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Component directories index components by the services they offer thus enabling us to
rapidly access them. Component directories are also the cornerstone of dynamic
component assembly evolution when components fail or when new functionalities have
to be added to meet new requirements. This work targets semi-automatic evolution
processes. It states the theoretical basis of on-the-fly construction of component
directories using formal concept analysis based on the syntactic description of the
services that components require or provide. In these directories, components are more
clearly organised and new abstract and highly reusable component external descriptions
suggested. Moreover, this organisation speeds up both automatic component assembly
and automatic component substitution.
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1. Introduction

Component-based software engineering enables software applications to be built by

assembling off-the-shelf components. To ease this process, components expose their

external description: a component’s set of required and provided interfaces corresponds to

the syntactical description of the services the component provides to other components in

its environment or requires from other components of its environment to execute itself.

Previous work on automatic component assembly and dynamic component assembly

evolution (Desnos et al. 2006, 2007, 2008) convinced us that an efficient component

directory is needed. Indeed, searching in a directory for a component from a given

repository that is compatible with, or substitutable for, a given component is a non-trivial

task. Additionally, white-page-like directories, which represent the mostly used category

of directories, are not suitable because they are not structured to enable the search for

compatible or substitutable components.

The idea of this paper is to propose mechanisms to semi-automatically index software

components through a yellow-page-like component directory that supports efficient search

for components that are compatible or substitutable to a given component. Our approach

relies on formal concept analysis (FCA) that enables us to pre-calculate three categories of

lattices:
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. Functionality signature lattices order functionality signatures in a way that

naturally eases their search and can be used for required and provided functionality

connection or for required or provided functionality substitution. This category of

lattices serves as the basis for building interface lattices.

. Interface lattices are more abstract than functionality signature lattices; they code

information on functionality specialisation that has been modelled in functionality

signature lattices. They order component interfaces – organise service descriptions

– in a way that naturally eases their search and can be used for required and

provided interface connection or for required or provided interface substitution.

This category of lattices serves as the basis for building component type lattices.

. Component type lattices are more abstract than interface lattices; they code the

information on interface specialisation that has been modelled in interface lattices.

They order component types in a way that naturally eases their search and can be

used for component connection or component substitution.

These lattices provide the architect or developer with intelligible classifications for

functionality signatures, interfaces, and component types. They enable us to separate the

service compatibility calculus from the component search itself during the processes of

assembly or component assembly evolution (component substitution).

Indeed, a component type lattice can be used as an index for the search of a compatible

component (in order to build an assembly) or of a comparable component (in order to find

a substitute). Furthermore, FCA creates new component external descriptions (new

component types) that do not exist in the component repository but are more abstract and

reusable than existing components. These new abstractions can be an opportunity for

component developers to be guided during their engineering or re-engineering process.

They can also enrich the repository.

The remainder of this paper is organised as follows. Section 2 shows an extension of

object-oriented type theory to component types. Then, after recalling the basics of FCA

and describing the example used in the paper, Section 3 shows how to build a lattice of

functionality signatures and how to use it as a basis for component assembly or component

substitution. Section 4 generalises these results to entire interfaces and shows how to use

the resulting interface lattice. Section 5 goes one step further in proposing a methodology

to build and interpret a component lattice. To finish, Section 6 compares our approach to

related existing work and Section 7 concludes and presents future research directions.

2. Functionality signatures and interface syntactical compatibility

This section explains how the syntactical compatibility of component interfaces can be

calculated from functionality signatures which define the syntactical type of interfaces.

The syntactical compatibility of interfaces is used to check the validity of connection and

substitution operations on component assemblies. It statically asserts a certain level of

coherence in a component assembly that, before semantic analysis or execution, provides

early error detection and correction.

2.1 Functionality signature compatibility in object-oriented programming

In strongly-typed object-oriented programming languages (Cardelli 1984), method

signature overriding is allowed in subclasses but constrained by rules that enforce the
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substitutability of subclass instances towards superclass instances. Thus, a method

signature in a subclass must have contravariant argument types and a covariant return type:

argument types must be generalised and the return type must be specialised. Intuitively,

a method implements a service provided by an object: when the method is called,

assuming that sufficient information is received (as specified by argument types), a result

of the defined return type is sent back. This corresponds to the concept of software

contract, introduced by Meyer (1991) to reason about interactions between objects.

Following the above rules, an instance of a class can replace an instance of one of its

superclasses because it provides at least the same services, but is allowed to require less

invocation information and to return a richer result.

These principles are also used to define relaxed matching schemes used to retrieve a

class or a functionality from a repository (Zaremski and Wing 1995). A request is

expressed as the signature of the functionality that is searched for. Any functionality, the

signature of which specialises (overrides) the requested signature is returned as an

approximate but still (type-) compatible answer.

2.2 Functionality signatures and component interface specification

An interface is a type that collects functionality signatures; it is used to qualify the

collaborations a component can establish with other components. An interface is also a

communication point through which a component exchanges service request and response

messages with another component. Messages are sent and received along connections

linking the interfaces of a component to compatible interfaces of other components

(Szypersky et al. 2002). Comparing the syntactical types of two interfaces amounts to

compare pairs of functionality signatures from both interfaces (Zaremski and Wing 1997).

