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Abstract. In Grid environments, many different resources are intended
to work in a coordinated manner, each resource having its own features
and complexity. As the number of resources grows, simplifying automa-
tion and management is among the most important issues to address.
This paper’s contribution lies on the extension and implementation of
a grid metascheduler that dynamically discovers, creates and manages
on-demand virtual clusters. The first module selects the clusters using
graph heuristics. The algorithm then tries to find a solution by searching
a set of clusters, mapped to the graph, that achieve the best perfor-
mance for a given task. The second module, one per-grid node, monitors
and manages physical and virtual machines. When a new task arrives,
these modules modify virtual machine’s configuration or use live migra-
tion to dynamically adapt resource distribution at the clusters, obtaining
maximum utilization. Metascheduler components and local administra-
tor modules work together to make decisions at run time to balance
and optimize system throughput. This implementation results in perfor-
mance improvement of 20% on the total computing time, with machines
and clusters processing 100% of their working time. These results allow
us to conclude that this solution is feasible to be implemented on Grid
environments, where automation and self-management are key to attain
effective resource usage.

1 Introduction

Using geographically distributed clusters in a coordinated manner has a major
impact in execution time for parallel applications. Grid computing is a natural
environment to deal with this usage, as Grids provide resource sharing through
open standards and tight security, making possible to solve problems faster and
efficiently.
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The Grid metascheduler is an active component in distributed systems coor-
dination and management. This component facilitates the user’s tasks to access
resources across different administrative domains. It can take decisions based
on information of the whole system. Owners of physical resource become ser-
vices providers, and the metascheduler orchestrates them according to negoti-
ated policies and service level agreements. Virtual machines provide a way to
make this task easier. These virtual machines can be independently instantiated
and configured beforehand with sandbox-like environments[4, 9]. They also al-
low dynamically tuning of parameters like memory, number of CPUs assigned
to each virtual machine, etc. Today’s virtual machine technologies performance
at CPU intensive tasks is comparable to that of native applications [5].

This paper presents a framework extension to a Grid metascheduler. The
extension consist of two modules; the first one that dynamically discovers free
machines determined by user requirements. The other one creates virtual clus-
ters to efficiently satisfy submition of parallel jobs. The first module selects the
clusters using graph heuristics. Free resources are mapped to a graph, machines
as nodes and network links as edges. The algorithm then tries to find a solution
by searching a set of clusters that achieve the best performance for a given task.
The second module, of which one instance resides in every grid node, monitors
and manages physical machines. When a new task arrives, these modules mod-
ify virtual machines configuration to dynamically adapt resource distribution
at the clusters, thus obtaining maximum utilization. Metascheduler components
and local administrator modules work together to make decisions at run time to
balance and optimize system throughput.

In the second section of this paper we present the sequence of use and the
architecture of the solution, focusing on the metascheduler; the third section
describes the model, heuristics and algorithms developed; the fourth section
presents experimental results; and finally, related works on this subject and
conclusions are shown.

2 Metascheduler

From the design viewpoint, the architecture[1] of this solution is conceptually
divided into three layers or tiers. In the first one, named access tier, the clients
accessing the system are defined. The second, management tier, considers access
control and creation of resources. Finally, the third, resource tier, deals with the
implementation of physical and virtual resources.

This paper focus on the management tier cover by the metascheduler. The
implementation begins with the study of several proposals, for this work, CSF
(Community Scheduler Framework)[2] was chosen. CSF is an open-source im-
plementation of a number of Grid services, which together functionally perform
as a Grid metascheduler, and can be used as a development toolkit.

To satisfy on demand virtual clusters there are two extension modules within
CSF. The first one is the Resource Manager Adapter Service called GramVM.
This module is in charge of looking for free machines in the group of clusters.
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For management and instantiation of virtual machines within local domains,
a new module called Hypervisor proxy was implemented. Unlike the original
CSF proposal, several Hypervisor proxy instances can be working towards one
GramVM instance at the same time, in a coordinated manner. In the original
implementation, CSF could work with different local schedulers, just one at every
time.

