
Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 635–642

ISBN 978-83-60810-22-4

ISSN 1896-7094

Developing DSLs using combinators.
A design pattern

Pablo Andrés Barrientos
Universidad Nacional de La Plata,

Facultad de informática

pablo.barrientos@sol.info.unlp.edu.ar

Universidad Nacional de Quilmes

pbarrientos@unq.edu.ar

Pablo E. Martı́nez López
Universidad Nacional de Quilmes.

fidel@unq.edu.ar

Abstract—The development of domain-specific languages
(DSLs) is considered by many authors as a hard task. To simplify
the design of DSLs we describe a design pattern based on the
combinators technique, which can also provide guidelines for
previous domain analysis phase because it is based on equational
reasoning over the domain knowledge.

Combinators is a common technique from functional pro-
gramming to write programs. It was used many times to
implement domain-specific embedded languages (DSELs) but
that implementation approach is not the only one. In this paper
we present the pattern together with the underlying and basic
ideas behind it. We also show benefits of using it and illustrate
the use of this pattern with some examples.

Index Terms—DSLs, combinators, design patterns.

I. INTRODUCTION

WHEN a programmer writes a program, he expresses

a solution for a particular problem. Although that

problem’s domain can be limited, usually the language used

to write the solution is a general-purpose language (GPL).

Domain-specific languages (DSLs) are particular languages,

tailored to a particular problem domain. DSLs give the pro-

grammer, and mainly the end-user with no previous knowledge

about programming, the possibility to express solutions to a

problem by using domain-specific notations and constructions.

These constructions and notations capture the semantics from a

particular bounded domain in such a way that it becomes easy

to understand, write and think by expert people of that specific

domain. DSLs are concise languages and mainly declarative

but they can also be imperative, depending on the application

domain.

In order to define a DSL, all the concepts from the do-

main are defined minimizing the semantic gap that exists

between the problem’s domain and the program, hiding the

implementation details and making the self documentation of

programs easy. Additionally, the amount of code which must

be written is reduced, increasing productivity and decreasing

maintenance costs.

Mernik et al. [13] detailed different DSL development

phases which interact with each other in the development

process itself. These phases are decision, analysis, design,

implementation, and deployment. They identified some com-

monalties or patterns in each of these phases that can be

applied when someone develops a DSL.

Language design is about how to model, relate, and structure

the parts of a language. In the classification by Mernik

et al. [13], the design patterns are characterized along two

dimensions: the relationship between the DSL and existing

languages, and the formal nature of the design description.

A way to design a DSL is to base it on an existing language.

Mernik et al. identified three kinds of design patterns based

on this idea:

• Piggyback: an existing language is partially used

• Specialization: an existing language is restricted to pro-

vide features from a problem domain

• Extension: an existing language is extended with new

features that address domain concepts

On the other hand, the developer could create a DSL from

scratch, with no relationship to any existing language.

The other dimension for classifying DSL design patterns is

formality: they can be either informal or formal. In an informal

design the specification is made in some form of natural lan-

guage. A formal design would consist of a specification written

using one of the available semantic definition methods [13].

The pattern we are presenting is a formal design pattern

that is also related with a formal domain analysis, because it

is based on equational reasoning over the domain knowledge

[14]. But it is really hard to classify the pattern in the

other dimension. This pattern is related to language invention,

because we use the elements and concepts defined inside

the pattern to design a language from scratch. On the other

hand, an existing language designed using this pattern can

be extended to produce a new language. Inside the language

exploitation pattern, it is really hard to establish properly the

exact nature of the pattern (that is, its subpattern). We need an

existing language designed using the combinators pattern in

order to exploit it. DSLs designed using other patterns could

be hard to exploit using combinators and this could be a strong

precondition. More details about extensibility will be discussed

later, when we fully describe the pattern.

