
The Logic of Proofs as a Foundation for

Certifying Mobile Computation

Eduardo Bonelli12? and Federico Feller2

1 Depto. de Ciencia y Tecnoloǵıa, Universidad Nacional de Quilmes and CONICET
2 LIFIA, Facultad de Informática, Universidad Nacional de La Plata

Abstract. We explore an intuitionistic fragment of Artëmov’s Logic of Proofs as a type
system for a programming language for mobile units. Such units consist of both a code and
certificate component. Dubbed the Certifying Mobile Calculus, our language caters for both
code and certificate development in a unified theory. In the same way that mobile code
is constructed out of code components and extant type systems track local resource usage
to ensure the mobile nature of these components, our system additionally ensures correct
certificate construction out of certificate components. We present proofs of type safety and
strong normalistion for a run-time system based on an abstract machine.

1 Introduction

We explore an intuitionistic fragment (ILP) of Artëmov’s Logic of Proofs (LP) as
a type system for a programming language for mobile units. This language caters
for both code and certficate development in a unified theory. LP may be regarded
as refinement of modal logic S4 in which �A is replaced by [s]A, for s a proof
term expression, and is read: “s is a proof of A”. It is sound and complete w.r.t.
provability in PA (see [Art94] for a precise statement) and realizes all theorems of
S4. It therefore provides an answer to the (long-standing) problem of associating
an exact provability semantics to S4 [Art94]. LP is purported to have important
applications not only in logic but also in Computer Science [AB04]. This work may
be regarded as a small step in exploring the applications of LP in programming
languages and type theory.

Modal necessity �A may be read as the type of programs that compute values
of type A and that do not depend on local resources [Moo04,VCHP04,VCH05] or
resources not available at the current stage of computation [TS97,WLPD98,DP01b].
The former reading refers to mobile computation (�A as the type of mobile code
that computes values of type A) while the latter to staged computation (�A as the
type of code that generates, at run-time, a program for computing a value of type
A). See Sec. 7 for further references. We introduce the Certifying Mobile Calculus
or λCert

� by taking a mobile computation interpretation of ILP. ILP’s mechanism for
internalizing its own derivations provides a natural setting for code certification.
A contribution of our approach is that, in the same way that mobile code is con-
structed out of code components and extant type systems track local resource usage
to ensure the mobile nature of these components, our system additionally ensures
correct certificate construction out of certificate components. Mobile units consist
of both a code component and a certificate component. A sample λCert

� expression,

? Work partially supported by Instituto Tecnológico de Buenos Aires

one encoding a proof of the ILP axiom scheme [s](A ⊃ B) ⊃ [t]A ⊃ [s · t]B where
s, t are any proof term expressions and A,B any propositions, is the following:

λa.λb.unpack a to 〈u•, u◦〉 in (unpack b to 〈v•, v◦〉 in (boxu◦·v◦ u
•v•))

This is read as follows: “Given a mobile unit a and a mobile unit b, extract code v•

and certificate v◦ from b and extract code u• and certificate u◦ from a. Then create
new code u• v• by applying u• to v• and a new certificate for this code u◦ ·v◦. Finally,
wrap both of these up into a new mobile unit.”. The syntax of code and certificates
is described in detail in Sec. 3. The new mobile unit is created at the some current
(implicit) world w. Moreover, the example assumes that both a and b reside at w.
The following variant M illustrates the case where mobile units a and b reside at
worlds wa and wb which are assumed different from the current world w:

unpack fetch[wa] a to 〈u•, u◦〉 in (unpack fetch[wb] b to 〈v•, v◦〉 in (boxu◦·v◦ u
•v•))

Here the expression fetch[wa] a is operationally interpreted as a remote call to com-
pute the value of a (a mobile unit) at wa and then return it to the current world.
Note that a and b occur free in this expression. Since b is a non-local resource it
cannot be bound straightforwardly by prefixing the above term with λb. Rather, the
code first must be moved from the current world w to wb; similarly for a:

λa.fetch[wb] (λb.fetch[w]M)

λCert
� arises from a Curry-de Bruijn-Howard interpretation of a Natural Deduc-

tion presentation of ILP based on a judgemental analysis of the Logic of Proofs
given in [AB07]. Propositions and proofs of ILP correspond to types and terms of
λCert

� . Regarding semantics, we provide an operational reading of expressions encod-
ing proofs in this system in terms of global computation. An abstract machine is
introduced that computes over multiple worlds. Apart from the standard lambda
calculus expressions new expressions for constructing mobile units and for comput-
ing in remote worlds are introduced. We state and prove type safety of a type system
for λCert

� w.r.t. its operational semantics. Also, we prove strong normalization.
This paper is organized as follows. Sec. 2 briefly recapitulates ILPnd [AB07],

a Natural Deduction presentation of ILP. We then introduce a term assignment
for ILPnd and discuss differences with the term assignment in [AB07] including
the splitting of validity variables [AB07] into code and certificate variables. Sec. 4
introduces the run-time system of λCert

� , the abstract machine for execution of λCert
�

programs. Sec. 5 analyses type safety and Sec. 6 strong normalization. References to
related work follows. Finally, we conclude and suggest further directions for research.

2 Natural Deduction for ILP

As mentioned, LP [Art95,Art01] is a refinement of modal logic S4 in which �A is
replaced by [s]A. Here s is an expression representing a Hilbert style proof and is
called a proof polynomial. In the minimal propositional logic fragment of LP with-
out plus, ILP, proof polynomials are constructed from proof variables and constants
using two operations: application “·” and proof-checker “!”. The usual propositional

connectives are augmented by a new one: given a proof polynomial s and a propo-
sition A build [s]A. The intended reading is: “s is a proof of A”. The axioms and
inference schemes of LP are:

A0. Axiom schemes of minimal logic in the language of LP
A1. [s]A ⊃ A “verification”
A2. [s](A ⊃ B) ⊃ ([t]A ⊃ [s · t]B) “application”
A3. [s]A ⊃ [!s][s]A “proof checker”
R1.Γ B A ⊃ B and Γ B A implies Γ BB “modus ponens”
R2. If A is an axiom A0-A3, and c is a

proof constant, then B[c]A
“necessitation”

For verification one reads:“if s is a proof of A, then A holds”. As regards the proof
polynomials the standard interpretation is as follows. For application one reads: “if
s is a proof of A ⊃ B and t is a proof of A, then s · t is a proof of B”. Thus “·”
represents composition of proofs. For proof checking one reads: “if s is a proof of
A, then !s is a proof of the sentence ‘s is a proof of A’ ”. Thus !s is seen as a
computation that verifies [s]A.

In previous work [AB07] a Natural Deduction presentation of ILP (ILPnd) is
introduced by considering two sets of hypothesis, truth and validity hypothesis,
and analysing the meaning of the following Hypothetical Judgement with Explicit
Evidence:

∆;Γ B A | s

Here ∆ is a sequence of validity assumptions, Γ a sequence of truth assumptions, A
is a proposition and s is a proof term. A validity assumption is written v : A where
v ranges over a given infinite set of validity variables and states that A holds at all
accessible worlds. Likewise, a truth assumption is written a : A where a ranges over
a given infinite set of truth variables and states that A holds at the current world.
We write x to denote either of these variables. The judgement is read as: “A is true
with evidence s under validity assumptions ∆ and truth assumptions Γ”. Note that
s is a constituent of this judgement without whose intended reading is not possible.
The meaning of this judgement is given by axiom and inference schemes (Fig. 1).
We say a judgement is derivable if it has a derivation using these schemes.

Proof Terms s, t ::= x | s · t | λa : A.s | !s | letc sbe v : A in t
Propositions A,B ::= P | A ⊃ B | [s]A
Truth Contexts Γ ::= · | Γ, a : A
Validity Contexts ∆ ::= · | ∆, v : A

All free occurrences of a (resp. v) in s are bound in λa : A.s (resp. letc tbe v :
A in s). A proposition is either a variable P , an implication A ⊃ B or a validity
proposition [s]A. We write “·” for empty contexts and s{x/t} for the result of sub-
stituting all free occurrences of x in s by t (bound variables are renamed whenever
necessary); likewise for A{x/t}.

A brief informal explanation of some of these schemes follows. The axiom scheme
oVar states that the judgement ∆;Γ, a : A, Γ ′BA | a is evident in itself. Indeed, if we

Minimal Propositional Logic Fragment

oVar
∆;Γ, a : A,Γ ′ BA | a

∆;Γ, a : ABB | s
⊃ I

∆;Γ BA ⊃ B | λa : A.s

∆;Γ BA ⊃ B | s ∆;Γ BA | t
⊃ E

∆;Γ BB | s · t

Provability Fragment

mVar
∆, v : A,∆′;Γ BA | v

∆; ·BA | s
�I

∆;Γ B [s]A |!s

∆;Γ B [r]A | s ∆, v : A;Γ B C | t
�E

∆;Γ B C{v/r} | letc sbe v : A in t

∆;Γ BA | s ∆;Γ ` s ≡ t : A
EqEvid

∆;Γ BA | t

Fig. 1. Explanation for Hypothetical Judgements with Explicit Evidence

assume that a is evidence that proposition A is true, then we immediately conclude
that A is true with evidence a. The introduction scheme for the [s] modality inter-
nalises metalevel evidence into the object logic. It states that if s is unconditional
evidence that A is true, then A is in fact valid with witness s (i.e. [s]A is true).
Evidence for the truth of [s]A is constructed from the (verified) evidence that A
is unconditionally true by prefixing it with a bang constructor. Finally, �E allows
the discharging of validity hypothesis. In order to discharge the validity hypothesis
v : A, a proof of the validity of A is required. In this system, this requires proving
that [r]A is true with evidence s, for some evidence of proof r and s. Note that r is
evidence that A is unconditionally true (i.e. valid) whereas s is evidence that [r]A
is true. The former is then substituted in the place of all free occurrences of v in
the proposition C. This construction is recorded with evidence letc sbe v : A in t
in the conclusion.

Since ILPnd internalizes its own derivations and normalisation introduces identi-
ties on derivations at the meta-level, such identities must be reflected in the object-
logic too. This is the aim of EqEvid. The schemes defining the judgement of evidence
equality ∆;Γ ` s ≡ t : A are the axioms for β equality and β equality on � to-
gether with appropriate congruence schemes (consult [AB07] for details). It should
be noted that soundness of ILPnd with respect to ILP does not require the presence
of EqEvid. It is, however, required in order for normalisation to be closed over the
set of derivations.