Also different from the original CSF is that local schedulers, with similar du-
ties as Hypervisor Proxy, have to be setup previously to CSF execution, and once
execution in a cluster is started, the assignment of machines can not be modified
until end of execution. For dynamically instantiated virtual machines, we do not
know how many machines each cluster will have until the requirement arrives.
GramVM should try to find the resources that best fit the task requirements,
leading to a great number of alternatives. Besides, virtual machines can modify
their usage of physical resources during execution, either by live migration[6],
or by dynamically varying memory and CPU allocation. All of these features
essentially reconfigure the pool of available free resources. They can be used to
obtain better cluster performance and they are negotiated between Hypervisor
Proxy and GramVM at run time.

3 Model

Finding a group of machines with specific characteristics, which is able to ef-
ficiently share a given workload, in a short time, is not a trivial problem. To
approach this task, we settled for two criteria which were given higher priority:
how fast the problem was solved, and how good the outcome was when compared
to the optimal solution.

To be able to solve the problem in an analytical way, groups of clusters and free
machines in the Grid environment are mapped to a graph. Machines are viewed
as nodes and network links as edges. Nodes and edges have weights corresponding
to machine features and bandwidth. More bandwidth-capable edges receive less
weight. Node’s weights are based upon cost functions such as per-time billing,
computing power, etc.

The strategy is divided into two stages. The first one consists in selecting
the groups of clusters. At this stage, a heuristic is used to find an optimal set of
machines, taking into account communication overhead and machines computing
power. Once a group of clusters is obtained, the second stage starts. For each
cluster, an analysis must be done to evaluate how many physical machines will
be incorporated. If the number of machines involved is greater than needed
then efficiency will decrease, as some machines will stall waiting to send data
to another cluster. We seek to keep efficiency over a certain threshold, given
beforehand. Our analysis extends the work done in [3]. This work modifies the
MPI library to span a number of clusters; a certain, unique, type of task is
assumed. In our paper, a virtual environment is proposed where applications
can run unmodified over a combination of clusters. Different types of tasks can
be supported, as expected from a Grid environment.



16 M.L. Bertogna et al.

Our model was evaluated over master-worker parallel applications. Clusters
are dedicated and serve a previously determined number of tasks. All tasks
within a same requirement from a user perform the same computation, and send
or receive the same amount of data, but the number of tasks can vary across
requirements. This schema is common in graphic and simulation parallel appli-
cations. It is assumed that each time a cluster is added to the grid environment,
virtual images are characterized and a performance benchmark is done. The
network links are monitored regularly to sense bandwidth changes.

3.1 Machine Selection Algorithm

To select a set of feasible clusters to be incorporated into the solution, an iter-
ative improvement algorithm is used. This algorithm, known as Hill-Climbing,
is mainly a loop that continually moves in the direction of increasing value; in
this case, the direction maximizing computing power. The algorithm does not
maintain a search tree; the node data structure needs to record just the last state
reached. This simple policy has some drawbacks: local maxima (peak values that
are lower than the highest peak value in the state space); plateaux (a region in
the state space where the evaluation function is essentially flat) and ridges (a
ridge may have steeply sloping sides, so that the search reaches the top of the
ridge with ease, but the top may slope only very gently toward a peak).

The problem we are trying to solve has particular features, as certain net-
worked geographical regions or provider domains are better provisioned than
others. This geographical connectivity pattern is mapped onto the graph edges.
When taking this feature into account, there is no need to do random restarts
as in the original algorithm. If the graph is partitioned into better-connected
geographical zones, or islands, the chances to find the global maximum grow,
and the time to find it decreases. This modification is called Hill-Climbing with
k-restarts, where k is the number of partitions on the graph. Each partition will
be a starting point.

To partition the graph in geographical zones, a different kind of algorithm
is used, namely Minimum Spanning Trees (MST). A minimum spanning tree
includes all nodes in the graph, such that the sum of their weighted edges is
lesser or equal to that of any other spanning tree over the graph. The chosen
algorithm is Kruskal’s variant because of the approach taken to build the MST.
This algorithm starts by sorting the edges by weight; then all nodes are agglom-
erated, starting from as many partitions as nodes. Traversing over the edges, the
solution is checked at every iteration for cycles. If a cycle appears, the edge that
was most recently introduced is discarded.