978-83-60810-22-4/09/$25.00 c© 2009 IEEE 635

636 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

The pattern we are presenting is based on a very intuitive

idea for programmers: a domain should be represented as

combinations of subdomains, i.e., denotational semantics is

compositional (e.g., the denotation of (P1 + P2) is given

by combining somehow the denotations of P1 and P2). The

pattern is based on combinators. Combinators are elements

that take solutions of subproblems and combine them into a

solution for a given problem, thus capturing very well the idea

of modular programming. They can be represented as (higher-

order) functions that do not refer to global variables.

The combinators technique provides solutions by providing

three things:

• a basic type to represent solutions to the problem,

• a number of basic elements (called atomic solutions)

representing solutions to basic instances,

• a number of ways to combine solutions to subproblems

to get solutions to more complex problems.

All non-trivial solutions must be represented as combina-

tions of smaller solutions — this is not a limitation for the

application of combinators, because most sensible problems

can be analyzed by separating and dividing them.

This technique has been widely used in functional program-

ming for developing solutions for specific domains. The same

underlying ideas can be applied for DSL design, independently

of the way the language is implemented.

The contribution of this paper is the identification and

description of a design pattern for DSLs which can be used

as part of development process. This paper presents the

Combinators pattern following the precise description format

proposed by Gamma for object-oriented design patterns [6].

Our intention here is two-fold: to describe the pattern in a

clear and widely accepted format, and to suggest the adoption

of this format for DSL design patterns description in future

literature.

II. DESIGN PATTERN DESCRIPTION

Name and classification

Combinators — formal design pattern — language exploita-
tion/invention1.

Intent

To allow the design of a DSL in such a way that the end-

user expresses the underlying compositional structure from a

domain by defining a set of combination schemes of smaller

solutions.

Motivation

Consider we want to simulate a rail network and its connect-

ing services. The end-user specifies the components of a rail

network by declaring stations, rails, and connections between

them. As the structure is given by composing different rails,

and attaching intermediate and final stations, the combinators

are a good choice. Colors for different routes are defined in the

1We follow the classification proposed by Mernik et al. [13] described in
section I

DSL to distinguish them. Finally, the user defines all different

services that use the rail network, and the system is later

simulated by some program.

We start defining a function to construct simple rails with

no connections as rail : Id → Length → Rail. So, rail 1 30.7,
is an example of a rail with identifier 1 and length 30.7.

In the same way, stations can be described by the function

station : Name → Station. These functions are combinators

of very simple elements of the domain (features of the element

that the function returns) that construct basic elements of our

interest. These kinds of functions are called constructors.

The connections between rails and stations are defined by

the functions:

<> : Rail ∗ Rail → Rail

describes a link between two rails.

−| : Rail → Station → Rail

describes the link between a rail and a station.

|− : Station → Rail → Rail

describes a connection similar to the previous one,

but with the station as the first argument.

The functions we defined above, are called simply combi-

nators, and they are characterized by the kind of arguments

they take, which are elements of the domain.

As the reader can observe, a station can appear many

times in different rail routes. The rails also can appear

in different routes. To differentiate the routes with each

other, the user can transform them by giving a coloring

to the routes. With this purpose, we define the function

coloring : Color → Rail → Rail. This kind of combinator

(that takes elements of the domain and returns a different type

of element) is called transformer. When transformations are

described in the form of equations, they can be used to guide

the implementation of the static semantics of the language

(with static semantics we refer to those actions performed by a

compiler that depend on the program being compiled; dynamic

semantics represents the computations which depends on input

data of the program and they must be postponed until runtime).

See the sample code section to get an example.

The user can define routes by using equations. The name

of the route is the right-hand side and the description is the

left-hand side of the equation.

Now we change the definition of Rail from a simple

element to a synonym of functions Train → Time → Service
— i.e., rail combinators defined before are indeed higher-

order functions. Services are still defined using equations. To

construct Time elements, we use standard notation (e.g., 14:30)

just to give simplicity and expressiveness. We finally define the

train constructor train :Id → Capacity → Length → Train.