A sample derivation in ILPnd of [s](A ⊃ B)⊃[t]A⊃[s · t]B follows, where Γ = a :
[s](A ⊃ B), b : [t]A and ∆ = u : A ⊃ B, v : A:

·;Γ B [s](A ⊃ B) | a

u : (A ⊃ B);Γ B [t]A | b

∆; ·BA ⊃ B | u ∆; ·BA | v

∆; ·BB | u · v
�I

∆;Γ B [u · v]B |!(u · v)
�E

u : (A ⊃ B);Γ B [u · t]B | letc bbe v : A in !(u · v)
�E

·;Γ B [s · t]B | letc abeu : A ⊃ B in letc bbe v : A in !u · v
⊃ I

·; a : [s](A ⊃ B)B [t]A ⊃ [s · t]B | λb : [s]A.letc abeu : A ⊃ B in letc bbe v : A in !(u · v)
⊃ I

·; ·B [s](A ⊃ B) ⊃ [t]A ⊃ [s · t]B | λa : [s](A ⊃ B).λb : [t]A.letc abeu : A ⊃ B in letc bbe v : A in !(u · v)

3 Term assignment

We assume a set {w1, w2, . . .} of worlds, a set {v•1, v•2, . . .} of code variables and a set
{v◦1, v◦2, . . .} of certificate variables. We use Σ for a (finite) set of worlds. ∆ and Γ
are as before. The syntactic categories of certificates, values and terms are defined
as follows:

s, t ::= a | v◦ | s · t |λa : A.s | !s | letc s be v◦ : A in t | fetch(s)
V ::= box sM |λa.M

M,N ::= a | v• |V |M N
| unpack M to 〈v•, v◦〉 in N | fetch[w]M

Certificates have two kinds of variables. Local variables a are used for abstracting
over local assumptions when constructing certificates. Certificate variables v◦ repre-
sent unknown certificates. s·t is certificate composition. !s is certificate endorsement.
letc s be v◦ : A in t is certificate validation, the inverse operation to endorsement.
Finally, fetch(s) certifies the fetch code movement operation to be described shortly.
An example of a certificate is the following, which encodes a derivation of the first
example presented in the introduction:

λa : [s](A ⊃ B).λb : [t]A.letc a be u◦ : A ⊃ B in (letc b be v◦ : A in !(u◦ · v◦))

Values are a subset of terms that represent the result of computations of well-
typed, closed terms. A value of the form λa.M is an abstraction (free occurrences
of a in M are bound as usual) and one of the form box sM is a mobile unit (com-
posed of mobile code M and certificate s). A term is either a term variable for
local code a, a term variable for mobile code v•, a value V , an application term
M N , an unpacking term for extraction of code-certificate pairs from mobile units
unpack M to 〈v•, v◦〉 in N (free occurrences of v◦ and v• in N are bound by this
construct) or a fetch term fetch[w]M . In an unpacking term, M is the argument
and N is the body; in a fetch term we refer to w as the target of the fetch and M
as its body. The operational semantics of these constructs is discussed in Sec. 4.

The term assignment results essentially (the differences are explained below) from
the schemes of Fig. 1 with terms encoding derivations and localizing the hypothesis
in ∆, Γ at specific worlds. Also, a reference to the current world is added. Typing
judgements take the form

Σ;∆;Γ BM : A@w | s (1)

Validity and truth contexts are now sequences of expressions of the form v : A@w
and a : A@w, respectively. The former indicates that mobile unit v computing a
value of type A may be assumed to exist and to be located at world w. The latter
indicates that a local value a of type A may be assumed to exist at world w. The
truth of a proposition at w shall rely, on the one hand, on truth hypothesis in Γ
that are located at w, and on the other, on validity hypothesis in ∆ that have been
fetched, from their appropriate hosts, to the current location w. Logical connectives
bind tighter than @, therefore an expression such as A ⊃ B@w should be read as
(A ⊃ B)@w.

It should be mentioned that ILP is not a hybrid logic [AtC06]. In other words,
A@w is not a proposition of our object logic. For example, expressions of the form
A@w ⊃ B@w′ are not valid propositions.

Typing schemes defining (1) are presented in Fig. 2 and discussed below. A first
difference with ILPnd is that the scheme EqEvid has been dropped. Although the
latter is required for normalisation of derivations to be a closed operation (as already
mentioned), our operational interpretation of terms does not rely on normalisation
of Natural Deduction proofs. For a computational interpretation of ILP based on
normalisation the reader may consult [AB07]. A further difference is that �I has
been refined into two schemes, namely �I and Fetch. The first introduces a modal
formula and states it to be true at the current world w. The second states that all
worlds accesible to w may also assume this formula to be true.

In this work mobile code is accompanied by a certificate. We speak of mobile
units rather than mobile code to emphasize this. Since mobile units are expressions
of modal types and validity variables v represent holes for values of modal types,
validity variables v may actually be seen as pairs 〈v•, v◦〉. Here v• is the mobile code
component and v◦ is the certificate component of the mobile unit3. As a consequence,
the modality axiom mVar of ILPnd now takes the following form, where judgement
Σ ` w ensures w is a world in Σ (it is defined by requiring w ∈ Σ):

Σ ` w
VarV

Σ;∆, v : A@w,∆′;Γ B v• : A@w | v◦

Substitution of code variables for terms in terms (M{v•/N}) and substitution of
certificate variables for certificates in certificates (t{v◦/s}) and in terms (M{v◦/s})
is defined as expected. We illustrate the definition of the first of these notions.

a{v•/N} =def a
v•{v•/N} =def N
u•{v•/N} =def u

•

(PQ){v•/N} =def P{v•/N}Q{v•/N}
(λa : A.P){v•/N} =def λa : A.P{v•/N}

(box t P){v•/N} =def box t P{v•/N}
(fetch[w]P){v•/N} =def fetch[w]P{v•/N}

(unpack P to 〈u•, u◦〉 in Q){v•/N} =def unpack P{v•/N} to 〈u•, u◦〉 in Q{v•/N}

3 The “◦” is reminiscent of a wrapping with which the interior “•” is protected. Hence our use of the
former for certificates and the latter for code.

Σ ` w
VarT

Σ;∆;Γ, a : A@w, Γ ′ B a : A@w | a

Σ;∆;Γ, a : A@w BM : B@w | s
⊃ I

Σ;∆;Γ B λa.M : A ⊃ B@w |λa : A.s

Σ;∆;Γ BM : A ⊃ B@w | s Σ;∆;Γ BN : A@w | t
⊃ E

Σ;∆;Γ BM N : B@w | s · t

Σ ` w
VarV

Σ;∆, v : A@w,∆′;Γ B v• : A@w | v◦

Σ;∆; ·BM : A@w | s
�I

Σ;∆;Γ B box s M : [s]A@w | !s

Σ;∆;Γ BM : [s]A@w′ | t Σ ` w
Fetch

Σ;∆;Γ B fetch[w′]M : [s]A@w | fetch(t)

Σ;∆;Γ BM : [r]A@w | s Σ;∆, v : A@w;Γ BN : C@w | t
�E

Σ;∆;Γ B unpack M to 〈v•, v◦〉 in N : C{v◦/r}@w | letc s be v : A in t

Fig. 2. Term assignment for ILPnd

The schemes ⊃ I and ⊃ E form abstractions and applications at the current
world w. Applications of these schemes are reflected in their corresponding certifi-
cates. Scheme �I states that if we have a typing derivation of M that does not
depend on local assumptions (although it may depend on assumptions universally
true) and s is a witness to this fact, then M is in fact executable at an arbitrary
location. Thus a mobile unit box sM is introduced. The Fetch scheme types the fetch
instruction. A term of the form fetch[w′]M at world w is typed by considering M
at world w′. We are in fact assuming that w sees w′ (or that w′ is accesible from
w) at run-time. Moreover, since the result of this instruction is to compute M at w′

and then return the result to w (cf. Sec. 4), worlds w′ and w are assumed interacce-
sible4. The unpack instruction is typed using the scheme �E. Suppose we are given
a term N that computes some value of type C at world w and depends on a validity
hypothesis v : A@w. Suppose we also have a term M that computes a mobile unit of
type [r]A@w at the same world w. Then unpack M to 〈v•, v◦〉 in N is well-typed at
w and computes a value of type C{v◦/r}. The certificate letc s be v : A in t encodes
the application of this scheme.

The following substitution principles reveal the true hypothetical nature of hy-
pothesis, both for truth and for validity. Both are proved by induction on the deriva-
tion of the second judgement.

Lemma 1 (Substitution principle for truth hypothesis). If Σ;∆;Γ1, Γ2 B
M : A@w | s and Σ;∆;Γ1, a : A@w, Γ2 B N : B@w′ | t are derivable, then so is
Σ;∆;Γ1, Γ2 BN{a/M} : B@w′ | t{a/s}.

4 We are considering a term assignment for a Natural Deduction presentation of a refinement of S4 (and
not S5; see Lem. 3). This reading, which suggests symmetry of the accesibility relation in a Kripke style
model (and hence S5), is part of the run-time interpretation of terms (cf. 7).

Lemma 2 (Substitution principle for validity hypothesis). If Σ;∆1, ∆2; ·B
M : A@w | s and Σ;∆1, v : A@w,∆2;Γ B N : B@w′ | t are derivable, then so is
Σ;∆1, ∆2;Γ BN{v◦/s}{v•/M} : B{v◦/s}@w | t{v◦/s}.

Regarding the relation of this type system for λCert
� with ILPnd we have the

following result, which may be verified by structural induction on the derivation
of the first judgement. Applications of the Fetch scheme become instances of the
scheme JJ with copies of identical judgements in ILPnd.

Lemma 3. If Σ;∆;Γ B A@w | s is derivable, then so is ∆′;Γ ′ B A′ | s′ in ILPnd,
where ∆′ and Γ ′ result from ∆ and Γ , respectively, by dropping all location qualifiers
and A′ and s′ result from A and s, respectively, by replacing all occurrences of v•

and v◦ by v and replacing all certificates of the form fetch(s) with s.

4 Operational Semantics

The operational semantics of λCert
� follows ideas from [VCHP04]. We introduce an

abstract machine over a network of nodes. Nodes are named using worlds. Computa-
tion takes place sequentially, at some designated world. We are, in effect, modelling
sequential programs that are aware of other worlds (other than their local host),
rather than concurrent computation. An abstract machine state is an expression
of the form W;w : [k,M] (top of Fig. 3). The world w indicates the node where
computation is currently taking place. M is the code that is being executed under
local context k (M is the current focus of computation). The context k is a stack of
terms with holes (written “◦”) that represent the layers of terms that are peeled out
in order to access the redex. This representation ensures a reduction relation that
always operates at the root of an expression and thus allows us to speak of an ab-
stract machine. An alternative presentation based on a small or big-step semantics
on terms, rather than machine states, is also possible. Continuing our explanation
of the context k, it is a sequence of terms with holes ending in either return w or
finish. return w indicates that once the term currently in focus is computed to a
value, this value is to be returned to world w. The type system ensures that this
value is, in effect, a mobile unit. If k takes the form finish, then the value of the
term currently in focus is the end result of the computation. Finally, k / l states
that the outermost peeled term layer is l. This latter expression may be of one of
the following forms: ◦ N indicates a pending argument, V ◦ a pending abstraction
(that V is an abstraction rather than a mobile unit is enforced by the type system)
and unpack ◦ to 〈v•, v◦〉 in N a pending unpack body.

