
The Intensional Lambda Calculus?

Sergei Artemov1 and Eduardo Bonelli2

1 Graduate Center CUNY, PhD Program in Computer Science, 365 Fifth Ave., New
York, NY 10016, U.S.A., sartemov@gc.cuny.edu

2 LIFIA, Fac. de Informática, UNLP, Argentina and CONICET,
eduardo@lifia.info.unlp.edu.ar

Abstract. We introduce a natural deduction formulation for the Logic
of Proofs, a refinement of modal logic S4 in which the assertion 2A
is replaced by [[s]]A whose intended reading is “s is a proof of A”. A
term calculus for this formulation yields a typed lambda calculus λI that
internalises intensional information on how a term is computed. In the
same way that the Logic of Proofs internalises its own derivations, λI

internalises its own computations. Confluence and strong normalisation
of λI is proved. This system serves as the basis for the study of type
theories that internalise intensional aspects of computation.

1 Introduction

This paper introduces a typed lambda calculus that internalises its own com-
putations. Such a system is obtained by a propositions-as-types [GLT89] inter-
pretation of a logical system for provability which internalises its own proofs,
namely the Logic of Proofs LP [Art95,Art01]. Proofs are represented as com-
binatory terms known as proof polynomials. In the minimal propositional logic
fragment of LP proof polynomials are constructed from proof variables and con-
stants using two operations: application “·” and proof-checker “!”. The usual
propositional connectives are augmented by a new one: given a proof polyno-
mial s and a proposition A build [[s]]A. The intended reading is: “s is a proof of
A”. The axioms and inference schemes of LP are:

A0. Axiom schemes of minimal logic in the language of LP
A1. [[s]]A ⊃ A “verification”
A2. [[s]](A ⊃ B) ⊃ ([[t]]A ⊃ [[s · t]]B) “application”
A3. [[s]]A ⊃ [[!s]][[s]]A “proof checker”
R1. Γ ` A ⊃ B and Γ ` A implies Γ ` B “modus ponens”
R2. If A is an axiom A0-A3, and c is a proof constant,

then ` [[c]]A
“necessitation”

For verification one reads:“if s is a proof of A, then A holds”. As regards the
proof polynomials the standard interpretation is as follows. For application one
reads: “if s is a proof of A ⊃ B and t is a proof of A, then s · t is a proof of B”.
Thus “·” represents composition of proofs. For proof checking one reads: “if s is
a proof of A, then !s is a proof of the sentence ‘s is a proof of A’ ”. Thus !s is
seen as a computation that verifies [[s]]A.
? Extended report of LFCS07 submission. Version of: December 28, 2006

First we introduce a natural deduction (ND) formulation LP−nd for LP.
Following recent work on judgemental reconstruction [ML83] of intuitionistic
S4 [DP96,DP01b,DP01a], judgements are introduced in which a distinction is
made between propositions whose truth is assumed from those whose validity is
assumed. Judgements in LP−nd are of the form:

v1 : A1 valid , . . . , vn : An valid ; a1 : B1 true, . . . , am : Bm true ` A true | s

which expresses “s is evidence that A is true, assuming that for each i ∈ 1..n, vi

is evidence that Ai is valid and assuming that for each j ∈ 1..m, aj is evidence
that Bj is true”. Such judgements are called hypothetical judgements [ML83].
Evidence s is a constituent part of the judgement without which the proposed
reading is no longer possible. Its importance is reflected in the following intro-
duction rule for the [[s]] connective:

∆; · ` A | s
2I

∆; Γ ` [[s]]A |!s

This scheme internalises proofs of validity: If s is evidence that A is uncondition-
ally true (“·” indicates an empty set of hypothesis of truth), then it is true that
s is a proof of A. The new witness to this fact is registered as the evidence !s.
The “!” operator is reminiscent of that of proof polynomials. However, in LP−nd ,
proof terms such as s encode ND derivations and thus are no longer the proof
polynomials of LP.

At the basis of the meaning of hypothetical judgements (provided by the
axioms and inference schemes presented in Sec. 2) is the notion of substitution.
The following two principles, the Substitution Principle for Truth with Evidence
and the Substitution Principle for Validity with Evidence, reflect the true hypo-
thetical nature of hypothesis.

– If ∆;Γ ` A | s and ∆;Γ, a : A,Γ ′ ` B | t, then ∆;Γ, Γ ′ ` B | tas
– If ∆; · ` A | s and ∆, v : A,∆′;Γ ` B | t, then ∆, ∆′;Γ ` Bv

s | tvs

These principles allow derivations to be composed, a fundamental operation
on which the process of normalisation of derivations relies on. In fact, composi-
tion of derivations suffices, in general, to formulate rules for eliminating redun-
dancy in derivations. However, the fact that LP−nd internalises its own proofs
presents a complication in this respect. For example, the näıve normalisation
step depicted in Fig. 1 which relies on the Substitution Principle for Truth with
Evidence fails given that it modifies the judgement that was originally justified.
On a more pragmatical level, such a normalisation process may produce invalid
derivations. Consider the following derivation

v : A; a : A ` A | a
⊃ I

v : A; · ` A ⊃ A | λa : A.a v : A; · ` A | v
⊃ E

v : A; · ` A | (λa : A.a) · v
2I

v : A; · ` [[(λa : A.a) · v]]A |!((λa : A.a) · v)

∆; Γ, a : A ` B | s
⊃ I

∆; Γ ` A ⊃ B | λa : A.s ∆; Γ ` A | t
⊃ E

∆; Γ ` B | (λa : A.s) · t

; ∆; Γ ` B | sa
t

Fig. 1. Näıve simplification

If the normalisation step of Fig. 1 were applied to the subderivation ending in
the judgement v : A; · ` A | (λa : A.a) · v, then the application of 2I in the
resulting derivation would not be valid.

The problem stems in that the normalisation step is attempting to identify,
at the meta-level, the two derivations and LP−nd happens to internalise its own
derivations. As a consequence, the normalisation step must be reflected in the
logic too. More precisely, a new judgement expressing the equality on evidence
must be introduced. Accordingly, in Sec. 2.2 we extend our ND presentation
LP−nd with hypothetical judgements for evidence equality. The normalisation pro-
cess is thus internalised into the logic. For this amended system, LPnd , the set
of derivations is seen to be closed under normalisation.