A simple example of Buenos Aires’ metro rail system is

given in Figure 1 — the length of rails is not precise and

several stations were omitted. Infix notation is used for binary

combinators. Additionally, curried versions of functions are

used. The curried version of functions is obtained by replacing

a structured argument by a sequence of simpler ones. For

example: smaller : Int → Int → Int is the curried version of

PABLO ANDRÉS BARRIENTOS ET. AL: DEVELOPING DSLS USING COMBINATORS 637

Constitucion = station ’Constitucion’
Independencia = station ’Independencia’

DiagonalNorte = station ’Diagonal Norte’

Retiro = station ’Retiro’
Catedral = station ’Catedral’

Callao = station ’Callao’
CongresoDeTucuman = station ’Congreso de Tucuman’

lineC = coloring Blue (Constitucion |− (rail 1 0.5) <> (rail 2 0.4) −| Independencia |−
(rail 3 1.0) <> (rail 4 0.5) −| DiagonalNorte |− (rail 5 1) |− Retiro)

lineD = coloring Yellow (Catedral |− (rail 11 0.5) −| DiagonalNorte |− (rail 12 0.2)
−| Callao |− (rail 13 0.4)<> (rail 14 0.9) <> (rail 15 1))

|− CongresoDeTucuman)

serviceC1 = lineC (train 1 100 50) (9:00)
serviceC2 = lineC (train 1 100 50) (11:00)

serviceD = lineD (train 2 43 25) (9:15)

Fig. 1. Short Buenos Aires’ metro system modeled using the example DSL

smaller : Int ∗ Int → Int. So, the function is written smaller

1 2, instead of smaller (1,2).

Applicability

Use the Combinators pattern, if

• The meaning of elements from the domain can be ex-

pressed in a compositional way

Structure

The curried version of functions is usually used. In Figure

2 we show the structure of the pattern.

Participants

• Constructors (rail, station, train)

To implement combinators over a particular domain some

basic elements must be chosen and defined. Each element

of the domain is extrapolated to what constitutes a solu-

tion. Each solution expresses the denotational semantics

of the basic elements of the domain. These elements are

defined using functions called constructors.

• Combinators (|−, −|, <>)

Combinators are defined to combine two or more el-

ements (solutions) of the domain to construct bigger

elements and get the desired solution.

• Transformers (coloring)

In some cases, the elements of the domain must be

modified somehow. The transformers of solutions are

defined to this end.

Consequences

The Combinators pattern has the following advantages and

consequences:

• The code is easy to understand and reason about. The no-

tation is not only easy to design, but also easy to use and

reason about (equational reasoning is used when defining

the meaning). It is possible even for non-programmers

to understand the code of the DSL because the domain

semantics is captured concisely.

• Language extension. If we want to enrich a DSL with new

features, we can define combinators that take elements

from the DSL and new elements that extend the domain.

The result of each combinator is a new element belonging

to a new domain (the union of the previous DSL domain

and the new elements for the extension). The resulting

DSL has the combinators from the former DSL, new

combinators and maybe transformers for its elements.

Additionally, some combinators could be joined to get

a new one, to obtain a clear syntax which reflects the

domain. In modular design, this idea could be used

making a DSL a module and adding new features from

other modules by using combinators.

Language extension seems to be simple but the new

domain must be analyzed since some inherited proper-

ties from the original domain can be invalid, and new

properties could emerge.

At the end of section Sample code there is an example

of language extension.

Implementation

There are some issues to consider when implementing this

pattern.

• Infix notation. The binary combinators are usually more

readable when using infix.

• Curried functions. Functions are better written using

curried versions, to get a nice and more convenient

notation and to reduce the use of parenthesis.

• Language derivation from formal specification. The com-

binators approach is highly amenable to formal methods,

for many of the reasons already mentioned. The key point

is that one can reason directly within the domain seman-

tics, rather than within the semantics of the programming

language.