Finally, W is called a network environment and encodes the current state of exe-
cution at the remaining nodes of the network. The domain of W is the set of worlds
to which it refers. Also, we sometimes refer to W; k as the network environment.

The initial machine state (over Σ = {w1, . . . , wn}) is W;w : [finish,M], where
W = {w1 : ε, . . . , wn : ε} and w and M are any world and term, respectively.
Similarly, the terminal machine state is one of the form W;w : [finish, V]. Note that
in a terminal state the focus of computation is a fully evaluated term (i.e. a value).

Run− time system syntax

N ::= W;w : [k,M]
W ::= {w1 : C1, . . . wn : Cn}
k ::= return w |finish | k / l
l ::= ◦ N |V ◦ |unpack ◦ to 〈v•, v◦〉 in N
C ::= ε |C: : k

Run− time system reduction schemes

(1) W;w : [k,MN] −→ W;w : [k / ◦ N,M]
(2) W;w : [k / ◦ N,V] −→ W;w : [k / V ◦, N]
(3) W;w : [k / (λa.M) ◦, V] −→ W;w : [k,M{a/V }]
(4) W;w : [k, unpack M to 〈v•, v◦〉 in N] −→ W;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M]
(5) W;w : [k / unpack ◦ to 〈v•, v◦〉 in N, box s M] −→ W;w : [k,N{v◦/s}{v•/M}]
(6) {w : C;ws};w : [k, fetch[w′]M] −→ {w : C: : k;ws};w′ : [return w,M]
(7) {w : C: : k;ws};w′ : [return w, V] −→ {w : C;ws};w : [k, V {w′/w}]

Fig. 3. Operational semantics of λCert
�

The operational semantics is presented by means of a small-step call-by-value
reduction relation whose definition is given by the reduction schemes depicted in
Fig. 3. The first scheme selects the leftmost term in an application for reduction and
pushes the pending part of the term (in this case the argument of the application)
into the context. Once a value is attained (which the type system, described below,
will ensure to be an abstraction) the pending argument is popped off the context for
reduction and the value V is pushed onto the context. Finally, when the argument
has been reduced to a value, the pending abstraction is popped off the context and
the beta reduct placed into focus for the next computation step. In the case that
reduction encounters an unpack term, the argument M is placed into focus whilst
the rest of the the term is pushed onto the context. When reduction of the argument
of an unpack computes a value, more precisely a mobile unit, the code and certificate
components are extracted from it and substituted in the body of the unpack term.
Note that the schemes presented upto this point all compute locally, we now address
those that operate non-locally. If computation’s focus is on a fetch instruction, then
the execution context k is pushed onto the network environment for the current
world w′ and control transfers to world w. Moreover, focus of computation is now
placed on the term M . Finally, the context of computation at w is set to return w
thus ensuring that, once a value is computed, control transfers back to the caller.
The latter is the rôle of the final reduction scheme.

5 Type Soundness

This section addresses both progress (well-typed, non-terminal machine states are
not stuck) and subject reduction (well-typed machine states are closed under the
reduction). Recall from above that a machine state N is terminal if it is of the
form W;w : [finish, V]. It is stuck if it is not terminal and there is no N′ such

C .Finish
Σ `W ; finish : A@w

Σ `W ; k : B@w Σ; · ; ·BN : A@w | s
C.Abs

Σ `W ; k / ◦ N : A ⊃ B@w

Σ `W ; k : B@w Σ; · ; ·BV : A ⊃ B@w | s
C.App

Σ `W ; k / V ◦ : A@w

Σ `W ; k : B{v◦/t}@w Σ; v : A; ·BN : B@w | s
C.Box

Σ `W ; k / unpack ◦ to 〈v•, v◦〉 in N : [t]A@w

Σ ` {w′ : C;ws} ; k : A@w′

C.Return
Σ ` {w′ : C: : k;ws} ; return w′ : A@w

Σ = {w1, . . . , wn} W = {w1 : C1, . . . wn : Cn}
Σ; · ; ·BM : A@wj | s Σ `W ; k : A@wj MState

Σ `W ;wj : [k,M]

Fig. 4. Typing schemes for machine states

that N −→ N′. Two new judgements are introduced, machine state judgements and
network environment judgements:

– Σ `W ;wj : [k,M]

– Σ `W ; k : A@wj

The first states that W;wj : [k,M] is a well-typed machine state under the set of
worlds Σ. The second states that the network environment together with the local
context is well-typed under the set of worlds Σ.

A machine state is well-typed (Fig. 4) if the following three requirements hold.
First W is a network environment with domain Σ. Second, M is closed, well-typed
code at world wj with certificate s that produces a value of type A, if at all. Finally,
the network environment should be well-typed. The type of W; finish has to be the
type of the term currently in focus and located at the same world as indicated
in the machine state. A network environment W; k / ◦ N is well-typed with type
A ⊃ B at world w under Σ, if the argument is well-typed with type A at w, and
the network environment W; k is well-typed with type B at the same world and
under the same set of worlds. Note that A ⊃ B is the type of the hole in the next
term layer in k, and shall be completed by applying the term in focus to N . This is
reminiscent of the left introduction scheme for implication in the Sequent Calculus
presentation of Intuitionistic Propositional Logic. This connection is explored in
detail in [Her94,CH00]. The C .App and C .Box schemes may be described in similar
terms. Regarding the judgement Σ ` {w′ : C: : k;ws} ; return w′ : A@w, in order to
verify that the type A at w of the value to be returned to world w′ is correct, the
context at w′ must be checked, at w′, to see if its outermost hole is indeed expecting
a value of this type.

We now state the promised results. Both are proved by structural induction on
the derivation of the judgement Σ ` N. Together these results imply soundess of

the reduction relation w.r.t. the type system: if a machine state is typable under Σ
and is not terminal, then a well-typed value shall be attained.

Proposition 1 (Progress). If Σ ` N is derivable and N is not terminal, then there
exists N′ such that N −→ N′.

Proposition 2 (Subject Reduction). If Σ ` N is derivable and N −→ N′, then
Σ ` N′ is derivable.

6 Strong normalization

We prove strong normalization (SN) of machine reduction by translating machine
states to terms of the simply typed lambda calculus with unit type (λ1,→). For
technical reasons (which we comment on shortly) we shall consider the following
modification of the machine reduction semantics of λCert

� obtained by replacing the
reduction scheme:

(2) W;w : [k / ◦ N, V]−→W;w : [k / V ◦, N]

by the following two new reduction schemes:

(2.1) W;w : [k / ◦ N, V] −→W;w : [k / V ◦, N], N is not a value
(2.2) W;w : [k / ◦ V, λa.M]−→W;w : [k,M{a/V }]

These schemes result from refining (2) by inspecting its behavior in any non-terminating
reduction sequence. If N happens to be a value, then each (2) step is followed by a
(3) step. The juxtaposition of these two steps gives precisely (2.2). The reduction
scheme (2.1) is just (2) when N is not a value. It is clear that every non-terminating
reduction sequence in the original formulation can be mimicked by a non-terminating
reduction sequence in the modified semantics in such a way that each (2) step

– either it is not followed by a (3) step and thus becomes a (2.1) step or
– it is followed by a (3) step and hence (2) followed by (3) become one (2.2) step.

Therefore, it suffices to prove SN of the modified system in order to deduce the same
property for our original formulation.

The proof of SN proceeds in two phases (Fig. 6). First we relate machine reduc-
tion with a notion of reduction that operates directly on lambda terms via a mapping
F (·). Then we relate the latter with reduction in λ1,→ via a mapping T (·). We con-
sider the first phase. The map F (·) flattens out the local context of a machine state
in order to produce a term of λCert

� and replaces all worlds by some distinguished
world “•” whose name is irrelevant. We write M for M{w1/•} . . . {wn/•}, the result
of replacing all worlds in M with •. This function is type preserving (assuming •
belongs to Σ), a result which is proved by induction on the pair 〈|W|, k〉, where |W|
is the size of W (i.e. the sum of the length of the context stacks of all worlds in its
domain).

Lemma 4. Let N be W;w : [k,M]. If Σ ` N is derivable and Σ ` •, then there
exist A and s such that Σ; · ; ·BF (N) : A@ • | s is derivable.

Machine reduction
(λCert

�) F(·)
// Lambda reduction

(λCert
�) T(·)

// Simply typed lambda calculus
(λ1,→)

F (W;w : [finish,M]) =def M
F (W;w : [k / ◦ N,M]) =def F (W;w : [k,M N])
F (W;w : [k / V ◦, N]) =def F (W;w : [k, V N])

F (W;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M]) =def F (W;w : [k, unpack M to 〈v•, v◦〉 in N])
F ({w : C: : k;ws};w′ : [return w,M]) =def F ({w : C;ws};w : [k,M])

T (P) =def P
T (A ⊃ B) =def T (A) ⊃ T (B)

T ([s]A) =def 1 ⊃ T (A)

T (a) =def a
T (v•) =def v unit

T (λa.M) =def λa.T (M)
T (M N) =def T (M) T (N)

T (box s M) =def λa.T (M), a fresh of type 1
T (unpack M to 〈v•, v◦〉 in N) =def (λv.T (N)) T (M)

T (fetch[w]M) =def (λa.a) T (M)

In order to relate machine reduction in λCert
� with reduction in λ1,→ we introduce

lambda reduction. These schemes are standard except for the last one which states
that fetch terms have no computational effect at the level of lambda terms. It should
be mentioned that strong lambda reduction reduction is considered (i.e. reduction
under all term constructors).

Definition 1 (Lambda reduction for λCert
�).

(λa.M)N −→β M{a/N}
unpack box sM to 〈v•, v◦〉 in N −→β�

N{v•/M}{v◦/s}
fetch[w]M −→ftch M

We can now establish that the flattening map is also reduction preserving:

Lemma 5. If N −→1,2.1,4,7 N′, then F (N) = F (N′).
If N −→2.2,3,5,6 N′, then F (N) −→β,β�,ftch F (N′).