In Sec. 3 we study a term assignment for LPnd , namely the intensional
lambda calculus (λI). λI results from extending the propositions-as-types cor-
respondence to LPnd . The normalisation process of derivations in LPnd yields
a notion of reduction on the typed lambda calculus terms. Just as LPnd inter-
nalises its own derivations, the operational counterpart of this logic is seen to
internalise the reduction of derivations. We show that λI is strongly normalising
and confluent by applying properties of higher-order rewrite systems.

Related work. S. Artemov introduced the Logic of Proofs in [Art95,Art01].
A ND presentation for LP is provided in [Art01]. This presentation relies on
combinatory terms as proof terms (proof polynomials). It is a ND system for
a logic that internalises Hilbert style proofs. As a consequence, the presence of
normalisation is not felt at the level of proof terms. Since we use proof terms
that encode ND proofs, the internalisation scheme implemented by 2I together
with the normalisation process on derivations has a visible impact in the design
of the inference schemes for our system LPnd .

V. Brezhnev [Bre01] formulates a system of labeled sequents. Roughly, a
refinement of the sequent presentation of LP [Art01] is presented in which la-
beled sequents are derived rather than the sequents themselves. It has been
proved [Art95,Art01] that LP is a refinement of S4 in the sense that any cut-
free derivation of S4 can be realized by one of LP. A realization of an S4
derivation is the process of appropriately filling in all occurrences of boxes 2

with proof polynomials such that a valid LP derivation is obtained. The aim of
the work of Brezhnev is to make this correspondence explicit. Also, he extends
the correspondence to other modal logics such as K, K4, D, D4 and T.

From a type theoretic perspective we should mention the theory of dependent
types [Bar92]. Dependent type theory is the type-theoretic counterpart of first-

order logic via the propositions-as-types correspondence. Types may depend on
terms, in much the same way that a type [[s]]A depends on the proof term s.
In contrast to λI, dependent type theory lacks a notion of internalisation of
derivations.

More closely related to λI is the reflective λ-calculus (λ∞) [AA01]. λ∞ is a
rigidly typed (all variables and subterms carry a fixed type) lambda calculus
which essentially results from a term assignment of the aforementioned ND pre-
sentation of [Art01]. The difference with the approach of this paper is that in
the reflective λ-calculus [[s]]A is read as “s has type A”. Accordingly, hypothesis
are not labeled with variables, rather they are part of the formula. For exam-
ple, x : A ` x : A becomes [[x]]A ` [[x]]A. An unwanted complication is that
the desired internalisation property (namely, A1, A2, . . . , An ` B implies that
for fresh variables x1, x2, . . . , xn there exists a term t(x1, x2, . . . , xn) such that
[[x1]]A1, [[x2]]A2, . . . , [[xn]]An ` [[t(x1, x2, . . . , xn)]]B) changes the types of the as-
sumptions. As a consequence, operations on types having nested copies of proof
terms are required for typing. This also complicates the definition of reduction
on terms.

2 Natural Deduction for LP

Following [DP01b] we distinguish the following judgements: “A is a proposition”
(“A proposition” for short), “A true” and “A valid”. In the case of the second
and third judgements we assume that it is already known that “A proposition”.
The inference schemes defining the meaning of “A proposition” are the usual
well-formedness conditions and hence are omitted. For example, in the case of
“A ⊃ B proposition” we have the inference scheme:

A proposition B proposition

A ⊃ B proposition

Our interest lies in providing meaning to the following hypothetical judgements
with explicit evidence:

v1 : A1 valid , . . . , vn : An valid ; a1 : B1 true, . . . , am : Bm true ` A true | s

by a set of axiom schemes and inference schemes, where vi, i ∈ 1..n, and aj , j ∈
1..m, range over some given some set of evidence (of proof) variables {x1, x2, . . .}.
To the left of the semi-colon we place the assumptions of validity and to the
right the assumptions of truth. For the sake of readability, we drop the qualifiers
“valid” and “true”. Consequently, these judgements take the form:

v1 : A1, . . . , vn : An; a1 : B1, . . . , am : Bm ` A | s

In addition to the usual requirement that the vi and ai be distinct, we must also
require that they be fresh (i.e. that they do not occur in the Ai and Bi). We
refer to this as the labeling condition. Also, since we assume J1 through Jn, in a
hypothetical proof of a hypothetical judgement with explicit evidence, we may

use the Ji as if we knew them. As a consequence we can substitute an arbitrary
derivation of Ji for all its uses by means of the two aforementioned substitution
principles. Once we have established the meaning of hypothetical judgements
with explicit evidence we shall in fact be able to prove these principles.

2.1 Axiom and Inference Schemes

It is convenient to introduce first a preliminary ND system (LP−nd), point out its
weaknesses and then introduce the final ND system LPnd . We begin by defining
the set of Proof Terms, Propositions, Truth Contexts and Validity Contexts.

Proof Terms s ::= x | s · s | λa : A.s | !s | Xtrt sas v : A in s
Propositions A ::= P | A ⊃ A | [[s]]A
Truth Contexts Γ ::= · | Γ, a : A
Validity Contexts ∆ ::= · | ∆, v : A

We write fv(s) for the set of free variables of a proof term. All free occurrences
of a (resp. v) in s are bound in λa : A.s (resp. Xtrt tas v : A in s). A propo-
sition is either a propositional variable P , an implication A ⊃ B or a validity
proposition [[s]]A. Truth and validity contexts are sequences of labeled proposi-
tions; “·” denotes the empty context. We write sx

t for the result of substituting
all free occurrences of x in s by t and assume that bound variables are renamed
whenever necessary; likewise for Ax

t .

Definition 1. LP−nd is defined by the schemes of Fig. 2.