Implementation of atomic solutions as well as combina-

tors and transformers, could be derived from their speci-

fications following the method proposed by Hughes [9].

638 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

// use of constructors - basic solutions

([definitionb =] constructor_of_simple_elementb)*

// use of constructors with parameters

([definitionc =] constructor_of_elementc parameter1c
. . . parameternc

)*

// use of combinators - complex solutions

([definitions =] combinators element1s
... elementns

)*

// use of transformers

([definitiont =] transformert element1t
...elementnt

)*

Fig. 2. Structure of the DSL code when applying the pattern

Hughes made a formal specification of pretty printers

for structured data, studied the algebraic properties of

such combinators, and then used the results to guide the

language design and implementation, based on the ideas

behind combinators.

• Implementation approaches. DSL design patterns are in-

dependent of the implementation pattern, but in this case

the resulting code looks very functional, and this could be

a problem for coding it. However, it must be observed that

it is just a matter of notation. The only implementation

approach that seems to be problematic is the embedding

of the language in a non-functional base/host language.

However, we can express the semantics of the language if

we can define somehow the semantics of combinators —

for instance, by using the Composite pattern [6] in object-

oriented programming languages. C++ is an example of

a non-functional language that can express higher-order

and polymorphic functions, including lazy evaluation

[12]. For the rest of the implementation approaches, this

notation should not represent a problem.

• Functional embedded approach. To embed the DSL using

functional languages is the easiest and suitable approach

for this pattern, because semantics is written with no

additional costs. Functional languages provide all the

(meta) constructions used in this pattern and, in many

cases, they provide syntactic facilities (like data types

definitions in Haskell [19]). Existing mechanisms such as

function definitions or operators with user-defined syntax

are used to build objects, combinators and transformers

for the resulting DSL. The syntactic mechanisms of the

base language are used to express the idiom of the

domain. The objects defined in the DSL represent both

abstract ideas and their concrete implementation.

Sample code

We present a concrete example where the pattern is applied.

We give sample codes for some of the structures and elements

defined. Additionally, the language is extended to see how this

is achieved.
The Feature Description Language* (FDL*)[11] is the result

of a new domain analysis from FDL [16]. FDL is a tex-

tual language derived from feature diagrams [3], which is a

technique used in Feature Oriented Domain Analysis (FODA)

[10]. It describes the composition of application domains and

captures their variable parts. For more information about FDL

the reader can see the original paper [16]. FDL* restates the

semantics of FDL by using an algebraic model. We describe

FDL* constructions from a combinators point of view. The

result is almost the same as the one obtained with algebraic

models [11] because it follows the same domain analysis.
In FDL*, the main idea is to represent features of a given

system, so the most important and basic element of the

domain is the feature, which has its name as a property. It

is a basic solution and we define it by using the constructor

atomic : String → Feature. There is also a special element in

the domain that represents a null feature, represented as null
: Feature.
The ways to combine the features and generate new ones

are given below as function signatures.

opt : Feature → Feature

an optional feature

all : Feature ∗ Feature → Feature

two mandatory features

one-of : Feature ∗ Feature → Feature

two alternative features

more-of : Feature ∗ Feature → Feature
a non-exclusive selection

feature name : Feature
the name of a composite feature that appears else-

where and is replaced by its definition.

We describe an implementation of FDL* into the pure

object-oriented programming language Smalltalk. We decided

to use the compiler generator implementation approach [13]

by using a tool called SmaCC, which is a Yacc-based compiler

generator. The semantics of FDL was easy to define follow-

ing the design results. Figure 3 shows the representation of

features in terms of a class hierarchy. A system description

is composed by several composite feature definitions (at least

one). We describe the different definitions by simple equations

where the left-hand side of each one is the name of the

composite feature and the right-hand side is the composite

feature itself. The definition name could appear inside other

feature definitions, or it is the main feature definition that

PABLO ANDRÉS BARRIENTOS ET. AL: DEVELOPING DSLS USING COMBINATORS 639

Feature

AtomicOptional BinaryFeature

OneOf MoreOf

Null

All

-feature1

-feature2

-feature

Fig. 3. Representation of features using a class hierarchy

does not appear anywhere. By convention, the main feature

description (the one describing the whole system) is placed

first in the specification. An example of a system configuration

for a typical rock band is given in Figure 4.

