee that the unique value assigned to a t-metavariable X in
the framework with names is translated accordingly in the de Bruijn framework w.r.t the different
parameter paths of all the occurrences of X intherewriterule. Thisis, in some sense, an updating of
X w.r.t the different parameter paths where it appears, and it gives us the right notion of coherence
for valuations.
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DEFINITION 3.15 (Rewriting de Bruijn terms)

Let R be aset of de Bruijn rules over X and a, b de Bruijn terms, over ¥. We say that a R-rewrites
or R-reduces td, written a—x b, iff thereisadeBruijnrule (L, R) € R and ade Bruijn valuation
k validfor (L, R) suchthat « = E[xkL] and b = E[xR], where E isade Bruijn context.

Thus, theterm A(app(A(app(1,3)), 1)) rewritesby then,p ruleto A(app(1, 2)), using the (valid)
valuation x = { X, /A(app(1,3), X/ A(app(1,2))}.
The rewrite relation on de Bruijn terms satisfies the following property:

LEMMA 3.16
Leta € Typ. If a—x b, then FI(b) C Fl(a).

4 From namesto indices

In this section we show how rewriting in the SER.S formalism may be simulated in the SERS,p
formalism. This requires two well-distinguished phases, which we can refer to as the definition
phaseand the rewrite-preservation phaseThe definition phase consists in defining appropriate
tranglations from pre-metaterms, terms and valuations in the SERS setting into the corresponding
notionsinthe SERSyp setting, work which is carried out in the first part of this section. The second
part deals with the rewrite-preservation phase, that is, showing how SERS rewrite steps can be
simulated via SERS ;5 rewrite steps. The rewrite-preservation phase shall use the results devel oped
in the definition phase.

4.1 The definition phase

We begin by showing how to translate terms into de Bruijn terms.

DEFINITION 4.1 (From terms (and contexts) to de Bruijn terms (and contexts))
The translation of aterm ¢, denoted T'(¢), is defined as 7. (t) where

Ty(x) =\ O@) k| ifrgk
To(f(trseitn))  E F(T(t), -, T(tn))
T (ti o tn)  E(T(th), - Typ(tn)-

def { pos(z, k) ifzek

The translation of acontext, denoted T'(C'), is defined as above but adding the clause 7, (0) ' 00,

As a consequence of the previous definition, there is a clear bijection between the set of free
variables of aterm ¢ and the set of free variables of its de Bruijn representation 7'(t).

The following lemmawill be used to prove the main results of this section; it states that variable
renaming commutes with translation.

LEMMA 4.2
Let s € T, let, k belabels of variables and «x, y variables such that iy does not occur at al in s and
z,y ¢ 1. If s{x — y} isdefined then T}, (s{z — y}) = Tizr(s).

PROOF. By induction on s.
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e s = x. Then we reason as follows:

Tiyk(2fz —y}) = Tigr(y)
= pos(y,lyk)
= [l[+1 (y &)
= pos(z,lzk) (z ¢l)

o s=z#x. Then Ty (2{z — y}) = Tiyk(z). We consider two further cases:
—z € lyk. Sincey # z (y doesnot occur in s) Tpy, (z) = pos(z, lyk) = pos(z,lak) = Tizi(2).
—z ¢ lyk. Then Ty (2) = O(2) + |lyk| = O(z) + |lzk| = Tizr(2).

e s = f(s1,...,s,). Weusetheinduction hypothesis.

s =2¢(z.(81,...,8,) With z £ 2. Notethat z # y by hypothesis. We reason as follows:

Tiyr(s{z —y}) = &(Tayr(sifz —y}),. .. Tayr(sn{z —y}))
= g(Tlek}(Sl)7 cee aTzla:k(Sn)) (’Lh)

As expected, the trandlation satisfies:

LEMMA 4.3 (T is compatible with a-conversion)
Giventwotermss,t € T suchthat s =, t we have T} (s) = T (t) for any label of variables k.

PRrROOF. By induction on the derivation of s =, t.

e Base cases. If s = t then the result holds trivialy, so suppose s =, t and the conversion
takes place at theroot. Then s = x.(s1,...,8,) =a &y.(s1{z — y},...,sn{z — y}) = ¢
where z and y are variables not occurring in sy, . .. s,. Then by Lemma 4.2 we have Ty (s) =
Tk (51), - - Tan(sn)) = E(@yr(si{z — y}), ..., Tyr(sn{z < y})) = Ti(?).

e Inductive cases:

— 5 =, tfollowsfrom ¢ =, s. We use the induction hypothesis.
— 5 =, t followsfrom s =, s’ and s’ =, t. We use the induction hypothesis.
—the conversion isinternal. Then two further cases are considered:

s = f(s1,...,8iy...,8,) @dt = f(s1,...,8,...,8,) Wheres; =, s;. We conclude by
using the induction hypothesis.
ks =Ex.(S1,-.,8iy...,Sp) ANt =Ex.(51,...,5],...,5,) Wheres; =, s;. Then we have

Ti(s) = &E(Tun(s1), - s Tar(8s), - s Tor(Sn)) =ih.
f(Txk(81)7 e ,Txk(sg), I 7T1k(8n)) = Tk(t .

~—

We now consider atranglation from pre-metaterms to de Bruijn pre-metaterms. We shall also use
the letter T for thistrandlation to avoid having to introduce yet another symbol.

DEFINITION 4.4 (From pre-metaterms to de Bruijn pre-metaterms)
Let M be a pre-metaterm. Its trandlation, denoted T'(M), is defined as T, (M) where T, (M) is
defined by
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T.(0) ¥ pos(avk), ifack T (f(My,....M,)) % FT,(M),... T, (M,))
T,@ % sk@) Ty(€a.(My,..., M) = &(T, (M), ..., T, (M,))
T,(X) € X, T (Mifo — Mp]) € T, (M)[T},(My)).

Note that if M isametaterm, then T'(M) will be defined and will only have t-metavariables with
simple labels. Note aso that for some pre-metaterms, such as £a.3, the trandation T'(e) is not
defined. Moreover, if M isametaterm then T'(M) is ade Bruijn metaterm.®

EXAMPLE 4.5 N
Let M = Ca. (X, \6.(Y,a)), M' = (5, a.(Y,@)) and M = g(Aa.(£6.¢)). Then their respec-
tivetrandationsare A = £(Xq, A(Y3a,5(1))), A" = F(BA(Ya, S(@))) and A” = g(\(&e)), which
are metaterms as remarked in Example 3.4.
DEFINITION 4.6 (From SERS rewrite rulesto SERS,p rewrite rules)

et (G, D) bearewriterulein the SERS formalism. Then T'(G, D) denotes the translation of the
rewriterule, defined as (T'(G), T'(D)).

As an immediate consequence of Definitions 4.4 and 4.6, if (G, D) isan SERS rewriterule, then
T(G, D) isan SERS,p rewriterule.

EXAMPLE 4.7 (Ax continued)
Following Example 2.16, the specification of Ax inthe SERS;5 formalism is given below. It results
from tranglating the rewrite rules of Example 2.16.

app(AXa, Z) subs(0Xq, Z)
subs(o(app(Xa,Ya)), Ze) app(subs(c Xy, Z.), subs(cYy, Z,))
subs(c(MXga)), Ze) A(subs(o(Xap), Z3))

subs(o(1), Z) Ze

subs(o(S()). Z.) 3.

The rule subs(c(AXgq), Ze)— A(subs(c X g, Z3)) is interesting since it illustrates the use of
binder commutation from X, to X, 3 and shows how some index adjustment is necessary when
going from Z, to Zg.

ExAMPLE 4.8 (The AA-calculus continued)
Thetrandation of the AA-calculus (Example 2.17) yields the following rewrite rulesinthe SERS g
formalism:

I

app()\Xa,Ze) —Bas Xa[Ze]
app(AXy, Ze) —a,  A(Xap[Mapp(S(1),app(1, Zy5)))])
A(app(1,X,,)) —a, X

A(app(1, (A(app(s(1), Xpa))))) —a, X
We remark that the translation of the A, A, and A3 ruleswould not be possible in XRS.

Suppose some rewrite rule (L, R) is used to rewrite aterm s. Then s =, C[A(L)] for some
context C' and admissible valuation 6. When encoding this rewrite step in the SERS;5 setting we
have to encode not only terms and metaterms, but also the valuation 6. Definition 4.9 below shows
how one may encode valuations. This definition is parameterized over alabel &, an issue which we
would like to clarify. Suppose the metavariable X; occurs in L, then when 6 instantiates X; the
status of any variable z in the resulting term, (X ), can be of one of four classes (see also Figure 4):

6This can be proved by showing a more general property, namely, for every pre-metaterm M, if WF;(M), then
WF (T, (M)).
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a) either, z isbound in 6( X)),

b) or, z isfreein 6(X;) but isbound by some binder above X, in L, in other words, there is abinder
indicator o € [ such that 6(«) = =,

c) or, z isfreein #(X;) and = is not bound by the binders above X; intherule, i.e. « ¢ 6(1), but =
is bound by a binder above the O in the context C,

d) or, z isfreein 6(X;), it is not bound by the binders above X; in the rewrite rule, and it is not
bound by a binder in the context C' abovethe O. Thus z isfreein s.

C C C
0 0 6
(b) © (d

FIGURE 4. Instantiating a metavariable X; of ametaterm L in some context C'

Therefore, when translating a valuation to the SERS ;5 setting we need to know what the names
of the variables of the binders above the O are. For example, if the third case holds then when
trandlating to indices we must assign = an index which avoids being captured in the context. Thisis
therdle of the label & in the following definition.