An informal explanation of some of these schemes follows. The axiom scheme
oVar states that the judgement “∆;Γ, a : A,Γ ′ ` A | a” is evident in itself.
Indeed, if we assume that a is evidence that proposition A is true, then we
may immediately conclude that A is true with evidence a. Likewise, the mVar
inference scheme states that if we assume that v is evidence that proposition A
is valid, then we may use this evidence to immediately conclude that A is true.
The inference schemes ⊃ I and ⊃ E are standard. The introduction scheme for
the [[s]] modality internalises metalevel evidence into the object logic. It states
that if s is unconditional evidence that A is true, then A is in fact valid with
witness s (i.e. [[s]]A is true). Evidence for the truth of [[s]]A is constructed from
the (verified) evidence that A is unconditionally true by prefixing it with a bang
constructor. Finally, 2E allows the discharging of validity hypothesis. In order
to discharge the validity hypothesis v : A, a proof of the validity of A is required.
In our system, this requires proving that [[r]]A is true with evidence s, for some
evidence of proof r and s. Note that r is evidence that A is unconditionally true
(i.e. valid) whereas s is evidence that [[r]]A is true. The former is then substituted
in the place of all free occurrences of v in the proposition C. This construction
is recorded with evidence Xtrt sas v : A in t in the conclusion. The mnemonic
symbols “Xtrt” stand for “extract” since, intuitively, evidence of the validity of
A may be seen to be extracted from evidence of the truth of [[r]]A. Two examples
of derivations in LP−nd follow. The first one proves [[s]]A ⊃ A.

Minimal Propositional Logic Fragment

oVar
∆; Γ, a : A, Γ ′ ` A | a

∆; Γ, a : A ` B | s
⊃ I

∆; Γ ` A ⊃ B | λa : A.s

∆; Γ ` A ⊃ B | s ∆; Γ ` A | t
⊃ E

∆; Γ ` B | s · t

Provability Fragment

mVar
∆, v : A, ∆′; Γ ` A | v

∆; · ` A | s
2I

∆; Γ ` [[s]]A |!s

∆; Γ ` [[r]]A | s ∆, v : A; Γ ` C | t
2E

∆; Γ ` Cv
r | Xtrt sas v : A in t

Fig. 2. Explanation for Hypothetical Judgements with Explicit Evidence

oVar
·; a : [[s]]A ` [[s]]A | a

mVar
v : A; a : [[s]]A ` A | v

2E
·; a : [[s]]A ` A | Xtrt aas v : A in v

⊃ I
·; · ` [[s]]A ⊃ A | λa : [[s]]A.Xtrt aas v : A in v

The second example proves [[s]]A⊃[[!s]][[s]]A.

oVar
·; a : [[s]]A ` [[s]]A | a

mVar
w : A; · ` A | w

2I
w : A; · ` [[w]]A |!w

2I
w : A; a : [[s]]A ` [[!w]][[w]]A |!!w

2E
·; a : [[s]]A ` [[!s]][[s]]A | Xtrt aasw : A in !!w

⊃ I
·; · ` [[s]]A ⊃ [[!s]][[s]]A | λa : [[s]]A.Xtrt aasw : A in !!w

The standard structural properties of judgements (exchange, weakening and
contraction) hold. Also, the substitution principles for truth with evidence and
validity with evidence may be proved by induction on the derivation.

Lemma 1. Some Properties of Judgements in LP−nd

1. (Exchange) If ∆, u : A, v : B,∆′;Γ ` C | s, then ∆, v : B, u : A,∆′;Γ ` C |
s.

2. (Exchange) If ∆;Γ, a : A, b : B,Γ ′ ` C | s, then ∆;Γ, b : B, a : A,Γ ′ ` C | s.
3. (Weakening) If ∆, ∆′;Γ ` A | s, then ∆, v : B,∆′;Γ ` A | s.
4. (Weakening) If ∆;Γ, Γ ′ ` A | s, then ∆;Γ, a : B,Γ ′ ` A | s.
5. (Contraction) If ∆, u : A, v : A,∆′;Γ ` A | s, then ∆, w : A,∆′;Γ ` Au,v

w |
su,v

w for w fresh.

6. (Contraction) If ∆;Γ, a : A, b : A,Γ ′ ` A | s, then ∆;Γ, c : A,Γ ′ ` A | sa,b
c

for c fresh.
7. If ∆;Γ ` A | s and ∆;Γ, a : A,Γ ′ ` B | t, then ∆;Γ, Γ ′ ` B | tas .
8. If ∆; · ` A | s and ∆, v : A,∆′;Γ ` B | t, then ∆, ∆′;Γ ` Bv

s | tvs .

A more interesting property is that LP−nd internalises its own proofs of un-
conditional truth.

Lemma 2 (Lifting [Art95]). Let ∆ = u1 : A1, . . . , un : An and Γ = b1 :
B1, . . . , bm : Bm. If ∆;Γ ` A | r, then ∆, v1 : B1, . . . , vm : Bm; · ` [[s(u,v)]]A |
t(u,v) where s(u,v) = (λb : B.r) · v1 · v2 · . . . · vm and t(u,v) = Xtrt !λb :
B.r asu : (B ⊃ A) in !(u · v1 · v2 . . . · vm).

Proof. Let ∆; · ` [[λb : B.r]](B ⊃ A) |!λb : B.r be the judgement obtained from
∆;Γ ` A | r by passing all truth assumptions from the left of the turnstile to
the right of the turnstile using ⊃ I and then applying 2I once. If Γ is empty,
then we conclude by taking s(u,v) = λb : B.r = r and t(u,v) =!λb : B.r =!r.
Otherwise, by weakening we may further obtain a derivation of

∆, v1 : B1, . . . , vm : Bm; · ` [[λb : B.r]](B ⊃ A) |!λb : B.r (1)

Note also that the judgement

∆, v1 : B1, . . . , vm : Bm, u : (B ⊃ A); · ` [[u · v1 · v2 . . . · vm]]A |!(u · v1 · v2 . . . · vm)

is derivable. Thus we may conclude with an application of 2E and deduce that

s(u,v) = (. . . ((((λb : B.r) · v1) · v2) · . . . · vm

t(u,v) = Xtrt !λb : B.r asu : (B ⊃ A) in !(u · v1 · v2 . . . · vm)

An example of the derivation of (1) alluded to above in the case Γ = B is:

∆, v : B; · ` [[λb : B.r]]B ⊃ A |!λb : B.r

∆, v : B, u : B ⊃ A; · ` A | u · v
2I

∆, v : B, u : B ⊃ A; · ` [[u · v]]A |!(u · v)
2E

∆, v : B; · ` [[(λb : B.r) · v]]A | Xtrt !λb : B.r asu : (B ⊃ A) in !(u · v)

2.2 Normalisation and Evidence Equality

As mentioned above a näıve approach to normalisation is doomed to fail unless
our attempt to simplify (hence equate) derivations is reflected in the object logic.
Indeed, a new judgement must be considered, namely hypothetical judgements
for evidence equality :

∆;Γ ` s ≡ t : A

Read: “s and t are provably equal evidence of the truth of A under the validity
assumptions of ∆ and the truth assumptions of Γ”. This judgement internalises
at the object level the equality of derivations induced by the normalisation steps.
Note that evidence for provable equality is not considered in hypothetical judge-
ments for evidence equality. Although this could be an interesting route for

exploration, in our setting we would then be forced to define a notion of equality
on this new kind of evidence, thus leading to an infinite regression.