The second part of the proof consists in relating lambda reduction in λCert
� with

reduction in λ1,→. For that we introduce a mapping T (·) (Fig. 6) that associates
types and terms in λCert

� with types and terms in λ1,→. Function types are translated
to function types and the modal type [s]A is translated to functional types whose
domain is the unit type 1 and whose codomain is the translation of A. Translations of
terms is straightforward given the translation on types; the case for fetch guarantees
that each−→ftch step is mapped to a non-empty step in λ1,→. T (·) over terms is both
type preserving and reduction preserving. The first of these is proved by induction
over the derivation of Σ;∆;Γ BM : A@w | s.

Lemma 6. If Σ;∆;ΓBM : A@w | s is derivable in λCert
� , then ∆′, Γ ′BT (M) : T (A)

is derivable in λ1,→, where

1. Γ ′ results from replacing each hypothesis a : A@w by a : T (A) and
2. ∆′ results from replacing each hypothesis v : A@w by v : 1 ⊃ T (A).

The second is proved by induction on M making use of the fact (Lem. 18) that T
commutes with substitution of (the translation of) local variables (i.e. T (M){a/T (N)} =
T (M{a/N})). T does not commute with substitution of (the translation of) validity
variables (i.e. T (M){v/T (N)} 6= T (M{v/N}); take M = v•). However, the follow-
ing (Lem. 19) does hold and suffices for our purposes: T (M){v/λa.T (N)} −→∗β
T (M{v•/N}{v◦s/)}. The arrow −→∗β denotes the reflexive, transitive closure of
−→β while −→+

β (below) denotes its transitive closure.

Lemma 7. If M −→β,β�,ftch N , then T (M) −→+
β T (N).

Our desired result may be proved by contradiction as follows. Let us assume,
for the time being, that −→1,2.1,4,7 reduction is SN. Suppose, also, that there is an
infinite reduction sequence starting from a machine state N1. From our assumption
this sequence must have an infinite number of interspersed −→2.2,3,5 reduction steps:

N1 −→∗1,2.1,4,7 N2 −→2.2,3,5 N3 −→∗1,2.1,4,7 N4 −→2.2,3,5 N5 −→∗1,2.1,4,7 N6 −→2.2,3,5 . . .

Then (Lem. 5) we have the following lambda reduction sequence over typable
terms (Lem. 4):

F (N1) = F (N2) −→β,β�,ftch F (N3) = F (N4) −→β,β�,ftch F (N5) =
F (N6) −→β,β�,ftch . . .

Finally, we arrive at the following infinite reduction sequence (Lem. 7) of typable
terms (Lem. 6) in λ1,→, thus contradicting SN of λ1,→:

T (F (N1)) = T (F (N2)) −→+
β T (F (N3)) = T (F (N4)) −→+

β T (F (N5)) =

T (F (N6)) −→+
β . . .

In order to complete our proof we now address our claim, namely that −→1,2.1,4,7

reduction is SN. It is the proof of this result that has motivated the modified reduc-
tion semantics presented at the beginning of this section. First a simple yet useful
result for proving SN of combinations of binary relations that we have implicitly
made use of above.

Lemma 8. Let −→1 and −→2 be binary relations over some set X. Suppose

1. −→1 is SN and
2. M is a mapping from X to some well-founded set such that

(a) x −→1 y implies M(x) =M(y)
(b) x −→2 y implies M(x) >M(y)

Then −→1 ∪ −→2 is SN.

Before we use this lemma for our proof of SN of −→1,2.1,4,7, some definitions are
required. The size of a term M , written |M |, is defined as the number of variables
and constructors in M :

|a| =def 1
|v•| =def 1

|box sM | =def |M |+ 1
|λa.M | =def |M |+ 1
|M N | =def |M |+ |N |+ 1

|unpack M to 〈v•, v◦〉 in N | =def |M |+ |N |+ 1
|fetch[w]M | =def |M |+ 1

Note that |M{w′/w}| = |M |. The size of a context k, written |k|, is defined by
taking the sum of the sizes of the terms with holes, where each hole counts as 1:

|return w| =def 1
|finish| =def 1
|k / l| =def |k|+ |l|

| ◦ N | =def |N |+ 1
|V ◦ | =def |V |+ 1

|unpack ◦ to 〈v•, v◦〉 in N | =def |N |+ 1

We will write |k,M | to abbreviate |k|+ |M |.

Lemma 9. −→1,2.1,4,7 reduction is SN.

Proof. First we prove SN of schemes (1) and (4). Then we conclude by resorting to
Lem. 8, introducing a measure M2 such that:

1. N −→1,4 N′ implies M2(N) =M2(N′) and
2. N −→2.1,7 N′ implies M2(N) >M2(N′).

SN of schemes (1) and (4) follows from noting that the following measure M1

of machine states over pairs of natural numbers (ordered lexicographically) strictly
decreases when schemes (1) and (4) are applied5:

M1(W;w : [k,M]) =def 〈|W|, |M |〉

We are left to verify that the following measure M2 enjoys the required properties
stated above:

M2(W;w : [k,M]) =def 〈|W|, |k,M | − len(k)−m(M)〉

where len(k) is the length of k and m is the following mapping from closed terms
to positive integers:

m(V) =def 0
m(M N) =def 1 +m(M)

m(unpack M to 〈v•, v◦〉 in N) =def 1 +m(M)
m(fetch[w]M) =def 1

This measure descreases strictly for both (2.1) and (7), whereas it yields equal
numbers for (1) and (4).

5 It also decreases when (7) is applied. However, it does not decrease when (2) is applied.

– Case (1)

M2(W;w : [k,M N]) = 〈|W|, |k,M N | − len(k)−m(M N)〉
= 〈|W|, |k,M N | − len(k)− 1−m(M)〉
= 〈|W|, |k / ◦ N,M | − len(k)− 1−m(M)〉
=M2(W;w : [k / ◦ N,M])

– Case (2.1), recall from above that N is not a value. Therefore, it is either an
application, an unpack term or a fetch term. Note that for each of these m(N) >
0. Therefore, we reason as follows:

M2(W;w : [k / ◦ N, V]) = 〈|W|, |k / ◦ N, V | − len(k)− 1−m(V)〉
= 〈|W|, |k,N, V |+ 1− len(k)− 1〉
> 〈|W|, |k, V,N |+ 1− len(k)− 1−m(N)〉
= 〈|W|, |k / V ◦, N | − len(k)− 1−m(N)〉
=M2(W;w : [k / V ◦, N])

– Case (4)

M2(W;w : [k, unpack M to 〈v•, v◦〉 in N])
= 〈|W|, |k, unpack M to 〈v•, v◦〉 in N | − len(k)−m(unpack M to 〈v•, v◦〉 in N)〉
= 〈|W|, |k, unpack M to 〈v•, v◦〉 in N | − len(k)− 1−m(M)〉
= 〈|W|, |k / unpack ◦ to 〈v•, v◦〉 in N,M | − len(k)− 1−m(M)〉
=M2(W;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M])

– Case (7). Let n = |{w : C: : k;ws}|.

M2({w : C: : k;ws};w′ : [return w, V])
= 〈n, |return w|+ |V | − len(return w)−m(V)〉
= 〈n, 1 + |V | − 1−m(V)〉
= 〈n, |V |〉
> 〈n− 1, |k, V | − len(k)|〉
= 〈n− 1, |k, V | − len(k)−m(V)|〉
= 〈n− 1, |k, V {w′/w}| − len(k)−m(V {w′/w})|〉
=M2({w : C;ws};w : [k, V])

We can finally state our desired result, whose proof we have presented above.

Proposition 3. −→ is SN.

7 Related Work

There are many foundational calculi for concurrent and distributed programming.
Since the focus of this work is on logically motivated such calculi we comment on
related work from this viewpoint. To the best of our knowledge, the extant litera-
ture does not address calculi for both mobility/concurrency and code certification
in a unified theory. Regarding mobility, however, a number of ideas have been put

forward. The closest to this article is the work of Moody [Moo04], that of Mur-
phy et al [VCHP04,VCH05,VCH07] and that of Jia and Walker [JW04]. Moody
suggests an operational reading of proofs in an intuitionistic fragment of S4 also
based on a judgemental analysis of this logic [DP01a]. It takes a step further in
terms of obtaining a practical programming language for mobility in that it ad-
dresses effectful computation (references and reference update). Also, the diamond
connective is considered. Worlds are deliberately left implicit. The author argues
this “encourages the programmer to work locally”. Murphy et al also introduce a
mobility inspired operational interpretation of a Natural Deduction presentation of
propositional modal logic, although S5 is considered in there work (both intuitionis-
tic [VCHP04] and classical [VCH05]). They also introduce explicit reference to worlds
in their programming model. Operational semantics in terms of abstract machines
is considered [VCHP04,VCH05] and also a big-step semantics on terms [Mur08].
Both necesity and possibility modalities are considered. Finally, they explore a type
preserving compiler for a prototype language for client/server applications based on
their programming model [VCH07]. Jia and Walker [JW04] also present a term as-
signment for a hybrid modal logic close to S5. They argue that the hybrid approach
gives the programmer a tighter control over code distribution. Finally, Borghuis
and Feij [BF00] introduce a calculus of stationary services and mobile values whose
type system is based on modal logic. Mobility however may not be internalised as
a proposition. For example, �o(A ⊃ B) is the type of a service located at o that
computes values of B given one of type A. None of the cited works incorporate the
notion of certificate in their systems.

8 Conclusion

We present a Curry-de Bruijn-Howard analysis of an intuitionistic fragment (ILP)
of the Logic of Proofs LP. We start from a Natural Deduction presentation for
ILP and associate propositions and proofs of this system to types and terms of a
mobile calculus λCert

� . The modal type constructor [s]A is interpreted as the type
of mobile units, expressions composed of a code and certificate component. λCert

�

has thus language constructs for both code and certificates. Its type system is a
unified theory in which both code and certificate construction are verified. Indeed,
when mobile units are constructed from the code of other mobile units, the type
system verifies not only that the former is mobile in nature (i.e. depends on no local
resources) but also that the certificate for this new mobile unit is correctly assembled
from the certificates of the latter.

Although we deal exclusively with the necessity modality, we hasten to mention
that it would be quite straightfoward to add inference schemes for a possibility
modality, in the line of related literature (cf. Sec. 7). A term of type ♦A is generally
interpeted to denote a value of a term at a remote location. However, a provability
interpretation of this connective in an intuitionistic fragment of LP has first to be
investigated. Since LP is based on classical logic ♦ is ignored altogether. However,
in an intuitionistic setting the interpretation of ♦ in possible world semantics is not
as uncontroversial as that of the necessity modality [Sim94, Ch.3]. An explicit logic

of provability based on (classical) S5 has been reported [AED99] and could be an
appropriate starting point. Nevertheless one could explore this additional modality
from a purely programming languages perspective.

