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Abstract
In this paper we encode higher-order rewriting with names into higher-order rewriting in de Bruijn notation. This notation
not only is defined for terms (as usually done in the literature) but also for metaterms, which are the syntactical objects
used to express the rewriting rules of higher-order systems. Several examples are discussed. Fundamental properties such as
confluence and normalisation are shown to be preserved.
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1 Introduction

Rewriting is a very powerful method used to model computation where rewrite rules are used to
transform an expression into another simpler expression. The set of results or values of a computa-
tion may be interpreted as those expressions which cannot be rewritten any further.

There are many programming paradigms that can be modelled by rewriting, such as for exam-
ple functional and logic programming, equational reasoning, object-oriented and concurrent pro-
gramming and theorem provers. Rewriting is also used in mathematical reasoning, specification of
security protocols, resolution constraint methods, transition systems, natural language processing,
operational semantics, algebraic specifications, program transformation, etc.

One of the simplest rewriting formalisms is the so called first-order rewriting systems(see for
example [16, 15, 19, 7, 29]), where expressions are represented using algebras, and specifications
of operations and properties can be done via a set of equations. In order to obtain a computation
mechanism for the expressions of the algebra, the equations are oriented as rewrite rules.

There is also a classical rewriting formalism to represent the operations used to manipulate ex-
pressions, namely the λ-calculus, where functions come with rules to evaluate them. These functions
are considered as ‘first-class citizens’: we can apply a function to another function (and in particu-
lar to itself), we can yield a function as the result of another function. The λ-calculus, which is a
Turing complete language, turns out to be a model of computation for the functional programming
paradigm.

Both formalisms, namely first-order rewriting and λ-calculus, present some interesting character-
istics, which are in some sense complementary. On the one hand, λ-calculus is a natural model for
functionality, but it is often not well-adapted to deal efficiently with data structures such as integers,
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lists or trees. In practice, even if it is known how to encodealgebraic data types into the λ-calculus,
it is preferable to introduce primitive algebraic structures into the λ-calculus [9]. On the other hand,
even if some equalities can be encoded into the typed λ-calculus (such as for example those which
are necessary to define addition on integers), there are some other equalities that cannot (such as
for example the surjective pairing[2] axiom). Therefore, there is a concrete reason to enrich the
expressive power of a system like the typed λ-calculus by adding either richer typing systems and/or
algebraic rewrite rules.

Last but not least, first-order rewriting is not well-adapted to deal with functions as ‘first-class
citizens’, that is, to write specifications where functions may be used as parameters as well as results.
A typical example is given by a program like map.1

All these characteristics together contribute to the foundations of higher-order rewriting systems
(HORS). These systems combine within a unique syntax the formalisms from proof theory, such
as the typed λ-calculus, with formalisms arising in algebraic specifications, such as the first-order
rewriting systems. We thus obtain a language which is able to model at the same time the notion of
computationand that of proof.

Many higher-order rewriting systems exist and work in the area is currently very active. This
research domain may be seen to start with the pioneering work of J-W. Klop in his 1980 PhD
thesis [18], where Combinatory Reduction Systems(CRS ) were introduced. Several formalisms
introduced later, of which we mention some, are: Z. Khasidashvili’s Expression Reduction Systems
(ERS ) of which an early reference is [17], T. Nipkow introduces Higher-Order Rewriting Systems
(HRS ) in [22], D. Wolfram defines Higher-Order Term Rewriting Systems[34], V. van Oostrom and
F. van Raamsdonk introduce Higher-Order Term Rewriting Systems[32] as a general higher-order
rewriting formalism encompassing many known formalisms [31, 33] and B. Pagano defines Explicit
Reduction Systems(XRS ) [23] using de Bruijn notation. van Raamsdonk’s PhD thesis provides a
survey [33].

Higher-order (term) rewriting concerns the transformation of terms in the presence of binding
mechanisms for variables and substitution. In order to explain the technical problems encountered
when working with these systems, let us take as an example the λ-calculus, where terms are either
variables (denoted by symbols x, y, z, . . .), or applicationshaving the form (MN) representing
the application of the function M to an argument N , or λ-abstractionshaving the form λx.M
representing a function with argument x and body M . The transformation rule is the β-rewrite rule,
which represents the result of applying a function to an argument.

(λx.M)N→β M [x← N ].

The right-hand side of this rule makes use of a special symbol to denote the substitutionoperation:
M [x ← N ] denotes the term which results from substituting N for all free occurrences of x in
M . Substitution is a metalevel notion (it lives in the world of our language of discourse) that may
be seen as a consequence of the existence of special symbols called binder symbolsthat have the
power to bind variables in terms. This entails that substitution may not be confined to usual first-
order replacement, but rather has to be careful to respect the status (free or bound) of variables
when doing its work. In this sense, it is fair to say that substitution is ‘respectful replacement’
and, as a consequence, it is a mistake to dismiss substitution as a trivial concept: the theory of
higher-order rewriting is considerably more involved than that of first-order rewriting. In particular,
α-conversion is needed to guarantee that substitution is a correct operation; and this comes with a

1The program map can be specified by the equations map(f,[]) = [] and map(f,x::l) = f(x)::map(f,l), where
f represents any function, [] represents an empty list, and x::l represents a non-empty list having a first element x followed
by a sublist l.
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cost since automatic renaming of bound variables turns out to be an expensive operation in terms of
consumption of computational resources such as memory and processing time.

This paper aims at getting rid of α-conversion in the substitution process. Although from the
metalevel the execution of a substitution is atomic, the cost of computing it strongly depends on
the form of the terms, especially if unwanted variable capture conflicts must be avoided by renam-
ing bound variables. So this aim has a practical interest since any implementation of higher-order
rewriting must include instructions for computing this notion of substitution. As illustrated in Sec-
tion 4, there is a standard technique introduced by de Bruijn to get rid of α-conversion. De Bruijn
indices take care of renaming because the representation of variables by indices completely elimi-
nates the capture of variables. However, de Bruijn formalisms have only been studied for particular
systems (and only on the term level) and no general framework of higher-order rewriting with in-
dices has been proposed. We address this problem here by focusing not only on de Bruijn terms
(as usually done in the literature for λ-calculus [21]) but also on de Bruijn metaterms, which are
the syntactical objects used to express the rules of any general higher-order rewrite system formu-
lated in a de Bruijn context. More precisely, we shall introduce a de Bruijn notation for Expression
Reduction Systems, obtaining SERSdB . In fact, we shall formulate a slightly simplified version
of ERS that we shall call Simplified ERS (SERS ), better suited for our purposes, and then con-
sider a de Bruijn notation for this formalism. The reason for choosing the ERS formalism is that
its syntax is close to the ‘usual’ presentation (see for example [2, 13]) of the λ-calculus. Thus,
for example, the β-rewrite rule is written in the ERS formalism as app(λx.M,N)→ M [x ← N ]
where the higher-order metavariables M and N can be instantiated by any terms, while it is writ-
ten in the CRS formalism as app(lam([x].M(x)), N)→ M(N) where the notion of valuation for
higher-order variables is a more involved operation.

Our work may be viewed as an interfaceof a programming language based on higher-order rewrit-
ing. Since the use of variable names based formalisms are necessary for humans to interact with
computers in a user-friendly way, technical resources like de Bruijn indices and explicit substitu-
tions should live behind the scene, in other words, should be implementation concerns. Moreover, it
is required of whatever is behind the scene to be as faithful as possible as regards the formalism it is
implementing. So a key issue is the detailed study of the relationship between SERS and SERSdB .
The definitions developed in Sections 4 and 5 give formal translations from higher-order syntax with
names to higher-order syntax with indices and vice versa. These translations are extensions to the
higher-order setting of the translations presented in [10], also studied in [21].

We begin this paper by introducing our work and study scenario, the SERS formalism. After
defining notions such as pre-metaterms, metaterms and terms and their corresponding notions of
substitution, we consider rewrite rules. Valuations are then introduced in order to put rewrite rules
to work. Metaterms are used to specify rewrite rules, and valuations are used to instantiate them in
order to rewrite terms.

The de Bruijn based formalism SERSdB is defined in Section 3, and analogous concepts are
considered in that setting. The key idea of our de Bruijn notation for metaterms is to associate
labels to metavariables in order to denote binding contexts. Thus for example, the metaterm with
names f(λα.(app(X,α)),X) will be translated as the de Bruijn metaterm f(λ(app(Xα, 1)),Xε),
where Xε denotes a metavariable X , which appears in an empty binding context, and Xα denotes
a metavariable X , which appears inside a binding context with a single variable, namely α. This
notation turns out to be a natural tool to write higher-order rewrite rules in a de Bruijn context.
Simple examples of such a fact, which we shall consider in this paper, are the ηdB and the CdB

rewrite rules, obtained from their respective name versions η and C:2

2The rewrite rule C expresses that the formula appearing as the first argument of the imply function symbol implies the



858 de Bruijn Indices for Metaterms

λα.(app(X,α)) →η X λ(app(Xα, 1)) →ηdB
Xε

imply(∃α.∀β.Y,∀β.∃α.Y ) →C true imply(∃∀Yβα,∀∃Yαβ) →CdB
true

Note that if the rightmost Xε of the rule ηdB is instantiated by a term a, then the leftmost Xα

must be instantiated by another term, say a′, which is obtained by incrementing by one all the free
indices in a. On the other hand, if the rightmost Yαβ of the rule CdB is instantiated by a term b,
then the leftmost Yβα must be instantiated by a term, say b′, which is obtained by interchanging all
1-level and 2-level indices in b. Indeed, the label αβ, when compared to the label βα may be seen
as denoting a permutation of indices.

We undertake the task of carefully comparing the SERS and SERSdB formalisms: Section 4
studies an encoding of SERS into SERSdB and Section 5 considers the opposite encoding. In
each case, this requires dealing with a static phase by showing how terms and rewrite rules may
be encoded, and a rewrite preservation or dynamical phase in which we must show that valuations,
and hence the induced rewrite relation, may also be encoded appropriately. The SERSdB -to-SERS
direction shall prove to be technically more demanding than the other. The reason is that we have
a choice for selecting appropriate names for variables andmetavariables, and we must rest assured
that the results are not biased by our selection.

The work presented in this paper is further extended in [6] by showing how to encode all SERSdB

as first-order rewriting systems with the aid of explicit substitutions. As a consequence, we obtain
a complete translation from higher-order rewriting within a formalism with names to first-order
rewriting modulo an equational theory.

This paper is an extended version of the extended abstract published as [4].
Concerning related work, it is worth noticing that other approaches to higher-order formalisms use

Nominal Logic or Higher-order Abstract Syntax. The first one is a version of many-sorted first-order
logic with equality containing primitives for renaming via name-swapping, for freshness of names
and for name-binding. The logic makes use of the Fraenkel-Mostowski (FM) permutation model of
set theory. Some of the more representative works along this line can be found in [14, 25, 30].

Higher-order Abstract Syntax (HOAS) incorporates name binding information in a uniform and
language generic way. This is done by representing object-level variables by variables in a meta-
language based on typed λ-calculus. The consequence of this representation is that renaming and
substitution is pushed out to the meta-level and that their properties are established once and for all.
Some proposals using HOAS are [24, 11].

2 Simplified expression reduction systems

This section introduces the name based higher-order rewrite formalism SERS . The latter is an ap-
propriate simplification of Khasidashvili’s ERS [17] which consists in restricting binders to those
which bind one variable and restricting substitution to simple substitution (in contrast to simultane-
ous or parallel substitution).

DEFINITION 2.1 (Signature)
A SERS -signature Σ consists of the following denumerable and disjoint sets.

• A set V of variablesdenoted x, y, . . .

• A set of pre-bound o-metavariables(o for object) denoted α, β, . . .

one in the second argument.
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• A set of pre-free o-metavariablesdenoted α̂, β̂, . . .

• A set of t-metavariables(t for term), denoted X,Y,Z, . . .

• A set F of function symbolsequipped with a fixed (possibly zero) arity, denoted f, g, h, . . .

• A set B of binder symbolsequipped with a fixed (non-zero) arity, denoted λ, µ, ν, ξ, . . .

The o-metavariables of the signature is the union of pre-bound and pre-free o-metavariables.
When speaking of metavariables without further qualifiers we refer to o- and t-metavariables. Since
all these alphabets are ordered, given any symbol s we denoteO(s) its position in the corresponding
alphabet.

DEFINITION 2.2 (Pre-metaterms)
The set of SERS pre-metatermsover Σ, denoted PMT, is defined by:

M ::= α | α̂ | X | f(M, . . . , M) | ξα.(M, . . . , M) |M [α←M ].

Arities are respected, i.e. a pre-metaterm f(M1, . . . , Mn) (resp. ξα.(M1, . . . , Mn)) is generated
by the grammar only if f (resp. ξ) has arity n ≥ 0 (resp. n > 0).

We use M,N,Mi, . . . to denote pre-metaterms. The operator •[• ← •] in the pre-metaterm
M1[α ← M2] is called the metasubstitution operator. The o-metavariable α in a pre-metaterm
of the form ξα.(M1, . . . , Mn) or M1[α ← M2] is referred to as the formal parameter. The set
of binder symbols together with the metasubstitution operator are called binder operators, thus the
metasubstitution operator is a binder operator (since it has binding power) but is nota binder symbol
since it is not an element of B.

SERS and ERS differ in their treatment of substitution since in ERS binders and metasubsti-
tutions are defined on multipleo-metavariables. Pre-metaterms like ξα1 . . . αk.(M1, . . . , Mm) and
M [α1 . . . αk ←M1, . . . , Mk] are possible in ERS , with the underlying assumption that α1, . . . , αk

are all distinct and with the underlying semantics that M [α1 . . . αk ← M1, . . . , Mk] denotes the
usual (multiple) substitution. It is well known that multiple substitution can be encoded by simple
substitution. Indeed, M [α1 . . . αk ← M1, . . . , Mk] can be encoded as the pre-metaterm M [α1 ←
β1][α2 ← β2] . . . [αk ← βk][β1 ← M1][β2 ← M2] . . . [βk ← Mk], where β1, . . . , βk are freshpre-
bound o-metavariables. As for ξα1 . . . αk.(M1, . . . , Mm) it may be encoded with the help of two
binder symbols ξ and ξ′ of arity 1 and m respectively, obtaining ξα1.(ξα2.(. . . ξ′αk.(M1, . . . , Mm))).
There is also a notion of scope indicator in ERS , used to express in which arguments of the binder
variables are bound. Scope indicators are not considered in SERS since they do not seem to con-
tribute to the expressive power of ERS .

We sometimes identify a pre-metaterm with its associated tree:

• The tree of a metavariable α, α̂ or X is the tree with the single node α, α̂ or X , respectively.

• If T1, . . . , Tn are the trees of M1, . . . , Mn, respectively, then the tree of f(M1, . . . , Mn) is that
of Figure 1(a).

• If T1, . . . , Tn are the trees of M1, . . . , Mn, respectively, then the tree of ξα.(M1, . . . , Mn) is
that of Figure 1(b).

• If T1, T2 are the trees of M1,M2, respectively, then the tree of M1[α ← M2] is that of Fig-
ure 1(c).

The tree of f(M1, . . . , Mn) has the expected form, however the tree of M1[α ← M2] may seem
somewhat odd since there are two nodes above the tree of M1. The reason is that the metasubstitution
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operator is asymmetric in that its left argument M1 is considered to be under a binding effect whereas
M2 is not. We would like this to be reflected in the structure of the tree, enabling us to look ‘above’
a position in a tree to know under which binders it occurs.

f
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��

T1
... Tn

ξα

��
��
��

��
��

��

T1
... Tn

sub

��
��
��
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[ ]α T2

T1
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FIGURE 1. Pre-metaterms as trees

A position is a word over the alphabet IN of natural numbers; we use ε to denote the empty word.
Given a pre-metaterm M and a position p, we define the subterm ofM at positionp as follows:

M |ε = M
f(M1, . . . , Mn)|i.p = Mi|p, for i ∈ {1 . . . n}
ξα.(M1, . . . , Mn)|i.p = Mi|p, for i ∈ {1 . . . n}
M [α← N ]|1.1.p = M |p
M [α← N ]|2.p = N |p.

The set of occurrences ofN in M is the set containing all the positions p of M such that M |p = N .
We say that N occurs at position p in M iff M |p = N . The parameter pathof a position p in M is
the list containing all the (pre-bound) o-metavariables occurring in the path from p to the root of M ,
in that order. Likewise, we may define the parameter path of an occurrence of N in M .

EXAMPLE 2.3
If M = f(ξα.X, Y ), then X occurs at position 1.1 and Y at position 2. The parameter path of 1.1 (or
just X) is α and the parameter path of 2 (or just Y ) is ε. If M = µβ.(X[α← λγ.(g(β, g(γ, Z)))]),
then the pre-metaterm λγ.(g(β, g(γ, Z))) occurs at position 1.2 and g(γ, Z) occurs at position
1.2.1.2; the parameter path of 1.2 (or just λγ.(g(β, g(γ, Z)))) is β, the parameter path of 1.2.1.2
is γβ.

The following definitions introduce the set of metaterms. Metaterms are pre-metaterms that are
well-formedin the sense that they prevent the use of the same name for two different occurrences
of a formal parameter appearing in the parameter path of a given pre-metaterm. In other words, all
the formal parameters appearing in the parameter path of a pre-metaterm must be different. Also, it
guarantees that pre-bound o-metavariables only occur bound.