In addition to defining the meaning of this new judgement by means of new
axiom and inference schemes, we must indicate how it affects the meaning of
hypothetical judgements with explicit evidence.

∆; Γ ` A | s ∆; Γ ` s ≡ t : A
EqEvid

∆; Γ ` A | t

The upper left judgement of EqEvid is called the minor premise and the one on the
right the major premise. Fig. 3 defines the meaning of hypothetical judgement
for evidence equality.

Definition 2. LPnd is obtained by augmenting the schemes of Fig. 2 with
EqEvid and the schemes of Fig. 3.

In the sequel we study hypothetical judgements derivable in LPnd . Note that
the structural properties of LP−nd extend to LPnd .

We now return to normalisation of derivations. Three groups of transforma-
tions of derivations are defined: principal contractions, principal expansions and
silent permutative contractions. The first two are internalised by the inference
schemes defining provable equality of evidence. Permutative conversions need
not be internalised since, in contrast to principal contractions, they do not alter
the end judgement. They are thus dubbed silent permutative conversions. By
defining an appropriate notion of cut segment (Def. 7) we show that contraction
is weakly normalising: there is a sequence of contractions to normal form. More
importantly, we shall see shortly that contraction is in fact strongly normalising.
The proof of this is established via weak normalisation.

Definition 3.

1. Principal Contractions for LPnd .
– Principal contraction for ⊃

∆; Γ, a : A ` B | s
⊃ I

∆; Γ ` A ⊃ B | λa : A.s ∆; Γ ` A | t
⊃ E

∆; Γ ` B | (λa : A.s) · t
contracts to

π

∆; Γ ` B | sa
t

∆; Γ, a : A ` B | s ∆; Γ ` A | t
EqBeta

∆; Γ ` sa
t ≡ (λa : A.s) · t : B

EqEvid
∆; Γ ` B | (λa : A.s) · t

where π results from the Substitution Principle for Truth with Evidence.
– Principal contraction for 2.

Axiom Schemes

∆; Γ ` A | s
EqRefl

∆; Γ ` s ≡ s : A

∆; Γ, a : A ` B | s ∆; Γ ` A | t
EqBeta

∆; Γ ` sa
t ≡ (λa : A.s) · t : B

∆; · ` A | s ∆, v : A; Γ ` C | t
Eq2Beta

∆; Γ ` tv
s ≡ Xtrt !sas v : A in t : Cv

s

∆; Γ ` A ⊃ B | s a /∈ fv(s)
EqEta

∆; Γ ` λa : A.(s · a) ≡ s : A ⊃ B

∆; Γ ` [[s]]A | t u /∈ fv(t)
Eq2Eta

∆; Γ ` Xtrt tasu : A in !u ≡ t : [[s]]A

Inference Schemes For Equivalence

∆; Γ ` s ≡ t : A
EqSymm

∆; Γ ` t ≡ s : A

∆; Γ ` s1 ≡ s2 : A ∆; Γ ` s2 ≡ s3 : A
EqTrans

∆; Γ ` s1 ≡ s3 : A

Inference Schemes For Congruence

∆; Γ, a : A ` s ≡ t : B
Eq ⊃ I

∆; Γ ` λa : A.s ≡ λa : A.t : A ⊃ B

∆; Γ ` s1 ≡ s2 : A ⊃ B ∆; Γ ` t1 ≡ t2 : A
Eq ⊃ E

∆; Γ ` s1 · t1 ≡ s2 · t2 : B

∆; · ` s ≡ t : A
Eq2Il

∆; Γ `!s ≡!t : [[s]]A

∆; · ` s ≡ t : A
Eq2Ir

∆; Γ `!s ≡!t : [[t]]A

∆; Γ ` s1 ≡ s2 : [[r]]A ∆, v : A; Γ ` t1 ≡ t2 : C
Eq2E

∆; Γ ` Xtrt s1 as v : A in t1 ≡ Xtrt s2 as v : A in t2 : Cv
r

Fig. 3. Axiom and inference schemes for evidence equality

∆; · ` A | s
2I

∆; Γ ` [[s]]A |!s ∆, v : A; Γ ` C | t
2E

∆; Γ ` Cv
s | Xtrt !sas v : A in t

contracts to
π

∆; Γ ` Cv
s | tv

s

∆; · ` A | s ∆, v : A; Γ ` C | t
Eq2Beta

∆; Γ ` tv
s ≡ Xtrt !sas v : A in t : Cv

s
EqEvid

∆; Γ ` Cv
s | Xtrt !sas v : A in t

where π results from the Substitution Principle for Validity with Evi-
dence.

2. Expansions for LPnd .
– Principal expansion for ⊃. A derivation of the judgement

∆; Γ ` A ⊃ B | s

expands to
π

⊃ I
∆; Γ ` A ⊃ B | λa : A.(s · a)

∆; Γ ` A ⊃ B | s a /∈ fv(s)
EqEta

∆; Γ ` λa : A.(s · a) ≡ s : A ⊃ B
EqEvid

∆; Γ ` A ⊃ B | s
where π is

∆; Γ, a : A ` A ⊃ B | s ∆; Γ, a : A ` A | a
⊃ E

∆; Γ, a : A ` B | s · a
⊃ I

∆; Γ ` A ⊃ B | λa : A.(s · a)

and ∆;Γ, a : A ` A ⊃ B | s is obtained from ∆;Γ ` A ⊃ B | s by
Weakening.

– Principal expansion for 2. A derivation of the judgement

∆;Γ ` [[s]]A | t
expands to

∆; Γ ` [[s]]A | t

∆, v : A; · ` A | v
2I

∆, v : A; Γ ` [[v]]A |!v
2E

∆; Γ ` [[s]]A | r

∆; Γ ` [[s]]A | t v /∈ fv(t)
Eq2Eta

∆; Γ ` r ≡ t : [[s]]A
EqEvid

∆; Γ ` [[s]]A | t

where r is the proof term Xtrt tas v : A in !v. Note that ([[v]]A)v
s = [[s]]A

since, by the labeling condition, v may not occur in A.
3. Silent Permutative Contractions for LPnd .