Although λCert
� is meant to be concept-of-proof language, it clearly does not

provide the features needed to build extensive examples. Two basic additions that
should be considered are references (and computation with effects) and recursion.

References

[AB04] Sergei Artëmov and Leo Beklemishev. Provability logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 13, pages 229–403. Kluwer, 2nd edition, 2004.

[AB07] Sergei N. Artëmov and Eduardo Bonelli. The intensional lambda calculus. In Sergei N. Artëmov
and Anil Nerode, editors, LFCS, volume 4514 of Lecture Notes in Computer Science, pages 12–
25. Springer, 2007.

[AED99] S. Artemov, E.Kazakov, and D.Shapiro. On logic of knowledge with justifications. Technical
Report CFIS 99-12, Cornell University, 1999.

[Art94] Sergei N. Artëmov. Logic of proofs. Ann. Pure Appl. Logic, 67(1-3):29–59, 1994.

[Art95] Sergei Artemov. Operational modal logic. Technical Report MSI 95-29, Cornell University,
1995.

[Art01] Sergei Artemov. Unified semantics of modality and λ-terms via proof polynomials. Algebras,
Diagrams and Decisions in Language, Logic and Computation, pages 89–118, 2001.

[AtC06] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, F. Wolter, and J. van Benthem,
editors, Handbook of Modal Logics. Elsevier, 2006.

[BF00] Tijn Borghuis and Loe M. G. Feijs. A constructive logic for services and information flow in
computer networks. Comput. J., 43(4):274–289, 2000.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP, pages 233–243,
2000.

[DP01a] Rowan Davies and Frank Pfenning. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540, 2001.

[DP01b] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM,
48(3):555–604, 2001.

[Her94] Hugo Herbelin. A lambda-calculus structure isomorphic to gentzen-style sequent calculus struc-
ture. In Leszek Pacholski and Jerzy Tiuryn, editors, CSL, volume 933 of Lecture Notes in
Computer Science, pages 61–75. Springer, 1994.

[JW04] Limin Jia and David Walker. Modal proofs as distributed programs (extended abstract). In
David A. Schmidt, editor, ESOP, volume 2986 of Lecture Notes in Computer Science, pages
219–233. Springer, 2004.

[Moo04] Jonathan Moody. Logical mobility and locality types. In Sandro Etalle, editor, LOPSTR,
volume 3573 of Lecture Notes in Computer Science, pages 69–84. Springer, 2004.

[Mur08] Tom Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon, January 2008.
(draft).

[Sim94] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh, 1994.

[TS97] Walid Taha and Tim Sheard. Multi-stage programming. In ICFP, page 321, 1997.

[VCH05] Tom Murphy VII, Karl Crary, and Robert Harper. Distributed control flow with classical modal
logic. In C.-H. Luke Ong, editor, CSL, volume 3634 of Lecture Notes in Computer Science,
pages 51–69. Springer, 2005.

[VCH07] Tom Murphy VII, Karl Crary, and Robert Harper. Type-safe distributed programming with
ml5. In Gilles Barthe and Cédric Fournet, editors, TGC, volume 4912 of Lecture Notes in
Computer Science, pages 108–123. Springer, 2007.

[VCHP04] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal lambda
calculus for distributed computing. In LICS, pages 286–295. IEEE Computer Society, 2004.

[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal types as staging spec-
ifications for run-time code generation. ACM Comput. Surv., 30(3es):8, 1998.

A Proofs - Safety

In order to prove Subject Reduction we need the following lemma whose proof is by
induction on the derivation of Σ;∆;Γ BM : A@w′′ | s.

Lemma 10 (Substitution principle for worlds). If Σ;∆;Γ BM : A@w′′ | s and
Σ ` w′,then Σ;∆{w/w′};Γ{w/w′}BM{w/w′} : A@w′{w/w′} | s.

Proof. By induction over the derivation of Σ;∆;Γ BM : A@w′′ | s

– Case 1: M = a. Suppose that:
(1.1) Σ;∆;Γ B a : A@w′′ | s

From (1.1) by VarT, s = a and Γ = Γ1, a : A@w′′, Γ2 for some Γ1 and Γ2. There-
fore, Γ{w/w′} = Γ1{w/w′}, a : A@w′′{w/w′}, Γ2{w/w′}. Moreover, a{w/w′} =
a. By rule VarT,

(1.2) Σ;∆{w/w′};Γ{w/w′}B a{w/w′} : A@w′′{w/w′} | s
– Case 2: M = v•. Suppose that:
(2.1) Σ;∆;Γ B v• : A@w′′ | s

From (2.1) and by VarV, s = v◦ y ∆ = ∆1, v : A@w′′, ∆2 for some ∆1 and ∆2.
Then,∆{w/w′} = ∆1{w/w′}, v : A@w′′{w/w′}, ∆2{w/w′}. Moreover, v•{w/w′} =
v•. By rule VarV,

(2.2) Σ;∆{w/w′};Γ{w/w′}B v•{w/w′} : A@w′′{w/w′} | s
– Case 3: M = PQ. Suppose that:
(3.1) Σ;∆;Γ B PQ : A@w′′ | s

From (3.1) and by ⊃ E, ∃t1, t2, B, such that s = t1 · t2 and,
(3.2) Σ;∆;Γ B P : B ⊃ A@w′′ | t1
(3.3) Σ;∆;Γ BQ : B@w′′ | t2

From (3.2) y by IH
(3.4) Σ;∆{w/w′};Γ{w/w′}B P{w/w′} : (B ⊃ A)@w′′{w/w′} | t1

From (3.3) and by IH
(3.5) Σ;∆{w/w′};Γ{w/w′}BQ{w/w′} : B@w′′{w/w′} | t2

From (3.4) and (3.5) by ⊃ E
(3.6) Σ;∆{w/w′};Γ{w/w′}B P{w/w′}Q{w/w′} : A@w′′{w/w′} | s

From (3.6) and the definition of substitution:
(3.7) Σ;∆{w/w′};Γ{w/w′}B (PQ){w/w′} : A@w′′{w/w′} | s
– Case 4: M = λa.P . Suppose that:
(4.1) Σ;∆;Γ B λa.P : A@w′′ | s

From (4.1) and by ⊃ I, ∃B,B′, t such that s = λa : B.t, A = B ⊃ B′ and,
(4.2) Σ;∆;Γ, a : B@w′′ B P : B′@w′′ | t

From (4.2) and by IH:
(4.3) Σ;∆{w/w′}; (Γ, a : B@w′′){w/w′}B P{w/w′} : B′@w′′{w/w′} | t

Since (Γ, a : B@w′′){w/w′} = Γ{w/w′}, a : B@w′′{w/w′}, from (4.3) by rule
⊃ I

(4.4) Σ;∆{w/w′};Γ{w/w′}B λa.P{w/w′} : A@w′′{w/w′} | s
From (4.4) and the definition of substitution:

(4.5) Σ;∆{w/w′};Γ{w/w′}B (λa.P){w/w′} : A@w′′{w/w′} | s
– Case 5: M = box t P . Suppose that:

(5.1) Σ;∆;Γ B box t P : A@w′′ | s
From (5.1) and by �I ∃B such that A = [t]B, s =!t and

(5.2) Σ;∆; ·B P : B@w′′ | t
From (5.2) and by IH

(5.3) Σ;∆{w/w′}; ·B P{w/w′} : B@w′′{w/w′} | t
From (5.3) by rule �I

(5.4) Σ;∆{w/w′};Γ{w/w′}B box t P{w/w′} : [t]B@w′′{w/w′} | !t
From (5.4) and the definition of substitution:

(5.5) Σ;∆{w/w′};Γ{w/w′}B (box t P){w/w′} : [t]B@w′′{w/w′} | !t
– Case 6: M = fetch[wf]P . Suppose that:
(6.1) Σ;∆;Γ B fetch[wf]P : A@w′′ | s

From (6.1) by Fetch ∃B, t, r such that A = [t]B, s = fetch(r) and
(6.2) Σ;∆;Γ B P : [t]B@wf | r

From (6.2) by IH
(6.3) Σ;∆{w/w′};Γ{w/w′}B P{w/w′} : [t]B@wf{w/w′} | r

From (6.3) by rule Fetch
(6.4) Σ;∆{w/w′};Γ{w/w′}Bfetch[wf{w/w′}]P{w/w′} : [t]B@w′′{w/w′} | fetch(r)

From (6.4) and the definition of substitution
(6.5) Σ;∆{w/w′};Γ{w/w′}B (fetch[wf]P){w/w′} : A@w′′{w/w′} | s
– Case 7: M = unpack P to 〈v•, v◦〉 in Q. Suppose that:
(7.1) Σ;∆;Γ B unpack P to 〈v•, v◦〉 in Q : B@w′′ | s

From (7.1) by rule �E, ∃C, t1, t2, r such that s = letc t1 be v : A in t2, B =
C{v◦/r} and,

(7.2) Σ;∆;Γ B P : [r]A@w′′ | t1
(7.3) Σ;∆, v : A@w′′;Γ BQ : C@w′′ | t2

From (7.2) by IH
(7.4) Σ;∆{w/w′};Γ{w/w′}B P{w/w′} : [r]A@w′′{w/w′} | t1
(7.5) Σ; (∆, v : A@w′′){w/w′};Γ{w/w′}BQ{w/w′} : C@w′′{w/w′} | t2

Since (∆, v : A@w′′){w/w′} = ∆{w/w′}, v : A@w′′{w/w′}, from (7.4) and (7.5)
by rule �E

(7.6) Σ;∆{w/w′};Γ{w/w′}Bunpack P{w/w′} to 〈v•, v◦〉 in Q{w/w′} : B@w′′{w/w′} | letc t1 be v :
A in t2

From (7.6) and the definition of substitution:
(7.7) Σ;∆{w/w′};Γ{w/w′}B(unpack P to 〈v•, v◦〉 in Q){w/w′} : B@w′′{w/w′} | s

The proof of Subject Reduction follows:

Proof. By case analysis on the reduction step applied.