DEFINITION 2.4 (Labels)
A label is a finite sequence of symbols of an alphabet. A simplelabel is a label without repeated
symbols. We use k, l, li, . . . to denote arbitrary labels and ε for the empty label. If s is a symbol and



de Bruijn Indices for Metaterms 861

l is a label then the notation s ∈ l means that the symbol s appears inthe label l, and also, we use sl
to denote the new label whose head is s and whose tail is l. Other notations are |l| for the lengthof l
(number of symbols in l) and at(l, n) for the nth element of l assuming n ≤ |l|. Also, if s occurs (at
least once) in l then pos(s, l) denotes the position of the first occurrenceof s in l. If θ is a function
defined on the alphabet of a label l = s1 . . . sn, then θ(l) denotes the label θ(s1) . . . θ(sn). We may
use a label as a set (e.g. if S is a set then S ∩ l denotes the intersection of S with the underlying set
determined by l) if no confusion arises.

DEFINITION 2.5 (Metaterms)
A pre-metaterm M ∈ PMT over Σ is said to be a metatermover Σ iff the predicateWF (M) holds,
where WF (M) iffWFε(M) holds, and WF l(M) is defined by induction on the structure of the
pre-metaterm M for any label l as follows:

• WF l(α) iff α ∈ l

• WF l(α̂) andWF l(X) hold iff l is a simplelabel

• WF l(f(M1, . . . , Mn)) iff for all 1 ≤ i ≤ n we haveWF l(Mi)
• WF l(ξα.(M1, . . . , Mn)) iff α /∈ l and for all 1 ≤ i ≤ n we haveWFαl(Mi)
• WF l(M1[α←M2]) iff α /∈ l andWF l(M2) andWFαl(M1).

EXAMPLE 2.6
The pre-metaterms f(ξα.X, λα.Y ), f(β̂, λα.Y ) and g(λα.(ξβ.c)) are metaterms, however the pre-

metaterms f(α, ξα.X) and f(β̂, λα.(ξα.X)) are not.

In the sequel, pre-bound (resp. pre-free) o-metavariables occurring in metaterms are simply re-
ferred to as bound (resp. free) o-metavariables. Also, we assume whenever possible, some fixed
signature Σ and hence speak of pre-metaterms or metaterms instead of pre-metaterms over Σ or
metaterms over Σ. As we shall see, metaterms are used to specify rewrite rules.

DEFINITION 2.7 (Free metavariables of pre-metaterms)
If M is a pre-metaterm, then FMVAR(M) denotes the set of free metavariablesof M , which is
defined as follows:

FMVAR(X) def= {X} FMVAR(α) def= {α} FMVAR(α̂) def= {α̂}
FMVAR(f(M1, . . . , Mn)) def=

⋃n
i=1 FMVAR(Mi)

FMVAR(ξα.(M1, . . . , Mn)) def= (
⋃n

i=1 FMVAR(Mi)) \ {α}
FMVAR(M1[α←M2])

def= (FMVAR(M1) \ {α}) ∪ FMVAR(M2).

The set of boundmetavariables of a pre-metaterm M , written BMVAR(M), is defined as ex-
pected. Note that only pre-bound o-metavariables may occur bound in a metaterm, metavariables
of the form α̂ or Xi always occur free (if they occur at all) in a metaterm. We denote the set of all
the metavariables of a metaterm or a pre-metaterm M by MVAR(M). So we have MVAR(M) =
FMVAR(M) ∪ BMVAR(M).

EXAMPLE 2.8
Let M be the metaterm f(β̂, λα.Y ). Then FMVAR(M) = {β̂, Y }, BMVAR(M) = {α},
and MVAR(M) = {β̂, Y, α}. If M is the metaterm f(β̂, λα.α) then FMVAR(M) = {β̂},
BMVAR(M) = {α} and MVAR(M) = {α, β̂}.
DEFINITION 2.9 (Terms and contexts)
The set of SERS termsover Σ, denoted T, and contextsare defined by:
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Terms t ::= x | f(t, . . . , t) | ξx.(t, . . . , t)
Contexts C ::= � | f(t, . . . , C, . . . , t) | ξx.(t, . . . , C, . . . , t)

where � denotes a ‘hole’. We use s, t, ti, . . . for terms and C,D for contexts. Contexts are just terms
with exactly one occurrence of a hole. The x in ξx is called a binding variable. We remark that in
contrast to other formalisms dealing with higher-order rewriting such as CRS , the set of terms is
not contained in the set of pre-metaterms since the set of variables and the set of o-metavariables
are disjoint. Terms are obtained from metaterms by suitable instantiation of t-metavariables and
o-metavariables.

With C[t] we denote the term obtained by replacing t for the hole � in the context C. Note that
this operation may introduce variable capture. The notion of parameter path makes also sense for
contexts, where it is defined as expected and where the only occurrence considered is that of the hole.
Thus, we define the parameter pathof a context as the list containing all the variables occurring in
the path from the hole � to the root of the context. For example, the parameter path of the context
f(λx.(z, ξy.(h(y,�)))) is the sequence yx.

The set of free and bound variables of terms and contexts are defined as expected. We write FV(t)
and BV(t) for the set of free and bound variables, respectively, of the term t. Similar notation is
used for the free and bound variables of a context. Substitution on terms can be defined as follows:
DEFINITION 2.10 ((Restricted) substitution on terms)
The (restricted) substitutionof a term t for a variable x in a term s, denoted s{x← t}, is defined:

x{x← t} def= t

y{x← t} def= y, if x 
= y

f(s1, . . . , sn){x← t} def= f(s1{x← t}, . . . , sn{x← t})
ξy.(s1, . . . , sn){x← t} def= ξy.(s1{x← t}, . . . , sn{x← t})

if x 
= y, and (y /∈ FV(t) or x /∈ ⋃
i FV(si)).

Note that this notion of substitution does notappeal to α-conversion (renaming of bound variables
as defined below) in order to avoid variable capture. Therefore this notion of restricted substitution
is not defined for all terms (hence its name). For example (ξy.x){x← y} is not defined and neither
is (ξx.z){x ← y}. When defining the rewrite relation on terms induced by rewrite rules we take
α-conversion into consideration in order to guarantee that any substitution to be performed may
be completed with restricted substitution. This allows us to ‘localize’ α-conversion when applying
rewrite rules.

α-conversion on terms is the smallest reflexive, symmetric and transitive relation closed by con-
texts verifying the following equality:

(α) ξx.(s1, . . . , sn) =α ξy.(s1{x← y}, . . . , sn{x← y})
where x 
= y and y is fresh in ξx.(s1, . . . , sn).

Note that since y does not occur in s1, . . . , sn substitution is always defined. We use s =α t to say
that the terms s and t are α-convertible. This conversion is sound in the sense that s =α t implies
FV(s) = FV(t).

The notion of α-conversion for terms has a corresponding one for pre-metaterms which we call
v-equivalence(v for variant). However, this requires first introducing restricted substitution for pre-
metaterms.
DEFINITION 2.11 ((Restricted) substitution on pre-metaterms)
The (restricted) substitution of a pre-metaterm Q for an o-metavariable α in a pre-metaterm P ,
denoted P �α←Q�, is defined as:
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α�α←Q� def= Q

β �α←Q� def= β, if α 
= β

β̂ �α←Q� def= β̂

X �α←Q� def= X

f(M1, . . . , Mn)�α←Q� def= f(M1 �α←Q�, . . . , Mn �α←Q�)
(ξβ.(M1, . . . , Mn))�α←Q� def= ξβ.(M1 �α←Q�, . . . , Mn �α←Q�)

if α 
= β and (β /∈FMVAR(Q) or α /∈⋃n
i=1 FMVAR(Mi))

(M1[β ←M2])�α←Q� def= (M1 �α←Q�)[β ←M2 �α←Q�]
if α 
= β and (β /∈FMVAR(Q) or α /∈FMVAR(M1)).

The intuitive meaning of two v-equivalent pre-metaterms is that they are able to receive the same
set of potential ‘valuations’ (Definition 2.19). Thus for example, as one would expect, λα.X 
=v

λβ.X because when α and X are replaced by x, and β is replaced by y, one obtains λx.x and λy.x,
which are not α-convertible. However, since pre-metaterms contain t-metavariables, the notion of
v-equivalence is not straightforward as the notion of α-conversion in the case of terms. More on the
intuitive idea of v-equivalence will be said below.

DEFINITION 2.12 (v-equivalence for pre-metaterms)
Given pre-metaterms M and N , we say that M is v-equivalentto N , iff M =v N where =v is the
smallest reflexive, symmetric and transitive relation closed by metacontexts3 verifying:

(v1) ξα.(P1, . . . , Pn) =v ξβ.(P1 �α←β� . . . Pn �α←β�)
(v2) P1[α← P0] =v P1 �α←β� [β ← P0]

where Pi, for 1 ≤ i ≤ n, does not contain t-metavariables for 1 ≤ i ≤ n, and

(v1) α, β are pre-bound o-metavariable s.t. α 
= β and β does not occur in P1, . . . , Pn, and
(v2) α, β are pre-bound o-metavariable s.t. α 
= β and β does not occur in P1.

EXAMPLE 2.13
λα.α =v λβ.β, λα.f =v λβ.f , but λα.X 
=v λβ.X , and λβ.λα.X 
=v λα.λβ.X .

Note that pre-metaterms may be seen as contexts where the holes of a context are represented by
t-metavariables. However, metaterms are not treated as first class citizens as in [3].

We now address the rewrite rules of a SERS . The rewrite rules are specified using metaterms,
whereas the rewrite relation is defined on terms.

DEFINITION 2.14 (SERS )
A SERS -rewrite ruleover Σ is a pair of metaterms (G,D) over Σ (also written G→ D) such that:

• the first symbol (called headsymbol) in G is a function symbol or a binder symbol,

• FMVAR(D) ⊆ FMVAR(G), and

• G contains no occurrence of the metasubstitution operator.

Finally, we define a SERS as a pair (Σ,R) where Σ is a SERS -signature and R is a set of
SERS -rewrite rules over Σ. We often omit Σ and writeR instead of (Σ,R), if no confusion arises.

3Metacontexts are defined analogously to contexts. The notion of ‘parameter path of a context’ is extended to metacontexts
as expected.
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EXAMPLE 2.15
The λ-calculus is defined by considering the signature containing the function symbols F = {app}
and binder symbols B = {λ}, together with the SERS -rewrite rule:

app(λα.X, Y )→β X[α← Y ].

The λη-calculus is obtained by adding the following SERS -rewrite rule: λα.(app(X,α))→η X .

EXAMPLE 2.16
The λx-calculus [8, 27] is defined by considering the signature containing the function symbols
F = {app, subs} and binder symbols B = {λ, σ}, together with the following SERS -rewrite rules:

app(λα.X, Y ) →Beta subs(σα.X, Y )
subs(σα.(app(X,Y )), Z) →App app(subs(σα.X,Z), subs(σα.Y, Z))
subs(σα.λβ.(X), Z) →Lam λβ.(subs(σα.X,Z))
subs(σα.α, Z) →Var Z

subs(σα.β̂, Z) →rGc β̂.

EXAMPLE 2.17
The λ∆-calculus [28] is defined by considering the signature containing the function symbols F =
{app} and binder symbols B = {λ,∆}, together with the following SERS -rewrite rules:

app(λα.X,Z) →Beta X[α← Z]
app(∆α.X,Z) →∆1 ∆β.(X[α← λγ.(app(β, app(γ, Z)))])
∆α.(app(α,X)) →∆2 X
∆α.(app(α, (∆β.(app(α,X))))) →∆3 X.

EXAMPLE 2.18
A further example is the system for foldl recursion scheme over lists, containing the function sym-
bols F = {foldl ,nil , cons}, the binder symbol B = {ξ} and the rewrite rules:

foldl(ξα.(ξβ.X), Y,nil) →f1 Y
foldl(ξα.(ξβ.X), Y, cons(Z,W )) →f2 foldl(ξα.(ξβ.X),X[α← Y ][β ← Z],W ).

We now proceed to define the way in which rewrite rules are instantiated in order to obtain the
induced rewrite relation on terms. This implies defining how the ‘holes’ in the metaterms of the rule,
represented by t-metavariables and o-metavariables, are replaced by terms and variables, respec-
tively. Thus valuationsare introduced followed by some additional conditions imposed on these
valuations in order to single out the ‘good’ valuations (referred to as admissible valuations) from the
‘bad’ ones.
DEFINITION 2.19 (Valuation)
A variable assignmentis a (partial) function θv from o-metavariables to variables4 with finite do-

main, such that for every pair of o-metavariables α, β̂ we have θvα 
= θvβ̂ (pre-bound and pre-free
o-metavariables are assigned different variables). A term assignmentis a (partial) function θt from
t-metavariables to terms with finite domain.

A valuationθ over Σ is a pair of (partial) functions (θv, θt) where θv is a variable assignment and
θt is a term assignment. It defines a function on metavariables, also denoted θ, as expected:

θα
def= θvα

θα̂
def= θvα̂

θX
def= θtX.

4We write indistinctly θv(α) or θvα to denote application of θv to an o-metavariable α.
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A valuation θ may be extended in a unique way to the set of pre-metaterms M such that MVAR(M) ⊆
Dom(θ), where Dom(θ) denotes the domain of θ, as follows:

θ(f(M1, . . . , Mn)) def= f(θM1, . . . , θMn)
θ(ξα.(M1, . . . , Mn)) def= ξθvα.(θM1, . . . , θMn)
θ(M1[α←M2])

def= θ(M1){θvα← θM2}.

We shall not distinguish between θ and θ if no ambiguities arise. Also, we sometimes write θ(M)
thereby implicitly assuming that MVAR(M) ⊆ Dom(θ).

Returning to the intuition behind v-equivalencethe idea is that it can be translated into α-conversion
in the sense that M =v N implies θM =α θN for any valuation θ such that θM and θN
are defined. Indeed, coming back to Example 2.13 and taking θ = {α/x, β/y,X/x}, we have
θ(λα.α) = λx.x =α λy.y = θ(λβ.β) and θ(λα.f) = λx.f =α λy.f = θ(λβ.f). However
θ(λα.X) = λx.x 
=α λy.x = θ(λβ.X) and θ(λβ.λα.X) = λy.λx.x 
=α λx.λy.x = θ(λα.λβ.X).

As the reader may have observed, a valuation computes a metasubstitution operator by executing
metalevel substitution. However, since metalevel substitution is restricted in that no α-conversion is
allowed to take place, we must require the valuation to be capable of executing all metasubstitution
operators in a given pre-metaterm.

DEFINITION 2.20 (Safe valuations)
Let M be a pre-metaterm over Σ and θ a valuation over Σ. We say that θ is safe forM if
MVAR(M) ⊆ Dom(θ) and θM is defined, i.e. the substitutions generated by the last clause of
Definition 2.19 can be computed. Likewise, if (G,D) is a rewrite rule, we say that θ is safe for
(G,D) if θD is defined and MVAR(G) ⊆ Dom(θ).

Note that if the notion of substitution we are dealing with were not restricted, then α-conversion
could be required in order to apply a valuation to a pre-metaterm. Also, for any valuation θ and
pre-metaterm M with MVAR(M) ⊆ Dom(θ) that contains no occurrences of the metasubstitution
operator, it turns out that θ is safe for M . Thus, we only ask θ to be safe for D (not G) in the previous
definition.

The following condition is the classical notion of admissibilityused in higher-order rewriting [33]
to avoid inconsistencies in rewrite steps. It runs under the name ‘variable-capture-freeness’ in
the case of ERS [20] and aims at ruling out certain valuations which after instantiating a rewrite
rule leave some free and bound occurrences of the same variable. An example is the rewrite rule
λα.X→ X and the valuation which assigns x to α and X . The resulting rewrite step is λx.x→ x
which has an occurrence of x that is bound on the left and an occurrence of x that is free on the right.

DEFINITION 2.21 (Path condition for t-metavariables)
Let X be a t-metavariable. Consider all the occurrences p1, . . . , pn of X in (G,D), and their re-
spective parameter paths l1, . . . , ln in the trees corresponding to G and D. A valuation θ verifies the
path conditionfor X in (G,D) if for every x ∈ FV(θX)

• either: for all 1 ≤ i ≤ n we have x ∈ θ(li)
• or: for all 1 ≤ i ≤ n we have x /∈ θ(li).

This definition may be read as: one occurrence of x ∈ FV(θX) with X in (G,D) is in the scope
of some binding occurrence of x iff every occurrence of X in (G,D) is in the scope of a bound
o-metavariable α with θα = x. For example, consider the SERS rule λα.(ξβ.X)→ ξβ.X and the
valuations θ1 = {α/x, β/y,X/z} and θ2 = {α/x, β/y,X/x}. Then θ1 verifies the path condition
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for X , but θ2 does not since when instantiating the rewrite rule with θ2 the variable x shall occur
both bound (on the LHS ) and free (on the RHS ).

Note that our formalism allows us to specify the restricted garbage collection rule rGc of λx
(Example 2.16) as originally done in [27], while formalisms such as CRS force one to change this
rule to a stronger one, namely Gc, written as subs(σα.X,Z)→Gc X , where the path condition
(Definition 2.21) on valuations guarantees that if θ(X) = t, then θ(α) cannot be in FV(t).