DEFINITION 4.9 (From valuations to de Bruijn va uations)
Let 6 beavauation and i be alabel of variables. Then the trandation of 8 w.r.t the label k (referred
to asthe context label) is defined as the de Bruijn valuation:

T.(0)(X) € T, (0(X)) if 0(1) is defined

T,0)@ ¥ T,(6a)

where X, & € Dom/(0).

4.2 The rewrite-preservation phase

In this section we study the rewrite-preservation phase, that is, we show that the trandations of the
definition phase ensure that the notion of rewriting in the formalism with de Bruijn indices has the
same semantics as the corresponding one with names.

The following lemmas will be used in the proof of the main result of this section, namely Propo-
sition 4.15, which states that SER.S-rewriting may be smulated as SERS ;5-rewriting.

LEMMA 4.10 (T and Updating Functions)
Lets € T, letly,lo, k belabels of variables such that [I;] = j, |lz| = i — L and FV(s) N iy = 0.
ThenT, ;.. (s) = UHT), 1. (5))-



de Bruijn Indices for Metaterms 877

PROOF. By induction on s. We shall consider the case that s isavariable, the others follow from the
induction hypothesis. Suppose s = . Note that since by hypothesis = ¢ I we have three cases to
consider:

ez €ly. ThenT, , ,(x) = pos(x,lilok) = pos(z,l1k) = Uj(pos(z,l1k)). The last equality
holds since pos(z, 1 k) < j.

ex¢landx e k. ThenT) , ,(z) = pos(z,lilzk) = pos(z,l1k) +i — 1 = U] (pos(x, 11 k)).

ez ¢ k. ThenT, , ,(x) = O(x) + [lilok| = O(z) + [Lk| +i— 1 =UNT,; ,(2)).

LEMMA 4.11 (T iscompositional w.r.t substitution)
Let s,t € T, I,k belabels of varigbles with || = i — 1, let = be a variable such that = ¢ [, and
suppose FV (t) N1 = 0. If s{z — t} isdefined then T}, (s{z — t}) =T, (s){i < T, (¢) }.

PROOF. By induction on s. See the Appendix. [ |

As expected, the translation iswell-behaved w.r.t contexts and val uations. We take the opportunity
to remind the reader that the notion of a parameter path is given in Definition 2.9. Induction on the
context C' may be used for proving the following result.

LEMMA 4.12 (T iscompositional w.r.t contexts)
Let C beacontext, ! the parameter path of C and ¢ € T. Then for every label k we have, T, (C[t]) =

T, (C) [T, (1))
LEMMA 4.13 (T is compositional w.r.t valuations)
Let M be apre-metaterm, [ alabel of binder indicators, and suppose

1. WF (M),
2.0 = (0,,0:) isavaluation such that 6, isinjective on the bound o-metavariables, and
3. §issafefor M.

Then for every label k wehave Ty, (6M) = T, (6)(T,(M)).

PROOF. By induction on the pre-metaterm M. See the Appendix. [ |
LEMMA 4.14

Let k, k' be labels of binder indicators, | a label of variables and ¢ be an injective function on
the set of binder indicators. Then for every t € T, every p > 0, every zi,...,xz,, if for every

z€ FV(@)\{z1,...,2,} wehavez € 0(k) iff z € §(k'), then

Valuep(k7TxlTp9(k)l(t)) = Valuep(k, T pe(k/)l(t))

'y Ty

PROOF. By induction on t. See the Appendix. [ |

We can finally conclude with the main result of this section, which ensures that the SERS;p
formalism preserves SERS-rewriting.

PROPOSITION 4.15 (Simulating SERS-rewriting via SERS 45 -rewriting)
Suppose that s— ¢ inthe SERS formalism using the rewriterule (G, D). Then T'(s)— T'(t) inthe
SERS,p formalism using the de Bruijn rewriterule T'(G, D).



878 deBruijn Indices for Metaterms

PROOF. By definition of the rewrite relation (Definition 2.23) there is an admissible valuation 6
for (G, D) and there is a context C' such that s =, C[0G] and t =, C[#D]. By Lemma 4.3
T(s) = T(C[#G]) and T(t) = T(C[#D]). Notethat T(G,D) = (T(G),T(D)) is ade Bruijn
rewrite rule as remarked just after Definitions 4.4 and 4.6. The proof thus proceeds in two steps:
in Step 1 we show that there exists a de Bruijn valuation x and a de Bruijn context E' such that
T(s) = E[sT(G)] and T'(t) = E[T(D)]; Step 2 consists in showing that ~ is a valid de Bruijn
valuation for (T'(G), T(D)).

e Step 1. By Lemma 4.12 we have T'(s) = T'(C)[T},(0G)] and T'(t) = T'(C)[T},(0D)], where
k is the parameter path of the context C, and T'(C) is a de Bruijn context. By hypothesis G
iswell-formed and 6 is safe for G (so that 6, is injective on the set of bound o-metavariables).
As a consequence we can apply Lemma 4.13 so that 7). (6G) = T,.(8)(T(G)) and T,(6D) =

T,.(0)(T (D)), where T}, (9) is a de Bruijn valuation. Thus we may take « def T.(0) and E def

T(C).

Step 2. We have still to show that T}, (6) isvalid for (T'(G), T(D)). By Definition 3.13 we have

to check that Value(l, T, (0)(X;)) = Value(l', T, (6)(X;/)) for every pair of t-metavariables X;

and X, appearing in the de Bruijn rewrite rule (T'(G), T'(D)), that is, by Definition 4.9, that

Value(l,Te(l)k(G(X))) = Value(l', Ty, (0(X))). Finaly, verifying the following conditions

alows usto conclude from Lemma4.14 with p = 0:

—6(X)isatermin T by definition of valuations,

— @ isinjective on bound o-metavariables sinceit is admissible,

— finally, we need to show that for every variable = € FV(6X) we have z € 0(1) iff z € 0(I').
But this immediately follows from the fact that 6 verifies the path condition for X in (G, D)
becauseit is admissible.

5 From indicesto names

In this section we show that SER.S are operationally equivalent to SERS, 5. For that, we show how
the notion of rewriting in the SERS;5 formalism may be simulated in the SERS. Asin Section 4
we develop the required results by distinguishing the definition phasend the rewrite-preservation
phase

5.1 The definition phase

We begin with a trandation from de Bruijn terms to terms with variable names. This makes use of
the NAMES(e) function given after Definition 3.7.

DEFINITION 5.1 (From de Bruijn terms (and contexts) to terms Sand contexts))
Thetrandation of a € T 453 , denoted U (a), is defined as UMM (“) (4) where, for every finite set
of variables S, and every label of variables k, U} (a) is defined as follows:

s def [ at(k,n) ifn <|k|
Ui (n) - { To_p ifn>|klandz, €S
US(f(ar,. .. an) < FUS(ar),. .., US (an))

US(&(ay, ... an)) < e (Ufk(al), . US (ay)) foranyz ¢ kU S
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Thetranglation of ade Bruijn context £, denoted U (E), is defined as above but adding the clause

Ug(oO) 4 0. We remark that we can alwayschoose z ¢ kU S sinceboth k and S arefinite.

Notethat U (e) isnot afunction since the choice of bound variablesis non-deterministic. However,
one can show that if ¢ and ¢’ belong bothto U (a), thent =,, . Thus, U (e) can be seen asafunction
from de Bruijn terms to a-equivalence classes.

REMARK 5.2

We remark that given a set of variables S, ade Bruijn term a and alabel &, the trandation U} (a) is
awaysdefined if NAMES(FI(a)\|k|) C S. Itisquiteevident that FI (£(a))\n isexactly Fl(a)\\ (n+
1). Also, if U7 (Cla]) is defined and |I] is the binder path number of C' (see Definition 3.6), then
Uj3 (a) isaso defined. Note, moreover, that if = € FV (U (a)) thenz € S U k.

DEFINITION 5.3 (From de Bruijn pre-metaterms to pre-metaterms)
The translation of a de Bruijn pre-metaterm A, denoted U(A), isdefined as U.(A), where U;(A) is
defined as follows:

Ui(si(1)) i+ 1),ifi+1< |l

Ui(sl' (@) “a

Ui(X) f x

Ul(f(A1,- - An) = F(U(A), .., Ui(Ay))

Ui(€(A1, .. A) ea.(Uai(Ar), ... Uai(Ay)), it WFa(A;) forsomea ¢ ist.1<i<n
Ui(A1[As)) L Uoi(A1) o — Uy(Ap)], if WFai(Ay) for somea ¢ 1.

Asin Definition 5.1 the translation of a de Bruijn pre-metaterm is not afunction since it depends
on the choice of the namesfor o-metavariables. Indeed, two different pre-metaterms obtained by this
translation will be v-equivalent. Also, for some de Bruijn pre-metaterms such as£(2), thetrandlation
may not be defined. However, it is defined on de Bruijn metaterms.

DEFINITION 5.4 (From SERS 5 rewriterulesto SERS rewrite rules)
Let (L, R) be ade Bruijn rewrite rule then its translation, denoted U (L, R), isthe pair of metaterms
(U(L),U(R)).

Note that if A is such that WF;(A) holds then its translation U;(A) is aso a named metaterm,
that is, WF;(U;(A)) aso holds. Therefore, by Definition 2.14 the translation of a de Bruijn rewrite
ruleisarewriterulein the SERS formalism. As mentioned above, if ade Bruijn pre-metaterm A is
not ade Bruijn metaterm then U;(A) may not be defined.

EXAMPLE 5.5
Consider thede Bruijn rule app(AX,, Z.)— A(Xap[A(app(2, app(1, Z.,5)))]) from Example 4.8.
Therule obtained by the trandation of Definition 5.3 is

app(Aa. X, Z)— AB.(X[or — Ay.(app(B, app(v, Z)))]),
wheress, for the rule Subs(U(S(g))7Ze)—> 3 we obtain subs(m.ﬁ, Z)— 3 for some bound o-

metavariable .