– Case 1:
• N = W ;w : [k,MN]
• N′ = W ;w : [k / ◦N,M]

Suppose Σ `W ;w : [k,MN]. Then by MState, there exist B, s′ such that:
(1.1) Σ; · ; ·BMN : B@w | s′
(1.2) Σ `W ; k : B@w

From (1.1) and by ⊃ E, there exist s, t, A such that s′ = s.t and

(1.3) Σ; · ; ·BM : A ⊃ B@w | s
(1.4) Σ; · ; ·BN : A@w | t

From (1.2) and (1.4), by C .Abs :
(1.5) Σ `W ; k / ◦N : A ⊃ B@w

From (1.3) and (1.5) by MState

Σ `W ;w : [k / ◦N,M]

– Case 2:
• N = W ;w : [k / ◦N, V]
• N′ = W ;w : [k / V ◦, N]

Suppose Σ `W ;w : [k / ◦N, V]. Then by MState there exist A′, s′ such that:
(2.1) Σ; · ; ·BV : A′@w | s′
(2.2) Σ `W ; k / ◦N : A′@w

From (2.2) and C .Abs there exist A,B, s such that A′ = A ⊃ B and, moreover,
(2.3) Σ `W ; k : B@w
(2.4) Σ; · ; ·BN : A@w | s

From (2.1) and (2.3) by C .App:
(2.5) Σ `W ; k / ◦V : A@w

From (2.4) and (2.5) by MState

Σ `W ;w : [k / ◦V,N]

– Case 3:
• N = W ;w : [k / (λa.M)◦, V]
• N′ = W ;w : [k,M{a/V }]

Suppose Σ ` W ;w : [k / (λa.M)◦, V]. Then by MState there exist A, s′ such
that:

(3.1) Σ; · ; ·BV : A@w | s′
(3.2) Σ `W ; k / (λa.M)◦ : A@w

From (3.2) and C .App there exist B, t such that:
(3.3) Σ `W ; k : B@w
(3.4) Σ; · ; ·B(λa.M) : A ⊃ B@w | t

From (3.4) and by ⊃ I there exists s such that t = λa : A.s and, moreover,
(3.5) Σ; · ; a : A@w BM : B@w | s

From (3.1), (3.5) and the substitution principle for truth hypothesis:
(3.6) Σ; · ; ·BM{a/V } : B@w | s{a/s′}

From (3.3) and (3.6) by MState

Σ `W ;w : [k,M{a/V }]

– Case 4:
• N = W ;w : [k, unpack M to 〈v•, v◦〉 in N]
• N′ = W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M]

Suppose Σ `W ;w : [k, unpack M to 〈v•, v◦〉 in N]. Then by MState there exists
B, s′ such that:

(4.1) Σ; · ; ·Bunpack M to 〈v•, v◦〉 in N : B@w | s′
(4.2) Σ `W ; k : B@w

From (4.1) and �E there exist B′, r, s, t such that s′ = letc s be v : A in t and
B = B′{v◦/r} and

(4.3) Σ; · ; ·BM : [r]A@w | s
(4.4) Σ; v : A; ·BN : B′@w | t

From (4.2), (4.4) and by C .Box :
(4.5) Σ `W ; k / unpack ◦ to 〈v•, v◦〉 in N : [r]A@w

From (4.3) and (4.5) by MState
(4.6) Σ `W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M]
– Case 5:
• N = W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N, box sM]
• N′ = W ;w : [k,N{v◦/s}{v•/M}]

Suppose Σ ` W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N, box sM]. Then by MState
there exist A′, s′ such that:

(5.1) Σ; · ; ·Bbox sM : A′@w | s′
(5.2) Σ `W ; k / unpack ◦ to 〈v•, v◦〉 in N : A′@w

From (5.1) and by �I there exist s, A such that A′ = [s]A and s′ =!s:
(5.3) Σ; · ; ·Bbox sM : [s]A@w | !s

From (5.2) and by C .Box there exist B, t such that:
(5.4) Σ `W ; k : B@w
(5.5) Σ; v : A; ·BN : B{v◦/s}@w | t

From (5.3) and by �I:
(5.6) Σ; · ; ·BM : A@ω | s

From (5.5) and (5.6) by the substitution principle por validity hypothesis:
(5.7) Σ; · ; ·BN{v◦/s}{v•/M} : {v◦/s}{v◦/s}@w | t{v◦/s}.

Since B{v◦/s}{v◦/s} = B, from (5.4) and (5.6) by MState we deduce:

Σ `W ;w : [k,N{v◦/s}{v•/M}]

– Case 6:
• N = {w : C;ws} ;w : [k, fetch[w′]M]
• N′ = {w : C: : k; ws} ;w′ : [return w,M]

Suppose Σ ` {w : C;ws} ;w : [k, fetch[w′]M]. Then by MState there exist A′, s′

such that:
(6.1) Σ ` {w : C;ws} ; k : A′@w
(6.2) Σ; · ; ·Bfetch[w′]M : A′@w | s′

From (6.2) and by Fetch there exist s, A such that A′ = [s]A and moreover:
(6.3) Σ; · ; ·BM : [s]A@w′ | s′

From (6.1) and by C .Return:
(6.4) Σ ` {w : C: : k; ws} ; return w : [s]A@w′

From (6.3) and (6.4) by MState

Σ ` {w : C: : k; ws} ;w′ : [return w,M]

– Case 7:
• N = {w : C: : k; ws} ;w′ : [return w, V]
• N′ = {w : C; ws} ;w : [k, V {w′/w}]

Suppose Σ ` {w : C: : k; ws} ;w′ : [return w, V]. Then by MState, there exist
A′, s′ such that:

(7.1) Σ ` {w : C: : k; ws} ; return w : A′@w′

(7.2) Σ; · ; ·BV : A′@w′ | s′
From (7.1) and by C .Return:

(7.3) Σ ` {w : C; ws} ; k : A′@w
From (7.2) and by the substitution principle for worlds:

(7.4) Σ; · ; ·BV {w′/w} : A′@w | s′
From (7.3) and (7.4) by MState

Σ ` {w : C; ws} ;w : [k, V {w′/w}]

The proof of Progress follows.

Proof. By cases on k and M .
If Σ ` N, then there exist A, s such that:

(a) Σ; ·; ·BM : A@w | s
(b) Σ `W ; k : A@w

From (a) M 6= a, v• since Γ,∆ are empty. Thus we consider the remaining possibil-
ities for M and k.

– Case 1: M is a value V = box t P or V = λx.P .
• Subcase 1.1: k = finish. N is terminal and hence the result holds.
• Subcase 1.2: k = k′ /◦ N . By the machine reduction scheme (2), N→W ;w :

[k′ / V ◦, N].
• Subcase 1.3: k = k′ /V ′ ◦. By the typing scheme C .App there exist B, t′ such

that Σ; ·; ·BV ′ : A ⊃ B@w | t′. Therefore, from ⊃ I, V ′ = λb.N . Finally, from
the reduction scheme (3), N→W ;w : [k′, N{a/V }].
• Subcase 1.4: k = k′ /unpack ◦ to 〈v•, v◦〉 in N . By the typing scheme C .Box

there exist t′, A′ such that A = [t′]A′. Therefore V = box t P . Finally, by the
reduction scheme (5), N→W ;w : [k′, N{v◦/s}{v•/M}].
• Subcase 1.5: k = return w′. By the typing scheme C .Return W = {w′ : C ::
k′;ws}. Therefore, from the reduction scheme (7) N → {w′ : C;ws} ;w′ :
[k′, V {w′/w}].

– Case 2: M = PQ. By the reduction scheme (1), N→W ;w : [k / ◦ Q,P].
– Case 3: M = unpack P to 〈v•, v◦〉 in Q. By the reduction schem (5), N→W ;w :

[k / unpack ◦ to 〈v•, v◦〉 in Q, P].
– Case 4: M = fetch[w′]P . By the reduction scheme (6), N→ {w : C :: k;ws} ;w′ :

[return w,P].

B Proofs - Strong Normalization

B.1 From Machine Reduction in λCert
� to Lambda Reduction in λCert

�

Lemma 11. If Σ;∆;Γ BM : A@w | s and Σ ` •, then Σ;∆;Γ BM : A@ • | s.

Proof. Corollary of the substitution principle for worlds.

The following three results relate overlining and substitution. The last two are
required in order to prove that overlining preserves reduction (see below) while the
first one is required in lemma 16. The first states that overlining cancels any world
substitution. The second that overlining commutes with term variable substitution.
Finally, overlining also commutes with mobile code/certificate substitution. All re-
sults are proved by straightforward induction on M .

Lemma 12. M{w′/w} = M .

Lemma 13. M{a/N} = M{a/N}.

Lemma 14. N{v•/M}{v◦/s} = N{v•/M}{v◦/s}.

Overlining also preserves lambda reduction.

Lemma 15. If M −→β,β�,ftch M
′, then M −→β,β�,ftch M

′.

Proof. By induction on M . The base cases are trivial since no reduction steps may
originate from a or v•. We illustrate the cases where reduction takes place at the
root of M .

– Case −→β. Suppose (λa.M)N −→β M{a/N}. We reason as follows:

(λa.M)N = λa.M N
= (λa.M)N
−→β M{a/N}

= M{a/N} (Lemma 13)

– Case −→β�
. Suppose unpack box sM to 〈v•, v◦〉 in N −→β�

N{v•/M}{v◦/s}.
We reason as follows:

unpack box sM to 〈v•, v◦〉 in N
= unpack box sM to 〈v•, v◦〉 in N
= unpack box sM to 〈v•, v◦〉 in N
−→β N{v•/M}{v◦/s}

= N{v•/M}{v◦/s} (Lemma 14)

– Case −→ftch. Suppose fetch[w]M −→ftcs M . We reason as follows:

fetch[w]M = fetch[•]M −→β M

Lemma 16. Let N be W ;w : [k,M]. If Σ ` N and M = M ′, then F (W ;w :
[k,M]) = F (W ;w : [k,M ′]).

In particular, since by lemma 12 M{w′/w} = M , F (W ;w : [k,M{w′/w}]) =
F (W ;w : [k,M]).

Proof. By induction over 〈|W|, k〉.

– Case 〈|W|, finish〉. N = W ;w : [finish,M].
F (W ;w : [finish,M]) = M = M ′ = F (W ;w : [finish,M ′]).