But in contrast with object models, a direction is added to the definition of interfaces in

order to specify whether a component is a client (i.e. uses the interface to require a service)

or a server (i.e. uses the interface to provide a service). Thus, two kinds of compatibilities

can be verified between interfaces: connection compatibility between a client interface and

a server interface or substitution compatibility between interfaces that have the same

direction. The connection or substitution compatibility of two components can in turn be

determined by verifying the connection or substitution compatibility of pairs of interfaces

from both components.

In this paper, functionality signatures are defined by a name, a list of argument types

and a return type. As in classical programming languages, names are used as the primary

semantic element to match functionalities. Then, the types of the IN-parameters and

OUT-parameters of homonymic functionalities are considered. For the sake of simplicity,

only a single OUT-parameter (the functionality result) is used in this paper. But the same

principles can be applied to any OUT-parameter when multiple OUT-parameters are used in

a functionality signature.

Figure 1 shows an example of different signatures for homonymic functionalities

named create, associated with both required and provided component interfaces.

The data type hierarchy used to define parameter types is presented in Figure 1(d).

The different cases of functionality signature specialisation are illustrated: argument type

specialisation (cf. Figure 1(a)), result type specialisation (cf. Figure 1(b)), and argument

addition into the IN-parameter set (cf. Figure 1(c)).
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When associated with a provided interface, a functionality signature has the same

semantics as in object-oriented programming: the argument types define what the server

component requires to receive in order to execute its service and the return type defines

what result it commits to provide. When associated with a required interface, a

functionality signature specifies the service that is searched for by a client component: the

argument types define the invocation information that the client component will send to a

server component and the return type defines the type of the result it requires.

2.3 Functionality signature specialisation and provided interface substitution

Zaremski and Wing (1997) present functionality signature matching based on pre- and

post-conditions. Consider a provided interface I1, which holds a functionality of signature

S ¼ f ðX xÞ : Z. As informally stated above, its software contract corresponds to the

following pre-condition and post-condition:

SpreðxÞ : TypeðxÞ # X;

SpostðxÞ : Typeðf ðxÞÞ # Z:

Let us consider another provided interface I2, which holds a functionality of signature

T ¼ f ðL lÞ : M, along with its pre-condition and post-condition:

TpreðlÞ : TypeðlÞ # L;

TpostðlÞ : Typeð f ðlÞÞ # M:

To soundly substitute I2 to I1 in an assembly, the following predicate must hold:

SubstitutionprovidedðI2; I1Þ ¼ SpreðxÞ ) TpreðxÞ ^ TpostðxÞ ) SpostðxÞ:

Figure 1. Interface compatibility when types and number of parameters vary.
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This verifies that f in I2 can execute the same invocations as f in I1; second, it verifies

that the results returned by f in I2 can be used instead of the results returned by f in I1.

To be true, the predicate entails that:

X # L ðindeed; TypeðxÞ # X ^ X # L ) TypeðxÞ # LÞ;

M # Z ðindeed; Typeðf ðxÞÞ # M ^ M # Z ) Typeðf ðxÞÞ # ZÞ:

This respectively corresponds to a contravariant specialisation of the argument types

and to a covariant specialisation of the result type between the two functionality

signatures, as previously presented for object-oriented languages. A provided interface can

be replaced by another provided interface with more specific functionality signatures,

following the above specialisation rules.

For example (cf. Figure 1(a)), a provided interface holding the create(Infor-
mation) signature can be substituted to a provided interface holding the create(
PersonnalInformation) signature (contravariant specialisation of the argument type).

Similarly (cf. Figure 1(b)), a provided interface holding the create():GoldCustomer
signature can be substituted to a provided interface holding the create():SilverCus-
tomer signature (covariant specialisation of the result type).

2.4 Functionality signature specialisation and required interface substitution

Let us now consider a required interface I3, which holds a functionality of signature

S ¼ f ðX xÞ : Z. The pre-condition and post-condition corresponding to its software

contract are the same as for a provided interface but, as discussed above, their semantics

are converse. Indeed, x now represents the data the client component commits to send and

f(x) the data the client expects to receive:

SpreðxÞ : TypeðxÞ # X;

SpostðxÞ : Typeðf ðxÞÞ # Z:

Let us also consider another required interface I4, which contains a functionality of

signature T ¼ f ðL lÞ : M. This corresponds to the same pre-condition and post-condition as

above:

TpreðlÞ : TypeðlÞ # L;

TpostðlÞ : Typeðf ðlÞÞ # M:

To soundly substitute I4 to I3 in an assembly, the following predicate must hold:

SubstitutionrequiredðI4; I3Þ ¼ TpreðxÞ ) SpreðxÞ ^ SpostðxÞ ) TpostðxÞ:

This firstly verifies that the client component holding I4 will call f in the same way as

the client component holding I3 (to have the guarantee that the connected server

component can execute all invocations); secondly, this verifies that the results received by

I3 will also satisfy the requirements of the client component holding I4.
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To be true, the predicate entails that:

L # X ðindeed; TypeðxÞ # L ^ L # X ) TypeðxÞ # XÞ;

Z # M ðindeed; Typeðf ðxÞÞ # Z ^ Z # M ) Typeðf ðxÞÞ # MÞ:

This respectively corresponds to a covariant specialisation of the argument types and a

contravariant specialisation of the result type between the two functionality signatures.

Unsurprisingly, the specialisation rules for functionality signatures in required interfaces

are the opposite of those that apply to provide interfaces. Here again, following the above

rules, a required interface can be replaced by another required interface with more specific

functionality signatures.