We may then single out the ‘good’ valuations by the following notion of admissible valuations.

DEFINITION 2.22 (Admissible valuations)
A valuation θ over Σ is admissible for a rewrite rule(G,D) over Σ iff the following conditions hold:

• θ is safe for (G,D),
• if α and β occur in (G,D) with α 
= β, then θvα 
= θvβ, and

• θ verifies the path condition for every t-metavariable in (G,D).

Note that an admissible valuation is safe by definition, but a safe valuation may not be admissible.
As an example, consider the η-contraction rule λx.app(X,x)→ X if x 
∈ FV(X). As mentioned
in Example 2.15, it can be expressed in the SERS formalism as the rule λα.app(X,α)→η X . All
valuations are (trivially) safe for η since there is no metasubstitution operator on the RHS . However,
the path condition could fail. Indeed, consider the valuation θ = {α/x,X/x}: although trivially
safe, it is not admissible since the path condition is not verified: x ∈ θ(α) but x /∈ θ(ε) (x occurs
bound on the LHS and free on the RHS ). In the case of the SERS representation of η, the path
condition is in charge of verifying the above-mentioned well-known condition on η-contraction,
namely that the variable instantiated for α not occur free in the term instantiated for X .

Having defined rewrite rules and (admissible) valuations we find ourselves ready to present the
rewrite relation induced on terms by a rewrite rule.

DEFINITION 2.23 (Rewriting relation)
Let (Σ,R) be a SERS and s, t terms over Σ. We say that s R-rewritesor R-reduces tot, written
s→R t, iff there exists a rewrite rule (G,D) ∈ R, an admissible valuation θ for (G,D) and a context
C such that s =α C[θG] and t =α C[θD].

We shall occasionally drop the subscript in the rewrite relation when it is clear from the context.
As in first-order rewriting, rewriting does not create new variables.

LEMMA 2.24
Let s, t ∈ T. If s→R t, then FV(t) ⊆ FV(s).

3 Simplified expression reduction systems with indices

This section introduces the de Bruijn indices based higher-order rewrite formalism SERSdB . We
follow Section 2 and introduce de Bruijn metaterms, de Bruijn terms, de Bruijn valuation, and finally,
de Bruijn rewriting. In order to distinguish a concept defined for the SERS formalism from its
corresponding version (if it exists) in the SERSdB formalism we may prefix it using the qualifying
term ‘de Bruijn’, e.g. ‘de Bruijn metaterms’.

DEFINITION 3.1 (de Bruijn signature)
A SERSdB signature Σ consists of the following denumerable and disjoint sets.

• A set of binder indicatorsdenoted α, β, . . .
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• A set of i-metavariables(i for index) denoted α̂, β̂, . . .

• A set of t-metavariables(t for term), denoted Xl, Yl, Zl, . . ., where l ranges over the set of labels
built over binder indicators.

• A set F of function symbolsequipped with a fixed (possibly zero) arity, denoted f, g, h, . . .

• A set B of binder symbolsequipped with a fixed (non-zero) arity, denoted λ, µ, ν, ξ, . . .

We remark that the set of binder indicators is exactly the set of pre-bound o-metavariables intro-
duced in Definition 2.1. The reason for using the same alphabet in both formalisms will become
clear in Section 4, but intuitively, we need a mechanism to annotate binding paths in the de Bruijn
setting to distinguish metaterms like ξβ.(ξα.X) and ξα.(ξβ.X) appearing in the same rule when
translated into a SERSdB system.

DEFINITION 3.2 (de Bruijn pre-metaterms)
The set of de Bruijn pre-metatermsover the SERSdB signature Σ, denoted PMTdB , is defined by
the following two-sorted grammar:

metaindices I ::= 1 | S(I) | α̂
pre-metaterms A ::= I | Xl | f(A, . . . , A) | ξ(A, . . . , A) | A[A].

The operator •[•] in a pre-metaterm A[A] is called the de Bruijn metasubstitution operator. The
binder symbols together with the de Bruijn metasubstitution operator are called binder operators.
Thus the de Bruijn metasubstitution operator is a binder operator (since it has binding power) but is
not a binder symbol since it is not an element of B.

We use A,B,Ai, . . . to denote de Bruijn pre-metaterms and the convention that S0(1) = 1,
S0(α̂) = α̂ and Sj+1(n) = S(Sj(n)). As usually done for indices, we shall abbreviate Sj−1(1)
as j. Positions may be defined by associating a tree to each de Bruijn pre-metaterm, as was done
in the case of SERS . As one might expect, the tree associated to A must have one of the forms
depicted in Figure 2. The ‘sub’ in the rightmost tree may be seen as a dummy function symbol.

f

��
��
��

��
��

��

T1
... Tn

ξ

��
��
��

��
��

��

T1
... Tn

sub

��
��
��

��
��

��

[ ] T2

T1

FIGURE 2. de Bruijn pre-metaterms as trees

Although the formal mechanism used to translate pre-metaterms with names into pre-metaterms
with de Bruijn indices will be given in Section 4, let us introduce some intuitive ideas in order
to justify the syntax used for i-metavariables. In the formalism SERS there is a clear distinc-
tion between free and bound o-metavariables. This fact must also be reflected in SERSdB , where
bound o-metavariables are represented with indices and free o-metavariables are represented with i-
metavariables (this distinction between free and bound variables is also used in some formalizations
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of λ-calculus [26]). However, free variables (or indices) in SERSdB appear always in a binding con-
text, so that a de Bruijn valuation of such variables has to reflect the adjustment needed to represent
the same variables but in a different context. This can be done by prefixing the i-metavariable by
as many operators S as necessary. As an example consider the pre-metaterm ξα.β̂. If we translate
it to ξβ̂, then a de Bruijn valuation like κ = {β̂/1} binds the variable whereas this is completely
impossible in the name formalism thanks to the conditions imposed on a name valuation (condition
on variable assignments in Definition 2.19). Our solution is then to translate the pre-metaterm ξα.β̂

by ξ(S(β̂)) in such a way that when instantiating some index for β̂ there is no capture of variables
in the resulting term. The solution adopted here for translating pre-free o-metavariables into the de
Bruijn formalism is in some sense what is called pre-cooking5 in [12].

As in the SERS formalism, we also need here a notion of well-formed pre-metaterm. The first
motivation is to guarantee that labels of t-metavariables are correct w.r.t the context in which they
appear, the second one is to ensure that indices like j (resp. Sj(α̂)) correspond to bound (resp. free)
variables. Indeed, the pre-metaterms ξ(Xαβ), ξ(ξ(4)) and ξ(α̂) shall not make sense for us, and
hence shall not be considered well-formed.
DEFINITION 3.3 (de Bruijn metaterms)
A pre-metaterm A ∈ PMTdB over Σ is said to be a metatermover Σ iff the predicate WF (A)
holds, where WF (A) iff WFε(A), and WF l(A) is defined by induction on the structure of the
pre-metaterm A for any label l as follows:

• WF l(Sj(1)) iff j + 1 ≤ |l|
• WF l(Sj(α̂)) iff j = |l| and l is a simple label

• WF l(Xk) iff l = k and l is a simple label

• WF l(f(A1, . . . , An)) iff for all 1 ≤ i ≤ n we haveWF l(Ai)
• WF l(ξ(A1, . . . , An)) iff there exists α /∈ l such that for all 1 ≤ i ≤ n we haveWFαl(Ai)
• WF l(A1[A2]) iffWF l(A2) and there exists α /∈ l such thatWFαl(A1).

Therefore indices of the form Sj(1) may only occur in metaterms if they represent bound variables
and well-formed metaindices of the form Sj(α̂) always represent a free variable. Also, ifWFk(A),
then any metavariable occurring in A must be of the form Xlk for some label l (moreover, lk is
a simple label). Note that when considering WF l(M) and WF l(A) it is Definitions 2.5 and 3.3
which are referenced, respectively.

EXAMPLE 3.4
The pre-metaterms ξ(Xα, λ(Yβα, 2)), f(β̂, λ(Yα, S(α̂))) and g(λ(ξc)) are metaterms, however the

pre-metaterms f(S(α̂), ξ(Xβ)), λ(ξ(Xαα)), f(β̂, λ(ξ(S(β̂)))) are not.

DEFINITION 3.5 (Free de Bruijn metavariables)
Let A be a de Bruijn pre-metaterm. The set of free metavariablesof A, written FMVAR(A), is
defined as:

FMVAR(1) def= ∅
FMVAR(S(I)) def= FMVAR(I)
FMVAR(α̂) def= {α̂}
FMVAR(Xl)

def= {Xl}

FMVAR(f(A1, . . . , An)) def=
⋃n

i=1 FMVAR(Ai)
FMVAR(ξ(A1, . . . , An)) def=

⋃n
i=1 FMVAR(Ai)

FMVAR(A1[A2])
def= FMVAR(A1) ∪FMVAR(A2)

5The pre-cooking function takes a λσ-term with t-metavariables and suffixes them with as many explicit shift opera-
tors [1] as the number of binders present in its parameter path. This avoids variable capture when the higher-order unification
procedure finds solutions for the t-metavariables.
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The set of namesof free metavariables of A is the set FMVAR(A) where each Xl is replaced
simply by X . We also write, by abuse of notation, FMVAR(A) to denote such a set of names.
For example, FMVAR(f(λXα, Yε, α̂)) = {X,Y, α̂}. We use MVAR(A) to denote the set of all
metavariables of the de Bruijn pre-metaterm A.

DEFINITION 3.6 (de Bruijn terms and de Bruijn contexts)
The set of de Bruijn termsover Σ, denoted TdB , and the set of de Bruijn contexts over Σ are defined
by:

de Bruijn indices n ::= 1 | S(n)
de Bruijn terms a ::= n | f(a, . . . , a) | ξ(a, . . . , a)
de Bruijn contexts E ::= � | f(a, . . . , E, . . . , a) | ξ(a, . . . , E, . . . , a).

We use a, b, ai, bi, . . . for de Bruijn terms and E,F, . . . for de Bruijn contexts. The notion of the
tree associated to a may be defined as for de Bruijn pre-metaterms. We may refer to the binder path
numberof a context, which is the number of binders between the � and the root. In contrast to
Definition 2.9, we have here that de Bruijn terms are also de Bruijn pre-metaterms, that is, TdB ⊂
PMTdB , although note that some de Bruijn terms may not be de Bruijn metaterms, i.e. may not be
well-formed de Bruijn pre-metaterms. Indeed, the valid term ξ(ξ(4)) is not a metaterm, however,
the index 4 may be seen as a constant in the pre-metaterm ξ(ξ(4)). If an arbitrary free variable is
wished to be represented in a metaterm, then i-metavariables should be used.

DEFINITION 3.7 (Free de Bruijn indices)
The set of free indicesof a de Bruijn term a, written FI(a), is defined as follows:

FI(n) def= {n}
FI(f(a1, . . . , an)) def=

⋃n
i=1 FI(ai)

FI(ξ(a1, . . . , an)) def= (
⋃n

i=1 FI(ai))\\1

where for every set of indices S, the operation S\\j is defined as {n− j | n ∈ S and n > j}.

When encoding SERSdB systems as SERS systems we shall need to speak of the free variable
names (objects in V , from the definition of a SERS signature) associated to the free de Bruijn
indices. For example, if a = ξ(1, 2, 3), then FI(a) = {1, 2}. The named variable associated to the
free index 1 is x1, and likewise for 2 it is x2. In general, we write NAMES(S) for the names of the
variables whose indices are in the set S. For example, NAMES(FI(a)) = {x1, x2}.

DEFINITION 3.8 (de Bruijn substitution and de Bruijn updating function)
The result of substituting a term b for the index n ≥ 1 in a term a is denoted a{{n← b}} and defined
as:

f(a1, . . . , an){{n← b}} def= f(a1{{n← b}}, . . . , an{{n← b}})
ξ(a1, . . . , an){{n← b}} def= ξ(a1{{n + 1← b}}, . . . , an{{n + 1← b}})

m{{n← b}} def=




m− 1 if m > n
Un

0 (b) if m = n
m if m < n
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where for i ≥ 0 and n ≥ 1 we define the updating functionsUn
i (•) as follows:

Un
i (f(a1, . . . , an)) def= f(Un

i (a1), . . . ,Un
i (an))

Un
i (ξ(a1, . . . , an)) def= ξ(Un

i+1(a1), . . . ,Un
i+1(an))

Un
i (m) def=

{
m + n− 1 if m > i
m if m ≤ i.

Due to the various notions of substitution and replacement introduced so far, we give in Figure 3
a brief synopsis of the situation.

Operator Names de Bruijn Terms Metaterms Explicit Implicit Def.

M1[α←M2]
√ √ √

Def. 2.2
t1{x← t2} √ √ √

Def. 2.10
M1 �α←M2� √ √ √

Def. 2.11
A1[A2]

√ √ √
Def. 3.2

a1{{n← a2}} √ √ √
Def. 3.8

FIGURE 3. Notions of substitution

We now consider the rewrite rules of a SERSdB . This includes defining valuations, their validity,
and the term rewrite relation in SERSdB . Rewrite rules are specified with de Bruijn metaterms,
whereas the induced rewrite relation is on de Bruijn terms.

DEFINITION 3.9 (SERSdB )
A de Bruijn rewrite ruleover Σ is a pair of de Bruijn metaterms (L,R) over Σ (also written L→ R)
such that:

• the first symbol (called head symbol) in L is a function symbol or a binder symbol,

• FMVAR(R) ⊆ FMVAR(L), and

• the metasubstitution operator does not occur in L.

Finally, we define a SERSdB to be a pair (Σ,R) where Σ is a SERSdB -signature and R is a set
of SERSdB -rewrite rules over Σ.

As in the case of SERS , we shall often omit Σ and write R instead of (Σ,R), if no confusion
arises.

EXAMPLE 3.10
The λdB -calculus is defined by considering the signature containing the function symbols F =
{app} and binder symbols B = {λ}, together with the SERSdB -rewrite rule:

app(λXα, Yε)→βdB
Xα[Yε].

The λdBηdB -calculus is obtained by adding the SERSdB -rewrite rule: λ(app(Xα, 1))→ηdB
Xε.

See also Examples 4.7 and 4.8.

DEFINITION 3.11 (de Bruijn valuation)
A de Bruijn valuationκ over Σ is a pair of (partial) functions (κi, κt) where κi is a function from
i-metavariables to positive integers greater than 0, and κt is a function from t-metavariables to de
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Bruijn terms. It defines a function on metaindices and t-metavariables, also denoted κ, as expected:

κ1 def= 1
κS(I) def= S(κI)
κα̂

def= κiα̂

κXl
def= κtXl.

A valuation κ determines in a unique way a function κ from the set of pre-metaterms A with
FMVAR(A) ⊆ Dom(κ), where Dom(κ) denotes the domain of κ, to the set of terms as follows:

κ(f(A1, . . . , An)) def= f(κA1, . . . , κAn)

κ(ξ(A1, . . . , An)) def= ξ(κA1, . . . , κAn)

κ(A1[A2])
def= κ(A1){{1← κA2}}.

Note that in the above definition the substitution operator •{{• ← •}} refers to the usual substitu-
tion defined on terms with de Bruijn indices (Definition 3.8).

In order to motivate the notion of valid de Bruijn valuation consider the following rule:

ξα.(ξβ.X)→r ξβ.(ξα.X).

Even if translation of rewrite rules into de Bruijn rewrite rules has not been defined yet (Section 4),
one may guess that a reasonable translation would be the following rule:

ξ(ξ(Xβα))→rdB
ξ(ξ(Xαβ)),

which indicates that β (resp. α) is the first bound occurrence in the LHS (resp. RHS ) while α
(resp. β) is the second bound occurrence in the LHS (resp. RHS ). Now, if X is instantiated by
x, α by x and β by y in the SERS system, then we have an r-rewrite step ξx.(ξy.x)→ ξy.(ξx.x).
However, to reflect this fact in the corresponding SERSdB system we need to instantiate Xβα by 2
and Xαβ by 1, thus obtaining an rdB -rewrite step ξ(ξ 2)→ ξ(ξ 1). This clearly shows that de Bruijn
t-metavariables having the same name but different label cannot be instantiated arbitrarily as they
have to reflect the renaming of variables which is indicated by their labels. Indeed, the goal pursued
by the labels of metavariables is that of incorporating ‘context’ information as a defining part of a
metavariable. As a consequence, we must verify that the terms substituted for every occurrence of
a fixed metavariable coincide ‘modulo’ their corresponding context. Dealing with such notion of
‘coherence’ of substitutions in a de Bruijn formalism is also present in other formalisms but in a
more restricted form. Thus for example, as mentioned before, a pre-cooking function is used in [12]
in order to avoid variable capture in the higher-order unification procedure. In XRS[23] the notions
of binding arity and pseudo-binding arity are introduced in order to take into account the parameter
path of the different occurrences of t-metavariables appearing in a rewrite rule. Then (roughly) it
is required that the binding arity of a t-metavariable on the LHS of a rewrite rule (rewrite rules are
required to be left-linear) equals the pseudo-binding arity of the same t-metavariable occurring on the
RHS of the rule. Our notion of ‘coherence’ is implemented with valid valuations(Definition 3.13)
and it turns out to be more general than the solutions proposed in [12] and [23].

