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Abstract. Explicit substitutions (ES) were introduced as a bridge be-
tween the theory of rewrite systems with binders and substitution, such
as the λ-calculus, and their implementation. In a seminal paper P.-
A. Melliès observed that the dynamical properties of a rewrite system and
its ES-based implementation may not coincide: he showed that a strongly
normalising term (i.e. one which does not admit infinite derivations) in
the λ-calculus may lose this status in its ES-based implementation. This
paper studies normalisation for the latter systems in the general setting
of higher-order rewriting: Based on recent work extending the theory of
needed strategies to non-orthogonal rewrite systems we show that needed
strategies normalise in the ES-based implementation of any orthogonal
pattern higher-order rewrite system.

1 Introduction

This paper studies normalisation for calculi of explicit substitutions (ES) im-
plementing higher-order term rewrite systems (HORS). The latter are rewrite
systems in which binders and substitution are present, the λ-calculus [Bar84] be-
ing a typical example. A recent approach to the implementation of HORS is the
use of ES [ACCL91, BBLRD96, KR95, DG01]. ES were introduced as a bridge
between HORS and their concrete implementations. Their close relation with
abstract reduction machines [ACCL91, HMP96, BBLRD96] allows us to speak
of ES-based implementations of HORS. The idea behind these implementations
is that the complex notion of substitution is promoted to the object-level by
introducing new operators into the language in order to compute substitutions
explicitly. This allows HORS to be expressed as more fine-grained (first-order)
rewrite systems in which no complex substitution nor binders are present. Such
a process may be applied to any HORS [BKR01]. As an example Fig. 1 shows
the rules of λσ [ACCL91], a calculus of ES implementing the λ-calculus (based
on de Bruijn indices notation [dB72] in order to discard annoying issues related
to the renaming of variables1).
1 Variables in terms are represented as positive integers. Eg. λx.x is represented as λ1,

λx.λy.x as λλ2, and λx.y as λ2.
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Terms X := n | XX | λX | X[s]
Substitutions s := id | ↑ | X · s | s ◦ s

(λX) Y →Beta X[Y · id ]
(X Y )[s] →App X[s] Y [s] (X · s) ◦ t →Map X[t] · (s ◦ t)
(λX)[s] →Lam λX[1 · (s ◦↑)] id ◦ s →IdL s
X[s][t] →Clos X[s ◦ t] (s1 ◦ s2) ◦ s3 →Ass s1 ◦ (s2 ◦ s3)
1[X · s] →VarCons X ↑ ◦ (X · s) →ShiftCons s
1[id ] →VarId 1 ↑ ◦ id →ShiftId ↑

Fig. 1. The λσ calculus

An obstacle which arises when using ES for implementing HORS is that
results on normalisation which hold in the higher-order rewriting setting may
not be preserved in its implementation. A well-known example of this mismatch
is due to Melliès [Mel95]: he exhibited a strongly normalising (typed) term in the
λ-calculus for which the λσ-calculus introduces an infinite derivation. However,
the problem is not confined to the setting of λ-calculus but rather affects any
HORS. For example the following well-typed Haskell program:

map (\x → (map id [ map id [true] ])) [ map id [true] ]

(where id abbreviates \x → x) is easily seen to be strongly normalising (and
reduces to [[[true]]]), however its ES-based implementation (cf. Ex. 2) may
introduce infinite derivations for it in a similar way to [Mel95] (see [Bon03]).

This mismatch calls for careful consideration of normalising strategies in
the context of ES-based implementations of HORS. This paper studies normal-
isation in the latter systems based on needed strategies, a notion introduced
in [HL91]. Needed strategies are those which rewrite redexes which are “needed”
(cf. Section 2.2) in order to attain a normal form, assuming it exists. For eg.
the underlined redex in 1[2 · (λ1) 1 · id ] is not “needed” in order to achieve a
normal form since there is derivation, namely 1[2 · (λ1) 1 · id ] →VarCons 2, that
never reduces it. In fact the infinite λσ-derivation of the aforementioned Haskell
program takes place inside a substitution s in a term of the form 1[X · s].