– Silent Permutative Contractions for ⊃.

∆; Γ ` A1 ⊃ A2 | s ∆; Γ ` s ≡ t : A1 ⊃ A2

EqEvid
∆; Γ ` A1 ⊃ A2 | t ∆; Γ ` A1 | r

⊃ E
∆; Γ ` A2 | t · r

contracts to

∆; Γ ` A1 ⊃ A2 | s ∆; Γ ` A1 | r
⊃ E

∆; Γ ` A2 | s · r

π
Eq ⊃ E

∆; Γ ` s · r ≡ t · r : A2

EqEvid
∆; Γ ` A2 | t · r

where π is

∆; Γ ` s ≡ t : A1 ⊃ A2

∆; Γ ` A1 | r
EqRefl

∆; Γ ` r ≡ r : A1

Eq ⊃ E
∆; Γ ` s · r ≡ t · r : A2

– Silent Permutative Contractions for 2.

∆; Γ ` [[s1]]A | s2 ∆; Γ ` s2 ≡ r : [[s1]]A
EqEvid

∆; Γ ` [[s1]]A | r ∆, v : A; Γ ` C | t
2E

∆; Γ ` Cv
s1 | Xtrt r as v : A in t

contracts to

π1

2E
∆; Γ ` Cv

s1 | q

π2

Eq2E
∆; Γ ` q ≡ Xtrt r as v : A in t : Cv

s1
EqEvid

∆; Γ ` Cv
s1 | Xtrt r as v : A in t

where q is the proof term Xtrt s2 as v : A in t and π1 is

∆; Γ ` [[s1]]A | s2 ∆, v : A; Γ ` C | t
2E

∆; Γ ` Cv
s1 | Xtrt s2 as v : A in t

and π2 is

∆; Γ ` s2 ≡ r : [[s1]]A

∆, v : A; Γ ` C | t
EqRefl

∆, v : A; Γ ` t ≡ t : C
Eq2E

∆; Γ ` Xtrt s2 as v : A in t ≡ Xtrt r as v : A in t : Cv
s1

An Abstract Reduction System (ARS) is pair (A,→R) where A is a set and
→R⊆ A × A. When a →R b we say a reduces in one step (or simply reduces)
to b. We usually abbreviate an ARS (A,→R) with →R. We write �R for the
reflexive and transitive closure of →R and a →R when there exists b ∈ A such
that a →R b. Finally, we write |A| for the size of A (i.e. number of propositional
variables and connectives; the size of a propositional variable is 1).

Definition 4 (Weak and strong normalisation). An ARS →R is strongly
normalising if there does not exist a1, a2, . . . , an, . . . such that

a1 →R a2 →R a3 →R . . .

A →R-normal form is an element a ∈ A such that there does not exist b ∈ A
such that a →R b. An ARS is weakly normalising if for every a ∈ A there exists
a →R-normal form b such that a �R b.

Definition 5 (ARS induced by LPnd). The ARS induced by LPnd is (Π,→LP

), where Π is the set of all finite LPnd -derivations and π →LP π′ if π′ results
from π by applying either a principal or a silent permutative contraction.

Definition 6 (Segment). A segment of length n in a derivation π of LPnd

is a sequence ∆1;Γ1 ` A1 | s1, . . . ,∆n;Γn ` An | sn of judgements in π where
A1, . . . , An are occurrences of a “cut” formula A such that:

1. ∆i;Γi ` Ai | si (with i < n) is the minor premise of an application of EqEvid
and ∆i+1;Γi+1 ` Ai+1 | si+1 is the conclusion of this application.

2. ∆n;Γn ` An | sn is not the minor premise of an application of EqEvid.
3. ∆1;Γ1 ` A1 | s1 is not the conclusion of an application of EqEvid.

Definition 7 (Cut segment, rank, critical segment).

– A cut segment is a segment such that ∆n;Γn ` An | sn is the major premise
of an elimination scheme ⊃e or 2e and ∆1;Γ1 ` A1 | s1 is the conclusion
of an introduction scheme ⊃i or 2i, respectively.

– The rank of a cut segment is |A|. The rank of a derivation π is the maximum
of the ranks of the cut segments in π; if there are none, then the rank is zero.

– A cut segment is critical in π, sometimes abbreviated π-critical segment, if
its rank is that of π.

We now prove weak normalisation of (Π,→LP). We shall see in Sec. 3 that
in fact (Π,→LP) is strongly normalising. This shall be obtained by noting that
the contraction rules of Def. 3 define an orthogonal non-erasing second-order
rewrite system. As a consequence we may deduce that the ARS induced by
LPnd is strongly normalising from the fact that it is weakly normalising using
results from the literature on higher-order rewriting.

Proposition 1. (Π,→LP) is weakly normalising.

Proof. Define the size of a derivation π to be the pair (n, m) where:

– n is the rank of a critical cut segment in π and
– m is the sum of the lengths of critical cut segments in π.

Select a redex operating on a critical segment in π that is the rightmost and
uppermost in π. Let π′ be the derivation resulting from contracting this redex and
let (n′,m′) be the size of π′. In each case we may verify that (n, m) > (n′,m′):

– in the case of a principal contraction, two situations may arise (both of which
lead to (n, m) > (n′,m′)) depending on whether the last of the cut segments
whose rank is that of π is eliminated or not. We illustrate with the principal
contraction for ⊃. Suppose the selected redex is:

π1

∆; Γ, a : A ` B | s
⊃ I

∆; Γ ` A ⊃ B | λa : A.s

π2

∆; Γ ` A | t
⊃ E

∆; Γ ` B | (λa : A.s) · t

The selected critical segment has cut formula A ⊃ B and length one. Also,
there are no π-critical segments in π2 (for otherwise the selected redex would
not operate on a rightmost cut segment) nor in π1 (for otherwise the selected
redex would not operate on an uppermost cut segment). This redex contracts
to:

π3

∆; Γ ` B | sa
t

π1

∆; Γ, a : A ` B | s

π2

∆; Γ ` A | t
EqBeta

∆; Γ ` sa
t ≡ (λa : A.s) · t : B

EqEvid
∆; Γ ` B | (λa : A.s) · t

where π3 results from the Substitution Principle for Truth with Evidence.
Two situations are possible depending on whether there are or are not other
critical segments in π (apart from the one which is contracted). In the former
case n′ = n and m′ = m − 1 (note that new cut segments may have been
created in π3 however they are all of lower rank since |A| < |A ⊃ B| and π2

contains no π-critical segments); in the latter n′ < n.
– in the case of a silent permutative contraction, we have (n, m) > (n, m− 1).