DEFINITION 3.12 (Value function)
Let a ∈ TdB and l be a label of binder indicators. We define the value functionValue(l, a) as
Value0(l, a) where:
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Valuei(l, n) def=




n if n ≤ i
at(l, n− i) if 0 < n− i ≤ |l|
xn−i−|l| if n− i > |l|

Valuei(l, f(a1, . . . , an)) def= f(Valuei(l, a1), . . .Valuei(l, an))

Valuei(l, ξ(a1, . . . , an)) def= ξ(Valuei+1(l, a1), . . . ,Valuei+1(l, an)).

The function Value(l, a) interprets the de Bruijn term a in an l-context: bound indices are left
untouched, free indices referring to the l-context are replaced by the corresponding binder indicator
and the remaining free indices are replaced by their corresponding variable names. It might be
observed that if repeated binder indicators are allowed in the label l of Definition 3.12, then this
intuition would not seem to hold. Indeed, for our purposes the case of interest is when the label l
is simple. Nevertheless, many auxiliary results may be proved without this requirement, thus we
prefer not to restrict this definition prematurely (by requiring l to be simple). Finally, note also
that Valuei(l, n) may return three different kinds of results. This is just a technical resource to
make easier later proofs. Indeed, we have for example Value (αβ, ξ(f(3, 1))) = ξ(f(β, 1)) =
Value (βα, ξ(f(2, 1))) and Value (ε, f(ξ1, λ2))=f(ξ1, λx1) 
=f(ξ1, λα)=Value (α, f(ξ1, λ2)).

DEFINITION 3.13 (Valid de Bruijn valuation)
A de Bruijn valuation κ over Σ is said to be valid if for every pair of t-metavariables Xl and Xl′ in
Dom(κ) we have Value(l, κXl) = Value(l′, κXl′). Likewise, we say that a de Bruijn valuation κ
is valid for a rewrite rule(L,R) if every metavariable in (L,R) is in Dom(κ) and for every pair of
t-metavariables Xl and Xl′ in (L,R) we have Value(l, κXl) = Value(l′, κXl′).

It is interesting to note that there is no concept analogous to safeness (Definition 2.20) as used
for named SERS due to the use of de Bruijn indices. Also, the last condition in the definition of
an admissible valuation (Definition 2.22) is subsumed by the above Definition 3.13 in the setting of
SERSdB .

EXAMPLE 3.14
Returning to the above mentioned example we have that κ = {Xβα/2,Xαβ/1} is valid for the rule
rdB since Value(βα, 2) = α = Value(αβ, 1).

Another interesting example is the η-contraction rule λx.app(X,x)→ X if x 
∈ FV(X). Recall
from Section 2 that it can be expressed in the SERS formalism, without conditions, as the rule
λα.app(X,α)→η X . In the SERSdB formalism it may be expressed as λ(app(Xα, 1))→ηdB

Xε.
Observe that this kind of rule cannot be expressed in the XRS formalism since it does not verify

the binding arity condition. Our formalism allows us to write rules like ηdB because valid valuations
will test for coherence of values. Indeed, an admissible valuation for η is a valuation θ such that
θX does not contain a free occurrence of θ(α). This is exactly the condition used in any usual
formalization of the η-rule. A valid valuation κ for ηdB could, for example, be a valuation κ =
{Xα/m,Xε/n} such that Value(α, κXα) = Value(ε, κXε), that is, m = 1 is not possible, and n is
necessarily m− 1.

To summarize, valid valuations guarantee that the unique value assigned to a t-metavariable X in
the framework with names is translated accordingly in the de Bruijn framework w.r.t the different
parameter paths of all the occurrences of X in the rewrite rule. This is, in some sense, an updating of
X w.r.t the different parameter paths where it appears, and it gives us the right notion of coherence
for valuations.
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DEFINITION 3.15 (Rewriting de Bruijn terms)
Let R be a set of de Bruijn rules over Σ and a, b de Bruijn terms, over Σ. We say that a R-rewrites
orR-reduces tob, written a→R b, iff there is a de Bruijn rule (L,R) ∈ R and a de Bruijn valuation
κ valid for (L,R) such that a = E[κL] and b = E[κR], where E is a de Bruijn context.

Thus, the term λ(app(λ(app(1, 3)), 1)) rewrites by the ηdB rule to λ(app(1, 2)), using the (valid)
valuation κ = {Xα/λ(app(1, 3),Xε/λ(app(1, 2))}.

The rewrite relation on de Bruijn terms satisfies the following property:

LEMMA 3.16
Let a ∈ TdB . If a→R b, then FI(b) ⊆ FI(a).

4 From names to indices

In this section we show how rewriting in the SERS formalism may be simulated in the SERSdB

formalism. This requires two well-distinguished phases, which we can refer to as the definition
phaseand the rewrite-preservation phase. The definition phase consists in defining appropriate
translations from pre-metaterms, terms and valuations in the SERS setting into the corresponding
notions in the SERSdB setting, work which is carried out in the first part of this section. The second
part deals with the rewrite-preservation phase, that is, showing how SERS rewrite steps can be
simulated via SERSdB rewrite steps. The rewrite-preservation phase shall use the results developed
in the definition phase.

4.1 The definition phase

We begin by showing how to translate terms into de Bruijn terms.

DEFINITION 4.1 (From terms (and contexts) to de Bruijn terms (and contexts))
The translation of a term t, denoted T (t), is defined as Tε(t) where

Tk(x) def=
{

pos(x, k) if x ∈ k
O(x) + |k| if x /∈ k

Tk(f(t1, . . . , tn)) def= f(Tk(t1), . . . , Tk(tn))

Tk(ξx.(t1, . . . , tn)) def= ξ(Txk(t1), . . . , Txk(tn)).

The translation of a context, denoted T (C), is defined as above but adding the clause Tk(�) def= �.

As a consequence of the previous definition, there is a clear bijection between the set of free
variables of a term t and the set of free variables of its de Bruijn representation T (t).

The following lemma will be used to prove the main results of this section; it states that variable
renaming commutes with translation.

LEMMA 4.2
Let s ∈ T, let l, k be labels of variables and x, y variables such that y does not occur at all in s and
x, y /∈ l. If s{x← y} is defined then Tlyk(s{x← y}) = Tlxk(s).

PROOF. By induction on s.
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• s = x. Then we reason as follows:

Tlyk(x{x← y}) = Tlyk(y)
= pos(y, lyk)
= |l|+ 1 (y /∈ l)
= pos(x, lxk) (x /∈ l)
= Tlxk(s).

• s = z 
= x. Then Tlyk(z{x← y}) = Tlyk(z). We consider two further cases:
– z ∈ lyk. Since y 
= z (y does not occur in s) Tlyk(z) = pos(z, lyk) = pos(z, lxk) = Tlxk(z).
– z /∈ lyk. Then Tlyk(z) = O(z) + |lyk| = O(z) + |lxk| = Tlxk(z).
• s = f(s1, . . . , sn). We use the induction hypothesis.

• s = ξz.(s1, . . . , sn) with z 
= x. Note that z 
= y by hypothesis. We reason as follows:

Tlyk(s{x← y}) = ξ(Tzlyk(s1{x← y}), . . . , Tzlyk(sn{x← y}))
= ξ(Tzlxk(s1), . . . , Tzlxk(sn)) (i.h.)
= Tlxk(s).

As expected, the translation satisfies:

LEMMA 4.3 (T is compatible with α-conversion)
Given two terms s, t ∈ T such that s =α t we have Tk(s) = Tk(t) for any label of variables k.

PROOF. By induction on the derivation of s =α t.

• Base cases. If s = t then the result holds trivially, so suppose s =α t and the conversion
takes place at the root. Then s = ξx.(s1, . . . , sn) =α ξy.(s1{x ← y}, . . . , sn{x ← y}) = t
where x and y are variables not occurring in s1, . . . sn. Then by Lemma 4.2 we have Tk(s) =
ξ(Txk(s1), . . . , Txk(sn)) = ξ(Tyk(s1{x← y}), . . . , Tyk(sn{x← y})) = Tk(t).
• Inductive cases:

– s =α t follows from t =α s. We use the induction hypothesis.
– s =α t follows from s =α s′ and s′ =α t. We use the induction hypothesis.
– the conversion is internal. Then two further cases are considered:
∗ s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , s

′
i, . . . , sn) where si =α s′i. We conclude by

using the induction hypothesis.
∗ s = ξx.(s1, . . . , si, . . . , sn) and t = ξx.(s1, . . . , s

′
i, . . . , sn) where si =α s′i. Then we have

Tk(s) = ξ(Txk(s1), . . . , Txk(si), . . . , Txk(sn)) =i.h.

ξ(Txk(s1), . . . , Txk(s′i), . . . , Txk(sn)) = Tk(t).

We now consider a translation from pre-metaterms to de Bruijn pre-metaterms. We shall also use
the letter T for this translation to avoid having to introduce yet another symbol.

DEFINITION 4.4 (From pre-metaterms to de Bruijn pre-metaterms)
Let M be a pre-metaterm. Its translation, denoted T (M), is defined as Tε(M) where Tk(M) is
defined by
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Tk(α) def= pos(α, k), if α ∈ k

Tk(α̂) def= S|k|(α̂)

Tk(X) def= Xk

Tk(f(M1, . . . , Mn)) def= f(Tk(M1), . . . , Tk(Mn))

Tk(ξα.(M1, . . . , Mn)) def= ξ(Tαk(M1), . . . , Tαk(Mn))

Tk(M1[α←M2])
def= Tαk(M1)[Tk(M2)].

Note that if M is a metaterm, then T (M) will be defined and will only have t-metavariables with
simple labels. Note also that for some pre-metaterms, such as ξα.β, the translation T (•) is not
defined. Moreover, if M is a metaterm then T (M) is a de Bruijn metaterm.6

EXAMPLE 4.5
Let M = ξα.(X,λβ.(Y, α)), M ′ = f(β̂, λα.(Y, α̂)) and M ′′ = g(λα.(ξβ.c)). Then their respec-

tive translations are A = ξ(Xα, λ(Yβα, S(1))), A′ = f(β̂, λ(Yα, S(α̂))) and A′′ = g(λ(ξc)), which
are metaterms as remarked in Example 3.4.

DEFINITION 4.6 (From SERS rewrite rules to SERSdB rewrite rules)
Let (G,D) be a rewrite rule in the SERS formalism. Then T (G,D) denotes the translation of the
rewrite rule, defined as (T (G), T (D)).

As an immediate consequence of Definitions 4.4 and 4.6, if (G,D) is an SERS rewrite rule, then
T (G,D) is an SERSdB rewrite rule.

EXAMPLE 4.7 (λx continued)
Following Example 2.16, the specification of λx in the SERSdB formalism is given below. It results
from translating the rewrite rules of Example 2.16.

app(λXα, Zε) → subs(σXα, Zε)
subs(σ(app(Xα, Yα)), Zε) → app(subs(σXα, Zε), subs(σYα, Zε))
subs(σ(λ(Xβα)), Zε) → λ(subs(σ(Xαβ), Zβ))
subs(σ(1), Zε) → Zε

subs(σ(S(β̂)), Zε) → β̂.

The rule subs(σ(λXβα), Zε)→ λ(subs(σXαβ , Zβ)) is interesting since it illustrates the use of
binder commutation from Xβα to Xαβ and shows how some index adjustment is necessary when
going from Zε to Zβ .

EXAMPLE 4.8 (The λ∆-calculus continued)
The translation of the λ∆-calculus (Example 2.17) yields the following rewrite rules in the SERSdB

formalism:

app(λXα, Zε) →βdB
Xα[Zε]

app(∆Xα, Zε) →∆1
∆(Xαβ [λ(app(S(1), app(1, Zγβ)))])

∆(app(1,Xα)) →∆2
Xε

∆(app(1, (∆(app(S(1),Xβα))))) →∆3
Xε.

We remark that the translation of the ∆1,∆2 and ∆3 rules would not be possible in XRS .

Suppose some rewrite rule (L,R) is used to rewrite a term s. Then s =α C[θ(L)] for some
context C and admissible valuation θ. When encoding this rewrite step in the SERSdB setting we
have to encode not only terms and metaterms, but also the valuation θ. Definition 4.9 below shows
how one may encode valuations. This definition is parameterized over a label k, an issue which we
would like to clarify. Suppose the metavariable Xl occurs in L, then when θ instantiates Xl the
status of any variable x in the resulting term, θ(Xl), can be of one of four classes (see also Figure 4):

6This can be proved by showing a more general property, namely, for every pre-metaterm M , if WF l(M), then
WF l(Tl(M)).
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a) either, x is bound in θ(Xl),
b) or, x is free in θ(Xl) but is bound by some binder above Xl in L, in other words, there is a binder

indicator α ∈ l such that θ(α) = x,

c) or, x is free in θ(Xl) and x is not bound by the binders above Xl in the rule, i.e. x /∈ θ(l), but x
is bound by a binder above the � in the context C,

d) or, x is free in θ(Xl), it is not bound by the binders above Xl in the rewrite rule, and it is not
bound by a binder in the context C above the �. Thus x is free in s.

C

(a)

C C C

x x x

(b) (c) (d)

x

θθθθ

ξx

ξx

ξx

FIGURE 4. Instantiating a metavariable Xl of a metaterm L in some context C

Therefore, when translating a valuation to the SERSdB setting we need to know what the names
of the variables of the binders above the � are. For example, if the third case holds then when
translating to indices we must assign x an index which avoids being captured in the context. This is
the rôle of the label k in the following definition.

DEFINITION 4.9 (From valuations to de Bruijn valuations)
Let θ be a valuation and k be a label of variables. Then the translation of θ w.r.t the label k (referred
to as the context label) is defined as the de Bruijn valuation:

Tk(θ)(Xl)
def= Tθ(l)k(θ(X)) if θ(l) is defined

Tk(θ)(α̂) def= Tk(θ(α̂))

where X, α̂ ∈ Dom(θ).

4.2 The rewrite-preservation phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the
definition phase ensure that the notion of rewriting in the formalism with de Bruijn indices has the
same semantics as the corresponding one with names.

The following lemmas will be used in the proof of the main result of this section, namely Propo-
sition 4.15, which states that SERS -rewriting may be simulated as SERSdB -rewriting.

LEMMA 4.10 (T and Updating Functions)
Let s ∈ T, let l1, l2, k be labels of variables such that |l1| = j, |l2| = i − 1 and FV(s) ∩ l2 = ∅.
Then Tl1l2k(s) = U i

j(Tl1k(s)).
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PROOF. By induction on s. We shall consider the case that s is a variable, the others follow from the
induction hypothesis. Suppose s = x. Note that since by hypothesis x /∈ l2 we have three cases to
consider:

• x ∈ l1. Then Tl1l2k(x) = pos(x, l1l2k) = pos(x, l1k) = U i
j(pos(x, l1k)). The last equality

holds since pos(x, l1k) ≤ j.

• x /∈ l1 and x ∈ k. Then Tl1l2k(x) = pos(x, l1l2k) = pos(x, l1k) + i− 1 = U i
j(pos(x, l1k)).

• x /∈ l1k. Then Tl1l2k(x) = O(x) + |l1l2k| = O(x) + |l1k|+ i− 1 = U i
j(Tl1k(x)).

LEMMA 4.11 (T is compositional w.r.t substitution)
Let s, t ∈ T, l, k be labels of variables with |l| = i − 1, let x be a variable such that x /∈ l, and
suppose FV(t) ∩ l = ∅. If s{x← t} is defined then Tlk(s{x← t}) = Tlxk(s){{i← Tk(t)}}.
PROOF. By induction on s. See the Appendix.

As expected, the translation is well-behaved w.r.t contexts and valuations. We take the opportunity
to remind the reader that the notion of a parameter path is given in Definition 2.9. Induction on the
context C may be used for proving the following result.

LEMMA 4.12 (T is compositional w.r.t contexts)
Let C be a context, l the parameter path of C and t ∈ T. Then for every label k we have, Tk(C[t]) =
Tk(C)[Tlk(t)].

LEMMA 4.13 (T is compositional w.r.t valuations)
Let M be a pre-metaterm, l a label of binder indicators, and suppose

1. WF l(M),
2. θ = (θv, θt) is a valuation such that θv is injective on the bound o-metavariables, and

3. θ is safe for M .

Then for every label k we have Tθ(l)k(θM) = Tk(θ)(Tl(M)).

PROOF. By induction on the pre-metaterm M . See the Appendix.

LEMMA 4.14
Let k, k′ be labels of binder indicators, l a label of variables and θ be an injective function on
the set of binder indicators. Then for every t ∈ T, every p ≥ 0, every x1, . . . , xp, if for every
z ∈ FV(t) \ {x1, . . . , xp} we have z ∈ θ(k) iff z ∈ θ(k′), then

Valuep(k, Tx1...xpθ(k)l(t)) = Valuep(k′, Tx1...xpθ(k′)l(t)).

PROOF. By induction on t. See the Appendix.

We can finally conclude with the main result of this section, which ensures that the SERSdB

formalism preserves SERS -rewriting.