To enhance Hill-Climbing performance, we need to know how many restarts
there will be. The number of restarts will be the number of suitable partitions
in the graph. Once the number of partitions is set as a threshold, Kruskal ’s
algorithm starts adding edges until the threshold is reached. When Kruskal al-
gorithm stops, the remaining graph is partitioned into maximally well-connected
trees, as the first step taken was to sort the edges by weight. For each partition
the Hill-Climbing algorithm is then applied, obtaining a global maximum.
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The number of partitions depends on the number of nodes and the surface
where Hill-Climbing algorithm will run. As a good practice the graph was parti-
tioned until each segment had at least one complete cluster. In most cases that
number of partition was three, this number assures to find the global maximum
in each test.

The algorithmic complexity for MST is O(E log(V)). The Hill-Climbing algo-
rithm using adjacency lists is O(E log(V)) where E are Edges and V are Vertices
of the graph. Performance can be improved if the graph nodes are Grid nodes
instead of machines, as the number of vertices in the graph decreases.

3.2 Cluster Usage Optimization

A parallel application in a multicluster environment is either limited by perfor-
mance of machines in the cluster (compute-bound) or by network throughput
(communication bound). The maximum performance (maxperf ) is reached by
an application on a particular cluster when it is compute-bound. If the ap-
plication is communication bound, machines will sit idle waiting for network
input/output. For a worker task running on a processor, the computation time
(TCpt) is defined as the ratio between the task number of operations (Oper)
and the processor performance (Perf ): TCpt=Oper/Perf. The communication
time (TComm) is the ratio between the volume of data communication (Comm)
(worker task data from and to the master) and the network throughput (TPut):
TComm=N*Comm/TPut. The maxperf is the performance that can be obtained
when TCpt >= TComm.

Once the set of clusters is computed by the heuristics, the second stage starts.
Here we analytically determine how many machines will be used in each cluster,
so as to avoid maxperf dropping under a previously fixed threshold. This calcu-
lation is based on how many task’s data the network is able to transfer by time
unit, and how many tasks per time unit the cluster is able to process.

If the cluster processes more tasks than the network would transfer, then
the application becomes communication bound; if the network is able to trans-
fer more task’s data than the cluster processes, then the application becomes
computation bound. Hence, if the application is communication bound and the
number of machines diminishes until a balance is reached, the cluster resources
are not fully used; but the machines processing the tasks will be used at a max-
imal efficiency.

In a Grid environment, multiple possibilities for cluster assignment exist. If
we regard the application as being started from different clusters (i.e. we choose
different master-clusters), the resulting outcome from our analysis will be dif-
ferent. With the heuristic algorithm, this search work is minimized, and the
best solution (reaching the highest computing power with a combination of clus-
ters) is probably achieved. To make this possible, an analytic search has to be
done for each graph partition. This will limit the number of machines for each
cluster so that performance can be held over threshold for every machine. Not
only communication and computing power for the local cluster has to be eval-
uated, but for the master-cluster as well. If the master-cluster ’s bandwidth is
smaller than the aggregated worker-clusters bandwidth, then machines from the
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worker-clusters will be idle even though their own network links are enough to
exploit their full computing capacity for a given task. Here, a fractional of the
master-cluster bandwidth will be determined, based on the computing power of
each cluster; and the analytic evaluation of computation/communication will be
carried on upon this value.

This solution focuses on maintaining machine performance, but cluster usage
is also a matter of importance. If a cluster can always satisfy a task with low
computing requirements but high data communication, and the network link
does always limit the computing power to a few machines, then this is not a
good solution. An approach to this problem is to limit even more the usage of
computing power, so as to free bandwidth. When tasks with less communication
requirements arrive, they can be submitted to idle machines, thus improving clus-
ter usage; on the downside, if such tasks never arrive, resources will be wasted.
Our proposal in this paper is to build a cluster over virtual machines to release
bandwidth on demand; when a new task with smaller communication require-
ments arrives, machines already executing on the clusters are migrated without
interrupting the execution. When two or more virtual machines are executing on
a physical processor, the virtualization software scheduler will assign computing
resources fairly, so this will result in less computing power per machine and less
data per task will be sent. The time for completion of both the new task and
the executing task are known, so the metascheduler module can calculate the
time gain for machine migration and will submit the new task onto the cluster.
If the new task has smaller communication requirements than the migrated one,
not only the physical nodes that were supporting virtual machines running on
them, but also the idle physical nodes in the cluster, could be assigned to the
new task, improving the whole cluster usage.