DEFINITION 5.6 (From de Bruijn valuations to val uations)
Let k = (k;, x¢) beadeBruijn valuation, S be afinite set of variablesand & alabel of variables, and
0, be avariable assignment such that:
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1. 0,(a) ¢ SUEK, forany a € Dom(6,), and
a . ~) — at(k”{i(a)) if I{l(a) S |,Z{;|
2. for every @ € Dom(k;), 0,(Q) = { Tpy(a)—|k|  Otherwisewith z,,a)_|x| € S

Thetrandlation of « isthe valuation Uy, s 1) (%) o (0y,0:), where

0, x Uyl e (6X1)  forany X; in Dom(x).

Condition 2 on 6, says that if an i-metavariable in A is bound (or free) in the context label &
as interpreted via « then the new valuation Uy, s 1y (k) must reflect this fact. We will now show
that if x isavalid de Bruijn valuation then this definition is correct that is, the definition does not
depend on the choice of the t-metavariable X, in Dom(x). For that, we need some lemmas, which
are developed in the Appendix.

LEMMA 5.7 (Trandlation of de Bruijn valuationsis correct)
Thevaluation Uy, 5 )(r) of Definition 5.6 is correct if « isvalid, where correct meansthat for every
Xy and Xy in Dom(rx) wehave U ), (kX1) = Uy 4, (kX1r), whenever both terms are defined.

PROOF. Since « isvalid we have Value(l, kX;) = Value(l', kX ) for every X; and X in Dom(k).
Then by Lemma C.3 we may conclude Ug ), (kX1) =a Up 4y, (K X1). i

5.2 The rewrite-preservation phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the
definition phase ensure that the notion of rewriting in the formalism with names has the same seman-
tics as the corresponding one with de Bruijn indices. More precisely, we seek to prove Proposition
5.12.

PROPOSITION 5.12 (Simulating SERS ;-rewriting via SER.S-rewriting)
Assumea— binthe SERSyp formalismusing rewriterule (L, R). ThenU (a)— U (b) inthe SERS
formalismusingrule U (L, R).

For that we need to develop some intermediate results. The following lemma states that the
trandlation is well-behaved w.r.t de Bruijn contexts. Induction on the context £ and LemmaC.1 (see
the Appendix) may be used for proving it.

LEMMA 5.8 (U iscompositiona w.r.t de Bruijn contexts)
Let E be ade Bruijn context, I, k labels where [ is the parameter path of U7 (E) and a € Typ. If
U7 (E[a]) isdefined, then U (E[a]) = UZ(E)[U}j.(a)].

LEMMA 5.9 (U and Updating Functions)
Leta € Typ, 1,12 and k belabels of variableswith || = j and |l| = i—1. Then Ulfbk(u;(a)) =a
US . (a) if U (a) is defined.

PROOF. We proceed by induction on a. The case a = f(aq,...,a,) is straightforward by the
induction hypothesis, so we consider the other ones.

e a = n. We have two cases to consider:
—n < j.Then Ulflgk(u;f(n)) = Ulfbk(n) = at(lilak,n) = at(l1k,n) = Ulfk(n).
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—n>j. ThenUf, , (Ui(n)) = U, (n+i—1) and we have two further subcasesto consider:

*n+i—1 < |llok|. Thensincen < |l;k| wehaveUS, , (n+i—1) = at(lilok,n+i—1) =
at(l1k,n) = Ufk(n).

«n+i—1> |lilzk|. Thensincen > |lik|, U (n+i—1) = p i1 j1mk] = Tk =

Ulfk(n)
ea=¢(ay,...,a,). Then wereason as follows:
Uﬁle(Z/{}(a)) = §z. ( 2l lak (u;+1(a1))7 ) Uillgk(u}:—&-l(an)))

=a &2.( zllk(al) . Ujlk(an)) (i-h.)
=o & (U5 (a){z 2}, UG pan){z — 2'}) (¢ fresh)
=a &2.(U ’llk(al) . U’llk( n)) (Lemma C.1)
=a &2 yllk(al){y —2'},..U llk(an){y «—2'})  (Lemma C.1)
=a &y ( yly r(a1),. yllk( n))

= Ullk( a).

The phrase ‘2’ fresh’ should be read, in full rigor, as ‘=z’ does not occur in U ; (a;) nor in
Ujix(ai) for 1 < i < n’. The definition of U3 (e) and the hypothesis that U, (a) is defined,
allows usto apply Lemma C.1 above.

|
LEMMA 5.10 (U is compositional w.r.t de Bruijn substitution)
Leta,b € Typ, land k labels of variableswith |I| = i — 1, x avariable such that « ¢ [k U S. Then
Uj(afi < b}) =4 U, (a){x < U (b)}, assuming both sides of the equation are defined.

PROOF. The proof is by induction on a. See the Appendix. [ |

LEMMA 5.11 (U iscompositional w.r.t valuations)

Consider ade Bruijn valuation x = (k;, k¢ ), a de Bruijn pre-metaterm A, afinite set of variables S,
avariable assignment 6, verifying the hypothesisin Definition 5.6, alabel of binder indicators and
alabel of variables k. If the following conditions hold:

1. xisvalid,

2. kA isdefined,

3. 6, isdefined over [ and the bound o-metavariablesin U;(A),
4. 9, isinjective on the bound o-metavariables,

5. NAMES(FI(kA)\ |8, (1)k|) C S, and

6. WF,(A).

Then, U ) (kA) =a Ugp, 5.1 (1) Ui (A).

Intuitively & represents the context information where the reduction is performed (thus & isalabel
of variables). We also require NAMES(FI (kA)\\|0, (1)k|) C S to ensurethat Ué‘i(l)k(ﬂA) is defined.

PROOF. By induction on A. See the Appendix. [ |

The reader should note that the trandation of avalid de Bruijn valuation is an admissible named
valuation. Recall that avaluation is admissible for arewriterule (G, D) iff the following conditions
hold:
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e fissafefor (G, D) (Definition 2.20),
e if « and 8 occur in (G, D) with « # § then 6, # 6,3, and
o 4 verifies the path condition (Definition 2.21) for every t-metavariable in (G, D).

Safeness is considered in Lemma D.1 and Lemma D.3 goes on to consider admissibility. Both
results are developed in the Appendix. So we move on directly to the main result of this section, i.e.
that the SER.S formalism preserves SERS g-rewriting.

PROPOSITION 5.12 (Simulating SER.S ;p-rewriting via SER.S-rewriting)
Assume a— b is a reduction step in the SERS;p formalism using rewrite rule (L, R). Then
U(a)— U(b) inthe SERS formaismusing rule U (L, R).

PROOF. Let us consider the de Bruijn rewrite step a— b using ade Bruijn valuation « which isvalid
for (L, R). Without loss of generality we can suppose that « is only defined on the metavariables
of (L,R). And, let U(L, R) = (G, D). By definition of the rewrite relation we have a de Bruijn
context E such that « = E[xL] and b = E[xR]. We proceed as follows:

e Take S asthe set of variables NAMES(Fl(a)) so that U (a) is defined. Note that since Fl(b) C
Fl(a) holds by Corollary 3.16, U2 (b) is aso defined.

e Let k be the parameter path of US (E).

e Now, to apply Lemma 5.8 we need to show that U;(xL) and U (kR) are defined, which
follows from the first and second items. Therefore, U (E[xL]) =, UZ(E)[UZ(xL)] and
UZ(E[KR]) =o U (E)|[UF (kR)].

e The next step isto apply Lemma5.11 in order to decompose U} (kL) and U (kR). First of all,
let usfix any variable assignment 6,, such that it verifies the following requirements:
—itisdefined over all the o-metavariablesin U.(L) and U, (R) and only on these,

— itisinjective on the bound o-metavariables,

—0,(a) ¢ S UEK for any bound o-metavariable o € Dom(6,) (i.e. the variables assigned
to bound o-metavariables in the rewrite rule (U(L),U(R)) are not confused with the free
variables in ¢ and b, that is, with the variables in S, nor with the variables bound in (the
parameter path of) the context where the rewrite-step takes place, that is, the variablesin k).

— We also define 6,, on the free o-metavariables of the rewriterule (U (L), U(R)) asthe hypoth-
esisdictates, i.e. for al a we define

@ & [ (k@) (@) < K
v - Ty (@)— k| otherwise with z,;, &) x| € S.

We shall now consider the case of U} (x L), the other one being similar. We must thus meet the

conditions of the previous lemma.in order to resolve U (s L). Let | = e.

1. k isvalid by hypothesis.

2. kL isdefined sincea = E[xL].

3. We a'so have that 6, is defined over e and the bound o-metavariablesin U, (L) and U.(R).

4. The assignment 6,, isinjective over the bound o-metavariables.

5. NAMES(FI (xL)\\|k|) C S holds since by definition we set S = NAMES(FI(a)) (Notethat by
Corollary 3.16 we have NAMES(FI (b)) C 5).

6. Finally, WF (L) holds since (L, R) is a de Bruijn rewrite rule and hence L and R are well-
formed de Bruijn pre-metaterms.

We may thus apply Lemma5.11.
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L et us summarize our situation:

US(E[KL)) =o UZ(E)[UZ(kL)] (Lemma 5.8)
=a US(E)[Uq,,s1)(k)(Uc(L)] (Lemma 5.11)
= US(BE)Ugq,,s5 (k)G

and

US(E[kR]) =o US(E)Ug(kR) (Lemma 5.8)
=o US(E)[Uy, s (5)(U(R))] (Lemma5.11)

= US(E)[Ug, sk (k)D].