For example (cf. Figure 1(a)), a required interface holding the create(Child-
Information) signature can be substituted to a required interface holding the

create(PersonnalInformation) signature (covariant specialisation of the

argument type). Similarly (cf. Figure 1(b)), a required interface holding

the create():Customer signature can be substituted to a required interface holding

the create():SilverCustomer signature (contravariant specialisation of the result

type).

2.5 Functionality signature specialisation and interface connection

Finally, let us again consider the provided interface I1 and the required interface I4.

To soundly connect I1 to I4, the following predicate must hold:

ConnectionðI4; I1Þ ¼ TpreðxÞ ) SpreðxÞ ^ SpostðxÞ ) TpostðxÞ:

This firstly verifies that any data sent by the client component holding I4 can

effectively be used by the server component holding I1 to execute f; secondly, this verifies

that the data sent by the server component holding I1 corresponds to the result expected by

the client component holding I4.

To be true, the predicate entails that:

L # Xðindeed; TypeðxÞ # L ^ L # X ) TypeðxÞ # XÞ;

Z # Mðindeed; Typeðf ðxÞÞ # Z ^ Z # M ) Typeðf ðxÞÞ # MÞ:

This corresponds to a contravariant specialisation of argument types and a covariant

specialisation of the result type between the two functionality signatures. The functionality

signatures associated with a required interface of the client component must be more

generic than the functionality signature associated with the provided interface of the server

component.

For example (cf. Figure 1(a)), a required interface holding the create(Perso-
nalInformation) signature can be connected to a provided interface holding the

create(Information) signature (contravariant specialisation of the argument type).

Similarly (cf. Figure 1(b)), a required interface holding the create():Customer
signature can be connected to a provided interface holding the create():Silver-
Customer signature (covariant specialisation of the result type).
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2.6 Functionality signature specialisation and parameter addition or suppression

A special case of parameter type generalisation is now considered. When a parameter type

is generalised in a functionality signature, it conceptually means that the specification

becomes less demanding on parameters. The objects of the Object type (root of the

object type hierarchy) are the objects which contain the least data. We extend the

generalisation principle by stating that void is the root type in our system and that it further

generalises the Object type.

This way, a special case of parameter type generalisation is to set a parameter type to

void. Any data, including no data, becomes suitable for this parameter. As this parameter

is optional, it is possible to remove the parameter from the functionality signature. We

therefore consider suppressing a parameter as a special case of parameter type

generalisation.

Conversely, it is possible to add an extra parameter of type void to a functionality

signature without changing its semantics (this additional parameter can always be

ignored). The type of such a parameter can then be specialised in the process

of functionality signature specialisation, thus becoming a parameter of a concrete type. We

therefore consider parameter addition as a special case of parameter type specialisation.

For example (cf. Figure 1(c)), a provided interface holding the create(Infor-
mation) signature can be substituted to a provided interface holding the

create(Information,BankIdentity) signature, as the former signature is

obtained by removing the second parameter of the latter signature (contravariant

specialisation of the parameter type). Similarly, a required interface holding the

create(Information,BankIdentity) signature can be substituted to a required

interface holding the create(Information) signature, as the former signature is

obtained by adding a second parameter to the latter signature (covariant specialisation of

a virtual second parameter of type void).

2.7 Discussion

In Zaremski and Wing (1997), which proposes an extensive study and classification of

functionality signature matching, the above predicates correspond to a kind of

functionality signature matching called ‘plug-in’ matching. It is used to verify that the

code of functionality can be plugged into some other code, to handle some expected

behaviour, as specified by a syntactical signature. We have adapted this generic

functionality signature matching principle to the specific concepts of component models,

namely the syntactical coherence of interface connection and substitution.

Our formalisation shows that checking the coherence of these operations amounts to

verifying the existence of specialisation relations between functionality signatures. Thus,

we studied how to build specialisation hierarchies of functionality signatures, interfaces

and component types. We intend to use these hierarchies as a practical, systematic and

efficient means to set up and structure a component directory, where components are

indexed by the type of services they provide and require, in other words, a trading service

for component-based platforms (Iribarne et al. 2004).

The next sections describe how FCA-based approach to this problem can be used to

build the necessary specialisation lattices. It is to be noticed that, at any step, a single

lattice is sufficient to compare both required and provided elements for both substitution
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and connection. Indeed, as shown previously, only two specialisation rules are used, which

are converse.

3. Lattice of functionality signatures

The substitutability rules presented in the previous section can be considered as the basis

of a specialisation relationship among functionalities: a functionality that can substitute

for another can be considered as its specialisation. Existing functionalities can thus be

organised – classified – in a hierarchy based on their substitutability relationships.

Furthermore, this section will show that FCA provides a finer-grained classification. After

recalling the basics of FCA, we show how it can be used to build a lattice of functionality

signatures and how the lattice can then be interpreted and used.

3.1 A survival kit for FCA

The classification we build is based on the partially ordered structure known as Galois

connection-based lattice (Birkhoff 1940; Davey and Priestley 1991) or concept lattice

(Wille 1982) which is induced by a context K, composed of a binary relation R over a pair

of sets O (objects) and A (attributes; Table 1). A formal concept C is a pair of

corresponding sets (E, I) such that:

E ¼ {e [ Oj; i [ I; ðe; iÞ [ R} is called extent (covered objects),

I ¼ {i [ Aj; e [ E; ðe; iÞ [ R is called intent (shared features).