PROPOSITION 4.15 (Simulating SERS -rewriting via SERSdB -rewriting)
Suppose that s→ t in the SERS formalism using the rewrite rule (G,D). Then T (s)→ T (t) in the
SERSdB formalism using the de Bruijn rewrite rule T (G,D).
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PROOF. By definition of the rewrite relation (Definition 2.23) there is an admissible valuation θ
for (G,D) and there is a context C such that s =α C[θG] and t =α C[θD]. By Lemma 4.3
T (s) = T (C[θG]) and T (t) = T (C[θD]). Note that T (G,D) = (T (G), T (D)) is a de Bruijn
rewrite rule as remarked just after Definitions 4.4 and 4.6. The proof thus proceeds in two steps:
in Step 1 we show that there exists a de Bruijn valuation κ and a de Bruijn context E such that
T (s) = E[κT (G)] and T (t) = E[κT (D)]; Step 2 consists in showing that κ is a valid de Bruijn
valuation for (T (G), T (D)).

• Step 1. By Lemma 4.12 we have T (s) = T (C)[Tk(θG)] and T (t) = T (C)[Tk(θD)], where
k is the parameter path of the context C, and T (C) is a de Bruijn context. By hypothesis G
is well-formed and θ is safe for G (so that θv is injective on the set of bound o-metavariables).
As a consequence we can apply Lemma 4.13 so that Tk(θG) = Tk(θ)(T (G)) and Tk(θD) =

Tk(θ)(T (D)), where Tk(θ) is a de Bruijn valuation. Thus we may take κ
def= Tk(θ) and E

def=
T (C).
• Step 2. We have still to show that Tk(θ) is valid for (T (G), T (D)). By Definition 3.13 we have

to check that Value(l, Tk(θ)(Xl)) = Value(l′, Tk(θ)(Xl′)) for every pair of t-metavariables Xl

and Xl′ appearing in the de Bruijn rewrite rule (T (G), T (D)), that is, by Definition 4.9, that
Value(l, Tθ(l)k(θ(X))) = Value(l′, Tθ(l′)k(θ(X))). Finally, verifying the following conditions
allows us to conclude from Lemma 4.14 with p = 0:
– θ(X) is a term in T by definition of valuations,
– θ is injective on bound o-metavariables since it is admissible,
– finally, we need to show that for every variable z ∈ FV(θX) we have z ∈ θ(l) iff z ∈ θ(l′).

But this immediately follows from the fact that θ verifies the path condition for X in (G,D)
because it is admissible.

5 From indices to names

In this section we show that SERS are operationally equivalent to SERSdB . For that, we show how
the notion of rewriting in the SERSdB formalism may be simulated in the SERS . As in Section 4
we develop the required results by distinguishing the definition phaseand the rewrite-preservation
phase.

5.1 The definition phase

We begin with a translation from de Bruijn terms to terms with variable names. This makes use of
the NAMES(•) function given after Definition 3.7.

DEFINITION 5.1 (From de Bruijn terms (and contexts) to terms (and contexts))
The translation of a ∈ TdB , denoted U(a), is defined as U

NAMES(FI(a))
ε (a) where, for every finite set

of variables S, and every label of variables k, US
k (a) is defined as follows:

US
k (n) def=

{
at(k, n) if n ≤ |k|
xn−|k| if n > |k| and xn−|k| ∈ S

US
k (f(a1, . . . , an)) def= f(US

k (a1), . . . , US
k (an))

US
k (ξ(a1, . . . , an)) def= ξx.(US

xk(a1), . . . , US
xk(an)) for any x /∈ k ∪ S
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The translation of a de Bruijn context E, denoted U(E), is defined as above but adding the clause

US
k (�) def= �. We remark that we can always choose x /∈ k ∪ S since both k and S are finite.

Note that U(•) is not a function since the choice of bound variables is non-deterministic. However,
one can show that if t and t′ belong both to U(a), then t =α t′. Thus, U(•) can be seen as a function
from de Bruijn terms to α-equivalence classes.

REMARK 5.2
We remark that given a set of variables S, a de Bruijn term a and a label k, the translation US

k (a) is
always defined if NAMES(FI(a)\\|k|) ⊆ S. It is quite evident that FI(ξ(a))\\n is exactly FI(a)\\(n+
1). Also, if US

k (C[a]) is defined and |l| is the binder path number of C (see Definition 3.6), then
US

lk(a) is also defined. Note, moreover, that if x ∈ FV(US
k (a)) then x ∈ S ∪ k.

DEFINITION 5.3 (From de Bruijn pre-metaterms to pre-metaterms)
The translation of a de Bruijn pre-metaterm A, denoted U(A), is defined as Uε(A), where Ul(A) is
defined as follows:

Ul(Si(1)) def= at(l, i + 1), if i + 1 ≤ |l|
Ul(S|l|(α̂)) def= α̂

Ul(Xl)
def= X

Ul(f(A1, . . . , An)) def= f(Ul(A1), . . . , Ul(An))
Ul(ξ(A1, . . . , An)) def= ξα.(Uαl(A1), . . . , Uαl(An)), if WFαl(Ai) for some α /∈ l s.t. 1 ≤ i ≤ n

Ul(A1[A2])
def= Uαl(A1)[α← Ul(A2)], ifWFαl(A1) for some α /∈ l.

As in Definition 5.1 the translation of a de Bruijn pre-metaterm is not a function since it depends
on the choice of the names for o-metavariables. Indeed, two different pre-metaterms obtained by this
translation will be v-equivalent. Also, for some de Bruijn pre-metaterms such as ξ(2), the translation
may not be defined. However, it is defined on de Bruijn metaterms.

DEFINITION 5.4 (From SERSdB rewrite rules to SERS rewrite rules)
Let (L,R) be a de Bruijn rewrite rule then its translation, denoted U (L,R), is the pair of metaterms
(U(L), U(R)).

Note that if A is such that WF l(A) holds then its translation Ul(A) is also a named metaterm,
that is,WF l(Ul(A)) also holds. Therefore, by Definition 2.14 the translation of a de Bruijn rewrite
rule is a rewrite rule in the SERS formalism. As mentioned above, if a de Bruijn pre-metaterm A is
not a de Bruijn metaterm then Ul(A) may not be defined.

EXAMPLE 5.5
Consider the de Bruijn rule app(∆Xα, Zε)→ ∆(Xαβ [λ(app(2, app(1, Zγβ)))]) from Example 4.8.
The rule obtained by the translation of Definition 5.3 is

app(∆α.X,Z)→ ∆β.(X[α← λγ.(app(β, app(γ, Z)))]),

whereas, for the rule subs(σ(S(β̂)), Zε)→ β̂ we obtain subs(σγ.β̂, Z)→ β̂ for some bound o-
metavariable γ.

DEFINITION 5.6 (From de Bruijn valuations to valuations)
Let κ = (κi, κt) be a de Bruijn valuation, S be a finite set of variables and k a label of variables, and
θv be a variable assignment such that:
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1. θv(α) /∈ S ∪ k, for any α ∈ Dom(θv), and

2. for every α̂ ∈ Dom(κi), θv(α̂) =
{

at(k, κi(α̂)) if κi(α̂) ≤ |k|
xκi(α̂)−|k| otherwise with xκi(α̂)−|k| ∈ S.

The translation of κ is the valuation U(θv,S,k)(κ) def= (θv, θt), where

θtX
def= US

θv(l)k(κXl) for any Xl in Dom(κ).

Condition 2 on θv says that if an i-metavariable in A is bound (or free) in the context label k
as interpreted via κ then the new valuation U(θv,S,k)(κ) must reflect this fact. We will now show
that if κ is a valid de Bruijn valuation then this definition is correct, that is, the definition does not
depend on the choice of the t-metavariable Xl in Dom(κ). For that, we need some lemmas, which
are developed in the Appendix.

LEMMA 5.7 (Translation of de Bruijn valuations is correct)
The valuation U(θ,S,k)(κ) of Definition 5.6 is correct if κ is valid, where correct means that for every
Xl and Xl′ in Dom(κ) we have US

θv(l)k(κXl) =α US
θv(l′)k(κXl′), whenever both terms are defined.

PROOF. Since κ is valid we have Value(l, κXl) = Value(l′, κXl′) for every Xl and X ′
l in Dom(κ).

Then by Lemma C.3 we may conclude US
θv(l)k(κXl) =α US

θv(l′)k(κXl′).

5.2 The rewrite-preservation phase

In this section we study the rewrite-preservation phase, that is, we show that the translations of the
definition phase ensure that the notion of rewriting in the formalism with names has the same seman-
tics as the corresponding one with de Bruijn indices. More precisely, we seek to prove Proposition
5.12.

PROPOSITION 5.12 (Simulating SERSdB -rewriting via SERS -rewriting)
Assume a→ b in the SERSdB formalism using rewrite rule (L,R). Then U(a)→ U(b) in the SERS
formalism using rule U(L,R).

For that we need to develop some intermediate results. The following lemma states that the
translation is well-behaved w.r.t de Bruijn contexts. Induction on the context E and Lemma C.1 (see
the Appendix) may be used for proving it.

LEMMA 5.8 (U is compositional w.r.t de Bruijn contexts)
Let E be a de Bruijn context, l, k labels where l is the parameter path of US

k (E) and a ∈ TdB . If
US

k (E[a]) is defined, then US
k (E[a]) =α US

k (E)[US
lk(a)].

LEMMA 5.9 (U and Updating Functions)
Let a ∈ TdB , l1, l2 and k be labels of variables with |l1| = j and |l2| = i−1. Then US

l1l2k(U i
j(a)) =α

US
l1k(a) if US

l1k(a) is defined.

PROOF. We proceed by induction on a. The case a = f(a1, . . . , an) is straightforward by the
induction hypothesis, so we consider the other ones.

• a = n. We have two cases to consider:
– n ≤ j. Then US

l1l2k(U i
j(n)) = US

l1l2k(n) = at(l1l2k, n) = at(l1k, n) = US
l1k(n).
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– n > j. Then US
l1l2k(U i

j(n)) = US
l1l2k(n+ i−1) and we have two further subcases to consider:

∗ n+i−1 ≤ |l1l2k|. Then since n ≤ |l1k| we have US
l1l2k(n+i−1) = at(l1l2k, n+i−1) =

at(l1k, n) = US
l1k(n).

∗ n+ i−1 > |l1l2k|. Then since n > |l1k|, US
l1l2k(n+ i−1) = xn+i−1−|l1l2k| = xn−|l1k| =

US
l1k(n).

• a = ξ(a1, . . . , an). Then we reason as follows:

US
l1l2k(U i

j(a)) = ξz.(US
zl1l2k(U i

j+1(a1)), . . . , US
zl1l2k(U i

j+1(an)))
=α ξz.(US

zl1k(a1), . . . , US
zl1k(an)) (i.h.)

=α ξz′.(US
zl1k(a1){z ← z′}, . . . , US

zl1k(an){z ← z′}) (z′ fresh)
=α ξz′.(US

z′l1k(a1), . . . , US
z′l1k(an)) (Lemma C.1)

=α ξz′.(US
yl1k(a1){y ← z′}, . . . , US

yl1k(an){y ← z′}) (Lemma C.1)
=α ξy.(US

yl1k(a1), . . . , US
yl1k(an))

= US
l1k(a).

The phrase ‘z′ fresh’ should be read, in full rigor, as ‘z′ does not occur in US
zl1k(ai) nor in

US
yl1k(ai) for 1 ≤ i ≤ n’. The definition of U•

• (•) and the hypothesis that US
l1k(a) is defined,

allows us to apply Lemma C.1 above.

LEMMA 5.10 (U is compositional w.r.t de Bruijn substitution)
Let a, b ∈ TdB , l and k labels of variables with |l| = i− 1, x a variable such that x /∈ lk ∪ S. Then
US

lk(a{{i← b}}) =α US
lxk(a){x← US

k (b)}, assuming both sides of the equation are defined.

PROOF. The proof is by induction on a. See the Appendix.

LEMMA 5.11 (U is compositional w.r.t valuations)
Consider a de Bruijn valuation κ = (κi, κt), a de Bruijn pre-metaterm A, a finite set of variables S,
a variable assignment θv verifying the hypothesis in Definition 5.6, a label of binder indicators l and
a label of variables k. If the following conditions hold:

1. κ is valid,

2. κA is defined,

3. θv is defined over l and the bound o-metavariables in Ul(A),
4. θv is injective on the bound o-metavariables,

5. NAMES(FI(κA)\\|θv(l)k|) ⊆ S, and

6. WF l(A).

Then, US
θv(l)k(κA) =α U(θv,S,k)(κ)Ul(A).

Intuitively k represents the context information where the reduction is performed (thus k is a label
of variables). We also require NAMES(FI(κA)\\|θv(l)k|) ⊆ S to ensure that US

θv(l)k(κA) is defined.

PROOF. By induction on A. See the Appendix.

The reader should note that the translation of a valid de Bruijn valuation is an admissible named
valuation. Recall that a valuation is admissible for a rewrite rule (G,D) iff the following conditions
hold:



882 de Bruijn Indices for Metaterms

• θ is safe for (G,D) (Definition 2.20),

• if α and β occur in (G,D) with α 
= β then θvα 
= θvβ, and

• θ verifies the path condition (Definition 2.21) for every t-metavariable in (G,D).

Safeness is considered in Lemma D.1 and Lemma D.3 goes on to consider admissibility. Both
results are developed in the Appendix. So we move on directly to the main result of this section, i.e.
that the SERS formalism preserves SERSdB -rewriting.

PROPOSITION 5.12 (Simulating SERSdB -rewriting via SERS -rewriting)
Assume a→ b is a reduction step in the SERSdB formalism using rewrite rule (L,R). Then
U(a)→ U(b) in the SERS formalism using rule U(L,R).

PROOF. Let us consider the de Bruijn rewrite step a→ b using a de Bruijn valuation κ which is valid
for (L,R). Without loss of generality we can suppose that κ is only defined on the metavariables
of (L,R). And, let U (L,R) = (G,D). By definition of the rewrite relation we have a de Bruijn
context E such that a = E[κL] and b = E[κR]. We proceed as follows:

• Take S as the set of variables NAMES(FI(a)) so that US
ε (a) is defined. Note that since FI(b) ⊆

FI(a) holds by Corollary 3.16, US
ε (b) is also defined.

• Let k be the parameter path of US
ε (E).

• Now, to apply Lemma 5.8 we need to show that US
k (κL) and US

k (κR) are defined, which
follows from the first and second items. Therefore, US

ε (E[κL]) =α US
ε (E)[US

k (κL)] and
US

ε (E[κR]) =α US
ε (E)[US

k (κR)].
• The next step is to apply Lemma 5.11 in order to decompose US

k (κL) and US
k (κR). First of all,

let us fix any variable assignment θv such that it verifies the following requirements:
– it is defined over all the o-metavariables in Uε(L) and Uε(R) and only on these,
– it is injective on the bound o-metavariables,
– θv(α) /∈ S ∪ k for any bound o-metavariable α ∈ Dom(θv) (i.e. the variables assigned

to bound o-metavariables in the rewrite rule (U(L), U(R)) are not confused with the free
variables in a and b, that is, with the variables in S, nor with the variables bound in (the
parameter path of) the context where the rewrite-step takes place, that is, the variables in k).

– We also define θv on the free o-metavariables of the rewrite rule (U(L), U(R)) as the hypoth-
esis dictates, i.e. for all α̂ we define

θv(α̂) def=
{

at(k, κi(α̂)) if κi(α̂) ≤ |k|
xκi(α̂)−|k| otherwise with xκi(α̂)−|k| ∈ S.

We shall now consider the case of US
k (κL), the other one being similar. We must thus meet the

conditions of the previous lemma in order to resolve US
k (κL). Let l = ε.

1. κ is valid by hypothesis.
2. κL is defined since a = E[κL].
3. We also have that θv is defined over ε and the bound o-metavariables in Uε(L) and Uε(R).
4. The assignment θv is injective over the bound o-metavariables.
5. NAMES(FI(κL)\\|k|) ⊆ S holds since by definition we set S = NAMES(FI(a)) (Note that by

Corollary 3.16 we have NAMES(FI(b)) ⊆ S).
6. Finally,WFε(L) holds since (L,R) is a de Bruijn rewrite rule and hence L and R are well-

formed de Bruijn pre-metaterms.
We may thus apply Lemma 5.11.
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Let us summarize our situation:

US
ε (E[κL]) =α US

ε (E)[US
k (κL)] (Lemma 5.8)

=α US
ε (E)[U(θv,S,k)(κ)(U ε(L))] (Lemma 5.11)

= US
ε (E)[U(θv,S,k)(κ)G]

and

US
ε (E[κR]) =α US

ε (E)[US
k (κR)] (Lemma 5.8)

=α US
ε (E)[U(θv,S,k)(κ)(U ε(R))] (Lemma 5.11)

= US
ε (E)[U(θv,S,k)(κ)D].

So we now define the named context C
def= US

ε (E) and we also define the named valuation

θ′ def= U(θv,S,k)(κ). Then we have U(a) = C[θ′G] and U(b) = C[θ′D]. In order to conclude that
U(a)→ U(b), by definition of SERS -rewriting, we are left to verify that θ′ is admissible for (G,D).
Now,

1. U(θv,S,k)(κ) is defined for all the metavariables of G and D since both U(θv,S,k)(κ)(G) and
U(θv,S,k)(κ)(D) are defined.