– Case 〈|W|, k / ◦N〉. N = W ;w : [k / ◦N,M].
F (W ;w : [k / ◦N,M]) = F (W ;w : [k,M N]). If Σ ` W ;w : [k / ◦N,M], then
by MState there exists C, s such that:

(1) Σ; ·; ·BM : C@w | s
(2) Σ `W ; k / ◦N : C@w

From (2) by rule C .Abs there exists A,B, t such that C = A ⊃ B and
(3) Σ; ·; ·BN : A@w | t
(4) Σ `W ; k : B@w
From (1) and (3) by ⊃ E:

(5) Σ; ·; ·BM N : B@w | s · t
From (4) and (5) by MState, Σ `W ;w : [k,M N]. Since M N = M N = M ′N =
M ′N , then by IH, F (W ;w : [k,M N]) = F (W ;w : [k,M ′N]) = F (W ;w :
[k / ◦N,M ′])

– Case 〈|W|, k / V ◦〉. N = W ;w : [k / V ◦, N].
F (W ;w : [k / V ◦, N]) = F (W ;w : [k, V N]). If Σ `W ;w : [k / V ◦, N], then by
MState there exists A and s such that:

(1) Σ; ·; ·BN : A@w | s
(2) Σ `W ; k / V ◦ : A@w
From (2) by C .App there exist B and t such that:

(3) Σ; · ; ·BV : A ⊃ B@w | t
(4) Σ `W ; k : B@w
From (1) and (3) by ⊃ E:

(5) Σ; · ; ·BV N : B@w | s · t
From (4) and (5) by MState, Σ ` W ;w : [k, V N]. Since V N = V N = V N ′ =
V N ′. Then, by IH, F (W ;w : [k, V N]) = F (W ;w : [k, V N ′]) = F (W ;w :
[k / V ◦, N ′])

– Case 〈|W|, k/unpack ◦ to 〈v•, v◦〉 in M〉. N = W ;w : [k/unpack ◦ to 〈v•, v◦〉 in N,M].
F (W ;w : [k/unpack ◦ to 〈v•, v◦〉 in N,M]) = F (W ;w : [k, unpack M to 〈v•, v◦〉 in N]).
If Σ ` W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M], then by MState there exists
D, s such that:

(1) Σ; ·; ·BM : D@w | s
(2) Σ `W ; k / unpack ◦ to 〈v•, v◦〉 in N : D@w

From (2) by C .Box there exists A,C, t, r such D = [r]A and
(3) Σ; v : A; ·BN : C@w | t
(4) Σ `W ; k : C{v◦/r}@w
From (1) and (3) by �E:

(5) Σ;∆;Γ B unpack M to 〈v•, v◦〉 in N : C{v◦/r}@w | letc s be v : A in t
From (4) and (5) by MState, Σ ` W ;w : [k, unpack M to 〈v•, v◦〉 in N]. Since
unpack M to 〈v•, v◦〉 in N = unpack M to 〈v•, v◦〉 in N = unpack M ′ to 〈v•, v◦〉 in N =
unpack M to 〈v•, v◦〉 in N ′, then by IH, F (W ;w : [k, unpack M to 〈v•, v◦〉 in N]) =
F (W ;w : [k, unpack M ′ to 〈v•, v◦〉 in N]) = F (W ;w : [k/unpack ◦ to 〈v•, v◦〉 in N,M ′])

– Case 〈|W|, return w〉. Since k = return w and N is typable, it follows that
W = {w : C: : k1;ws} for some C, k1, ws. Therefore, N = {w : C: : k1;ws} ;w′ :
[return w,M].
F ({w : C: : k1;ws} ;w′ : [return w,M]) = F ({w : C;ws} ;w : [k1,M]).
Since Σ ` {w : C: : k1;ws} ;w′ : [return w,M], by MState there exist A and s
such that:

(1) Σ; ·; ·BM : A@w′ | s
(2) Σ ` {w : C: : k1;ws} ; return w : A@w′

From (2) by C .Return:
(3) Σ ` {w : C;ws} ; k1 : A@w
From (1) and by the world substitution lemma:

(4) Σ; ·; ·BM{w′/w} : A@w | s
From (3) and (4) by MState Σ ` {w : C;ws} ;w : [k1,M{w′/w}] Since |{w :
C;ws}| < |{w : C: : k1;ws}| and M = M{w′/w} = M ′ then, by HI, F ({w :
C;ws} ;w : [k1,M]) = F ({w : C;ws} ;w : [k1,M{w′/w}]) = F ({w : C;ws} ;w :
[k1,M

′]) = F ({w : C: : k1;ws} ;w′ : [return w,M ′]).

We now have the necessary results to prove lemma 4.

Proof. By induction over 〈|W|, k〉.

– Case 〈|W|, finish〉. N = W ;w : [finish,M].
F (W ;w : [finish,M]) = M . If Σ ` W ;w : [finish,M], then by MState there
exists A and s such that Σ; ·; ·BM : A@w | s is derivable. Then, by Lemma 11
Σ; ·; ·BM : A@ • | s

– Case 〈|W|, k / ◦N〉. N = W ;w : [k / ◦N,M].
F (W ;w : [k / ◦N,M]) = F (W ;w : [k,M N]). If Σ ` W ;w : [k / ◦N,M], then
by MState there exists C, s such that:

(1) Σ; ·; ·BM : C@w | s
(2) Σ `W ; k / ◦N : C@w

From (2) by rule C .Abs there exists A,B, t such that C = A ⊃ B and
(3) Σ; ·; ·BN : A@w | t
(4) Σ `W ; k : B@w
From (1) and (3) by ⊃ E:

(5) Σ; ·; ·BM N : B@w | s · t
From (4) and (5) by MState, Σ ` W ;w : [k,M N]. Then by IH, there exists
A′, s′ such that Σ; ·; ·B F (W ;w : [k,M N]) : A′@ • | s′.

– Case 〈|W|, k / V ◦〉. N = W ;w : [k / V ◦, N].
F (W ;w : [k / V ◦, N]) = F (W ;w : [k, V N]). If Σ `W ;w : [k / V ◦, N], then by
MState there exists A and s such that:

(1) Σ; ·; ·BN : A@w | s
(2) Σ `W ; k / V ◦ : A@w
From (2) by C .App there exist B and t such that:

(3) Σ; · ; ·BV : A ⊃ B@w | t
(4) Σ `W ; k : B@w
From (1) and (3) by ⊃ E:

(5) Σ; · ; ·BV N : B@w | s · t
From (4) and (5) by MState, Σ `W ;w : [k, V N]. Then by IH, there exists A′, s′

such that Σ; ·; ·B F (W ;w : [k, V N]) : A′@ • | s′.
– Case 〈|W|, k/unpack ◦ to 〈v•, v◦〉 in M〉. N = W ;w : [k/unpack ◦ to 〈v•, v◦〉 in N,M].
F (W ;w : [k/unpack ◦ to 〈v•, v◦〉 in N,M]) = F (W ;w : [k, unpack M to 〈v•, v◦〉 in N]).
If Σ ` W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M], then by MState there exists
D, s such that:

(1) Σ; ·; ·BM : D@w | s
(2) Σ `W ; k / unpack ◦ to 〈v•, v◦〉 in N : D@w

From (2) by C .Box there exists A,C, t, r such D = [r]A and
(3) Σ; v : A; ·BN : C@w | t
(4) Σ `W ; k : C{v◦/r}@w
From (1) and (3) by �E:

(5) Σ;∆;Γ B unpack M to 〈v•, v◦〉 in N : C{v◦/r}@w | letc s be v : A in t
From (4) and (5) by MState, Σ `W ;w : [k, unpack M to 〈v•, v◦〉 in N]. Then by
IH, there exists A′, s′ such that Σ; ·; ·BF (W ;w : [k, unpack M to 〈v•, v◦〉 in N]) :
A′@ • | s′.

– Case 〈|W|, return w〉. Since k = return w and N is typable, it follows that
W = {w : C: : k1;ws} for some C, k1, ws. Therefore, N = {w : C: : k1;ws} ;w′ :
[return w,M].
F ({w : C: : k1;ws} ;w′ : [return w,M]) = F ({w : C;ws} ;w : [k1,M]).
Since Σ ` {w : C: : k1;ws} ;w′ : [return w,M], by MState there exist A and s
such that:

(1) Σ; ·; ·BM : A@w′ | s
(2) Σ ` {w : C: : k1;ws} ; return w : A@w′

From (2) by C .Return:
(3) Σ ` {w : C;ws} ; k1 : A@w
From (1) and by the world substitution lemma:

(4) Σ; ·; ·BM{w′/w} : A@w | s
From (3) and (4) by MState Σ ` {w : C;ws} ;w : [k1,M{w′/w}]. Since |{w :
C;ws}| < |{w : C: : k1;ws}| by IH there exists A′ s′ such that

(5) Σ; ·; ·B F ({w : C;ws} ;w : [k1,M{w′/w}]) : A′@ • | s′.
From (5) and by lemma 16

(6) Σ; ·; ·B F ({w : C;ws} ;w : [k1,M]) : A′@ • | s′.

The proof of Lem. 5 requires the following auxiliary result which states that F (·)
preserves lambda reduction, under any network environment and context.

Lemma 17. If M −→β,β�,ftch M
′ and Σ `W ;w : [k,M] is derivable, then F (Σ `

W ;w : [k,M]) −→β,β�,ftch F (Σ `W ;w : [k,M ′]).

Proof. By induction over 〈|W|, k〉.

– Case 〈|W|, finish〉.
If M −→β,β�,ftch M

′ then by lemma 15, M −→β,β�,ftch M
′. Therefore

F (Σ `W ;w : [finish,M]) = M −→β,β�,ftch M
′ = F (Σ `W ;w : [finish,M ′])

– Case 〈|W|, k / ◦N〉.

F (Σ `W ;w : [k / ◦N,M]) = F (Σ `W ;w : [k,M N])

If M −→β,β�,ftch M
′, then M N −→β,β�,ftch M

′N . So by IH:

F (Σ `W ;w : [k,M N]) −→β,β�,ftch F (Σ `W ;w : [k,M ′N]) =
F (Σ `W ;w : [k / ◦N,M ′])

– Case 〈|W|, k / V ◦〉 is similar to the previous case.
– Case 〈|W|, k / unpack ◦ to 〈v•, v◦〉 in N〉.

F (Σ `W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M]) =
F (Σ `W ;w : [k, unpack M to 〈v•, v◦〉 in N])

IfM −→β,β�,ftch M
′, then unpack M to 〈v•, v◦〉 in N −→β,β�,ftch unpack M

′ to 〈v•, v◦〉 in N .
So by IH:

F (Σ `W ;w : [k, unpack M to 〈v•, v◦〉 in N]) −→β,β�,ftch

F (Σ `W ;w : [k, unpack M ′ to 〈v•, v◦〉 in N]) =
F (Σ `W ;w : [k / unpack ◦ to 〈v•, v◦〉 in N,M ′])

– Case 〈|W|, returnw〉. Since the machine state is typed, it follows that W = {w :
C: : k1;ws}, for some C, k1 and ws.

F (Σ ` {w : C: : k1;ws} ;w′ : [returnw,M]) = F (Σ ` {w : C;ws} ;w : [k1,M])

Since |{w : C;ws}| < |{w : C: : k1;ws}|, then by IH:

F (Σ ` {w : C;ws} ;w : [k1,M]) −→β,β�,ftch F (Σ ` {w : C;ws} ;w : [k1,M
′]) =

F (Σ ` {w : C: : k1;ws} ;w′ : [returnw,M ′])

Proof of Lem. 5.

Proof. We address both items by case analysis on the reduction rule.