So we now define the named context ¢ < US(E) and we also define the named valuation

g (6,,5,k) (). Thenwe have U(a) = C[¢0'G] and U(b) = C[0'D]. In order to conclude that

U(a)— U(b), by definition of SERS-rewriting, we areleft to verify that ¢’ isadmissiblefor (G, D).
Now,

1. U, s,k (x) is defined for all the metavariables of G and D since both Uy, 5.1y (x)(G) and
Uto,,s,k) (k) (D) are defined.
2. 0, isinjective on all the bound o-metavariablesin (G, D) by definition of 6,,.

We can then apply Lemma D.3 and conclude that ¢’ is admissiblefor (G, D).

6 Preserving properties

This section studies the relationship between the transl ation functions over pre-metaterms and terms
introduced above. It gives rise to two results stating, respectively, that given a metaterm M then
U(T(M)) isv-equivalent (Definition 2.12) to M (see Figure 5), and that given a de Bruijn metaterm
A then T(U(A)) is identical to A. These results are listed below and proved in the Appendix.
They are used to show that properties such as confluence, local confluence, the diamond property
and strong and weak normalization are preserved when trandating an SERS rewrite system into a
SERS g rewrite system and vice versa.

LEMMA 6.1

1. Let M € PMT such that WF (M). Then U(T(M)) =, M.
2. Lett € T. ThenU(T'(t)) =q t.

3.Let A € PMT p. If WF(A) then T(U(A)) = A.

4. Leta e Typ. ThenT (U(a)) = a.

The following lemma ensures that rewrite rules described with v-equivalent metaterms generate
the same rewrite relation. This lemma together with the above mentioned results and the simula-
tion propositions (Proposition 4.15 and Proposition 5.12) are exactly what is needed to preserve
propertiesin both senses.

LEMMA 6.2
Let (G, D) and (G, D') be SERS rewriterulessuchthat G =, G’ and D =, D’. Then — ¢ py =
H(G/,D’) .
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named metaterms de Bruijn metaterms

v-equivalent

FIGURE 5. v-equivalence and translations

PROOF. Without loss of generality we provethat if s— (¢ py t then s— g/ pry t. Thuslet us assume
that there is an admissible valuation 6 for (G, D) and a context C' such that s =, C[0G] and
C[6D] =, t.

The set of bound o-metavariables occurring in (G’, D’) may be divided into two (not necessar-
ily digoint) sets 5; and Bs. In B; we find those bound o-metavariables which occur in the pa-
rameter path of some t-metavariable in (G’, D’), and in B, the other bound variables occurring
in (G', D’). The o-metavariables in 13; are not renamed in any way by the v-equivaence relation
(Definition 2.12). We define the valuation 6’ = (6;, 9.)) asfollows:

tr Vv

ox X ogx
0a ¥ 0,0 ifach
0a Y o4

In order to fully define 8’ we must consider the value it assigns to those o-metavariablesin B, which
arenot in By . For these we simply require 6’ to assign any variables such that the resulting valuation
issafefor (G’, D'), and 6., isinjective on the bound o-metavariables.

Observe the following:

1. MVAR(G’, D") C Dom(8'),
2. #" isby construction an admissible vauation for (G’, D'), and
3.5 =, C[0G] =, C[0'G') and t =, C[0D] =, C[0'D'].

Hence s— g/, pry t. i

COROLLARY 6.3
Let (G,D) be an SERS rewrite rule. Then the rewrite relations generated by (G, D) and
U(T(G, D)) areidentical.

PrROOF. Use Lemma 6.1(1), Lemma 6.2 and the fact that the translations preserve well-formedness.
[ |

DEFINITION 6.4 (Local Confluence, Confluence, Diamond Property)

Let S be areduction relationdefined on a set O and let S* be its reflexive-transitive closure. The

relation S is said to have the local confluencdresp. confluenc property iff for every a,b,¢ € O



de Bruijn Indices for Metaterms 885

such that aSb and aSc (resp. aS*b and aS*¢), thereisd € O such that bS*d and ¢S*d. Therelation
S issaid to have the diamondproperty if for every a, b, ¢ € O such that aSb and aSc thereisd € O
such that b6Sd and ¢Sd.

Preservation of confluence is stated in the two following theorems. Preservation of local conflu-
ence and of the diamond property are stated and proved analogously.

THEOREM 6.5
If R isaconfluent SERS then T'(R) isaconfluent SERS 5.

PROOF. Suppose a () b and a — () c for some de Bruijn terms a, b, c. Applying the transla-
tion mapping U (e) and using Proposition 5.12 we obtain the diagram (b) of Figure 6. The reductions
denoted by the dotted lines are obtained by Corollary 6.3 and the confluence of R.

Now applying the translation mapping T'(e) and using Proposition 4.15 we obtain the diagram
(c) of Figure 6. Finaly, Lemma 6.1(4) and Lemma 6.1(3) yield the desired diagram illustrated as
diagram (a) in Figure 6.

a U(a) T(U(a))

T(Rz/ \r(n) UT(R)) \Qjmnn T(U(T(Ry Y(\U@m)))
b v U0 ) T(0(e)
o ?’(}iT(R) UTR) Yy UTR) rum) s TOE®)

s s

T(s)

@ (b) (©

FIGURE 6. Preservation of confluence from names to indices

THEOREM 6.6
If R isaconfluent SERSyp then U(R) isaconfluent SERS.

PROOF. Suppose s (g t1 and s —y(r) to for some terms s, ¢4, t,. Applying the trandation
mapping 7T'(e) and using Proposition 4.15 we may obtain the diagram (b) of Figure 7. Thereductions
denoted by the dotted lines are obtained by the confluence of R. Note aso that Lemma 6.1(3) has
been used.

Now applying the trandlation mapping U (e) and using Proposition 5.12 we obtain the diagram (c)
of Figure 7. Finaly, Lemma 6.1(2) and the definition of reduction Definition 2.23 yield the desired
diagram illustrated as diagram (&) in Figure 7. .

We focus now on preservation of normalization properties.

DEFINITION 6.7 (Weak and Strong Normalization)
Let us consider areduction relation S onaset O. Therelation S is said to have the weak normal-
izationproperty iff for every a € O thereisat least one finite S-reduction chain aS . . . Sb such that
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s 1'(s) U(T(s))
U(R/ \If(m T(U(Ry \iwm)) U(T(U(R)) W(U(Rm
hooooB T(h) () U(T(t) U(T(t2))
UMR) Yy 4 UM K - T .
A4 TWUR) vy p TWR) UTWUR)Y) y  p UTUR)))
Ul(a) a Ula)
@ (b) (0)

FIGURE 7. Preservation of confluence from indices to names

b cannot be further reduced. Therelation S is said to have the strong normalizatiorproperty iff for
every a € O thereisnoinfinite S-reduction chain starting at a.

THEOREM 6.8
1. If Risastrongly normalizing SERS, then T(R) isastrongly normalizing SERS 5.

2. If R isastrongly normalizing SERS,p, then U(R) isastrongly normalizing SERS.

PROOF. Both items are proved in asimilar way. As an example, we prove the first one. Suppose an
infinite derivation for some de Bruijn terms ag, a1, as, . . .:

a—T7(R) A1 T(R) @27 T(R) """

Applying the translation mapping U (e) and using Proposition 5.12 we obtain:

Ulao)—=v(rr)) Ular)=u(rw)) Ula2)—=uv(rmr)) -

which is an infinite derivation in R by Lemma 6.1(1) and Corollary 6.3, contradicting that R is
strongly normalizing.
|

Theorem 6.8 also holdsif all occurrences of ‘strongly normalizing’ are replaced by ‘weakly nor-
malizing'.

7 Conclusions

We have proposed aformalism for higher-order rewriting with de Bruijn notation and we have shown
that rewriting with names and rewriting with indices are operationally equivalent. We have given
formal trandations from one formalism into the other which can be viewed as an interfacein pro-
gramming languages based on higher-order rewriting systems.

In a sequel article [5, 6] we introduce a conversion procedure from the Simplified Expression
Reduction Systems with de Bruijn indices into first-order rewriting. Composing the trandation pre-
sented in this work with the af orementioned conversion procedure yields aframework for establish-
ing a precise relation between higher-order rewriting with names and first-order rewriting.
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Appendix
A Compositionality of T

We show that the translation 7" from names to indices is compositional w.r.t substitution and valuations.

LEMMA A.1 (T iscompositional w.r.t. substitution)
Lets,t € T, I, k belabelsof variableswith |I| = ¢ — 1, let = be avariable such that = ¢ [, and suppose FV (¢) N1 = 0. If
s{x — t} isdefined then T}, (s{z — t}) = T}, (s){i — T, (1) }.

PROOF. By induction on s.
e s = z. Then we have )
T,.(t) = ULT,(t) (Lemma 4.10)
= i =T, ()}
= T =T,O} (z¢10).
e s = y # x. Then we have three subcases to consider
—y € l. Then T}, (y) = pos(y,lk) = pos(y,lzk) = T, . (y) = T, (y){i — T,(t)}. Thelast equality holds
because pos(y, 1) < i.
-y ¢landy € k. Then T}, (y) = pos(y, k) = pos(y,lzk) — 1 =T, , (y) — 1 = T, (W) {i — T, () }. Thelast
equality holds because pos(y, lzk) > i.
—y & Ik Then Ty, (y) = O(y) + [Ik] = O(y) + |lak| —1 =Ty, (y) — 1 = Ty, ()i — T, (t)}. Thelast equality
holds because O(y) + |lxk| > 1.
e s= f(s1,...,8n). Thenwe have

f(le(sl{z —1}),... ,le(sn{m —t}))
i.h. f(Tlmk(Sl){i — Tk(t)}}, ERR Tlmk(sn)ﬂi - Tk(t)ﬂ’)
= T < T}

Ty (s — 1))

e s = &y.(s1,...,sn). Notethat since s{z — t} is defined by hypothesis we know that y ¢ FV(¢) andy # = for
otherwise s{z < t} would not be defined. Then we have

T(s{z —1t}) = f(Tyzk(Sl{x =t} Tym(sn{x —1t}))
=i.h. f(Tylzk(sl)ﬁi + 1< Tk(t)}}, ceey Tylzk(sn){i +1« Tk(t)})
= T ()i — T, (1)}

LEMMA A.2 (T iscompositional w.r.t. valuations)
Let M be apre-metaterm, [ alabel of binder indicators, and suppose
1L WF (M),

2. 0 = (04, 0;) isavaluation such that 6,, isinjective on the bound o-metavariables, and
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3. §issafefor M.
Then for every label kweha\/eT9<l)k(0M) =T, (0)(T,(M)).