4 Experimental Results

The experimental evaluation is divided into two phases. The first one shows
improvement gains by using the heuristic of machine selection. This strategy is
compared to classical grid algorithms[7, 8] as a set of independent tasks arrives.
From the system’s point view, a common strategy is to assign them according
to the load of resources in order to achieve high system throughput. Three al-
gorithms were selected: a) Minimum Execution Time (MET): assigns each task
to the resource with the best expected execution time for that task, no matter
whether this resource is available or not at the present time b) Minimum Com-
pletion Time (MCT): assigns each task, in an arbitrary order, to the resource
with the minimum expected completion time for that task and c) Opportunistic
Load Balancing (OLB): assigns each task, in arbitrary order, to the next machine
that is expected to be available, regardless of the task’s expected execution time
on that machine . The intuition behind OLB is to keep all machines as busy
as possible. One advantage of OLB is its simplicity, but because OLB does not
consider expected task execution times, the mappings it finds can result in very
poor makespans. Classical grid algorithm like Min-min and Max-Min were not



Dynamic on Demand Virtual Clusters in Grid 19

selected because these begins with the set of all tasks and in this case this data
is unknown.

The problem of grid scheduling can be investigated by taking experimental
or simulation approach. The advantages of performing actual experiment by
scheduling real applications on real resources are that it is easier and straight-
forward to compare the efficacy of multiple algorithms. However, in experimen-
tal study of scheduling algorithms it is seldom feasible to perform a sufficient
number of experiments to obtain meaningful results. Furthermore, it is difficult
to explore a variety of resource configurations. Typically a grid environment is
highly dynamic; variations in resource availability make it difficult to obtains
repeatable results. As a result of all these difficulties with the experimental ap-
proach, simulation is the most viable approach to effectively investigate grid
scheduling algorithms. The simulation approach is configurable, repeatable, and
generally fast, and is the approach we take in this work. Our simulation takes as
parameters a description of the existing clusters, their network links, machines
therein (specifying memory and processor type) and finally the tasks with their
execution time for each type of processors.

For model validation a real test in [3] was considered, where four clusters with
three, five and eight machines were used. The first two clusters were physically
lying in South America, having less bandwidth and machines with smaller com-
puting power. The third, more powerful one, was in Spain. If we enforce the same
master-cluster as in the real test, i.e. the application is submitted from each of
the clusters in South America, the final results in computing time and network
throughput returned by the simulator are the same. However, if the simulator is
used along with the machine selection algorithm, the Spanish cluster is selected
and the total execution time decreases nearly by 50%. The explanation being, if
the application is submitted from a South American cluster, then there will be
idle machines in the Spanish cluster; while if the application is submitted from
Spain, then the three clusters will have better usage.

4.1 Machine Selection Experiences

Tests were done to verify the impact of partition and master-cluster selection car-
ried over by the Hill-Climbing algorithm. These tests compare how the heuristic
algorithm proposed in this paper performs against classical grid algorithms. The
tests were done simulating clusters composed of eight machines each one. Two
arrival statistical distribution were chosen; the first one, a uniform distribution
simulating low rate of arrivals; the other one, an exponential distribution simu-
lating a incremental rate of tasks arrivals. Nineteen request were made, each one
with three hundred process to be distributed into the clusters. In all cases MCT
performs better than MET and OLB. For greater clarity, figure comparisons
were done between Hill-Climbing and MCT algorithms.