For example, suppose the redex selected is

∆; Γ ` A1 ⊃ A2 | s

π1

∆; Γ ` s ≡ t : A1 ⊃ A2

EqEvid
∆; Γ ` A1 ⊃ A2 | t

π2

∆; Γ ` A1 | r
⊃ E

∆; Γ ` A2 | t · r
Note that there are no critical segments in π1 (for otherwise the selected
redex would not operate on an uppermost cut segment) nor are there any in
π2 (for otherwise the selected redex would not operate on a rightmost cut
segment). This redex contracts to

∆; Γ ` A1 ⊃ A2 | s

π2

∆; Γ ` A1 | r
⊃ E

∆; Γ ` A2 | s · r

π3

Eq ⊃ E
∆; Γ ` s · r ≡ t · r : A2

EqEvid
∆; Γ ` A2 | t · r

where π3 is

π1

∆; Γ ` s ≡ t : A1 ⊃ A2

π2

∆; Γ ` A1 | r
EqRefl

∆; Γ ` r ≡ r : A1

Eq ⊃ E
∆; Γ ` s · r ≡ t · r : A2

Notice that the length of the critical segment whose cut formula is A1 ⊃ A2

has decreased by one.

At some point a derivation πnf shall be attained which contains no more cut
segments. However, silent permutative contractions may still be applicable to
πnf . Thus, once such a πnf is achieved, we repeatedly apply silent permutative
contractions (which are easily seen to strictly decrease the sum of the lengths of
all segments). The resulting derivation shall be in →LP-normal form.

3 The Intensional Lambda Calculus

This section introduces the intensional lambda calculus (λI) and studies conflu-
ence and strong normalisation. We begin by defining the set of raw terms of
λI:

Proper Terms M ::= x | M ·M | λa : A.M
| !M | XtrtM as v : A inM | e I M

Reduction Evidence e ::= β([a : A]M, N) | β2([v : A]M, N)
| η(M) | η2(M)
| Refl(M) | Sym(e) | e; e
| Abs([a : A]e) | App(e, e) | BoxL(e) | BoxR(e) | xtrt(e, [v : A]e)

A raw term of the form M ·N is an application, λa : A.M is an abstraction, !M
is a bang term, XtrtM as v : A inN is an extraction and e I M is a registered
term. Reduction evidence β([a : A]M,N) is used to register that a principal
⊃ contraction was applied together with the actual parameters (λa : A.M and
N) and β2([v : A]M,N) is for principal 2 contractions. Similarly for η(M) and
η2(M) and η expansions. The remaining reduction evidence terms are for the
congruence inference schemes of evidence equality.

Let P range over an enumerable set of type variables. The set of raw types is
the set of propositions of LPnd . We recall them from Sec. 2.1 (s are ranges over
proof terms):

A ::= P | A ⊃ A | [[s]]A

In λI proper terms are assigned pointed types 〈A, s〉 and reduction evidence is
assigned equality types s ≡ t : A. Since the typing schemes follow the axiom and
inference schemes of LPnd , there are two typing judgements:

1. ∆;Γ ` M � 〈A, s〉, read: “Proper term M has pointed type 〈A, s〉 under type
assumptions ∆ and Γ” and

2. ∆;Γ ` e � s ≡ t : A, read: “Reduction evidence e has equality type s ≡ t : A
under type assumptions ∆ and Γ”.

Definition 8. A proper term M is typable if there exist type assumptions ∆
and Γ and a pointed type 〈A, s〉 such that ∆;Γ ` M � 〈A, s〉 is derivable using
the typing schemes presented in Fig. 4. Typability of reduction evidence (∆;Γ `
e � s ≡ t : A) is defined in Fig. 5. A λI-term is a raw term that is typable.

The contractions defining normalisation on derivations of LPnd induce a
corresponding reduction relation on the λI-terms that encode the derivations.

Definition 9 (λI-reduction). The λI-reduction relation (→) is obtained by
taking the contextual closure of the reduction axioms:

Minimal Propositional Logic Fragment

oVar
∆; Γ, a : A, Γ ′ ` a � 〈A, a〉

∆; Γ, a : A ` M � 〈B, s〉
⊃ I

∆; Γ ` λa : A.M � 〈A ⊃ B, λa : A.s〉

∆; Γ ` M � 〈A ⊃ B, s〉 ∆; Γ ` N � 〈A, t〉
⊃ E

∆; Γ ` M ·N � 〈B, s · t〉

Provability Fragment

mVar
∆, v : A, ∆′; Γ ` v � 〈A, v〉

∆; · ` M � 〈A, s〉
2I

∆; Γ `!M � 〈[[s]]A, !s〉

∆; Γ ` M � 〈[[s]]A, s′〉 ∆, v : A; Γ ` N � 〈C, t〉
2E

∆; Γ ` XtrtM as v : A inN � 〈Cv
s ,Xtrt s′ as v : A in t〉

∆; Γ ` M � 〈A, s〉 ∆; Γ ` e � s ≡ t : A
EqEvid

∆; Γ ` e I M � 〈A, t〉

Fig. 4. Typing schemes for proper terms

(λa : A.M) ·N →β β([a : A]M, N) I Ma
N

Xtrt !N as v : A inM →β2 β2([v : A]M, N) I Mv
N

M � A ⊃ B →η η(M) I λa : A.M · a
M � [[s]]A →η2 η2(M) I XtrtM as v : A in !v

(e I M) ·N →IL App(e,Refl(N)) I M ·N
Xtrt e I N as v : A inM →Ixtr xtrt(e, [v : A]Refl(M)) I XtrtN as v : A inM

Note that, just as proof terms are internalised as part of the process of proving
a formula in LP, so the process of reducing a λI-term internalises evidence of
reduction. Indeed, an application of the β reduction rule results in a λI-term
that incorporates a witness to the fact that such a reduction step was applied.
This reduction evidence provides intensional information on how the result was
computed.