PROOF. By induction on the pre-metaterm M. Since W, (M) we have the following cases to consider:
e M =a €l. Then Te(l)k(ﬁa) = pos(fc, 0(1)) =hyp.2 pos(a,l) = T, (0)(pos(a, 1)) = T, (0)(T;(r)).
e M = a. Then by the definition of valuation and since & ¢ [ because ! isalabel of binder indicators:

~ pos(fa, k) + |0(1)] ifbaek
Toau(0) = { 00a) + 6Dk othewise

sl (pos (6@, k)) if 0a € k
{ si(O(8a) + |k|)  otherwise

= T,0)s"(@)
= T (0)(Ty(a))
e M =X.ThenT,

0(l>k(€X) = Tk(o)(Xl) = Tk(B)(Tl (X))
o M =¢a.(My,...,My) (thecasewhere M = f(Mjy, ..., My) issimilar). Then we have

Tg(l)k(ega'(Ml’ann)) = Tg(a)g(l)k(eMl)v-'~:T9<a)9(l)k(9Mn))

&(
—i.h. E(Tk(e)(Tal(Ml))v---7Tk(9)(Tal(Mn)))
= T (0)(T) (€. (M1, . ..., My))).

e M = M;i[a «+ M2]. Then we have

Te(z)k(‘g(Ml [ — M2]))

Ty (001 {0, () — 0M})

—Lemma 4.11 Tg(a)g(l)k(eMl){l ‘_Tg(l)k(eMQ)H
=ih. T, (O)(T, (M1){1 — T}, (0)(T,(M2)) }
= T, (O)(T,, (M1)[T; (Mz)])

= T, (0)(T)(Mi[a — Mz])).

Note that since ¢ is safe for A we may apply Lemma4.11 with ! = e. Indeed, 0, (a) ¢ 0(1) and FV (0M2) N O(1) = 0
forl =e.

|
LEMMA A.3
Let k, k' be labels of binder indicators, I alabel of variables and @ be an injective function on the set of binder indicators.

Thenforevery t € T, every p > 0, every x1,...,xp, if for every z € FV(¢) \ {z1,...,2zp} we have z € 0(k) iff
z € 6(K’), then

Valuep(k,Twluwpe(k)l(t)) = Valuep(k:',Txlmxpg(k,)l(t)).
PROOF. We useinduction on t.
e t = x. We have the following further casesto consider:
—x =x; withl <i <p. Then
Valuep(k,Tm“wpg(k)l(ac)) =
ValueP (k,i) = i = ValueP(k',1) =
Valuep(k/7Tzln_zpe(k,ﬂ(w)).
—x € (k) N 6(k’) and the previous case does not hold. Let i = pos(z, 8(k)) and j = pos(z,0(k’)). Thenat(k, i) =
at(k’, 7) by injectivity of 6 and we have

Valuep(k,Tgclm%g(k)l(x)) = ValueP(k,p+1)
= at(k,q)
= at(k,j)
= ValueP(k',p+j)

ValueP (k’, Tzl...zﬁ(k’)l(w))‘
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— 2 € | and the previous cases do not hold. Then for some: with1 < ¢ < |I| we have

Valuep(k:,Tzl'”ng(k)l(m)) = ValueP(k,p+ |0(k)| + 1)
= x;
= ValueP(k',p+|0(K')| + 1)

= ValueP (K, Tzl...zpe(k’)l($))‘

—z & {x1,...,zp},x & 0(k) UO(K'), z ¢ . Then we have

Valuep(k:,Twlm%g(k)l(m)) = ValueP(k,O(z) +p + |0(k)I])

TO(x)+|1|
= ValueP(k',O(z) +p + |0(K)I|)

= ValueP (K, Txlmxpe(k’)l(x))'

ot = f(t1,...,tn). Wehave Valuep(k:,Tm“_%g(k)l(ti)) = Valuep(k’,Txlmxpg(k,
so the property trivially holds.
e t=2¢x.(t1,...,tn). Thenwehave

)z(ti)) by induction hypothesis

Valuep(k:,Tzlmzpe(k)l(fr.(tl, ctn)))

= Valuep(k’g(walA..xPG(k)l(tl)’ o ’Txaclmacpﬂ(k)l(t")))

&(ValueP*t(k, Txaclmmpe(k)l(tl))’ ., ValuePt (k, T

+1 (s +1 /xxl”‘xl’e(k)l(t")))
=in  &(ValuePT(k ’Tzzl..mpe(k’)l(tl))""’ ValuePT(k', T

zzl...zpe(k’)l(t”)))
= ValueP (k’, Tzlmzpe(k,ﬂ(gx.(tl, cetn).

B Compositionality of U

We show that the trandlation U from indices to namesis compositional w.r.t. de Bruijn substitutions and valuations.

LEmMMA B.1 (U iscompositional w.r.t. de Bruijn substitution)
Leta,b € Typ, ! and k labels of varisbleswith |I| = ¢ — 1, z avariablesuch that z ¢ Ik U S. Then U} (a{i — b}) =a
US, (a){z < UZ (b)}, assuming both sides of the equation are defined.

PrRoOOF. The proof is by induction on a.
e a = n. We have three further cases to consider:
—n < i. Then wereason as follows:

Ui (afi — b)) = Uﬁ?l(;z) |
= at(lrk,n
= at(lzk,n)
= at(lzk,n){z — US ()} (z¢1)
= US iz — US().

—n > i. Thensince U3 (af{i < b}) = U} (n — 1) we consider two further cases:
* n — 1 < |lk|. We reason asfollows:

USin—1) = at(lk,n—1)
= at(lzk,n)
= at(lzk,n){z — U (D)} (z¢k)
= US iz — US ().

* n — 1 > |lk|. Wereason asfollows:

Ui (n—1)

Tp—1—|lk|
=  Tn—|lzk|
US  (n){z — UZ (b)}.
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—n = 4. Then on the one hand we have U} (i{i < b}) = U5 (Ui (b)). And onthe other U, (i){z — UZ (b))} =
z{x — UZ(b)} = U (b). Lemma5.9 concludes this case.

e a = f(ai,...,an). Weusetheinduction hypothesis.

e a=¢(ai,...,an). Then wereason asfollows:

Ul‘z(a{{i —b})

= (z ¢ lk U S by Definition 5.1)

£2.(US, (a1 fi+1 < b}),..., U5, (anfi+1—b}))

=q (yfresh)

(U (arfi+1 = b){z —y}, ... . UG (anfi + 1 — b}){z —y})

=a (Lemma C.1)

€y (US (a1 fi+ 1 — b}), .., US, (anfli + 1 — b}))

=a (i.h.)

€y.(US o (a){z — US O}, US, (an){z — US®)})

=+ (seebelow)

{y.(U(‘i,Zxk>{z,_y}(a1){w — U}?(b)}v B U(‘z,lxk){z,hy}(an){x — Uks(b)})
=a (Lemma C.1)

Ey-(U2, (a){z" — yH{z = UF®)}, ..., UZ,, (an) {2’ — yH{z < UZ(0)})
=+ (Subst.Lemma)

&y-(USp (a){z — UFO)H —y},... US, (an){z = UZ (O)HZ — y})

£ (US,,  (a){z — US®)}.... . US,. (an){z — US()})

US (a){z — UZ ()}

Note that since the RHS of the equation to prove is defined, from the last line above we learn that 2’ ¢ lzk U S and
2 ¢ FV(UZ (b)).
‘Subst.Lemma refers to the substitution lemma for the A-calculus [2], which is also valid for our restricted notion of
substitution and reads as follows: s{z «— t}{y «— u} = s{y — u}{z — t{y «— u}}if x ¢ FV(u) for distinct
variables z and y, and both sides of the equation together with the term ¢{y <« u} are defined.

|

LEMMA B.2 (U iscompositional w.r.t. valuations)

Consider ade Bruijnvauation k = (k;, K¢ ), ade Bruijn pre-metaterm A, afinite set of variables S, avariable assignment 6,,
verifying the hypothesisin Definition 5.6, alabel of binder indicators ! and alabel of variables k. If the following conditions
hold:

1. kisvdid,

2. kA isdefined,

3. 0, isdefined over [ and the bound o-metavariablesin U;(A),
4. 0, isinjective on the bound o-metavariables,

5. NAMES(FI(xA)\ |0, (1)k|) C S, and

6. WF(A).
Then, UBS“(l)k(RA) =« U(GH,S,k)(K)Ul(A)-

PROOF. By induction on A. Below we shall use LHS and RHS to denote the left- and right-hand side respectively, of the
equation to prove.
e A = Xj. Since WF;(X},) by Hypothesis 6, we havethat h = [ and so LHS = UGS (z)k(“Xl)' And on the other hand

RHS = U, s,k &) (U(X1))
= Ug,,sk)(R)X

Uégv(l,)k(nXl/) (with X;» € Dom(k)).