In the original definition of FDL there is an implicit

transformer that joins all feature definitions into one,

returning a regular form of a program. We define it as:

regularForm: list of Feature → Feature. This transformer

replaces occurrences of named features by their definition,

and gives evidence of the compositional semantics of features.

This transformer and the ones defined later serve as a guide

in the language implementation — they do not form part of

the object language.

This transformer is implemented as a method over the class

hierarchy of Figure 3 following the Composite pattern. The

FDL* parser creates an instance of the class SpecConstructor

with all the definitions and passes the rest of the definitions

to the first one. The main feature receives the rest of the

definitions and makes regularForm work.

The parser definition is given in Figure 7. The class for

representing named features is not necessary because they are

automatically replaced by the corresponding definition.

Once the regular form is obtained, it can be obtained the

disjunctive normal form (DNF) which, when different from

null or atomic features, has a structure described by:

one-of







all(A11
,. . . ,A1n

)
...

all(Amn
,. . . ,Amn

)







The DNF gives the user all possible configurations for

the system. To get the DNF, it is necessary to define dnf :

Feature → Feature. In Figure 5 it can be seen the definition

for dnf transformer, giving equations for the different cases

of features. As a consequence of the recursive structure of

features, the transformer is also defined recursively.

The equations given in Figure 5 guide the implementation of

static semantics of the language. These equations are translated

to different dnf method definition in the features hierarchy of

Figure 3. As a short example, the dnf method definition for

one-of features is:

OneOf>>dnf

self feature1: self feature1 dnf.

self feature2: self feature2 dnf.

Expressions in DNF may have repeated features. For that

reason, we define a normalized version of every feature in dis-

junctive normal form, that allows to remove those unnecessary

duplications. A feature expression f is normalized if it has the

following form:

one-of







all(A11
,. . . ,A1n

)
...

all(Amn
,. . . ,Amn

)







where Aij
6= Aik

for j, k ∈ {1, . . . , in} and i 6= j

and all(Ai1 ,. . . ,Ain
) 6= all(Aj1 ,. . . ,Ajn

) for

i, j ∈ {1, . . . , m} and i 6= j

In this case, the equations that define normalize, the trans-

former of features in disjunctive normal form, are shown in

Figure 6.

In the Smalltalk implementation, this transformer is defined

in the classes All, Atomic, Null and OneOf. Bellow is an

example of code for the case of all features:

All>>normalize

| temp res y |
temp:= self feature1 allsToList.

y := self feature2 allsToList.

res := self remDupsInList: temp and:y.

self become: (self createAllTreeFrom: res).

All>>allsToList

| res |
res := OrderedCollection withAll:

self feature1 allsToList.

res addAll: self feature2 allsToList.

ˆ res

640 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

rockband = all vocals (all strings (all percussion opt(atomic keyboard)))
vocals = all (atomic singer) (opt (atomic chorus))

strings = more-of (atomic guitar) (atomic bass)

percussion = all (atomic drums) (opt (atomic tambourine))

Fig. 4. Specification of a basic rock band configuration

dnf null = null

dnf (atomic f) = atomic f

dnf (opt f) = one-of null f
dnf (one-of f1 f2) = one-of (dnf f1) (dnf f2)

dnf (more-of f1 f2) = one-of (dnf f1) (one-of (dnf (all (dnf f1) (dnf f2))) (dnf f2))
dnf (all f1 f2) = distribute (all (dnf f1) (dnf f2))

distribute (all (one-of f11 f12) f2) = one-of (distribute (all f11 f2)) (distribute (all f12 f2))

distribute (all f1 (one-of f21 f22)) = one-of (distribute (all f1 f21)) (distribute (all f1 f22))
distribute f = f -- f being different from an all feature