2. θv is injective on all the bound o-metavariables in (G,D) by definition of θv .

We can then apply Lemma D.3 and conclude that θ′ is admissible for (G,D).

6 Preserving properties

This section studies the relationship between the translation functions over pre-metaterms and terms
introduced above. It gives rise to two results stating, respectively, that given a metaterm M then
U(T (M)) is v-equivalent (Definition 2.12) to M (see Figure 5), and that given a de Bruijn metaterm
A then T (U(A)) is identical to A. These results are listed below and proved in the Appendix.
They are used to show that properties such as confluence, local confluence, the diamond property
and strong and weak normalization are preserved when translating an SERS rewrite system into a
SERSdB rewrite system and vice versa.

LEMMA 6.1
1. Let M ∈ PMT such thatWF (M). Then U(T(M)) =v M .

2. Let t ∈ T. Then U (T (t)) =α t.

3. Let A ∈ PMTdB . IfWF (A) then T(U(A)) = A.

4. Let a ∈ TdB . Then T (U (a)) = a.

The following lemma ensures that rewrite rules described with v-equivalent metaterms generate
the same rewrite relation. This lemma together with the above mentioned results and the simula-
tion propositions (Proposition 4.15 and Proposition 5.12) are exactly what is needed to preserve
properties in both senses.

LEMMA 6.2
Let (G,D) and (G′,D′) be SERS rewrite rules such that G =v G′ and D =v D′. Then→(G,D) =
→(G′,D′) .
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A

M’

M

named metaterms de Bruijn metaterms

T

U

v-equivalent

FIGURE 5. v-equivalence and translations

PROOF. Without loss of generality we prove that if s→(G,D) t then s→(G′,D′) t. Thus let us assume
that there is an admissible valuation θ for (G,D) and a context C such that s =α C[θG] and
C[θD] =α t.

The set of bound o-metavariables occurring in (G′,D′) may be divided into two (not necessar-
ily disjoint) sets B1 and B2. In B1 we find those bound o-metavariables which occur in the pa-
rameter path of some t-metavariable in (G′,D′), and in B2 the other bound variables occurring
in (G′,D′). The o-metavariables in B1 are not renamed in any way by the v-equivalence relation
(Definition 2.12). We define the valuation θ′ = (θ′t, θ

′
v) as follows:

θ′tX
def= θtX

θ′vα
def= θvα if α ∈ B1

θ′vα̂
def= θvα̂.

In order to fully define θ′ we must consider the value it assigns to those o-metavariables in B2 which
are not in B1. For these we simply require θ′ to assign any variables such that the resulting valuation
is safe for (G′,D′), and θ′v is injective on the bound o-metavariables.

Observe the following:

1. MVAR(G′,D′) ⊆ Dom(θ′),
2. θ′ is by construction an admissible valuation for (G′,D′), and

3. s =α C[θG] =α C[θ′G′] and t =α C[θD] =α C[θ′D′].

Hence s→(G′,D′) t.

COROLLARY 6.3
Let (G,D) be an SERS rewrite rule. Then the rewrite relations generated by (G,D) and
U(T (G,D)) are identical.

PROOF. Use Lemma 6.1(1), Lemma 6.2 and the fact that the translations preserve well-formedness.

DEFINITION 6.4 (Local Confluence, Confluence, Diamond Property)
Let S be a reduction relationdefined on a set O and let S∗ be its reflexive-transitive closure. The
relation S is said to have the local confluence(resp. confluence) property iff for every a, b, c ∈ O
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such that aSb and aSc (resp. aS∗b and aS∗c), there is d ∈ O such that bS∗d and cS∗d. The relation
S is said to have the diamondproperty if for every a, b, c ∈ O such that aSb and aSc there is d ∈ O
such that bSd and cSd.

Preservation of confluence is stated in the two following theorems. Preservation of local conflu-
ence and of the diamond property are stated and proved analogously.

THEOREM 6.5
IfR is a confluent SERS then T (R) is a confluent SERSdB .

PROOF. Suppose a �T (R) b and a �T (R) c for some de Bruijn terms a, b, c. Applying the transla-
tion mapping U(•) and using Proposition 5.12 we obtain the diagram (b) of Figure 6. The reductions
denoted by the dotted lines are obtained by Corollary 6.3 and the confluence ofR.

Now applying the translation mapping T (•) and using Proposition 4.15 we obtain the diagram
(c) of Figure 6. Finally, Lemma 6.1(4) and Lemma 6.1(3) yield the desired diagram illustrated as
diagram (a) in Figure 6.

a

T (R)

������
��
�� T (R)

�� ��	
		

		
	

b

T (R) �� ��

c

T (R)����
T (s)

U(a)
U(T (R))

����








 U(T (R))

�� ���
��

��
�

U(b)

U(T (R)) �� ��

U(c)

U(T (R))����
s

T (U(a))
T (U(T (R)))

				��
��

��
�� T (U(T (R)))



 









T (U(b))

T (U(T (R))) 

 



T (U(c))

T (U(T (R)))				
T (s)

(a) (b) (c)

FIGURE 6. Preservation of confluence from names to indices

THEOREM 6.6
IfR is a confluent SERSdB then U(R) is a confluent SERS .

PROOF. Suppose s �U(R) t1 and s �U(R) t2 for some terms s, t1, t2. Applying the translation
mapping T (•) and using Proposition 4.15 we may obtain the diagram (b) of Figure 7. The reductions
denoted by the dotted lines are obtained by the confluence of R. Note also that Lemma 6.1(3) has
been used.

Now applying the translation mapping U(•) and using Proposition 5.12 we obtain the diagram (c)
of Figure 7. Finally, Lemma 6.1(2) and the definition of reduction Definition 2.23 yield the desired
diagram illustrated as diagram (a) in Figure 7.

We focus now on preservation of normalization properties.

DEFINITION 6.7 (Weak and Strong Normalization)
Let us consider a reduction relation S on a set O. The relation S is said to have the weak normal-
izationproperty iff for every a ∈ O there is at least one finite S-reduction chain aS . . .Sb such that
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t2
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U(T (t1))

U(T (U(R))) 

 



U(T (t2))

U(T (U(R)))				
U(a)

(a) (b) (c)

FIGURE 7. Preservation of confluence from indices to names

b cannot be further reduced. The relation S is said to have the strong normalizationproperty iff for
every a ∈ O there is no infinite S-reduction chain starting at a.

THEOREM 6.8
1. IfR is a strongly normalizing SERS , then T (R) is a strongly normalizing SERSdB .

2. IfR is a strongly normalizing SERSdB , then U(R) is a strongly normalizing SERS .

PROOF. Both items are proved in a similar way. As an example, we prove the first one. Suppose an
infinite derivation for some de Bruijn terms a0, a1, a2, . . .:

a0→T(R) a1→T(R) a2→T(R) · · ·

Applying the translation mapping U(•) and using Proposition 5.12 we obtain:

U(a0)→U (T(R)) U(a1)→U (T(R)) U(a2)→U (T(R)) · · ·

which is an infinite derivation in R by Lemma 6.1(1) and Corollary 6.3, contradicting that R is
strongly normalizing.

Theorem 6.8 also holds if all occurrences of ‘strongly normalizing’ are replaced by ‘weakly nor-
malizing’.

7 Conclusions

We have proposed a formalism for higher-order rewriting with de Bruijn notation and we have shown
that rewriting with names and rewriting with indices are operationally equivalent. We have given
formal translations from one formalism into the other which can be viewed as an interfacein pro-
gramming languages based on higher-order rewriting systems.

In a sequel article [5, 6] we introduce a conversion procedure from the Simplified Expression
Reduction Systems with de Bruijn indices into first-order rewriting. Composing the translation pre-
sented in this work with the aforementioned conversion procedure yields a framework for establish-
ing a precise relation between higher-order rewriting with names and first-order rewriting.
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Appendix

A Compositionality of T

We show that the translation T from names to indices is compositional w.r.t substitution and valuations.

LEMMA A.1 (T is compositional w.r.t. substitution)
Let s, t ∈ T, l, k be labels of variables with |l| = i− 1, let x be a variable such that x /∈ l, and suppose FV(t) ∩ l = ∅. If
s{x← t} is defined then Tlk(s{x← t}) = Tlxk(s){{i← Tk(t)}}.

PROOF. By induction on s.
• s = x. Then we have

Tlk(t) = Ui
0(Tk(t)) (Lemma 4.10)

= i{{i← Tk(t)}}
= Tlxk(s){{i← Tk(t)}} (x /∈ l).

• s = y �= x. Then we have three subcases to consider
– y ∈ l. Then Tlk(y) = pos(y, lk) = pos(y, lxk) = Tlxk(y) = Tlxk(y){{i ← Tk(t)}}. The last equality holds

because pos(y, l) < i.
– y /∈ l and y ∈ k. Then Tlk(y) = pos(y, lk) = pos(y, lxk)− 1 = Tlxk(y)− 1 = Tlxk(y){{i ← Tk(t)}}. The last

equality holds because pos(y, lxk) > i.
– y /∈ lk. Then Tlk(y) = O(y) + |lk| = O(y)+ |lxk| − 1 = Tlxk(y)− 1 = Tlxk(y){{i← Tk(t)}}. The last equality

holds becauseO(y) + |lxk| > i.

• s = f(s1, . . . , sn). Then we have

Tlk(s{x← t}) = f(Tlk(s1{x← t}), . . . , Tlk(sn{x← t}))
=i.h. f(Tlxk(s1){{i← Tk(t)}}, . . . , Tlxk(sn){{i← Tk(t)}})
= Tlxk(s){{i← Tk(t)}}.

• s = ξy.(s1, . . . , sn). Note that since s{x ← t} is defined by hypothesis we know that y /∈ FV(t) and y �= x for
otherwise s{x← t} would not be defined. Then we have

Tlk(s{x← t}) = ξ(Tylk(s1{x← t}), . . . , Tylk(sn{x← t}))
=i.h. ξ(Tylxk(s1){{i + 1← Tk(t)}}, . . . , Tylxk(sn){{i + 1← Tk(t)}})
= Tlxk(s){{i← Tk(t)}}.

LEMMA A.2 (T is compositional w.r.t. valuations)
Let M be a pre-metaterm, l a label of binder indicators, and suppose
1. WF l(M),

2. θ = (θv , θt) is a valuation such that θv is injective on the bound o-metavariables, and
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3. θ is safe for M .
Then for every label k we have T

θ(l)k
(θM) = Tk(θ)(Tl(M)).

PROOF. By induction on the pre-metaterm M . SinceWF l(M) we have the following cases to consider:
• M = α ∈ l. Then T

θ(l)k
(θα) = pos(θα, θ(l)) =hyp.2 pos(α, l) = Tk(θ)(pos(α, l)) = Tk(θ)(Tl(α)).

• M = α̂. Then by the definition of valuation and since α̂ /∈ l because l is a label of binder indicators:

T
θ(l)k

(θα̂) =

{
pos(θα̂, k) + |θ(l)| if θα̂ ∈ k
O(θα̂) + |θ(l)k| otherwise

=

{
S|l|(pos(θα̂, k)) if θα̂ ∈ k

S|l|(O(θα̂) + |k|) otherwise

= Tk(θ)(S|l|(α̂))
= Tk(θ)(Tl(α̂)).

• M = X . Then T
θ(l)k

(θX) = Tk(θ)(Xl) = Tk(θ)(Tl(X)).

• M = ξα.(M1, . . . , Mn) (the case where M = f(M1, . . . , Mn) is similar). Then we have

T
θ(l)k

(θξα.(M1, . . . , Mn)) = ξ(T
θ(α)θ(l)k

(θM1), . . . , T
θ(α)θ(l)k

(θMn))

=i.h. ξ(Tk(θ)(Tαl(M1)), . . . , Tk(θ)(Tαl(Mn)))
= Tk(θ)(Tl(ξα.(M1, . . . , Mn))).

• M = M1[α←M2]. Then we have

T
θ(l)k

(θ(M1[α←M2])) = T
θ(l)k

(θM1{θv(α)← θM2})
=Lemma 4.11 T

θ(α)θ(l)k
(θM1){{1← T

θ(l)k
(θM2)}}

=i.h. Tk(θ)(Tαl(M1)){{1← Tk(θ)(Tl(M2))}}
= Tk(θ)(Tαl(M1)[Tl(M2)])
= Tk(θ)(Tl(M1[α←M2])).

Note that since θ is safe for M we may apply Lemma 4.11 with l = ε. Indeed, θv(α) /∈ θ(l) and FV(θM2) ∩ θ(l) = ∅
for l = ε.

LEMMA A.3
Let k, k′ be labels of binder indicators, l a label of variables and θ be an injective function on the set of binder indicators.
Then for every t ∈ T, every p ≥ 0, every x1, . . . , xp, if for every z ∈ FV(t) \ {x1, . . . , xp} we have z ∈ θ(k) iff
z ∈ θ(k′), then

Valuep(k, Tx1...xpθ(k)l(t)) = Valuep(k′, Tx1...xpθ(k′)l(t)).

PROOF. We use induction on t.
• t = x. We have the following further cases to consider:

– x = xi with 1 ≤ i ≤ p. Then
Valuep(k, T

x1...xpθ(k)l
(x)) =

Valuep(k, i) = i = Valuep(k′, i) =
Valuep(k′, T

x1...xpθ(k′)l(x)).

– x ∈ θ(k) ∩ θ(k′) and the previous case does not hold. Let i = pos(x, θ(k)) and j = pos(x, θ(k′)). Then at(k, i) =
at(k′, j) by injectivity of θ and we have

Valuep(k, T
x1...xpθ(k)l

(x)) = Valuep(k, p + i)

= at(k, i)
= at(k′, j)
= Valuep(k′, p + j)
= Valuep(k′, T

x1...xpθ(k′)l(x)).
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– x ∈ l and the previous cases do not hold. Then for some i with 1 ≤ i ≤ |l| we have

Valuep(k, T
x1...xpθ(k)l

(x)) = Valuep(k, p + |θ(k)|+ i)

= xi

= Valuep(k′, p + |θ(k′)|+ i)
= Valuep(k′, T

x1...xpθ(k′)l(x)).

– x �∈ {x1, . . . , xp}, x /∈ θ(k) ∪ θ(k′), x /∈ l. Then we have

Valuep(k, T
x1...xpθ(k)l

(x)) = Valuep(k,O(x) + p + |θ(k)l|)
= xO(x)+|l|
= Valuep(k′,O(x) + p + |θ(k′)l|)
= Valuep(k′, T

x1...xpθ(k′)l(x)).

• t = f(t1, . . . , tn). We have Valuep(k, T
x1...xpθ(k)l

(ti)) = Valuep(k′, T
x1...xpθ(k′)l(ti)) by induction hypothesis

so the property trivially holds.

• t = ξx.(t1, . . . , tn). Then we have

Valuep(k, T
x1...xpθ(k)l

(ξx.(t1, . . . , tn)))

= Valuep(k, ξ(T
xx1...xpθ(k)l

(t1), . . . , T
xx1...xpθ(k)l

(tn)))

= ξ(Valuep+1(k, T
xx1...xpθ(k)l

(t1)), . . . ,Valuep+1(k, T
xx1...xpθ(k)l

(tn)))

=i.h. ξ(Valuep+1(k′, T
xx1...xpθ(k′)l(t1)), . . . ,Valuep+1(k′, T

xx1...xpθ(k′)l(tn)))

= Valuep(k′, T
x1...xpθ(k′)l(ξx.(t1, . . . , tn))).

B Compositionality of U

We show that the translation U from indices to names is compositional w.r.t. de Bruijn substitutions and valuations.

LEMMA B.1 (U is compositional w.r.t. de Bruijn substitution)
Let a, b ∈ TdB , l and k labels of variables with |l| = i− 1, x a variable such that x /∈ lk ∪ S. Then US

lk(a{{i← b}}) =α

US
lxk(a){x← US

k (b)}, assuming both sides of the equation are defined.

PROOF. The proof is by induction on a.
• a = n. We have three further cases to consider:

– n < i. Then we reason as follows:

US
lk(a{{i← b}}) = US

lk(n)
= at(lk, n)
= at(lxk, n)
= at(lxk, n){x← US

k (b)} (x /∈ l)
= US

lxk(n){x← US
k (b)}.

– n > i. Then since US
lk(a{{i← b}}) = US

lk(n− 1) we consider two further cases:
∗ n− 1 ≤ |lk|. We reason as follows:

US
lk(n− 1) = at(lk, n− 1)

= at(lxk, n)

= at(lxk, n){x← US
k (b)} (x /∈ k)

= US
lxk(n){x← US

k (b)}.
∗ n− 1 > |lk|. We reason as follows:

US
lk(n− 1) = xn−1−|lk|

= xn−|lxk|
= xn−|lxk|{x← US

k (b)} (x /∈ S)

= US
lxk(n){x← US

k (b)}.
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– n = i. Then on the one hand we have US
lk(i{{i ← b}}) = US

lk(Ui
0(b)). And on the other US

lxk(i){x ← US
k (b)} =

x{x← US
k (b)} = US

k (b). Lemma 5.9 concludes this case.

• a = f(a1, . . . , an). We use the induction hypothesis.