– Case (1): W;w : [k,MN] −→ W;w : [k / ◦ N,M]

F (W;w : [k,MN]) = F (W;w : [k / ◦ N,M])

– Case (2.1): W;w : [k / ◦ N, V] −→ W;w : [k / V ◦, N], N is not a value

F (W;w : [k / ◦ N, V]) = F (W;w : [k, V N]) = F (W;w : [k / V ◦, N])

– Case (4): W;w : [k, unpack M to 〈v•, v◦〉 in N] −→ W;w : [k / unpack ◦
to 〈v•, v◦〉 in N,M]

F (W;w : [k, unpack M to 〈v•, v◦〉 in N]) = F (W;w :
[k / unpack ◦ to 〈v•, v◦〉 in N,M])

– Case (7): {w : C: : k;ws};w′ : [return w, V] −→ {w : C;ws};w : [k, V {w′/w}]

F ({w : C: : k;ws};w′ : [return w, V]) =
F ({w : C;ws};w : [k, V]) = (lemma 16)
F ({w : C;ws};w : [k, V {w′/w}])

– Case (2.2): W;w : [k / ◦ V, λa.M] −→ W;w : [k,M{a/V }]

F (W;w : [k / ◦ V, λa.M]) = F (W;w : [k, (λa.M)V])

Since (λa.M)V −→β M{a/V }, then by Lemma 17:

F (W;w : [k, (λa.M)V]) −→β,β�,ftch F (W;w : [k,M{a/V }])

– Case (3) is developed similarly to that of (2.2).
– Case (5): W;w : [k/unpack ◦ to 〈v•, v◦〉 in N, box sM] −→ W;w : [k,N{v◦/s}{v•/M}]

F (W;w : [k / unpack ◦ to 〈v•, v◦〉 in N, box sM]) = F (W;w :
[k, unpack box sM to 〈v•, v◦〉 in N])

Since unpack box sM to 〈v•, v◦〉 in N −→β�
N{v◦/s}{v•/M}, then by Lemma 17:

F (W;w : [k, unpack box sM to 〈v•, v◦〉 in N]) −→β,β�,ftch

F (W;w : [k,N{v◦/s}{v•/M})

– Case (6): {w : C;ws};w : [k, fetch[w′]M] −→ {w : C: : k;ws};w′ : [return w,M]

F ({w : C: : k;ws};w′ : [return w,M]) = F ({w : C;ws};w : [k,M])

Since fetch[w′]M −→ftch M , then by Lemma 17:

F ({w : C;ws};w : [k, fetch[w′]M]) −→β,β�,ftch F ({w : C;ws};w : [k,M])

B.2 From lambda reduction in λCert
� to reduction in λ1,→

Proof of Lem. 6.

Proof. By induction on the derivation of Σ;∆;Γ BM : A@w | s. The base cases are
straightforward. We include some sample inductive cases.

– Case ⊃ E.

Σ;∆;Γ BM : A ⊃ B@w | s Σ;∆;Γ BN : A@w | t
⊃ E

Σ;∆;Γ BM N : B@w | s · t

Then by the IH we know ∆′, Γ ′ B T (M) : T (A ⊃ B) is derivable and that
T (A ⊃ B) = T (A) ⊃ T (B). Therefore:

∆′, Γ ′ B T (M) : T (A) ⊃ T (B) ∆′, Γ ′ B T (N) : T (A)
⊃ E

∆′, Γ ′ B T (M) T (N) : T (B)

– Case �I.

Σ;∆; ·BM : A@w | s
�I

Σ;∆;Γ B box sM : [s]A@w | !s

From the IH ∆′ BT (M) : T (A) is derivable. From weakening in λ1,→ we obtain
∆′, a : 1B T (M) : T (A). Thus ∆′ B λa.T (M) : 1 ⊃ T (A) is derivable.

– Case Fetch.

Σ;∆;Γ BM : [s]A@w′ | t Σ ` w
Fetch

Σ;∆;Γ B fetch[w′]M : [s]A@w | fetch(t)

Then

∆′, Γ ′ B λa.a : (1 ⊃ T (A)) ⊃ (1 ⊃ T (A)) ∆′, Γ ′ B T (M) : 1 ⊃ T (A)
⊃ E

∆′, Γ ′ B (λa.a) T (M) : 1 ⊃ T (A)

– Case �E.

Σ;∆;Γ BM : [r]A@w | s Σ;∆, v : A@w;Γ BN : C@w | t
�E

Σ;∆;Γ B unpack M to 〈v•, v◦〉 in N : C{v◦/r}@w | letc s be v : A in t

From the IH we have
• ∆′, Γ ′ B T (M) : 1 ⊃ T (A)
• ∆′, v : 1 ⊃ T (A), Γ ′ B T (N) : T (C)

We conclude as follows, noting that T (C) = T (C{v◦/r})

∆′, v : 1 ⊃ T (A), Γ ′ B T (N) : T (C)

∆′, Γ ′ B λv.T (N) : (1 ⊃ T (A)) ⊃ T (C) ∆′, Γ ′ B T (M) : 1 ⊃ T (A)
⊃ E

∆′, Γ ′ B (λv.T (N)) T (M) : T (C)

Finally, we address Lem. 7. Two auxiliary results are required first (Lem. 18
and 19 below).

Lemma 18. T (M){a/T (N)} = T (M{a/N}).

Proof. By induction over M . We illustrate two sample cases:

– Case v•.

T (v•){a/T (N)} = (v unit){a/T (N)}
= v unit
= T (v•)
= T (v•{a/N})

– Case MM ′.

T (MM ′){a/T (N)} = (T (M)T (M ′)){a/T (N)}
= T (M){a/T (N)}T (M ′){a/T (N)}
= T (M{a/N}M ′{a/N}) (IH)
= T ((MM ′){a/N})

Lemma 19. T (M){v/λa.T (N)} −→∗β T (M{v•/N}{v◦/s}).

Proof. By induction over M .

– Case b.

T (b){v/λa.T (N)} = b{v/λa.T (N)} = b = T (b) = T (b{v•/N}{v◦/s})

– Case v•.

T (v•){v/λa.T (N)} = (v unit){v/λa.T (N)} = (λa.T (N))unit −→β T (N) =
T (v•{v•/N}{v◦/s})

– Case u• 6= v•.

T (u•){v/λa.T (N)} = (uunit){v/λa.T (N)} = uunit = T (u•) =
T (u•{v•/N}{v◦/s})

– Case MM ′.

T (MM ′){v/λa.T (N)} = (T (M)T (M ′)){v/λa.T (N)} =
T (M){v/λa.T (N)}T (M ′){v/λa.T (N)}

By IH,

T (M){v/λa.T (N)} −→∗β T (M{v•/N}{v◦/s})
T (M ′){v/λa.T (N)} −→∗β T (M ′{v•/N}{v◦/s})

Then,

T (M){v/λa.T (N)}T (M ′){v/λa.T (N)} −→∗β
T (M{v•/N}{v◦/s})T (M ′{v•/N}{v◦/s}) =

T (M{v•/N}{v◦/s}M ′{v•/N}{v◦/s}) = T ((MM ′){v•/N}{v◦/s})

– Case λb.M (note that a 6= b since a is fresh).

T (λb.M){v/λa.T (N)} = (λb.T (M)){v/λa.T (N)} = λb.T (M){v/λa.T (N)}

By IH,

T (M){v/λa.T (N)} −→∗β T (M{v•/N}{v◦/s})

Then,

λb.T (M{v•/N}{v◦/s}) −→∗β λb.T (M{v•/N}{v◦/s}) =
T (λb.M{v•/N}{v◦/s}) = T ((λb.M){v•/N}{v◦/s})

– Case box tM .

T (box tM){v/λa.T (N)} = (λb.T (M)){v/λa.T (N)} = λb.T (M){v/λa.T (N)}

By IH,

T (M){v/λa.T (N)} −→∗β T (M{v•/N}{v◦/s})

Then,

λb.T (M){v/λa.T (N)} −→∗β λb.T (M{v•/N}{v◦/s}) =
T (box t{s/v◦}M{v•/N}{v◦/s}) = T ((box tM){v•/N}{v◦/s})

– Case unpack M to 〈u•, u◦〉 in M ′.

T (unpack M to 〈u•, u◦〉 in M ′){v/λa.T (N)} =
((λu.T (M ′))T (M)){v/λa.T (N)} =

((λu.T (M ′){v/λa.T (N)})T (M){v/λa.T (N)})

By IH,

T (M){v/λa.T (N)} −→∗β T (M{v•/N}{v◦/s})
T (M ′){v/λa.T (N)} −→∗β T (M ′{v•/N}{v◦/s})

Then,

((λu.T (M ′){v/λa.T (N)}) T(M){v/λa.T (N)}) −→∗β
((λu.T (M ′{v•/N}{v◦/s})) T(M{v•/N}{v◦/s}))=

T(unpack M{v•/N}{v◦/s} to 〈u•, u◦〉 in M ′{v•/N}{v◦/s})=
T((unpack M to 〈u•, u◦〉 in M ′){v•/N}{v◦/s})

– Case fetch[w]M .

T (fetch[w]M){v/λa.T (N)} = ((λb.b)T (M)){v/λa.T (N)} =
(λb.b) (T (M){v/λa.T (N)})

By IH,

T (M){v/λa.T (N)} −→∗β T (M{v•/N}{v◦/s})

Then,

(λb.b) (T (M){v/λa.T (N)}) −→∗β (λb.b) (T (M{v•/N}{v◦/s})) =
T (fetch[w]M{v•/N}{v◦/s}) = T ((fetch[w]M){v•/N}{v◦/s})

The proof of Lem. 7 follows.

Proof. By induction on M . The base cases are trivial since no reduction steps may
originate from a or v•. The inductive cases follow from the fact that reduction under
all constructors in λ1,→ is considered. We illustrate the cases where reduction takes
place at the root of M .

– Case −→β. Suppose (λa.M)N −→β M{a/N}. We reason as follows:

T ((λa.M)N) = T (λa.M)T (N) (Def. of T (·))
= (λa.T (M))T (N) (Def. of T (·))
−→β T (M){a/T (N)}

= T (M{a/N}) (Lemma 18)

– Case −→β�
. Suppose unpack box sM to 〈v•, v◦〉 in N −→β�

N{v•/M}{v◦/s}.
We reason as follows:

T (unpack box sM to 〈v•, v◦〉 in N)
= (λv.T (N))T (box sM) (Def. of T (·))
= (λv.T (N))λa.T (M) (Def. of T (·))
−→β T (N){v/λa.T (M)}
−→∗β T (N{v•/M}{v◦/s}) (Lemma 19)

– Case −→ftch. Suppose fetch[w]M −→ftcs M . We reason as follows:

T (fetch[w]M) = (λa.a)T (M) (Def. of T (·))
−→β T (M)