For example, ð{1; 2}; {b; c}Þ is a formal concept because objects 1 and 2 exactly share

attributes b and c (and vice versa). On the contrary, ð{2}; {b; c}Þ is not a formal concept.

Furthermore, the set of all formal concepts C constitutes a lattice L when provided with

the following specialisation order based on intent/extent inclusion:

ðE1; I1Þ #L ðE2; I2Þ , E1 # E2 ðor equivalently I2 # I1Þ:

Figure 2 shows the Hasse diagram of #L.

3.2 Example of an online bookstore application

In the rest of this article, we will use, as an illustration, the example of an online bookstore

application that targets both the adult and children audiences (cf. Figure 3(a) to see the

Table 1. Binary relation of K ¼ (O, A, R) where O ¼ {1, 2, 3, 4, 5, 6} and A ¼ {a, b, c, d, e, f, g, h}.

a b c d e f g h

1 £ £ £ £
2 £ £ £ £ £
3 £ £ £ £ £
4 £ £
5 £ £
6 £ £
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hierarchy of product types). Two categories of customers can interact with this

application. Adults can save favorite book lists (as wish lists) through the application

or shop for books following various protocols defined according to a client typology

(cf. Figure 1(d)). Children can establish children book wish lists that constitute virtual

orders that adults can offer them as soon as their parents obtain the SilverCustomer
client category. For this online bookstore application, we have a component repository

(cf. Figure 3(b)) in which we can see various components to manage orders (by adults or

children) and various components to manage customer lists. These components each

expose an interface list the types of which are enumerated in Figure 3(c).

Figure 2. Hasse diagram of the concept lattice L.

Figure 3. Data types, interfaces and components of an online bookstore application.
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3.3 Building the functionality signature lattice

We explain here the construction of the required functionality signature lattice.

As provided functionality signatures are reversely ordered, the lattice we obtain can also

be used to deal with them, when considered upside down.

We illustrate our explanation considering the required functionality create(PI,
BI,CCN):SC as it is described by Table 2. At first, for each create functionality whose

signature is held by one of the interfaces of Figure 3, attributes are deduced from IN and

OUT parameter types that explicitly appear in the signature. These attributes are marked

using the £ symbol in Table 2: create(PI,BI,CCN):SC is thus described explicitly

by attributes IN:PI, IN:BI, IN:CCN and OUT:SC. Then, we infer attributes (marked with a

^ symbol in Table 2) when their types are compatible, regarding specialisation of

signatures. Here are our inference rules:

. IN parameters. As explained previously, if a required functionality sends a

parameter of some type, it implicitly sends a parameter of any more general type.

For example, the IN:I attribute is inferred when the IN:PI attribute is already

present.

. OUT parameters. If a required functionality expects to receive a return value of a

type, any return value of a more specific type is also suitable. For example, the

OUT:GC attribute is inferred when the OUT:SC attribute is already present.

Figure 4 depicts the concept lattice corresponding to the binary relation shown in

Figure 2, built with the GaLicia FCA tool (GaLicia 2002). Concepts are presented using

reduced intents and extents (resp. denoted by Reduced I et Reduced E) for readability sake:

an object (signature) that belongs to the reduced extent of a concept is inherited by all

concepts that are above (down-to-up inheritance); similarly, a property (IN or OUT

parameter type) that belongs to the reduced intent of a concept is inherited by all concepts

that are below (up-to-down inheritance).

3.4 Using the functionality signature lattice

The functionality signature lattice can be used in various types of situations related to

component connection or substitution.

Table 2. Rcreate context describing signatures of the required create
functionality through its parameters.

IN parameters OUT parameters

I PI CI BI CCN Co C SC GC

create (I, BI, Co):C £ £ £ £ ^ ^
create (PI, BI, CCN):SC ^ £ £ £ £ ^
create (PI, BI, CCN):GC ^ £ £ £ £
create (CI, BI):SC ^ ^ £ £ £ ^
create (PI):GC ^ £ £

I, Information; PI,PersonalInfo; CI, ChildInfo; BI, BankIdentity; CCN,
CreditCardNb; Co, Country; C, Customer; SC, SilverCustomer; GC, Gold-
Customer; FC, ForeignCustomer.
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Let us consider the lattice of Figure 4 with the viewpoint of required functionalities.

In this lattice, create(PI):GC is represented by concept C3 while create(CI,
BI):SC is represented by concept C8. Concept C3 is more general than concept C8 which

can be interpreted as: concept C8 can replace concept C3. In a component assembly, a

connection to a required functionality corresponding to concept C3 can be replaced by

a connection to a required functionality corresponding to concept C8. In the general case,

when there is a path between two concepts, the more specific (which has more properties) can

replace the more general (which has a subset of properties) when the more general concept is

connected (cf. Figure 5(a)). The same lattice can also be used to substitute a provided

functionality when read upside down (cf. Figure 5(b)). This generalises as follows.

Property 3.1 (Functionality substitution). Let Cfather, Cson be two concepts of the

signature lattice of functionality f, such that Cson #Lf
Cfather. Functionalities of Cson can

replace functionalities of Cfather when the functionalities are required. Opposite

replacement applies when the functionalities are provided.

Both provided and required points of view can be combined to address component

connection. Let us consider the create(PI,BI,CCN):GC signature (concept C7).