Fig. 5. Transformer definition for obtaining the disjunctive normal form

normalize Null = Null

normalize (Atomic f) = Atomic f
normalize (All f1 f2) = allsFromList (remDupsInList

(allsToList f1 ++ allsToList f2))
normalize (OneOf f1 f2) = oneOfsFromList (remDupsInList

(oneOfsToList normalize f1 ++

oneOfsToList normalize f2))
allsToList Null = {}
allsToList (Atomic f) = {Atomic f}
allsToList (All f1 f2) = (allsToList f1) ++ (allsToList f2)

oneOfsToList Null = {Null}
oneOfsToList (Atomic f) = {Atomic f}
oneOfsToList (All f1 f2) = {All f1 f2}
oneOfsToList (OneOf f1 f2) = (oneOfsToList f1) ++ (oneOfsToList f2)

allsFromList xs = treeFromList All xs

oneOfsFromList xs = treeFromList OneOf xs

treeFromList n {} = Null
treeFromList n {f} = f

treeFromList n (f1:fs) = n f1 (treeFromList n fs)

remDupsInList {} = {}
remDupsInList (x:xs) = if x ‘elem‘ xs then remDupsInList xs

else x: remDupsInList xs

Fig. 6. Transformer equations for obtaining the normalized form

All>>remDupsInList: aFeatureList

and: otherfeatureList

| res |
res :=OrderedCollection new.

aFeatureList do:[:f | (res includes: f)

ifFalse:[res addLast:f]].

otherfeatureList do:[:f | (res includes: f)

ifFalse:[res addLast:f]].

ˆ res

Atomic>>allsToList

ˆ OrderedCollection with: self.

Null>>allsToList

ˆ OrderedCollection new.

Finally, we can restrict all possible configuration by using

constraints. We do not give sample codes from this feature,

but we define it just to define completely the language.

A constraint could be one of the following, defined by

combinators:

requires : AtomicFeature ∗ AtomicFeature

→ Constraint

a diagram constraint establishing that if the first

PABLO ANDRÉS BARRIENTOS ET. AL: DEVELOPING DSLS USING COMBINATORS 641

feature is present, then the second one should also

be present.

excludes : AtomicFeature ∗ AtomicFeature

→ Constraint

a diagram constraint establishing that if the first

feature is present, then the second one should not

be present.

include : AtomicFeature → Constraint

a user constraint establishing that the feature should

be present.

exclude : AtomicFeature → Constraint
a user constraint establishing that the feature should

not be present.

Note that AtomicFeatures can be represented as simple

strings.

The following constraint definitions can be added to the

feature specification of Figure 4: bass requires drums,

include guitar, include drums. Observe that infix notation

is used, for clarity.

Part of the final SmaCC specification (which includes con-

straints) can be seen in Figure 7. The designer could make an

adjustment of language constructs, to adapt them to a more

convenient and familiar writing style for end-users or just to

make implementation less costly.

To give an example of language extension by using com-

binators, we extend the FDL* language, as suggested in the

original FDL paper [16], by adding boolean expressions as

constraints, associating numeric values with atomic features

(e.g., HorsePower = 75), and adding relational operators

(e.g., HorsePower > 100).

We define the constructor numberedFeature : Feature

∗ Number → Feature. Note that this constructor gives

a feature as the result. It implies that these new kinds of

features are added in FDL* basic semantics and they can

be used in the same way as old feature forms. Of course,

the designer must analyze if this modification alters the

original semantics. In the Smalltalk implementation this kind

of feature is simply a new class in the hierarchy of Figure 3.