Then since « isvalid (Hypothesis 1) we may apply Lemma 5.7 to conclude.
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e A =57(a). Since WF,(s7(a)) holds by Hypothesis 6,

LHS U

{

RHS

W k(,{s\ I(

at(k, ki(a
Tri(a)—|kl

On the other hand we have

Uo,,s,k) (F) (U
Uo,,s,k) (5)(@)
0, (6

then j = |I|. We have

)

Uy (8" (:(@))
)

) ifki(a) < k|

otherw. with Ty (a)—|k| €s.

(s@))

Q).

We can conclude LHS = RHS because 0,, satisfies the requirements of Definition 5.6.
e A =s5J(1). Since WF;(S7(1)) holds by the Hypothesis 6, j + 1 < ||. Thus,

LHS

9 (l)k(“Sj(l))
US (8 (1)

at(0u (1), + 1)
Oy (at(l,j + 1)).

o A=¢(A1,...,An). Thenwereason asfollows

RHS

Uo,,s,k) (R)(U1(E(A1, - .., An)))
Ugo,,s,k) (k) (Ea.(Uat (A1), - - -,
€0y (a).(Uga,,s,k) (K)(Uai (A1), - - -

Ual(An))) (a ¢ ! and W}—al(

RHS

Uo,,s,r) (R)(U1(87(1)))
Uo,,s,k) (k) (at(l,5 + 1))
Ou(at(l,j+1)).

Ag)forall <i<n)
)-

yU0,,5,k) (B) (Uai(An)))

In order to apply the induction hypothesis we need to verify the hypothesis for A;. The Hypothesis 1 holds by definition
and the Hypothesis 2 is evident since kA is defined. Hypothesis 3 holds since by hypothesis, 8,, is defined over [ and the

bound o-metavariablesin U;(A) = £a.(Uqi (A1), ..., U,

Ual
Hypothesis 5 for A and the genera fact that FI(£(aq, . ..

because when translating the de Bruijn pre-metaterm A we choose « verifying the condition WF (A

the induction hypothesis we have:

RHS

{91,((1)( . (al)k(’iAl)

(= / does ot oceur in Ue (al)k

—a

€2/ (U3 i (5 A B0(0) — 2/}, ...,

=a

(Lemma C.1)

s
& -Wia, (atyk) (0, (@) ==y (FA1), -
(6, injective and Definition 5.6)

=a

S
9 (al)k(

«1(An)), henceit is defined over the bound o-metavariablesin

(A;)Ualforl < i < n. Regarding Hypothesis 5, namely NAMES(FI (kA;)\ |0 (ald)k|) C S; but thisisevident by

yan))\n = Fl(a1,...,an)\n + 1. Hypothesis 6 isaso true

i). Thus applying

KAR))
(Ui‘i (al)k(’{An)){eu (a) «— 2'})

S
U, (atyk) (60 ()27} (5AR))

521-(Ujgv(l)k("5141)7 B Uf/gw(l)k("iAn))
= (¢ 0Ok US)
¢ (U (260, (z)zc){szf}(”Al)’ ) U(Sze,,(z)k){sz/}(“An))
=q (Lemma C.1)
fz (U5 20, (l)k(”Al){Z =2}, zg (l)k(ﬁAn){Z —2'})
§z ( 2o, (l)k(fiAl)7 A Ufeu(l)k(nAn)).
On the other hand we have
LHS U(fv(l)k(n(g(Al, c AR)))
Ufi(l)k(g(”Al’ .o KAR))
= §z.(U59v<l)k(ﬁA1), ce Ufev(l)k(nAn)) (2 ¢ 0,(DkUS).
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o A= f(A1,...,Ay). Thenwe have

LHS = Uég,,(z)k('f(f(Al,...,An)))
= Uy or(f(A1,... KAR))
= Sy (8AL), - U o (R AR)).

RHS = Ug, s,k &) U(f(A1,...,An)))
= U,,s,0) &) (f(U(A1),...,U(An)))
= f(Uy,s,6) (K)UL(A1), -, Uga, 5,1 (K)U1(An))-

We can immediately conclude by induction hypothesis.
e A= Ay[A2]. Thenwe have

LHS = U(fu(l)k(n(Al[Ag}))
Ues,J(l)k(KAlﬁl — rA2}).

On the other hand we have

RHS
= Up,,sr (k) (Ui(A1][A2]))
= Uw,,s8)#)Ua(A1)]a «— U(A2)]) )
= (U,,s,k) (8)(Uat(A1))){0s (@) < Uy, s,k) (k) (Ui(A2))}
—o US o (RAD{Ou(0) = U ), (kA2)}. (i.h)

wherein (x), o« ¢ lissuch that WF ,;(A1).
Note that in the last step the inductive hypothesis may be applied by the same reasons we used in the case of the binder.

Now, since 0, isinjective and satisfies the conditions of Definition 5.6, then 6, (o) ¢ S U6, (1)k and we can then conclude
by applying Lemma5.10.
|

C From deBruijn valuationsto correct valuations

In this section we prove that the translation of a valid de Bruijn valuation (Definition 5.6) does not depend on the choice of
the t-metavariable.

LEMMA C.1 (Renaming and the U¢ (o) translation)
Let ! bealabel of variables, z and y be two variables, S be a set of variables and a be ade Bruijn term such that:
lLzelandz ¢ S,

2. y does not occur in U (a), and

3. Names(Fl(a)\|I]) C S.
Then wehaveUlS(a){z —y} =a ls{zhy}(a)-

PROOF. The condition NAMES(FI(a)\|I|) C S isrequired for U%(a) and U3 }(a) to be defined. The proof proceeds

{z—y
by induction on a. The case where a is of theform f(a1, ..., a») follows from the induction hypothesis so we consider the
remaining ones.
e a = n. We have two further casesto consider:

-1<n<|l. Then Uls(n){z —y}=at(,n){z —y} =at(l{z — y},n) = UZS{ZHy}(n).
—n > |l|. Thensince z ¢ SwehaveUlS(n){z —yt =z {z =Y} =Tph_| = Tp_jifzey} = Ul“?{zgy}(n).

e a=¢&(ai,...,apn). Then wereason as follows:
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Uf(a){z <y}
SCE'(UEL(al)) crty Ufl(an)){z — y}

= (z€lhencez #zandy ¢ U (a))
. (US(a1){z —w},...,UJ(an){z — y})

=a (i.h.)

51.(Ufl{z_y}(a1), R Uz{z_y}(an))

=a (vfresh)

€0.US oy (@) — v, US . (@n)z — v})
=a (i.h.)

5”'(U5{ZHy}{wev}(a1)7 ) U‘fl{ze—y}{xw—v}(an))
=a (z#yandz ¢1)
5”-(U{?l{z<_y}(al)v [ERR} Ufl{zhy}(an))

oo S S
€0-WUiigz gy fweot (@) Uiz gy oy (@n))
= (ih.

E0(USy .y — v}y USy )y (an){w — u})
=a (1§¢l{z<—y}US) <

Ew. (U, l{zey}(al)v s le{zgy}(an))

Us (a).
H{z—y}
Since the translation function on the LH.S and RHS of the equation to prove may have chosen different variables for the
£ binder we relate them through a fresh variable v.
|

LEMMA C.2
Let a and b be de Bruijn terms, [ and I’ labels of binder indicators and o a binder indicator. Then for 5 > 0 we have:
Valuedt1(1l,a) = Value T (', b) implies Value? (al, a) = Value? (al’, b).

PROOF. By induction on a.
e a = m. Since ValueIt1 (I, m) = Valued T1(I’, b) we have b = n for some index n. We proceed by cases:
—m < j 4 1. Thensince Value? 71 (I,m) = m = ValuedT1(I/,n) by Déefinition 3.12 we have n = m and therefore

Value? (al, m) = Value? (al’, n).

—m > j + 1. We have two different cases:

* m—(j41) < |I|. Thenby hypothesiswe have Value? 1 (I, m) = at(l,m—(j+1)) = Value’T1(’, n), and hence
0<n—(+1) <|/|andat(l,m—(j+1)) = at(’,n— (j +1)). Therefore Value’ (al, m) = Value’ (al’,n)
sncel<m—j<|adlandl <n—j<|al|

* m — (j + 1) > |I]. Then by hypothesis we have Value 1 (I,m) = ., (j41)—; = Value? T (I’,n), and hence
n—(G+1) >Ulandm— (j+1) = |l| =n— (j+ 1) — |I'|. Therefore Value/ (ad,m) = @y j_|t| =
Valued (od’, n).

ea = f(ai,...,an) Or a = &(ai,...,an). By Definition 3.12 and the hypothesis it must be the case that

b= f(bi,...,bn) (tesp. b = £(bi,...,bn)) and Valued 1 (1,a;) = Valued T (1',b;) (resp. ValueIT2(1,a;) =

Valuedt2(I’,b;)) for 1 < i < n. By induction hypothesis we can conclude Value’ (al, a;) = Value? (od’, b;) (resp.
Valued T (al, a;) = Valued T (ad’, b;)) and thus Value? (al, a) = Valued (al’, b).

|

Note that the converse of Lemma C.2 does not hold (for o may already be present in [ or I’). Indeed, Value®(aq, 2) =
Value®(aa, 1), yet Valuel (o, 2) # Value(a, 1). The value function is used to determine when a de Bruijn valuation is
vaid or not. It is defined in the SERS ;5 formalism in order to describe reduction on de Bruijn terms. A natural question
which arises is that of the relationship between value equivalent de Bruijn terms considered as named terms via de U (e)
trandlation in the SERS formalism. The following lemma investigates this matter.

LEMMA C.3
Leta,b € Typ, S beasetof variables, I, I’ belabels of binder indicators, k alabel of variables, and 6,, avariable assignment.
If both U @y (@) and Uy ()i (b) are defined, then Value(l, a) = Value(l', b) implies Uy k(@) =a 59<l,)k(b).