The corresponding required functionality can obviously connect to the provided

Figure 4. Signature lattice Lcreate for the create functionalities.

Figure 5. Interpretation of the lattice of functionality signatures.
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functionality that has the same signature (create(PI,BI,CCN):GC). Given the

substitution rule, provided functionalities which are upper in the lattice, such as

provided create(PI):GC (concept C3), can be connected to required create
(PI,BI,CCN):GC (cf. Figure 5(c)). Using the same rule in the symmetric way,

required functionalities which are below in the lattice, such as required create
(PI,BI,CCN):SC (concept C10), can be connected to provided create(PI,BI,
CCN):GC. By transitivity, we can deduce that required create(PI, BI,CCN):SC can

be connected to provided create(PI):GC. This is expressed in the following connection

rule that formalises how valid functionality connection can be deduced from the lattice.

Property 3.2 (Functionality connection rule). Let C, Cfather, Cson be three concepts

of the signature lattice of functionality f such that Cson #Lf
C #Lf

Cfather, required

functionalities of Cson can be connected to provided functionalities of Cfather.

4. Interface lattice

Components are reusable software entities that are chosen off-the-shelf and fulfil

high-level goals (database component, planning component, and so on). Interfaces play an

important role to achieve these goals by grouping functionalities that have close semantics

and may participate together in potential collaborations. Component assembly is based

mainly on the connection of compatible interfaces in a higher abstraction level than simple

functionalities.

Considering included functionalities, the interfaces can be provided with a

specialisation order in a natural way. This ‘natural’ classification simply uses

the inclusion relation between sets of functionalities in the interfaces and can equally

benefit from FCA to look for factorisable functionalities (in our case remove(P) can be

factored out).

Then, if we consider substitution or connection, we can improve our search and

discover more pertinent abstractions when using the abstractions discovered in the

functionality signature lattice. Lattices of the modify, add and remove functionalities

of our example are built similarly to the lattice of the create functionality. Tables 3 and 4

detail the contexts, while Figures 6 and 7 show the corresponding lattices. As we have

observed, these abstractions on the signatures are the concepts the extent of which has a set

of signatures (the signatures covered by the concept) and the intent of which has a set of

attributes describing the signature (IN and OUT parameters). For each concept, we can

calculate a corresponding canonical signature. We show an example before giving the

general definition.

Figure 4 shows the concepts built using the binary relation described in Table 2.

A concept the reduced extent of which has an original signature (e.g. concept C9) exactly

represents that signature (e.g. create(I,BI,Co):C). A concept the reduced extent of

which is empty can be interpreted as a new signature that we can infer starting from the

attributes inherited by the concept, and considering only the more specific ones. For

example, concept C6 of Figure 4 inherits attributes in:I, in:PI, in:BI, out:GC,

out:SC. In case of required signatures, in:PI is more specific than in:I meanwhile

out:SC is more specific than out:GC. Concept C6 can be then interpreted as signature

create(PI,BI):SCwhich we call the canonical signature of the concept. This enables
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us to build an interface description based on the set of original signatures completed by all

the signatures created in the generalisation process (cf. Table 5).

Definition 4.1 (Canonical functionality signature of a concept). Let C be

a concept in a signature lattice Lf which describes functionality f and #Types,

the specialisation partial order on parameter types. s(C), the canonical signature of C,

is defined as follows:

. If Reduced EðCÞ ¼ {s} then;s ðCÞ ¼ s:

. If Reduced EðCÞ ¼ B; thens ðCÞ ¼ f ðiÞ : o; where i ¼ min #Types
{Tjin : T [ Intent

ðCÞ}and where o ¼ max#Types
{Tjout : T [ IntentðCÞ}:

This exact description enables us to build more pertinent interface generalisations than

those we obtained with the ‘natural’ classification of interfaces. It is used as follows to

build interface descriptions within the new context RIntSigCar.

. The canonical signatures are used as attributes in the formal context.

. When an interface I has a signature s in a functionality f in its original description, if

we denote by C the concept such that s(CÞ ¼ s, we associate to the interface the

attribute s and all the canonical signatures of the concepts that are upper of C in the

lattice:

RIntSigCar ¼{ðI; scÞj s belongs to the definition of I; sc ¼ s ðCfatherÞ;

Cfather $Lf
C with s ¼ sðCÞ}:

For example, interface I1 holds the signature create(I,BI,Co):C. This

signature is the canonical signature of concept C9 in lattice Lcreate. In Table 5, we associate

Table 3. Context Rmodify describing the signatures of the required modify functionalities.

IN parameters OUT parameters

I PI CI BI CCN void C SC GC

modify (I):C £ £ ^ ^
modify (PI, BI):SC ^ £ £ £ ^
modify (PI, BI, CCN):GC ^ £ £ £ £
modify (CI):void ^ ^ £ £ ^ ^ ^
modify (PI):GC ^ £ £

Table 4. Context Radd describing the signatures of the required add functionalities.

IN parameters
OUT parameters

P AB CB EB void

add (P):void £ £
add (AB):void ^ £ £
add (CB):void ^ £ £
add (EB):void ^ ^ £ £

The context Rremove is identical.
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I1 to create(I,BI,Co):C (marked with symbol £ ) and we equally associate to I1
the canonical signatures of all concepts of Lcreate that are upper of C9. That results in the

following signatures (marked with symbol ^):create(I,BI):SC (concept C5),

create(I,BI):GC (concept C2), and create(I):GC (concept C1). From required

functionality viewpoint, these signatures are generalisations of the original signature

create(I,BI,Co):C (with the semantics of substitutability).