Consider the term from the ordinary typed lambda calculus I · (I · b) (which
is also a term in λI) where I abbreviates λa : A.a. In the typed lambda calculus
it reduces in two different ways to I · b (we underline the contracted redex):

1. I · (I · b) → I · b 2. I · (I · b) → I · b
The fact that both these reductions reach the same term is known as a “syntactic
coincidence” [HL91] in the rewriting/lambda calculus community. Although the
same term is reached they are computed in rather different ways in the sense that
unrelated redexes are contracted. Note, however, that in λI these two derivations
now end in different terms:

1. I · (I · b) → I · (β([a : A]a, b) I b)

Axiom Schemes for Evidence Equality

∆; Γ, a : A ` M � 〈B, s〉 ∆; Γ ` N � 〈A, t〉
EqBeta

∆; Γ ` β([a : A]M, N) � sa
t ≡ (λa : A.s) · t : B

∆; · ` N � 〈A, s〉 ∆, v : A; Γ ` M � 〈C, t〉
Eq2Beta

∆; Γ ` β2([v : A]M, N) � tv
s ≡ Xtrt !sas v : A in t : Cv

s

∆; Γ ` M � 〈A ⊃ B, s〉 a /∈ fv(s)
EqEta

∆; Γ ` η(M) � λa : A.(s · a) ≡ s : A ⊃ B

∆; Γ ` M � 〈[[s]]A, t〉 u /∈ fv(t)
Eq2Eta

∆; Γ ` η2(M) � Xtrt tasu : A in !u ≡ t : [[s]]A

Inference Schemes For Equivalence

∆; Γ ` M � 〈A, s〉
EqRefl

∆; Γ ` Refl(M) � s ≡ s : A

∆; Γ ` e � s ≡ t : A
EqSymm

∆; Γ ` Sym(e) � t ≡ s : A

∆; Γ ` d � s1 ≡ s2 : A ∆; Γ ` e � s2 ≡ s3 : A
EqTrans

∆; Γ ` d; e � s1 ≡ s3 : A

Inference Schemes For Congruence

∆; Γ, a : A ` e � s ≡ t : B
Eq ⊃ I

∆; Γ ` Abs([a : A]e) � λa : A.s ≡ λa : A.t : A ⊃ B

∆; Γ ` d � s1 ≡ s2 : A ⊃ B ∆; Γ ` e � t1 ≡ t2 : A
Eq ⊃ E

∆; Γ ` App(d, e) � s1 · t1 ≡ s2 · t2 : B

∆; · ` e � s ≡ t : A
Eq2Il

∆; Γ ` BoxL(e)�!s ≡!t : [[s]]A

∆; · ` e � s ≡ t : A
Eq2Ir

∆; Γ ` BoxR(e)�!s ≡!t : [[t]]A

∆; Γ ` d � s1 ≡ s2 : [[r]]A ∆, v : A; Γ ` e � t1 ≡ t2 : C
Eq2E

∆; Γ ` xtrt(d, [v : A]e) � Xtrt s1 as v : A in t1 ≡ Xtrt s2 as v : A in t2 : Cv
r

Fig. 5. Typing schemes for reduction evidence

2. I · (I · b) → β([a : A]a, (I · b)) I I · b

Since reduction is obtained as a straightforward mapping of contraction of
derivations, the following type-soundness result holds.

Lemma 3 (Subject Reduction). If M →λI N and ∆;Γ ` M � 〈A, s〉, then
∆;Γ ` N � 〈A, s〉.

3.1 Confluence and Strong Normalisation for λI

Higher-order term rewrite systems (HORS) [Klo80,Nip91,TER03] extend first-
order term rewrite systems by allowing terms with binders. The λ-calculus is
the prototypical example of a HORS. λI can also be presented as a HORS -
we’ll present it as an HRS [Nip91]. An HRS is specified by a pair consisting of
a signature and a set of rewrite rules over that signature. A signature is a non-
empty set of function symbols, where each function symbol has a unique type.
Types are drawn from the set of types of the simply typed lambda calculus (λ→).
The simply typed lambda calculus is used for representing the objects that are
subject to transformation (or rewriting) by means of the rewrite rules. These
objects are the terms of λ→ that are in βη-long normal form (we shall thus use
applicative style notation when writing them). As an example, suppose we wish
to model the untyped lambda calculus. For that we define the signature:

abs : (term → term) → term
app : term → term → term

where term is a base type that represents, intuitively, the set of untyped lambda
calculus terms. The objects that are to be rewritten are the λ→-terms (in βη-long
normal form) formed from these constants and the abstraction and application of
λ→. For example, the untyped lambda term (λx.x) y becomes app(abs(x.x), y),
where the dot notation is used for the abstraction operation of λ→. A rewrite
rule is a pair of terms (f(M), N) of the same base type such that all the free
variables of N are in f(M) and f(M) is a pattern (every free variable x occurs
in a subterm of the form x(P1, . . . Pn) with P1, . . . , Pn η-equivalent to different
bound variables). As an example, the β rewrite rule of the untyped lambda
calculus is as follows:

app(abs(x.z(x)), z′) → z(z′)

We may now state the rewrite relation: a term M rewrites to N , written M → N ,
if there is a rewrite rule (l, r), a substitution σ and a context C such that
M = C[lσ] and N = C[rσ]. Note that lσ replaces all free variables with their
associated values and then finds the β-normal form of the resulting term.

We are now in condition of presenting the rewrite rules for λI presented as
an HRS, The set of base types is pterm (for proper terms) and redEvid (for
reduction evidence). The signature is given in Fig. 6. The rewrite rules are:

abs: (pterm→pterm)→pterm
app: pterm→pterm→pterm
bang: pterm→pterm
xtrt: pterm→(pterm→pterm)→pterm
evid: redEvid→pterm →pterm

reflE: pterm→redEvid
appE: redEvid→redEvid→redEvid
xtrtE: redEvid→(pterm→redEvid)→redEvid
betaE: (pterm→pterm)→pterm→redEvid
betaBoxE: (pterm→pterm)→pterm→redEvid

Fig. 6. Signature for λI as an HRS

app(abs(x.z(x)), y) →β evid(betaE(x.z(x), y), z(y))
xtrt(bang(y), x.z(x)) →β2 evid(betaBoxE(x.z(x), y), z(y))
app(evid(x, y), z) →IL evid(appE(x, reflE(z)),app(y, z)
xtrt(evid(w, y), x.z(x)) →Ixtr evid(xtrtE(w, x.reflE(z(x))),xtrt(y, x.z(x)))

The interest in HOR is that general results on combinatorial properties of
rewriting can be established. Two such results are of use to us. The first states
that orthogonal HORS are confluent. Orthogonal means that rewrite steps are
independent: If two redexes in a term may be reduced, the reduction of one of
them does not “interfere” with the other one except possibly by duplicating or
erasing it.