PROOF. By induction on a.
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e a = m. Since Value®(l,m) = Value® (I, b) we have b = n for some index n. The left-hand side reads

at(fy(1),m)  m <[l
US oe(m) = { atlhom— i) |1 <m < |kl
Tm—|ik| m > |kl‘ and Lo —|ik| € S.

We now consider the following cases:

—m < |l|. Then since Value®(l,m) = at(l,m) = Value®(I’,n) we have n < |I’| and at(l,m) = at(l’,n).
Therefore Uy’ k() = at(0u (1), n) = Ou(at(l',n)) = Ou(at(l,m)) = Uégv(l)k(m).

—|!] < m < |lk|. Then since Valueo(l m) = Tyy_yy) = Value®(I’,n) we have n > [ and @y, 1) = Tp_ |-
Thenm — |i| =n — |I/|. Thus U, 0 (l’)k(n) =at(k,n — |l'|) = at(k,m — |I|) = 9 (l)k(m)

—m > |lk|. Then since Value®(l,m) = Tl = Value®(I’,n) we haven > |I'| and z m—|i] = Tp_|y/|- Then
m —|l| = n — || and sSincem > |lk| we also have n > |I'k|. Thus Ug k(M) = Tn_ k] = Tk =
U(i,(l)k(m)'

eaq = f(al,.. an). Since Value®(l,a) = Value®(l’,b) we have b = f(b1,...,b,) and Value®(l,a;) =

Value®(I,b;) for 1 < 4 < n. Then by the induction hypothesis we have U, é)sv(l)k(ai) =a éqv(zf)k(bi) and hence

ev(z>k(“) “a 9v(l’)k(b)'

a = 5(&1,.. ,an). Since Value®(l,a) = Value®(l',b) we have b = £(b1,...,bn) and Valuel(l,a;) =
Value (',b;) for 1 < 4 < m. Then Value®(Bl,a;) = Value®(Bl',b;) holds by Lemma C.2, where in particular
wecantakeﬁ to be a fresh o-metavariable such that ,, is undefined on 3. Let us extend the function 6., to 3 by defining
0, (8) def . where z is afresh variable such that = ¢ 0,(1)0,(I')k U S. Then smceUS (z)k(al) and Uze (l’>k( i) are
defined we can apply the induction hypothesisto get UZQ (l)k(az) = Uev(ﬁl)k(ai) =a e,,(ﬁz/)k(b )= Uzeu(l/)k(bi)
forl <i<n.

We now reason as follows:

U@ (l)k(E(aly ce- an))

= . (U2 26, wr(ar); - Ufev(z)k(an)) (z & 0, (DkUS)
=o £2.(U3 9 (l)k( ){xHz},...,Ufgvu)k(an){xHz})

= £2.(U, 9 (z)k(al) 7Ufgv(l)k(an)) (Lemma C.1)
=a  £2.(U zG (l’)lc(bl)7 R z@ (l/)k(b ) (.h.)

= &z. ( y@ (l/)k(bl){y — Z} 59 (l’)k( ){y — Z}) (Lemma C.l)
=a  &y.(U) 200 (l/)k(bl) 7Uy9u<l/) (bn)) (y ¢ 0,(1")ku S

by Definition 5.1)
= Up ank(€br,...,bn))

Note that, in general, the converse of Lemma C.3 does not hold. Indeed it sufficesto consider k = ¢, 1 = o, I = S,
a=1,b=1,S = ( and the variable assignment 6,a = 6,8 = =. Then U3 (a) = = = US (b) but Value(a, 1) = o #
B = Value(B,1).

We can now show that the translation of de Bruijn valuations is correct in the sense mentioned above. Thisis completed
in Section 3asLemmab.7.

D From valid de Bruijn valuationsto admissible valuations

This subsection showsthat if we depart from avalid valuation « in the de Bruijn indices setting and we trand ate this valuation
as dictated by Definition 5.6 into a valuation in the SERS setting, then we obtain an admissible valuation. In other words,
the resulting valuation is safe (Definition 2.20) and verifies the path condition (Definition 2.21).

A word on notation: we shall use 9, ;, . . . to denote o-metavariables (that is, 6 may either be a pre-bound o-metavariable
such as «, or a pre-free metavariable such as @).

LEMMA D.1 (valid de Bruijn valuations trandlate to safe valuations)

Let x be a valid de Bruijn valuation for a rewrite rule (L, R), 6, a variable assignment satisfying the requirements of
Definition 5.6, S afinite set of variables, k alabel of variables, and U (L, R) = (G, D) the trandation of (L, R). If the
following conditions hold
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1. U, s,k)(r) isdefined for all metavariables of G and D, and

2. 0, isinjective on the set of bound o-metavariables of (G, D)
then Uy, 5,1) () issafefor (G, D).

PROOF. Recall that Urg, s ) (%) < (6., 0¢) where:

0: X def Uéi(l)k('{Xl) forany X; € Dom(k).

In what follows we shall abbreviate Uy, s, () With 6’ for the sake of readability. Suppose that 6" is not safe for
(G, D), then unwanted variable capture arises in 6’ D (since the metasubstitution operator does not occur on the LHS of a
rewrite rule, no renaming problems can arisein GG). Thus there exist metaterms M7 and M2 and aformal parameter o such
that

o Mi[a «— M>] occursin D (or equivalently D = C[M;[a < M2]] for some metacontext C'). The metaterm D may be
depicted asin Figure 8(a) where I; denotes the parameter path of the metacontext C'.

o ¢’ isdefined for M and Mo.

o \We have either
Casel: 0'a =z andz € BV(0' M) for somevariable z, or
Case2: O'a=z,z € FV(0'My),y € BV(0'M;y) andy € FV (0’ M) for somevariables z # y.

I 0 .11 .11
sub sub sub sub
/N 7\ VRN VRN

[Jex Mo [Jor M, [ . [ex .
| | o 2
M, . M, Y l Y
g Ly
y .
€Y (b) (c) (d)

FIGURE 8. Treeform for D

Before proceeding let us show the following fact:

Fact D.2
If z € BV(6' M), then z cannot be bound by aformal parameter 3 € «l; (thatis, for dl 3 € al; wehave 8’ (3) # z).

PROOF. Suppose that for some 3 € al; we have 0’ (3) = z. Thus by definition of 8’ we have 6,,(3) = 2. Let us consider

the boundoccurrence of z in 6’ M; . There are two possibilities:

1. z comes from the instantiation of a bound o-metavariable, so that = = ¢’(3’) for some formal parameter 3" in M;. Now
since D is a well-formed pre-metaterm we must have 3 # 3. But ¢’(3') is equal to 0,,(3’) by definition, so that 6,
assigns the same value, namely z, to two different bound o-metavariables 3 and 3’ of D, thus contradicting Hypothesis 2.

2. z comes from the instantiation of at-metavariable, so that = € BV (t) with¢ = 6’Y for some t-metavariable Y occurring
in M; . By Definition 5.6 we have

t= Ui(l)k(nn)

for some t-metavariable Y; occurring in Dom(x) with | = 1’aly (see Figure 8(b)). Therefore by definition of the term
translation function U¢ (e) (Definition 5.1) the variable z cannot be a candidate for binding in kY] sinceit aready occurs
inthelabel 0, (1)k, indeed, 8 € l and 6, (8) = =.

|
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Now, suppose that case 1 holds, that is, ’a = z and x € BV (0’ M) for some variable z. This leadsimmediately to a
contradiction with the Fact D.2 recently proved. Therefore, let us continue with the proof of the lemma by considering that
case 2 holds, and in particular, |et us see where the free variable occurrence of y comes fromin 6/ M- . We have two possible
cases:

1. Thereisan occurrence of an o-metavariable ¢ in M such that 6, (6) = y. As observed above (Fact D.2), since y may not
be bound by aformal parameter in /1 (i.e. thereisno 8 € I; with 6,(8) = y) thend ¢ ;. Thusé = B’ for some free
o-metavariable ﬁA’ or else the pre-metaterm D would not be a metaterm. So then E’ isafree o-metavariablein D and thus
by Hypothesis 1 U(g, ,5,k)(x) is defined on 3. Now, the assignment 6,, satisfies the requirements of Definition 5.6, so
that in particular by the second requirement we must have 6,, (@) =yeSUk.

We now analyse where the bound occurrence of y comes fromin 6’ M7 in order to arrive at a contradiction. Here too we
have two cases to consider:

@ y = 6,(B") for some formal parameter 3’' occuring in M;. Now, 6,(3”) ¢ S U k since 6, satisfies the first
requirement of Definition 5.6 by hypothesis, so that we arrive at a contradiction.

(b) y comes from instantiating some t-metavariable Y in My, i.e. y € BV(0'Y) for some t-metavariable Y in M,
(Figure 8(b)). Thusthereisat-metavariable Y; withi = I’aly in Dom(k), asimplelabel &’ and an index m such that
Ulf/é)v(l’all)k(m) =y =at(k’0,('al1)k,m).

Now sincey isboundin 8’Y we havem < |k’6, (1")|. But then by definition of U (e) wehavey ¢ S U 6, (al1)k, in
other words, y cannot have been used as a candidate variable for binding. In particular, y ¢ SUk. Thisisacontradiction
since we already know that y € S U k.

2. Thereisan occurrence of at-metavariable Y in M2 suchthat y € FV(6’Y"). Then thereisan occurrence of Y; in Dom (k)
with ! = lal; suchthaty € FV(Ug’U(lzll)k(nYl)) wherel; isthelabel ‘above’ M> (Figure 8(c)). Note that since for this
occurrence of y we havey € FV (6’ M) thenwemust havethaty € S ory € 0, (l1)k.