The built lattice LI (cf. Figure 8) shows specialisation relations between interfaces.

These relations show possible connections or substitutions which are deduced from the

previously mentioned rules on functionality signatures that are extended to interfaces

(repeatedly applied to all signatures that constitute these interfaces).

For example, the required interface I10 can be connected to provided interface I6.

Still, required interface I10 (C10) can replace required interface I6 (C2). We see that a

manual or automatic search of components is faster with this lattice that defines a search

index. We thus avoid looking at all components in the repository since we only look

for relevant branches. Let us imagine the case in our example where component

SilverAdultOrder searches, logically, to be connected to component Silver
AdultDB usually present in the system that is temporarily unavailable. The relation in the

Figure 6. Signature lattice Lmodify for the modify functionalities.
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lattice, starting from the expected required interface I9 (C5), enables us to immediately find

(just traversing the edge that goes from concept C5 to concept C2, that possesses the I6

interface) that component GoldDB could be used as a replacement. Temporarily the user

will benefit of a higher service in replacement of a missing service.

In the lattice, we also find new interfaces, obtained using the existing interface

generalisation. Starting from functionalities discovered in the first lattice, the technique

can then infer a new interface, including at least this shared functionality. Here we see one

of the main advantages of FCA-based techniques compared to simple calculation of

signature comparison: new signatures appear, and thus we have new interfaces more

abstract than existing ones. The following generalisation step is to use this lattice to build a

component lattice. This latter lattice is more interesting for designers who can be guided

when creating more general new components, as well as for assemblers who can consult an

organised library rather than just a flat set of artefacts.

Figure 7. Signature lattice Ladd for the add functionalities. The lattice Lremove, isomorphic to Ladd,
is not represented.
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5. Lattice of component types

In this section, we first propose a solution to build the lattice of component types. The

technique used to do so is the same as the one previously used for interfaces: the

interface lattice helps enrich the description of the formal context that will be used to

build the component type lattice. Then, the remainder of the section shows possible uses

of this lattice.

5.1 Definition of the lattice of component types

Component types are described by their required and provided interfaces. This

information can be organised by specialisation, but, similarly to that done with interfaces,

component types can benefit from both the specialisation relationships between interfaces

and the discovered interfaces obtained from the interface lattice. We thus get an

Figure 8. Interface lattice LI using the functionality signature lattice.
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enrichment of the description of components and a more precise classification, offering

more abstractions.

The first phase of the building process entailed the introduction of the notion of a

‘canonical interface’ associated to an interface concept. This notion is similar to the

canonical functionality signature corresponding to a signature concept that we defined

above. Let us just mention that our analysis is still based on the case of required

interfaces.

Definition 5.1 (Required canonical interface corresponding to an interface

concept). Let C be a concept in the interface lattice LI . The corresponding canonical

interface IðCÞ is defined as follows:

. If Reduced EðCÞ $ {I}, then IðCÞ ¼ I. We can choose any interface in the reduced

extent because they are all equivalent.

. If Reduced EðCÞ ¼ B, then IðCÞ ¼ min#SigCar
{s [ IntentðCÞ}. The canonical

interface gathers more specialised signatures from the set of canonical signatures

that forms the intent. The order #SigCar between canonical signatures is naturally

inferred from the specialisation relationship between concepts of the lattice

Lf : sson #SigCar sfather iff sson ¼ sðcsonÞ, sfather ¼ sðcfatherÞ and cson #Lf
cfather.

Canonical interfaces found in the lattice are all the original interfaces (I1 to I6, I8
and I10, and a single interface corresponding to the {I7,I9} interface pair) to which new

abstract interfaces are added by the classification process. These new abstract interfaces

are described by their signature set (cf. Table 6).

We then set up a relation RCompCanInt between component types and canonical

interfaces including their orientation (required or provided; cf. Table 7). The rows

represent components, the columns interfaces. Interface identification (in column heads)

combines the two interface orientations (noted req: and pro:) with each canonical

interface name and is followed by their concept number in the interface lattice. For

example, column 1 corresponds to the canonical required interface I1, associated to

concept C12 (as I1 is member of its reduced extent). Column 11 corresponds to the

canonical required interface I12, associated to concept C3.

Table 6. New canonical interfaces.

Int. name Signature set Concept

I11 {} C1

I12 {create(I):GC; modify(I):GC} C3

I13 {create(I, BI):GC; modify(I):GC} C4

I14 {create(I, BI):SC; modify(I):SC} C8

I15 {create(I, BI):SC; modify(I):C} C9

I16 {create(PI, BI):GC; modify(PI):GC} C11

I17 {create(PI, BI):SC; modify(PI):SC} C15

I18 {create(PI, BI, CCN):GC; modify(PI, BI):GC} C13

I19 {create(CI, BI, CCN, Co):C; modify(CI, BI, CCN):void;
add(AB, EB):void; remove(AB,EB):void}

C18
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Definition 5.2 (Component relation RCompCanInt). Component types are the formal

objects while canonical interfaces are the formal attributes. Let C be a component and I an

interface, ðC; IÞ [ RCompCanInt iff one of the following properties is true:

. I is declared by C,

. I $LI
J and J is declared by C.

Figure 9 shows lattice LC of component types. The following section will show how it

can be used.