Proposition 2 ([Nip91]). Orthogonal HRS are confluent.

The λI-calculus is easily seen to be an orthogonal HRS3. We may thus im-
mediately conclude, from Prop. 2, that it is confluent.

Proposition 3. λI is confluent.

The other interesting property is that of uniform normalisation. First we
introduce some terminology. A rewrite step M → N is perpetual if whenever
M has an infinite reduction, N has one too. A rewrite system is uniformly
normalising if all its steps are perpetual. An example is the λI-calculus [CR36]
which is the standard λ-calculus in which the set of terms is restricted to those
M such that λx.N ⊆ M implies x ∈ fv(N). The proof of this fact for λI relies on
two properties: (1) all reduction steps are non-erasing and (2) it is orthogonal.
It turns out that this result can be extended to arbitrary higher-order rewrite
systems.

Proposition 4 ([KOvO01]). Non-erasing, orthogonal and fully-extended4 second-
order5 HRS are uniformly normalising.

3 It is a left-linear, non-overlapping HRS.
4 A rewrite system is said to be fully-extended if each of its rewrite rules (l, r) verifies

the following: for every occurrence x(P1, . . . , Pn) in l of a free variable x, P1, . . . , Pn

is the list of all bound variables above it.
5 Define the order of a type A of the simply typed lambda calculus, written ord(A), to

be 1 if the type is a base type and max(ord(A1) + 1, A2) if A = A1 → A2. The order
of rewrite system is the maximum order of the types of the variables that occur in
its rewrite rules.

A close look at the HRS presentation of λI reveals that it is in fact a non-
erasing, fully-extended, second-order HRS. Furthermore, we have already men-
tioned that it is orthogonal. As a consequence, we conclude the following from
Prop. 4.

Proposition 5. λI is uniformly normalising.

The interesting thing about uniformly normalisable rewrite systems is that
weak normalisation is equivalent to strong normalisation. Therefore, since we
have proved that λI is weakly normalising, we conclude that:

Proposition 6. λI is strongly normalising.

4 Conclusions

A study of the computational interpretation of the Logic of Proofs via the
propositions-as-types correspondence requires an appropriate ND presentation.
This paper presents one such system, LPnd , resulting from a judgemental anal-
ysis [ML83,DP01a] of LP. The term assignment yields a typed lambda calculus,
called the intensional lambda calculus (λI), that is capable of internalising com-
putation evidence, in much the same way that LP is capable of internalising
derivability evidence. Computations in λI yield terms that include information
on how this computation is performed.

As mentioned, the fact that I · (I · b) → I · b and I · (I · b) → I · b reduce
to the same term in the standard lambda calculus is known as a “syntactic
coincidence” [HL91] since these terms are computed in different ways. In λI the
corresponding reductions are no longer cofinal given that intensional information
on how the term was computed is part of the result. Further investigation on
the relation with equivalence of reductions as defined by Lévy [Lév78,TER03] is
left to future work.

Other interesting directions are the formulation of intensional calculi for lin-
ear and classical logic given their tight connections with resource conscious com-
puting and control operators and the analysis of the explicit modality and how it
relates to staged computation and run-time code generation [DP96,WLPD98].

References

[AA01] Jesse Alt and Sergei Artemov. Reflective λ-calculus. In Proceedings of the
Dagstuhl-Seminar on Proof Theory in Computer Science, volume 2183 of
LNCS, 2001.

[AB06] Sergei Artemov and Eduardo Bonelli. The intensional
lambda calculus. Technical report, December 2006.
http://www.lifia.info.unlp.edu.ar/˜eduardo/lamIFull.pdf.

[Art95] Sergei Artemov. Operational modal logic. Technical Report MSI 95-29,
Cornell University, 1995.

[Art01] Sergei Artemov. Unified semantics of modality and λ-terms via proof poly-
nomials. Algebras, Diagrams and Decisions in Language, Logic and Com-
putation, pages 89–118, 2001.

[Bar92] Henk P. Barendregt. Lambda Calculi with Types. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2. Oxford University Press, 1992.

[Bre01] Vladimir Brezhnev. On the logic of proofs. In Kristina Striegnitz, editor,
Proceedings of the Sixth ESSLLI Student Session, pages 35–45, 2001.

[CR36] Alonzo Church and John B. Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39:472–482, 1936.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computa-
tion. In Jr. Guy Steele, editor, Proceedings of the 23rd Annual Symposium
on Principles of Programming Languages, pages 258–270, St. Petersburg
Beach, Florida, January 1996. ACM Press.

[DP01a] Rowan Davies and Frank Pfenning. A judgmental reconstruction of modal
logic. Mathematical Structures in Computer Science, 11:511–540, 2001.

[DP01b] Rowan Davies and Frank Pfenning. A modal analysis of staged computa-
tion. Journal of the ACM, 48(3):555–604, May 2001.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1989.

[HL91] Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting
systems. In J.L. Lassez and G.D. Plotkin, editors, Computational Logic;
Essays in honor of Alan Robinson, pages 394–443. MIT Press, 1991.

[Klo80] Jan W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Amster-
dam, 1980. Mathematical Centre Tracts n.127.

[KOvO01] Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom. Perpetu-
ality and uniform normalization in orthogonal rewrite systems. Information
and Computation, 164:118–151, 2001.

[Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul.
PhD thesis, Université Paris VII, 1978.

[ML83] Per Martin-Löf. On the meaning of the logical constants and the justifi-
cations of the logical laws. Lectures given at the meeting Teoria della Di-
mostrazione e Filosofia della Logica, in Siena, 6-9 April 1983, by the Scuola
di Specializzazione in Logica Matematica of the Università degli Studi di
Siena., 1983.

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proceedings of the Sixth
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, July 1991.

[TER03] TERESE. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, March 2003.

[WLPD98] Philip Wickline, Peter Lee, Frank Pfenning, and Rowan Davies. Modal
types as staging specifications for run-time code generation. ACM Comput-
ing Surveys, 30(3es), September 1998.