The results of simulation executions can be seen in figure 1. In the firts graph,
Hill-Climbing uses all clusters machines, selecting the best master cluster and
MCT only selects the minimum completion time cluster. Choosing to run the
application in all machines heuristic algorithm performs 70% better than MCT,
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Fig. 1. Time execution comparison between Heuristic and MCT algorithm with uni-
form task arrival and exponential task arrival

this one is the best case. If each parallel task sends more data while process-
ing, then the application becomes communication bounded (TCpt <= TComm)
limiting the number of machines each cluster could use to compute, decreasing
the algorithm performance. Once the algorithm proved to work with low rate of
arrival the next step was to test it incrementing this rate. This can be seen in
the second graph. Until the second request the execution time is below MCT.
For some request the execution time are above MCT. This happens because
tasks are distributed over different clusters. If tasks waiting times are observed
(shown as continuous lines), MCT has longer waiting periods, compensating for
faster executions. The average total time tends to be the same. After several
simulations we can conclude that in the worst case Hill-Climbing heuristic tends
to perform the same as MCT. In the average scenario (low rates of arrival with
peaks at regular intervals), the Hill-Climbing heuristic algorithm performs with
a 20% of improvement.

4.2 Cluster Adaptation Experiences

In cluster adaptation test, different task types were submitted requiring differents
volumes of I/O. Task mixes were done with exponential rate of arrivals. Some
requests overlap in time but waiting times were not too high. Because of this
they are not shown in the graphs.

After several simulation executions it was noticed that some clusters can not
be 100% used because tasks with high network I/O requirement took little per-
centage of clusters machines while saturating Internet connection. In the case
where tasks with low network requirements arrive, this can be a waste of com-
puting resources (as blocked machines could be used with smaller bandwidth).
To solve this problem a migration procedure was proposed, if a virtual machine
consuming network bandwidth was migrated to other physical machine already
working, taking advantage of virtual machine live migration. The fair scheduling
algorithm used in hypervisors will slow down computing power freeing network
bandwidth, and these free bandwidth will be taken by the new process. This
procedure is advantageous if the time waste in the migrated task is less than the
time gain processing the new task.

In figure 2 we depict Hill-Climbing heuristic execution time and MCT execution
time with a similar behavior as the previous figure with a 25% of improvement, and
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Fig. 2. Migration process sample

an example of the migration procedure. When Req3 arrives, the algorithm in-
vestigates a) where machines can be migrated and b) what the impact should be
on the running application, were these machines actually migrated, i.e. whether
the gain upon migration would pay for migration overhead. These conclusions
can be drawn only having the application’s run time characterized beforehand.
In the boxes of figure 2 two examples of this procedure can be seen. In the upper
left part of the box, a graph is shown with the machines originally assigned to
the task (in this case Req3 and Req5) and then the machines after the virtual
machine migration procedure. In the first case eight machines were assigned and
then two machines from blocked clusters were added. A small increment can
be noticed in the time in the execution of Req1 because of the slow down in
the computing power after the migration. The same can be seen in Req5. The
time gain is more obvious there. In the rest of the simulation, several cases exist
with a longer execution time. This ocurrs because of different configuration of
machine assignment after the migration process. On average, the performance
improvement is of 5% over the originally proposed algorithm but this depends
on tasks balance and arrival rate.

5 Conclusion

This paper has presented a metascheduler framework extension to generate high
performance laboratories with virtual machines, local resource managers and
management heuristic to obtain effective usage of clusters and machines. The
framework takes into account not only the time taken by a task to complete
but also network consumption, with the purpose of taking advantage of the
bigger number of machines available in a grid environment. Geographical parti-
tions through Kruskal graph algorithm also address the problem of scalability,
decreasing the complexities in the search of the optimal solution. Hill-climbing
with k-restarts does not ensure reaching an optimal solution; but in the tests
done the best solution was achieved in nearly every case.
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Tests were done by sweeping a range of arrival rates, cluster computing power,
number of tasks, number of process per tasks and task computing and I/O
requirements. Selection algorithms have been implemented to find groups of
clusters that satisfy certain requirements in a small search space, making an effort
to return a solution in a fast and optimal way. These implementations increase
computing power by nearly 20%. Dynamic algorithms have been implemented
to adapt cluster configuration at run time with migration of virtual machines.
This implementation results in performance improvement of 10% on the total
computing time, with machines processing 100% of their working time.

These results allow us to conclude that this solution is feasible to be imple-
mented on Grid environments, where automation and self-management are key
to attain effective resource usage. Where clusters serve fixed applications, multi-
cluster analysis could guide balance tuning between computation and communi-
cation, determining whether it is more effective to either increment/decrement
the bandwidth in use, or increment/decrement engaged computing power.
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