5.2 Usage of the lattice of component types

While interfaces represent parts of collaborations, component types introduce consistent

units dedicated to the provision of a consistent set of services. As in the previous lattices,

but at a higher level in the structure of software artefacts, the lattice of component types

offers both a specialisation relation between component types and new abstract component

types. This lattice has several applications in component assembly and software

application re-engineering.

Figure 9. Lattice LC of component types using the interface lattice.

G. Arévalo et al.446



5.2.1 Emergence of new component types

The concepts in the lattice of component types can be interpreted as component types that

we define as ‘canonical component types’ to remain coherent with the previous definitions.

Some of these canonical component types correspond to the original components: they are

associated with concepts the reduced extent of which contains an original component.

When the reduced extent of a concept is empty, we explore the intent of the concept to

build the corresponding canonical component type. Thus, we consider symmetrically the

required and provided interfaces from the intent. In the case of required interfaces, we

consider those that have the smallest (more specific) type as shown in the interface lattice.

In the case of provided interfaces, we consider those that have the largest (more general)

type. These rules are a transcription of the substitution rules for functionality signatures,

extended to interfaces.

Definition 5.3 (Canonical component type corresponding to a component type

concept). Let C be a concept in the component type lattice LC. The canonical component

type TcðCÞ is defined as follows:

. If Reduced EðCÞ $ {T}, then TcðCÞ ¼ T . We can choose any component type from

the reduced extent because they are all equivalent.

. If Reduced EðCÞ ¼ B, then TcðCÞ ¼ {pro : I; I [ max#LI
{Jjpro : J [ IntentðCÞ

}}< {req : I; I [ min#LI
{Jjreq : J [ IntentðCÞ}}.

In the case where an original component type appears in the reduced extent, the

proposed construction finds an identical canonical component type. For example, concept

C15 of lattice LC has {pro:I5, pro:I6} as its canonical component type because I5
and I6 are the maximum of IntentðC15Þ (we do not make a distinction between required

and provided interfaces because there are only provided interfaces in this intent). The

reader will also notice that {pro:I5, pro:I6} is exactly the component type GDB that

is found in the reduced extent of C15.

5.2.2 Substitution and connection

The specialisation relation we have built between concepts is tailored for substitution.

Component substitution can be necessary in the event an entirely connected component

fails. For example, let us suppose that an assembly is formed by component CO of type

{req:I8, req:I4} entirely connected to component GDB of type {pro:I5, pro:I6}.

Firstly, we can convince ourselves about the syntactical validity of the assembly that is

ensured by two properties: required I8 specialises provided I6 and required I4
specialises provided I5 (as we generalise to interfaces the property described on Figure 5).

Let us now imagine that component CO fails. Specialisation in the lattice enables us to

efficiently find a potential replacement. Component PO of type {req:I10, req:I4}

will be a good candidate. The assembly remains valid because required I10 specialises

provided I6. The user will have access to a partial service because it is now only possible,

among child books (ChildBook type), to ask for educational books (Educational-
Book type), but the service may also perform better because it specialises about

educational books.
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Let us now analyse the connection problem. We note that two complementary

components are not necessarily related to each other in the lattice: for example, there is no

link between the components AO2 of type {req:I1, req:I7} (concept C9) and CDB of

complementary type {pro:I1, pro:I7} (concept C3). Indeed req:I and pro:I are

considered independent attributes. Given a component (e.g. AO2 of type {req:I1,

req:I7}), it is nonetheless possible to find components that it can be connected to.

A solution firstly consists in classifying the type of its complementary component (e.g.

{pro:I1, pro:I7}) applying the inferences. In our example, we obtain {pro:I1,

pro:I7, pro:I19}. In this case, the classification enables us to reach concept C3. C3

and all smaller (more specific) concepts define, by the mean of their corresponding

canonical component type, the types of components that can entirely connect to AO2.

5.2.3 Re-engineering and building generic architectures

We have previously described how the lattice discovers new component types. For

example, concept C5 of canonical type {req:I14,req:I6} has an empty extent.

It indicates that the concept does not precisely correspond to an original component.

However, it is an abstraction of all component types corresponding to lower (more

specific) concepts. This canonical type, {req:I14,req:I6}, abstracts components

relative to product orders in the example. It can be replaced by any of the more specific

components. If a component of this canonical type participates in component architecture,

this architecture will have the capability of being instantiated using an important variety of

concrete components. The discovery of such new abstract components into the

classification can be interpreted as reengineering the set of existing components, and can

help the developer design more generic architectures.

5.2.4 Architecture abstraction

The component lattice shows both specialisation relationships among component types

and newly discovered abstract component types. This can serve as the basis of whole

architecture classification. This new objective is a little less direct to reach than the other

generalisation steps we have described in the paper because, in an architecture,

components are not only described by binary attributes but also by their interconnections.

Several ideas can be explored to take into account these connections such as Relational

Concept Analysis Huchard et al. (2007) or relations in Logical Information Systems Ferré

et al. (2005).

6. Related work

Few of the related approaches use a syntactical type hierarchy to structure component

indexes and help component search. Zaremski and Wing (1995) suggest such a mechanism

but in the more general context of functionality signature matching. The functionality

hierarchy lies on the partial order relationship defined by the signature-matching operator

used, whether it is exact or relaxed. Module matching (component matching) is deduced

from functionality matching: a component is comparable with another if each of its

functionalities match a functionality of the other.