We now analyse where the bound occurrence of y comes fromin 6’ M . Here too we have two cases to consider:

(@ y = 0,(8") for some formal parameter 3" occurringin M. If y € S ory € k we arrive at a contradiction with the
fact that 6, verifies the first requirement of Definition 5.6 (saying that 6,,(3”) ¢ S U k). Moreover, if y € 0,(11) we
contradict Fact D.2.

(b) y comes from instantiating some o-metavariable Z in My, i.e. y € BV(6'Z) for some t-metavariable Z in M,
(Figure 8(d)). Thusthere is an o-metavariable Z; in Dom (k) with | = I’al;, asimple label ¥’ and an index m such

that UIf’GU(l’al])k(m) =y = at(k'0,(I'ali)k,m).

Now since y isbound in 6/ M we have m < |k’6,(1")|. But then by definition of U$ (e) wehavey ¢ S U 0, (ad1)k.

Inparticular, y ¢ S U 6, (l1)k. Thisisacontradiction since we already know that y € S or y € 6, (l1)k.

|

LEMMA D.3 (From valid de Bruijn valuations to admissible val uations)

Consider the following: a valid de Bruijn valuation « for a rewrite rule (L, R), 6, a varigble assignment verifying the
hypothesisin Definition 5.6, and U (L, R) = (G, D) thetrandlation of (L, R). If the following conditions hold:

1. U, s,k)(r) isdefined for all metavariables of G and D, and

2. 0, isinjective on the set of bound o-metavariables of (G, D),
then U(&,,S,k) (l‘i) isadmissible for (G7 D)

PROOF. We shall abbreviate Uy, 5 1)(x) by 0’ in order to improve readability. Since by LemmaD.1 we havethat ¢’ is safe

then by Definition 2.22 we have still to check the following properties:

o 0 verifies the path condition for X in (G, D): if no t-metavariable occurs more than once then the property is trivia so
let us suppose that there is a t-metavariable X in (G, D) occurring at two different positions p and p’. Let us take any
variablex € FV (6’ X) and let { and I’ be the parameter paths of p and p’ in the trees corresponding to G or D. Suppose
0'X = Ugg, s (W)X E US ( (5X)). Then since xisvalid by Lemma5.7 Uy ), (5X1) =a Ug ), (5X0).
As a consequence, the set of free variables of both terms is the same. Now, to show that 6 verifies the path condition for
X in(G, D) let ussupposethat = € 6, (1). Since the o-metavariablesin  are bound in therule (G, D), and 0, is defined
for all the metavariables of (G, D) by Hypothesis 1, then by the requirements of Definition 5.6 z ¢ S U k. Now, since =
isfreein Ugv(l,)k(nXl/) then z must bein S U 6, (I')k, which implies that z is necessarily in 6, (I'). Thisalows usto
conclude that @ verifies the path condition for X in (G, D).

o If the pre-bound o-metavariables o and 3 occur in (G, D) with o # 3, then 6, # 6,,3: this property trivially holds by
Hypothesis 2.
|
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E Preserving properties
We start by atechnical lemmathat will be used later.

LEMMA E.1

Let M € PMT without occurrences of t-metavariables, and let

1. kal beasimplelabel, k¥’ alabel suchthat |k| = |k’|, o/ apre-bound o-metavariable,
2. 3 abound o-metavariable such that it does not occur in U i (Txr o7 (M), and

3. WFps o (M) hold.

Then (U kot (Trrar1(M))) o= B3>=y Ugi(Tir a1 (M)).

PROOF. By inductionon M. Letk = (1...08, and k' = 3] ...8;,. By Hypothesis 3 we have the following cases to
consider:

e M =a" € k" andhencea’ = ﬂ;. for some1 < j < n. Then we have
Ukal (T o1 (M) Ka—=>= 0 Ka—pF>=pyp1 B = Urgi(Thr o1 (M)).
e M =ca" €landa’ ¢ k'. Then we have
Ukal(Tpror(M)) Ka—pg>= o' Ka—B>=pyp1 " = Upgi(Tpr a1 (M)).
e M =o' ando’ ¢ k’. Then we have
Ukat(Tyrart(M)) Ka—p>=a <a—B>= 0 = Ukgi(Ty/ar1(M)).
e M = &. Then we have
Ukat(Thrart(M)) Ka—p>=a <a—p>»=a = Ukgi(Tyror1(M)).

e M = f(Mi,..., M,). Then we use the induction hypothesis.
o M =¢&a” . (Ma,. .., My). Wereason asfollows:

(Ukat(Tyror1(M)))) o= pB>=
({/Bl'(Uﬁ’kal(Ta”k’a’l(Ml))’ sy Uﬁ/kal(Ta”k/a/l(Mﬂ«)))) <La—pB3>

for 8 ¢ kal suchthat WF g0 Tk o1 (M;)) holdsfor 1 < i < n. Since 8 # 3’ by Hypothesis 2, continue
(gﬂ/'(Uﬁ’kal(Ta”k’a/l(Ml))r ceey Uﬁ’kcxl(Ta”k’cx’l(Mn)))) <La—B3>

éﬁl'(((UB’kal (Ta”k’a/l(Ml))) Ka—=p>,..., (Uﬁ’kal(Ta”k’a’l(M’ﬂ))) <<Oé<~ﬁ>>)
v Zh)
gﬁf/'(Uﬁ/kﬁl(Ta”k’a/l(Ml)): s Uit (T it a1 (Mn)))

Uipt(Tirar(§a” (M, ..., Mn)))
e M = Mo/ — Mz]. Similar to the previous case.

LEMMA E.2
Let M € PMT and! asimplelabel. If WF;(M) thenU(T;(M)) =, M.

PROOF. By induction on M.

e M = a. Thensince WF (M) wehave o € land thus U ; (T («)) = U (pos(e, 1)) = .
o M =a.ThenU,(Tiy(a)) = U;(s!(@) = a.

o M =X.ThenU(Ty(X)) =U(X;) = X.

e M = f(M,..., My). Weusethe induction hypothesis.

o M =¢a.(My,..., My). Wereason asfollows:

Ul(Tl(ga-(Mlv EER) Mﬂ))) =
Ul(g(Tal(Ml)v s 7Tal(Mn))) =
EB-(U gi(Tou(M1)), -, U g1(Tar (Mn)))

where 5 ¢ . We have two further cases to consider:
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1. There are no occurrences of t-metavariablesin M. Now if 3 = o we conclude by using the induction hypothesis so let
us assumethenthat 5 # «.

EB.(U g1 (Tor(M1)), ..., U gi(Tar(Mnr)))

= (ﬁ notin Uﬁl(Tal(M )))

&3’ Upt(Tat(M1)) KB—0">,...,Upg(Tar(Mn)) <B—p">)
(

Lemma E.1)
&3’ (U gi(Tar(M1)), .-, Upgry(Tar(Mn)))

(Lemma E.1)
&3/ (Uat(Toar(Mr)) Ka—=8">,...,Ua(Tar(Mn)) <a—p">)
= (i h )

ga'(Ual (Tal(Ml))’ EERE Ual (Tal (Mn)))
ﬁa.(Ml, sy Mn)

2. Thereis an occurrence of at-metavariable X in M. Inthiscase since U (T;(M)) is defined we observe that it must be
that 8 = «. Indeed, we havethat X, occursinT; (M) for somelabel I. Hence when translating this metavariable to
the de Bruijn setting we arrive at U 11/ 3, (X1 ), which is defined only for I 31 = I’ ad. Therefore, 8 = o and we use
the induction hypothesis.

o M = M;[a «+— M>]. We proceed as above.

LEMMA E.3
Lett € T suchthat FV(t) C S Ul for i any label and S afinite set of variables. Then U (T} (t)) =

PROOF. By induction on the structure of ¢.

e t = x. Then there are two cases to consider:
—x € 1. Then US(T( )) = U (pos(z,1)) = =.
-z &l ThenU (T)(x)) = US(O(a:) + |1]). By hypothesisz € S Ul sothat z € S and then Uﬁ((’)(m) + 1) =

xo<z) =x.

ot = f(tr,...,tn). ThenUS(T}(t)) = f(US(T)(t1)), ..., U (T)(tn))) =a f(t1,...,tn). Thelast step holds by
induction hypothesis.

ot =~C¢x(t,...,tn). Then

UZS(Tl(ém(th.-- n)))

= (E(T (t1), - l(t )

= EZ( Z( (t1)),~-- 5Ty (tn))) (z¢SU

=a &2 .(U(T, (t){z — } US(T,(tn){z = 2'}) (& notinUZ, (T, (t:)))

= & /l( ((81)),- ( zl(tn))) (Lemma C.1)

= & (UN(T, l(tn){x - z'} US(T,(tn)){z — 2'})  (Lemma C.1)

=a £z (U ( T, (t1)), -, Ug (T, (tn))) (z §f D)

—a €$~(t17~~,tn) ( )

|
LEMMA E.4
Let A € PMT p and! beany simplelabel. If WF;(A) thenT;(U;(A)) = A.
PROOF. By induction on A. |
LEMMA E.5
Let a be ade Bruijn term and ! be any simple label such that NAMES(FI(a)\\|I|) C SandINS = §. Then T,(U; (a)) =
PROOF. By induction on the structure of a.
PrROOF. [Of Lemma 6.1]
1. Let M € PMT suchthat WF (M). Then U (T(M)) =, M. The proof isadirect consequence of LemmaE.2.
2. Lett € T.ThenU(T'(t)) =« t. The proof isadirect consequence of LemmaE.3
3. Let A € PMTyp. If WF(A) thenT(U (A)) = A. The proof is adirect consequence of LemmaE.4.
4. Leta € Typ. ThenT (U (a)) = a. The proof isadirect consequence of LemmaE.5.
|
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