• a = ξ(a1, . . . , an). Then we reason as follows:

US
lk(a{{i← b}})

= (z /∈ lk ∪ S by Definition 5.1)
ξz.(US

zlk(a1{{i + 1← b}}), . . . , US
zlk(an{{i + 1← b}}))

=α (y fresh)
ξy.(US

zlk(a1{{i + 1← b}}){z ← y}, . . . , US
zlk(an{{i + 1← b}}){z ← y})

=α (Lemma C.1)
ξy.(US

ylk(a1{{i + 1← b}}), . . . , US
ylk(an{{i + 1← b}}))

=α (i.h.)
ξy.(US

ylxk(a1){x← US
k (b)}, . . . , US

ylxk(an){x← US
k (b)})

=α (see below)
ξy.(US

(z′lxk){z′←y}(a1){x← US
k (b)}, . . . , US

(z′lxk){z′←y}(an){x← US
k (b)})

=α (Lemma C.1)
ξy.(US

z′lxk
(a1){z′ ← y}{x← US

k (b)}, . . . , US
z′lxk

(an){z′ ← y}{x← US
k (b)})

=α (Subst.Lemma)
ξy.(US

z′lxk
(a1){x← US

k (b)}{z′ ← y}, . . . , US
z′lxk

(an){x← US
k (b)}{z′ ← y})

=α

ξz′.(US
z′lxk

(a1){x← US
k (b)}, . . . , US

z′lxk
(an){x← US

k (b)})
=
US

lxk(a){x← US
k (b)}.

Note that since the RHS of the equation to prove is defined, from the last line above we learn that z′ /∈ lxk ∪ S and
z′ /∈ FV(US

k (b)).

‘Subst.Lemma’ refers to the substitution lemma for the λ-calculus [2], which is also valid for our restricted notion of
substitution and reads as follows: s{x ← t}{y ← u} = s{y ← u}{x ← t{y ← u}} if x /∈ FV(u) for distinct
variables x and y, and both sides of the equation together with the term t{y ← u} are defined.

LEMMA B.2 (U is compositional w.r.t. valuations)
Consider a de Bruijn valuation κ = (κi, κt), a de Bruijn pre-metaterm A, a finite set of variables S, a variable assignment θv

verifying the hypothesis in Definition 5.6, a label of binder indicators l and a label of variables k. If the following conditions
hold:
1. κ is valid,

2. κA is defined,

3. θv is defined over l and the bound o-metavariables in Ul(A),

4. θv is injective on the bound o-metavariables,

5. NAMES(FI(κA)\\|θv(l)k|) ⊆ S, and

6. WF l(A).
Then, US

θv(l)k
(κA) =α U(θv,S,k)(κ)Ul(A).

PROOF. By induction on A. Below we shall use LHS and RHS to denote the left- and right-hand side respectively, of the
equation to prove.
• A = Xh. SinceWF l(Xh) by Hypothesis 6, we have that h = l and so LHS = US

θv(l)k
(κXl). And on the other hand

RHS = U(θv,S,k)(κ)(Ul(Xl))

= U(θv,S,k)(κ)X

= US
θv(l′)k(κXl′ ) ( with Xl′ ∈ Dom(κ)).

Then since κ is valid (Hypothesis 1) we may apply Lemma 5.7 to conclude.
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• A = Sj(α̂). SinceWF l(S
j(α̂)) holds by Hypothesis 6, then j = |l|. We have

LHS = US
θv(l)k

(κS|l|(α̂))

= US
θv(l)k

(S|l|(κi(α̂)))

=

{
at(k, κi(α̂)) if κi(α̂) ≤ |k|
xκi(α̂)−|k| otherw. with xκi(α̂)−|k| ∈ S.

On the other hand we have
RHS = U(θv,S,k)(κ)(Ul(S

|l|(α̂)))

= U(θv,S,k)(κ)(α̂)

= θv(α̂).

We can conclude LHS = RHS because θv satisfies the requirements of Definition 5.6.

• A = Sj(1). SinceWF l(S
j(1)) holds by the Hypothesis 6, j + 1 ≤ |l|. Thus,

LHS = US
θv(l)k

(κSj(1)) RHS = U(θv,S,k)(κ)(Ul(S
j(1)))

= US
θv(l)k

(Sj(1)) = U(θv,S,k)(κ)(at(l, j + 1))

= at(θv(l), j + 1) = θv(at(l, j + 1)).
= θv(at(l, j + 1)).

• A = ξ(A1, . . . , An). Then we reason as follows

RHS
= U(θv,S,k)(κ)(Ul(ξ(A1, . . . , An)))

= U(θv,S,k)(κ)(ξα.(Uαl(A1), . . . , Uαl(An))) (α /∈ l andWFαl(Ai) for all 1 ≤ i ≤ n)

= ξθv(α).(U(θv,S,k)(κ)(Uαl(A1)), . . . , U(θv,S,k)(κ)(Uαl(An)))).

In order to apply the induction hypothesis we need to verify the hypothesis for Ai. The Hypothesis 1 holds by definition
and the Hypothesis 2 is evident since κA is defined. Hypothesis 3 holds since by hypothesis, θv is defined over l and the
bound o-metavariables in Ul(A) = ξα.(Uαl(A1), . . . , Uαl(An)), hence it is defined over the bound o-metavariables in
Uαl(Ai)∪αl for 1 ≤ i ≤ n. Regarding Hypothesis 5, namely NAMES(FI(κAi)\\|θv(αl)k|) ⊆ S; but this is evident by
Hypothesis 5 for A and the general fact that FI(ξ(a1, . . . , an))\\n = FI(a1, . . . , an)\\n + 1. Hypothesis 6 is also true
because when translating the de Bruijn pre-metaterm A we choose α verifying the conditionWFαl(Ai). Thus applying
the induction hypothesis we have:

RHS
=
ξθv(α).(US

θv(αl)k
(κA1), . . . , US

θv(αl)k
(κAn))

=α (z′ does not occur in US
θv(αl)k

(κAi))

ξz′.((US
θv(αl)k

(κA1)){θv(α)← z′}, . . . , (US
θv(αl)k

(κAn)){θv(α)← z′})
=α (Lemma C.1)
ξz′.(US

(θv(αl)k){θv(α)←z′}(κA1), . . . , US
(θv(αl)k){θv(α)←z′}(κAn))

=α (θv injective and Definition 5.6)
ξz′.(US

z′θv(l)k
(κA1), . . . , US

z′θv(l)k
(κAn))

= (z /∈ θv(l)k ∪ S)
ξz′.(US

(zθv(l)k){z←z′}(κA1), . . . , US
(zθv(l)k){z←z′}(κAn))

=α (Lemma C.1)

ξz′.(US
zθv(l)k

(κA1){z ← z′}, . . . , US
zθv(l)k

(κAn){z ← z′})
=α

ξz.(US
zθv(l)k

(κA1), . . . , US
zθv(l)k

(κAn)).

On the other hand we have

LHS = US
θv(l)k

(κ(ξ(A1, . . . , An)))

= US
θv(l)k

(ξ(κA1, . . . , κAn))

= ξz.(US
zθv(l)k

(κA1), . . . , US
zθv(l)k

(κAn)) (z /∈ θv(l)k ∪ S).
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• A = f(A1, . . . , An). Then we have

LHS = US
θv(l)k

(κ(f(A1, . . . , An)))

= US
θv(l)k

(f(κA1, . . . , κAn))

= f(US
θv(l)k

(κA1), . . . , US
θv(l)k

(κAn)).

RHS = U(θv,S,k)(κ)(Ul(f(A1, . . . , An)))

= U(θv,S,k)(κ)(f(Ul(A1), . . . , Ul(An)))

= f(U(θv,S,k)(κ)Ul(A1), . . . , U(θv,S,k)(κ)Ul(An)).

We can immediately conclude by induction hypothesis.

• A = A1[A2]. Then we have

LHS = US
θv(l)k

(κ(A1[A2]))

= US
θv(l)k

(κA1{{1← κA2}}).

On the other hand we have

RHS
= U(θv,S,k)(κ)(Ul(A1[A2]))

= U(θv,S,k)(κ)(Uαl(A1)[α← Ul(A2)]) (�)

= (U(θv,S,k)(κ)(Uαl(A1))){θv(α)← U(θv,S,k)(κ)(Ul(A2))}
=α US

θv(αl)k
(κA1){θv(α)← US

θv(l)k
(κA2)}. (i.h.)

where in (�), α /∈ l is such thatWFαl(A1).

Note that in the last step the inductive hypothesis may be applied by the same reasons we used in the case of the binder.

Now, since θv is injective and satisfies the conditions of Definition 5.6, then θv(α) /∈ S∪θv(l)k and we can then conclude
by applying Lemma 5.10.

C From de Bruijn valuations to correct valuations
In this section we prove that the translation of a valid de Bruijn valuation (Definition 5.6) does not depend on the choice of
the t-metavariable.

LEMMA C.1 (Renaming and the U•• (•) translation)
Let l be a label of variables, z and y be two variables, S be a set of variables and a be a de Bruijn term such that:
1. z ∈ l and z /∈ S,

2. y does not occur in US
l (a), and

3. NAMES(FI(a)\\|l|) ⊆ S.
Then we have US

l (a){z ← y} =α US
l{z←y}(a).

PROOF. The condition NAMES(FI(a)\\|l|) ⊆ S is required for US
l (a) and US

l{z←y}(a) to be defined. The proof proceeds

by induction on a. The case where a is of the form f(a1, . . . , an) follows from the induction hypothesis so we consider the
remaining ones.
• a = n. We have two further cases to consider:

– 1 ≤ n ≤ |l|. Then US
l (n){z ← y} = at(l, n){z ← y} = at(l{z ← y}, n) = US

l{z←y}(n).

– n > |l|. Then since z /∈ S we have US
l (n){z ← y} = xn−|l|{z ← y} = xn−|l| = xn−|l{z←y}| = US

l{z←y}(n).

• a = ξ(a1, . . . , an). Then we reason as follows:
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US
l (a){z ← y}

=
ξx.(US

xl(a1), . . . , US
xl(an)){z ← y}

= (z ∈ l hence z �= x and y /∈ US
l (a))

ξx.(US
xl(a1){z ← y}, . . . , US

xl(an){z ← y})
=α (i.h.)
ξx.(US

xl{z←y}(a1), . . . , US
xl{z←y}(an))

=α (v fresh)
ξv.(US

xl{z←y}(a1){x← v}, . . . , US
xl{z←y}(an){x← v})

=α (i.h.)

ξv.(US
vl{z←y}{x←v}(a1), . . . , US

vl{z←y}{x←v}(an))

=α (x �= y and x /∈ l)
ξv.(US

vl{z←y}(a1), . . . , US
vl{z←y}(an))

=α

ξv.(US
(wl{z←y}){w←v}(a1), . . . , US

(wl{z←y}){w←v}(an))

=α (i.h.)
ξv.(US

wl{z←y}(a1){w ← v}, . . . , US
wl{z←y}(an){w ← v})

=α (w /∈ l{z ← y} ∪ S)
ξw.(US

wl{z←y}(a1), . . . , US
wl{z←y}(an))

=
US

l{z←y}(a).

Since the translation function on the LHS and RHS of the equation to prove may have chosen different variables for the
ξ binder we relate them through a fresh variable v.

LEMMA C.2
Let a and b be de Bruijn terms, l and l′ labels of binder indicators and α a binder indicator. Then for j ≥ 0 we have:
Valuej+1(l, a) = Valuej+1(l′, b) implies Valuej(αl, a) = Valuej(αl′, b).

PROOF. By induction on a.
• a = m. Since Valuej+1(l, m) = Valuej+1(l′, b) we have b = n for some index n. We proceed by cases:

– m ≤ j + 1. Then since Valuej+1(l, m) = m = Valuej+1(l′, n) by Definition 3.12 we have n = m and therefore
Valuej(αl, m) = Valuej(αl′, n).

– m > j + 1. We have two different cases:
∗ m−(j+1) ≤ |l|. Then by hypothesis we have Valuej+1(l, m) = at(l, m−(j+1)) = Valuej+1(l′, n), and hence

0 < n− (j +1) ≤ |l′| and at(l, m− (j +1)) = at(l′, n− (j +1)). Therefore Valuej(αl, m) = Valuej(αl′, n)
since 1 < m− j ≤ |αl| and 1 < n− j ≤ |αl′|.
∗ m− (j + 1) > |l|. Then by hypothesis we have Valuej+1(l, m) = xm−(j+1)−|l| = Valuej+1(l′, n), and hence

n − (j + 1) > |l′| and m − (j + 1) − |l| = n − (j + 1) − |l′|. Therefore Valuej(αl, m) = xm−j−|αl| =

Valuej(αl′, n).

• a = f(a1, . . . , an) or a = ξ(a1, . . . , an). By Definition 3.12 and the hypothesis it must be the case that
b = f(b1, . . . , bn) (resp. b = ξ(b1, . . . , bn)) and Valuej+1(l, ai) = Valuej+1(l′, bi) (resp. Valuej+2(l, ai) =
Valuej+2(l′, bi)) for 1 ≤ i ≤ n. By induction hypothesis we can conclude Valuej(αl, ai) = Valuej(αl′, bi) (resp.
Valuej+1(αl, ai) = Valuej+1(αl′, bi)) and thus Valuej(αl, a) = Valuej(αl′, b).

Note that the converse of Lemma C.2 does not hold (for α may already be present in l or l′). Indeed, Value0(αα, 2) =

Value0(αα, 1), yet Value1(α, 2) �= Value1(α, 1). The value function is used to determine when a de Bruijn valuation is
valid or not. It is defined in the SERSdB formalism in order to describe reduction on de Bruijn terms. A natural question
which arises is that of the relationship between value equivalent de Bruijn terms considered as named terms via de U•• (•)
translation in the SERS formalism. The following lemma investigates this matter.

LEMMA C.3
Let a, b ∈ TdB , S be a set of variables, l, l′ be labels of binder indicators, k a label of variables, and θv a variable assignment.
If both US

θv(l)k
(a) and US

θv(l′)k(b) are defined, then Value(l, a) = Value(l′, b) implies US
θv(l)k

(a) =α US
θv(l′)k(b).

PROOF. By induction on a.
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• a = m. Since Value0(l, m) = Value0(l′, b) we have b = n for some index n. The left-hand side reads

US
θv(l)k

(m) =




at(θv(l), m) m ≤ |l|
at(k, m− |l|) |l| < m ≤ |kl|
xm−|lk| m > |kl| and xm−|lk| ∈ S.

We now consider the following cases:
– m ≤ |l|. Then since Value0(l, m) = at(l, m) = Value0(l′, n) we have n ≤ |l′| and at(l, m) = at(l′, n).

Therefore US
θv(l′)k(n) = at(θv(l′), n) = θv(at(l′, n)) = θv(at(l, m)) = US

θv(l)k
(m).

– |l| < m ≤ |lk|. Then since Value0(l, m) = xm−|l| = Value0(l′, n) we have n > |l′| and xm−|l| = xn−|l′|.
Then m− |l| = n− |l′|. Thus US

θv(l′)k(n) = at(k, n− |l′|) = at(k, m− |l|) = US
θv(l)k

(m).

– m > |lk|. Then since Value0(l, m) = xm−|l| = Value0(l′, n) we have n > |l′| and xm−|l| = xn−|l′|. Then

m − |l| = n − |l′| and since m > |lk| we also have n > |l′k|. Thus US
θv(l′)k(n) = xn−|l′k| = xm−|lk| =

US
θv(l)k

(m).

• a = f(a1, . . . , an). Since Value0(l, a) = Value0(l′, b) we have b = f(b1, . . . , bn) and Value0(l, ai) =
Value0(l′, bi) for 1 ≤ i ≤ n. Then by the induction hypothesis we have US

θv(l)k
(ai) =α US

θv(l′)k(bi) and hence

US
θv(l)k

(a) =α US
θv(l′)k(b).

• a = ξ(a1, . . . , an). Since Value0(l, a) = Value0(l′, b) we have b = ξ(b1, . . . , bn) and Value1(l, ai) =
Value1(l′, bi) for 1 ≤ i ≤ n. Then Value0(βl, ai) = Value0(βl′, bi) holds by Lemma C.2, where in particular
we can take β to be a fresh o-metavariable such that θv is undefined on β. Let us extend the function θv to β by defining

θv(β)
def
= z, where z is a fresh variable such that z /∈ θv(l)θv(l′)k ∪ S. Then since US

zθv(l)k
(ai) and US

zθv(l′)k(bi) are

defined we can apply the induction hypothesis to get US
zθv(l)k

(ai) = US
θv(βl)k

(ai) =α US
θv(βl′)k(bi) = US

zθv(l′)k(bi)

for 1 ≤ i ≤ n.
We now reason as follows:

US
θv(l)k

(ξ(a1, . . . , an))

= ξx.(US
xθv(l)k

(a1), . . . , US
xθv(l)k

(an)) (x /∈ θv(l)k ∪ S)

=α ξz.(US
xθv(l)k

(a1){x← z}, . . . , US
xθv(l)k

(an){x← z})
= ξz.(US

zθv(l)k
(a1), . . . , US

zθv(l)k
(an)) (Lemma C.1)

=α ξz.(US
zθv(l′)k(b1), . . . , US

zθv(l′)k(bn)) (i.h.)