Existing yellow page-based service directories, also called service traders Iribarne

et al. (2004), such as CORBA (trading object service OMG 2000), conform to the principles
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of the ODP standard (Information Technology Open Distributed Processing 1998).

A component exports an advertisement into the component directory in order to be

registered as the provider of some service. The service advertisement conforms to an

existing service type that lists the properties and syntactical interfaces the components

must have to provide the service. Service types can be ordered in a specialisation hierarchy

that is static and manually built. As opposed to our approach, these models use statically

defined service hierarchies Marvie et al. (2001). This kind of indexing and the

corresponding directories are not adapted to dynamical, evolving and open environments.

Works based on FCA propose to semi-automatically index components (Lindig 1995)

in order to be able to help the developer identify adequate components from all the

components stored in a component repository. Component search lies on groups of names

and keywords and on incremental queries that help focus the search, diminishing the

number of potential results, as the search gets more precise. Fischer (1998) and Sigonneau

and Ridoux (2004) both aim at building such browsable functionality directories. Concepts

are used to handle the iterative selection of attributes that define the user request as a

traversal of the concept hierarchy. Thus, in these approaches, concept hierarchies do not

directly reflect specialisation relations between the syntactical types of functionality

signatures. Fischer (1998) uses attributes which represent fragments of the formal

specifications of functionalities (elementary pre- and post-conditions). Sigonneau and

Ridoux (2004) use syntactical types of input and output parameters, along with covariant

and contravariant specialisation rules. In the context of web service search, machine-

learning techniques are used for service classification and annotation (Bruno et al. 2005;

Corella and Castells 2006). Starting from textual documentation, services are

automatically clustered using support vector machines or ontologies. FCA is then used

in a second step to drive the matching between textual information and searched services.

As compared to these proposals, the originality of our work is to study directories of

components described by sets of required and provided interfaces. Different specialisation

relations are defined to take into account not only the parameter but also the functionality

directions. Moreover, we propose an iterative process to build lattices of component types,

which are composed of interfaces of both directions, which are in turn composed of

functionalities. This iterative nature strongly differs from other works that use FCA which

only build lattices of functionality types.

7. Conclusion and future work directions

In this article, we proposed to build component directories using FCA. The directory relies

on the last built lattice that organises components in order to speed up their retrieval, for

either assembly or substitution. This component lattice is built upon some related lattices:

an interface lattice which itself uses a classification provided by a functionality signature

lattice. Beyond its usefulness for component assembly or component substitution, this

classification also discovers new abstractions (new functionality signatures, new interface

types and new component types), providing developers with valuable information about

highly reusable elements. The developer can use this information as a guide along the

development process or as re-engineering information.

The work presented in this article raises new research issues. Firstly, we want to study

how our system can be implemented and integrated into an IDE to assist the management

of component-oriented applications. This task comprises four steps:
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. Extracting information about the component interfaces. We want to use the

introspection capabilities of components to extract and dynamically maintain

information on interfaces as the components enter or leave the system.

. Encoding the information in formal contexts, taking into account the identified

inference rules and the type hierarchy of the system.

. Building lattices. Kuznetsov and Obiedkov 2002 present several incremental

algorithms that enable new concepts to be added to an existing lattice. Several of

these algorithms are implemented in GaLicia Valtchev et al. (2003). These

algorithms could be used to calculate the different lattices and also maintain them

dynamically as components enter or leave the system.

. Using lattices. The obtained lattices can be used not only as a component index to

ease search, but also as a way of visualising the content of component libraries using

the graphical interface of GaLicia or a similar FCA tool like TOSCANA (Vogt and

Wille 1994) or CONEXP (Yevtushenko 2000).

This will enable us to systematically experiment with our approach on large

component repositories, considering various component or interface granularity and

function signature complexity.

We also plan to study complementary features of components, interfaces and

signatures, such as ports, protocols or exceptions. For instance, ports (Desnos et al. 2006,

2007) would enable specifications of the dynamic behaviour of components to be

considered, providing more accurate component indexing and retrieval.

Another extension is inspired by Web Services directories (Klusch 2008). Contrary to

component directories, they mainly use semantic information (names, descriptions) in

their search mechanism. We can experiment with these techniques to refine classification

considering the name of the parameters in the functionality signatures. Conversely, it is

interesting to analyse how our approach could be used to improve the calculation of

syntactical compatibility in Web Services.
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Corella, M.Á. and Castells, P., 2006. Semi-automatic semantic-based web service classification.
In: J. Eder and S. Dustdar, eds. Business process management workshops. LNCS 4103. Berlin:
Springer, 459–470.

Davey, B.A. and Priestley, H.A., 1991. Introduction to lattices and orders. Cambridge University
Press.

Desnos, N., Vauttier, S., Urtado, C. and Huchard, M., 2006. Automating the building of software
component architectures. LNCS 4333. Vienna: Springer, 228–235.

Desnos, N., Huchard, M., Urtado, C., Vauttier, S. and Tremblay, G., 2007. Automated and
unanticipated flexible component substitution. LNCS 4608. Boston, MA: Springer, 33–48.

Desnos, N., Huchard, M., Tremblay, G., Urtado, C. and Vauttier, S., 2008. Search-based many-to-
one component substitution. Journal of Software and Maintenance Evolution and Research
Practice, Special Issue on Search-Based Software Engineering, 20 (5), 321–344.
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