For the new forms of constraints, we define the following

constructors (that are actually combinators):

&& : Constraint ∗ Constraint → Constraint
‖ : Constraint ∗ Constraint → Constraint

¬ : Constraint → Constraint

−> : Constraint ∗ Constraint → Constraint

= : AtomicFeature ∗ Number → Constraint

> : AtomicFeature ∗ Number → Constraint
< : AtomicFeature ∗ Number → Constraint

The meaning of the new elements is self evident. As new

features are evaluated into booleans, they can be assimilated

by the original semantics of features. As new features are

evaluated into booleans, they can be assimilated by the original

semantics of features. In addition, infix notation can be used

for clarity in some of the new combinators.

Known uses

Combinators pattern were widely used in functional pro-

gramming. Here we present briefly some examples:

Hallgren and Carlsson described a toolkit for the construc-

tion of GUIs based on fudgets (functional widgets) and a set of

combinators (serial and parallel combinations and loops) [7].

John Hughes described the design of a pretty-printing

library using combinators. The author concentrates on two

ways of transforming a formal algebraic specification into an

implementation, starting with simple examples and working

up to the library [9].

Haskore is a collection of Haskell modules designed for

expressing musical structures. In Haskore, musical objects

consist of primitive notions such as notes, operations to

transform musical objects such as transpose and tempo-

scaling, and operations to combine musical objects, such as

concurrent and sequential composition. [8]

Lava is a tool to assist circuit designers in specifying,

designing, verifying and implementing hardware. The circuits

and the way they are built are described using combinators [1].

HaXML is a collection of utilities for parsing, filtering,

transforming, and generating XML documents using Haskell

based on combinators [18].

WASH is a family of EDSLs for server-side web scripting

with sessions, compositional forms, and graphics that it is

implemented as a combinators library [15].

Many authors have written about parsing combinators
in functional programming. The work of Fokker defining a
combinators library is such an example, written in Haskell [5].
But functional languages are not the only ones that were
used for writing parser combinators. A good example is
a sourceforge project called Spirit [4]. Spirit is an object-
oriented recursive descent parser framework implemented
using template meta-programming techniques [3][17]. It
consists of a set of basic parsers and parser combinator which
enables a target grammar to be written exclusively in C++.
Parser objects are composed through operator overloading and
the result is a backtracking, top down parser that is capable
of parsing rather ambiguous grammars. As an example, a
short part of a Pascal language parser definition is:

program = programHeading >> block >> DOT;

programHeading = PROGRAM >> identifier >>

LPAREN >> fileIdentifier >>

*(COMMA >> fileIdentifier) >>

RPAREN >> SEMI;

fileIdentifier = identifier;

block= *(labelDeclarationPart

| constantDefinitionPart

| typeDefinitionPart

| variableDeclarationPart

| procedureAndFunctionDeclarationPart)

>> statementPart;

Luca Cardelli and Rowan Davies developed a system for

web computing in Java using combinators [2]. They defined

several combinators and the language was implemented using

the object-oriented language Java.

642 PROCEEDINGS OF THE IMCSIT. VOLUME 4, 2009

%right "all";

%right "one_of" "more_of";

Diagram: Feature_Definitions ’dl’ ConstraintsDefinitions ’cs’

{SpecConstructor new: dl constraints: cs}
ConstraintsDefinitions: {OrderedCollection new}

| "Constraints:" Feature_constraints ’cs’ {cs};
Feature_Definitions: {OrderedCollection new}

| Feature_Definitions Feature_definition {’1’ add: ’2’; yourself};
Feature_definition: <identifier> ’name’ "=" Feature_expression ’f’

{Definition new: name value feature: f};
Feature_expression: "atomic" <identifier> ’name’ {Atomic new: name value}

| <identifier> ’name’ {name value}
| "opt" "(" Feature_expression ’f’ ")" {Optional new: f}
| "one-of" Feature_expression ’f1’ Feature_expression ’f2’

{OneOf new:f1 and:f2}
...