= ξz.(US
yθv(l′)k(b1){y ← z}, . . . , US

yθv(l′)k(bn){y ← z}) (Lemma C.1)

=α ξy.(US
yθv(l′)k(b1), . . . , US

yθv(l′)k(bn)) (y /∈ θv(l′)k ∪ S

by Definition 5.1)
= US

θv(l′)k(ξ(b1, . . . , bn))

Note that, in general, the converse of Lemma C.3 does not hold. Indeed it suffices to consider k = ε, l = α, l′ = β,
a = 1, b = 1, S = ∅ and the variable assignment θvα = θvβ = x. Then US

x (a) = x = US
x (b) but Value(α, 1) = α �=

β = Value(β, 1).
We can now show that the translation of de Bruijn valuations is correct in the sense mentioned above. This is completed

in Section 3 as Lemma 5.7.

D From valid de Bruijn valuations to admissible valuations
This subsection shows that if we depart from a valid valuation κ in the de Bruijn indices setting and we translate this valuation
as dictated by Definition 5.6 into a valuation in the SERS setting, then we obtain an admissible valuation. In other words,
the resulting valuation is safe (Definition 2.20) and verifies the path condition (Definition 2.21).

A word on notation: we shall use δ, δi, . . . to denote o-metavariables (that is, δ may either be a pre-bound o-metavariable
such as α, or a pre-free metavariable such as α̂).

LEMMA D.1 (valid de Bruijn valuations translate to safe valuations)
Let κ be a valid de Bruijn valuation for a rewrite rule (L, R), θv a variable assignment satisfying the requirements of
Definition 5.6, S a finite set of variables, k a label of variables, and U (L, R) = (G, D) the translation of (L, R). If the
following conditions hold
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1. U(θv,S,k)(κ) is defined for all metavariables of G and D, and

2. θv is injective on the set of bound o-metavariables of (G, D)
then U(θv,S,k)(κ) is safe for (G, D).

PROOF. Recall that U(θv,S,k)(κ)
def
= (θv , θt) where:

θtX
def
= US

θv(l)k
(κXl) for any Xl ∈ Dom(κ).

In what follows we shall abbreviate U(θv,S,k)(κ) with θ′ for the sake of readability. Suppose that θ′ is not safe for
(G, D), then unwanted variable capture arises in θ′D (since the metasubstitution operator does not occur on the LHS of a
rewrite rule, no renaming problems can arise in G). Thus there exist metaterms M1 and M2 and a formal parameter α such
that
• M1[α ← M2] occurs in D (or equivalently D = C[M1[α ← M2]] for some metacontext C). The metaterm D may be

depicted as in Figure 8(a) where l1 denotes the parameter path of the metacontext C.

• θ′ is defined for M1 and M2.

• We have either
Case 1: θ′α = x and x ∈ BV (θ′M1) for some variable x, or
Case 2: θ′α = x, x ∈ FV(θ′M1), y ∈ BV(θ′M1) and y ∈ FV(θ′M2) for some variables x �= y.

•
l1

sub
��
�� ��

��

[ ]α M2

M1

•
l1

sub
��
�� ��

��

[ ]α M2

•
l′

Y

•
l1

sub
��
�� ��

��

[ ]α •
l2

M1 Y

•
l1

sub
��
�� ��

��

[ ]α •
l2

•
l′

Y

Z

(a) (b) (c) (d)

FIGURE 8. Tree form for D

Before proceeding let us show the following fact:

FACT D.2
If z ∈ BV(θ′M1), then z cannot be bound by a formal parameter β ∈ αl1 (that is, for all β ∈ αl1 we have θ′(β) �= z).

PROOF. Suppose that for some β ∈ αl1 we have θ′(β) = z. Thus by definition of θ′ we have θv(β) = z. Let us consider
the boundoccurrence of z in θ′M1. There are two possibilities:
1. z comes from the instantiation of a bound o-metavariable, so that z = θ′(β′) for some formal parameter β′ in M1. Now

since D is a well-formed pre-metaterm we must have β �= β′. But θ′(β′) is equal to θv(β′) by definition, so that θv

assigns the same value, namely z, to two different bound o-metavariables β and β′ of D, thus contradicting Hypothesis 2.

2. z comes from the instantiation of a t-metavariable, so that z ∈ BV (t) with t = θ′Y for some t-metavariable Y occurring
in M1. By Definition 5.6 we have

t = US
θv(l)k(κYl)

for some t-metavariable Yl occurring in Dom(κ) with l = l′αl1 (see Figure 8(b)). Therefore by definition of the term
translation function U•• (•) (Definition 5.1) the variable z cannot be a candidate for binding in κYl since it already occurs
in the label θv(l)k, indeed, β ∈ l and θv(β) = z.
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Now, suppose that case 1 holds, that is, θ′α = x and x ∈ BV(θ′M1) for some variable x. This leads immediately to a
contradiction with the Fact D.2 recently proved. Therefore, let us continue with the proof of the lemma by considering that
case 2 holds, and in particular, let us see where the free variable occurrence of y comes from in θ′M2. We have two possible
cases:
1. There is an occurrence of an o-metavariable δ in M2 such that θv(δ) = y. As observed above (Fact D.2), since y may not

be bound by a formal parameter in l1 (i.e. there is no β ∈ l1 with θv(β) = y) then δ /∈ l1. Thus δ = β̂′ for some free
o-metavariable β̂′ or else the pre-metaterm D would not be a metaterm. So then β̂′ is a free o-metavariable in D and thus
by Hypothesis 1 U(θv,S,k)(κ) is defined on β̂′. Now, the assignment θv satisfies the requirements of Definition 5.6, so

that in particular by the second requirement we must have θv(β̂′) = y ∈ S ∪ k.

We now analyse where the bound occurrence of y comes from in θ′M1 in order to arrive at a contradiction. Here too we
have two cases to consider:

(a) y = θv(β′′) for some formal parameter β′′ occuring in M1. Now, θv(β′′) �∈ S ∪ k since θv satisfies the first
requirement of Definition 5.6 by hypothesis, so that we arrive at a contradiction.

(b) y comes from instantiating some t-metavariable Y in M1, i.e. y ∈ BV(θ′Y ) for some t-metavariable Y in M1

(Figure 8(b)). Thus there is a t-metavariable Yl with l = l′αl1 in Dom(κ), a simple label k′ and an index m such that
US

k′θv(l′αl1)k
(m) = y = at(k′θv(l′αl1)k, m).

Now since y is bound in θ′Y we have m ≤ |k′θv(l′)|. But then by definition of U•• (•) we have y /∈ S ∪ θv(αl1)k, in
other words, y cannot have been used as a candidate variable for binding. In particular, y /∈ S∪k. This is a contradiction
since we already know that y ∈ S ∪ k.

2. There is an occurrence of a t-metavariable Y in M2 such that y ∈ FV(θ′Y ). Then there is an occurrence of Yl in Dom(κ)
with l = l2l1 such that y ∈ FV(US

θv(l2l1)k
(κYl)) where l1 is the label ‘above’ M2 (Figure 8(c)). Note that since for this

occurrence of y we have y ∈ FV(θ′M2) then we must have that y ∈ S or y ∈ θv(l1)k.

We now analyse where the bound occurrence of y comes from in θ′M1. Here too we have two cases to consider:

(a) y = θv(β′′) for some formal parameter β′′ occurring in M1. If y ∈ S or y ∈ k we arrive at a contradiction with the
fact that θv verifies the first requirement of Definition 5.6 (saying that θv(β′′) �∈ S ∪ k). Moreover, if y ∈ θv(l1) we
contradict Fact D.2.

(b) y comes from instantiating some o-metavariable Z in M1, i.e. y ∈ BV(θ′Z) for some t-metavariable Z in M1

(Figure 8(d)). Thus there is an o-metavariable Zl in Dom(κ) with l = l′αl1, a simple label k′ and an index m such
that US

k′θv(l′αl1)k
(m) = y = at(k′θv(l′αl1)k, m).

Now since y is bound in θ′M1 we have m ≤ |k′θv(l′)|. But then by definition of U•• (•) we have y /∈ S ∪ θv(αl1)k.
In particular, y /∈ S ∪ θv(l1)k. This is a contradiction since we already know that y ∈ S or y ∈ θv(l1)k.

LEMMA D.3 (From valid de Bruijn valuations to admissible valuations)
Consider the following: a valid de Bruijn valuation κ for a rewrite rule (L, R), θv a variable assignment verifying the
hypothesis in Definition 5.6, and U (L, R) = (G, D) the translation of (L, R). If the following conditions hold:
1. U(θv,S,k)(κ) is defined for all metavariables of G and D, and

2. θv is injective on the set of bound o-metavariables of (G, D),
then U(θv,S,k)(κ) is admissible for (G, D).

PROOF. We shall abbreviate U(θv,S,k)(κ) by θ′ in order to improve readability. Since by Lemma D.1 we have that θ′ is safe
then by Definition 2.22 we have still to check the following properties:
• θ verifies the path condition for X in (G, D): if no t-metavariable occurs more than once then the property is trivial so

let us suppose that there is a t-metavariable X in (G, D) occurring at two different positions p and p′. Let us take any
variable x ∈ FV(θ′X) and let l and l′ be the parameter paths of p and p′ in the trees corresponding to G or D. Suppose

θ′X = U(θv,S,k)(κ)X
def
= US

θv(l)k
(κXl). Then since κ is valid by Lemma 5.7 US

θv(l)k
(κXl) =α US

θv(l′)k(κXl′ ).

As a consequence, the set of free variables of both terms is the same. Now, to show that θ verifies the path condition for
X in (G, D) let us suppose that x ∈ θv(l). Since the o-metavariables in l are bound in the rule (G, D), and θv is defined
for all the metavariables of (G, D) by Hypothesis 1, then by the requirements of Definition 5.6 x �∈ S ∪ k. Now, since x
is free in US

θv(l′)k(κXl′ ) then x must be in S ∪ θv(l′)k, which implies that x is necessarily in θv(l′). This allows us to

conclude that θ verifies the path condition for X in (G, D).

• If the pre-bound o-metavariables α and β occur in (G, D) with α �= β, then θvα �= θvβ: this property trivially holds by
Hypothesis 2.
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E Preserving properties
We start by a technical lemma that will be used later.

LEMMA E.1
Let M ∈ PMT without occurrences of t-metavariables, and let
1. kαl be a simple label, k′ a label such that |k| = |k′|, α′ a pre-bound o-metavariable,

2. β a bound o-metavariable such that it does not occur in U kαl(Tk′α′l(M)), and

3. WFk′α′l(M) hold.
Then (U kαl(Tk′α′l(M)))�α←β=v U kβl(Tk′α′l(M)).

PROOF. By induction on M . Let k = β1 . . . βn and k′ = β′1 . . . β′n. By Hypothesis 3 we have the following cases to
consider:
• M = α′′ ∈ k′ and hence α′′ = β′j for some 1 ≤ j ≤ n. Then we have

U kαl(Tk′α′l(M))�α←β= βj �α←β=hyp.1 βj = U kβl(Tk′α′l(M)).

• M = α′′ ∈ l and α′′ /∈ k′. Then we have

U kαl(Tk′α′l(M))�α←β= α′′ �α←β=hyp.1 α′′ = U kβl(Tk′α′l(M)).

• M = α′ and α′ /∈ k′. Then we have

U kαl(Tk′α′l(M))�α←β= α�α←β= β = U kβl(Tk′α′l(M)).

• M = α̂. Then we have

U kαl(Tk′α′l(M))�α←β= α̂�α←β= α̂ = U kβl(Tk′α′l(M)).

• M = f(M1, . . . , Mn). Then we use the induction hypothesis.

• M = ξα′′.(M1, . . . , Mn). We reason as follows:

(U kαl(Tk′α′l(M))))�α←β=
(ξβ′.(U β′kαl(Tα′′k′α′l(M1)), . . . , U β′kαl(Tα′′k′α′l(Mn))))�α←β

for β′ /∈ kαl such thatWFβ′kαl(Tα′′k′α′l(Mi)) holds for 1 ≤ i ≤ n. Since β �= β′ by Hypothesis 2, continue

(ξβ′.(U β′kαl(Tα′′k′α′l(M1)), . . . , U β′kαl(Tα′′k′α′l(Mn))))�α←β
=
ξβ′.((U β′kαl(Tα′′k′α′l(M1)))�α←β, . . . , (U β′kαl(Tα′′k′α′l(Mn)))�α←β)
=v (i.h.)
ξβ′.(U β′kβl(Tα′′k′α′l(M1)), . . . , U β′kβl(Tα′′k′α′l(Mn)))
def
=
U kβl(Tk′α′l(ξα′′.(M1, . . . , Mn)))

• M = M1[α′ ←M2]. Similar to the previous case.

LEMMA E.2
Let M ∈ PMT and l a simple label. IfWF l(M) then U l(Tl(M)) =v M .

PROOF. By induction on M .
• M = α. Then sinceWF l(M) we have α ∈ l and thus U l(Tl(α)) = U l(pos(α, l)) = α.

• M = α̂. Then U l(Tl(α̂)) = U l(S
|l|(α̂)) = α̂.

• M = X . Then U l(Tl(X)) = U l(Xl) = X .

• M = f(M1, . . . , Mn). We use the induction hypothesis.

• M = ξα.(M1, . . . , Mn). We reason as follows:

U l(Tl(ξα.(M1, . . . , Mn))) =
U l(ξ(Tαl(M1), . . . , Tαl(Mn))) =
ξβ.(U βl(Tαl(M1)), . . . , U βl(Tαl(Mn)))

where β /∈ l. We have two further cases to consider:
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1. There are no occurrences of t-metavariables in M . Now if β = α we conclude by using the induction hypothesis so let
us assume then that β �= α.

ξβ.(U βl(Tαl(M1)), . . . , U βl(Tαl(Mn)))
=v (β′ not in U βl(Tαl(Mi)))
ξβ′.(U βl(Tαl(M1))�β←β′, . . . , U βl(Tαl(Mn))�β←β′)
= (Lemma E.1)
ξβ′.(U β′l(Tαl(M1)), . . . , U β′l(Tαl(Mn)))

= (Lemma E.1)
ξβ′.(U αl(Tαl(M1))�α←β′, . . . , U αl(Tαl(Mn))�α←β′)
=v (i.h.)
ξα.(U αl(Tαl(M1)), . . . , U αl(Tαl(Mn)))
=v

ξα.(M1, . . . , Mn).

2. There is an occurrence of a t-metavariable X in M . In this case since U l(Tl(M)) is defined we observe that it must be
that β = α. Indeed, we have that Xl′αl occurs in Tl(M) for some label l′. Hence when translating this metavariable to
the de Bruijn setting we arrive at U l′′βl(Xl′αl), which is defined only for l′′βl = l′αl. Therefore, β = α and we use
the induction hypothesis.

• M = M1[α←M2]. We proceed as above.

LEMMA E.3
Let t ∈ T such that FV(t) ⊆ S ∪ l for l any label and S a finite set of variables. Then US

l (Tl(t)) =α t.

PROOF. By induction on the structure of t.
• t = x. Then there are two cases to consider:

– x ∈ l. Then US
l (Tl(x)) = US

l (pos(x, l)) = x.
– x /∈ l. Then US

l (Tl(x)) = US
l (O(x) + |l|). By hypothesis x ∈ S ∪ l so that x ∈ S and then US

l (O(x) + |l|) =
xO(x) = x.

• t = f(t1, . . . , tn). Then US
l (Tl(t)) = f(US

l (Tl(t1)), . . . , US
l (Tl(tn))) =α f(t1, . . . , tn). The last step holds by

induction hypothesis.
• t = ξx.(t1, . . . , tn). Then

US
l (Tl(ξx.(t1, . . . , tn)))

= US
l (ξ(Txl(t1), . . . , Txl(tn)))

= ξz.(US
zl(Txl(t1)), . . . , US

zl(Txl(tn))) (z /∈ S ∪ l)
=α ξz′.(US

zl(Txl(t1)){z ← z′}, . . . , US
zl(Txl(tn)){z ← z′}) (z′ not in US

z′l(Txl(ti)))

= ξz′.(US
z′l(Txl(t1)), . . . , US

z′l(Txl(tn))) (Lemma C.1)

= ξz′.(US
xl(Txl(t1)){x← z′}, . . . , US

xl(Txl(tn)){x← z′}) (Lemma C.1)
=α ξx.(US

xl(Txl(t1)), . . . , US
xl(Txl(tn))) (x /∈ l)

=α ξx.(t1, . . . , tn) (i.h.).

LEMMA E.4
Let A ∈ PMTdB and l be any simple label. IfWF l(A) then Tl(U l(A)) = A.

PROOF. By induction on A.

LEMMA E.5
Let a be a de Bruijn term and l be any simple label such that NAMES(FI(a)\\|l|) ⊆ S and l∩S = ∅. Then Tl(U

S
l (a)) = a.

PROOF. By induction on the structure of a.

PROOF. [Of Lemma 6.1]
1. Let M ∈ PMT such thatWF (M). Then U (T(M)) =v M . The proof is a direct consequence of Lemma E.2.
2. Let t ∈ T. Then U (T (t)) =α t. The proof is a direct consequence of Lemma E.3
3. Let A ∈ PMTdB . IfWF (A) then T(U (A)) = A. The proof is a direct consequence of Lemma E.4.
4. Let a ∈ TdB . Then T (U (a)) = a. The proof is a direct consequence of Lemma E.5.
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