Feature_constraints: {OrderedCollection new}
| Feature_constraints Feature_constraint {’1’ add: ’2’;yourself}
| Feature_constraints Feature_constraint "," {’1’ add: ’3’;yourself};

Feature_constraint: <identifier> ’s1’ "requires" <identifier> ’s2’

{Requires new: s1 value with: s2 value}
| "include" <identifier> ’s1’ {Include new: s1 value}
...

Fig. 7. Final SmaCC specification for FDL language parser

Related patterns

This pattern is related with the pattern for functional

programming implementation [14] and with the Composite

pattern [6] from object-oriented programming in the way they

describe elements from the domain that have compositional

semantics.

ACKNOWLEDGMENTS

We thank Marjan Mernik for his careful reading and com-

ments in an advanced version of the paper.

REFERENCES

[1] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
hardware design in Haskell. In Proceedings of the third ACM SIGPLAN
international conference on Functional programming, pages 174–184.
ACM Press, 1998.

[2] Luca Cardelli and Rowan Davies. Service combinators for web com-
puting. Software Engineering, 25(3):309–316, 1999.

[3] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,

Tools and Applications. Addison-Wesley, 2000.
[4] Joel de Guzman. Spirit — parser combinators for C++. http://spirit.

sourceforge.net/.
[5] J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors,

Advanced Functional Programming: 1st International Spring School on

Advanced Functional Programming Techniques, pages 1–23. Springer,
Berlin, 1995.

[6] E. Gamma, R. Helm, and R. Johnson. Design Patterns. Elements of

Reusable Object-Oriented Software. Professional Computing Series.
Addison-Wesley, 1995.

[7] T. Hallgren and M. Carlsson. Programming with Fudgets. In J. Jeuring
and E. Meijer, editors, Advanced Functional Programming: 1st

International Spring School on Advanced Functional Programming
Techniques, pages 137–182. Springer, Berlin, 1995.

[8] Paul Hudak. Haskore music tutorial. In Advanced Functional

Programming, Second International School-Tutorial Text, pages 38–67.
Springer-Verlag, 1996.

[9] John Hughes. The design of a pretty-printing library. In Advanced

Functional Programming, First International Spring School on

Advanced Functional Programming Techniques-Tutorial Text, pages
53–96. Springer-Verlag, 1995.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Eng. Institute, Carnegie Mellon
University, November 1990.

[11] Pablo E. Martı́nez López and Jerónimo Irazábal. An algebra
for describing features. In Proceedings of the XXXI Conferencia
Latinamericana de Informtica (CLEI’05), October 2005.

[12] Brian McNamara and Yannis Smaragdakis. Functional Programming
in C++ using the FC++ library. SIGPLAN Notices, 36(4):25–30, 2001.

[13] M. Mernik, J. Heering, and A. Sloane. When and how to develop
domain-specific languages. Technical report, University of Maribor,
CWI Amsterdam, and Macquarie University, 2003.

[14] P. Mocciola and Pablo E. Martı́nez López. Design patterns for
functional programming. In 3rd Latin-American Conf. on Functional

Programming, 1999.
[15] Peter Thiemann. WASH/CGI: Server-Side Web Scripting with Sessions

and Typed, compositional forms. In PADL, pages 192–208, 2002.
[16] Arie van Deursen and Paul Klint. Domain-specific language design

requires feature descriptions. Journal of Computing and Information

Technology, 10(1):1–17, 2002.
[17] T. Veldhuizen. Using C++ template metaprograms. C++ Report,

7(4):36–43, May 1995.
[18] Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or

type-based translation? In: Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming (ICFP‘99).
Volume 34–9., N.Y., ACM Press (1999) 148–159

[19] Jones, S. P., (editors), J. H.: Haskell 98: A non-strict, purely functional
language. http://www.haskell.org/onlinereport/ (February 1999)