The literature on needed strategies for HORS has required the systems
to be orthogonal [HL91, Mar92, GKK00]2. A system is orthogonal if no con-
flicts (overlap) between redexes may arise. Neededness for orthogonal systems
does not suffice in our setting since HORS (even orthogonal ones) are im-
plemented as non-orthogonal systems in the ES-based approach. For eg., al-
though the λ-calculus is orthogonal, λσ is not, as witnessed by the critical pair:
(λX)[s]Y [s] ←App ((λX)Y )[s] →Beta X [Y · id ][s]. However, recently an exten-
sion has been introduced for non-orthogonal systems [Mel96, Mel00]. Motivated
by this work on needed derivations for non-orthogonal systems we prove the fol-
lowing new result: all needed strategies in ES-based implementations of arbitrary
2 An exception is [Oos99] however only weakly orthogonal systems are studied.
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orthogonal pattern HORS normalise. This extends the known result [Mel00] that
needed strategies in λσ normalise.

As an example of (one of) the issues which must be revisited in the extended
setting of HORS is a result [Mel00, Lem.6.4] which states that if the first redex in
a standard λσ-derivation occurs under a “λ” symbol, then the whole derivation
does so too. A standard derivation is one in which computation takes place
in an outside-in fashion (Def. 1). What makes “λ” so special in this regard
in the λσ-calculus is that creation of redexes above “λ”, from below it, is not
possible. We introduce the notion of contributable symbol in order to identify
these special symbols in the ES-based implementation of arbitrary higher-order
rewrite systems (under our definition “λ” is uncontributable), and prove an
analogous result.

Structure of the paper. Section 2 reviews the ERSdb higher-order rewrit-
ing formalism and the theory of neededness for orthogonal systems together with
Melliès’ extension to non-orthogonal ones. Section 3 identifies the Standard-
Projection Proposition as the only requirement for an orthogonal pattern HORS
to verify normalisation of needed strategies. Section 4 is devoted to verifying
that the latter holds for HORS. We then conclude and suggest possible future
research directions.

2 Setting the Scene

2.1 The ERSdb Formalism and Its ES-based Implementations

The ERSdb formalism. ERSdb is a higher-order rewriting formalism based
on de Bruijn indices notation [BKR00]. Rewrite rules are constructed from
metaterms; metaterms are built from: de Bruijn indices 1, 2, . . ., metavariables
Xl, Yl, Zl, . . . where l is a label (i.e. a finite sequence of symbols) over an alphabet
of binder indicators α, β, . . ., function symbols f, g, h, . . . equipped with an arity
n with n ≥ 0, binder symbols λ, µ, ν, ξ, . . . equipped with a positive arity, and
a metasubstitution operator M [[N ]]. Terms are metaterms without occurrences
of metavariables nor metasubstitution. A rewrite rule is a pair of metaterms
L→ R such that: the head symbol of L is either a function or a binder symbol,
all metavariables occurring in R also occur in L (disregarding labels), and there
are no metasubstitutions in L. An ERSdb R is a set of rewrite rules. The λσ-
calculus of Fig. 1 is an ERSdb (as well as all first-order rewrite systems). Two
other examples are:

Example 1 (ERSdb rewrite rules).
app(λXα, Yε) →βdb

Xα[[Yε]]

map(ξXα,nil) →map.1 nil
map(ξXα, cons(Yε, Zε)) →map.2 cons(Xα[[Yε]], map(ξXα, Zε))

A rewrite step is obtained by instantiating rewrite rules with valuations; the
latter result from extending assignments (mappings from metavariables to terms)
to the full set of metaterms and computing metasubstitutions M [[N ]] by the
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usual de Bruijn substitution [BKR00]. The labels in metavariables are used to
restrict the set of valuations to “good” ones. For example, the classical ηdb rule
is written λ(app(Xα, 1)) →ηdb

Xε. The Xα and Xε indicate that a valuation
is good if it assigns Xα and Xε some term t in which 1-level indices do not
occur free, for otherwise this index would be bound on the LHS and free on
the RHS . Another example is imply(∃∀Xαβ , ∀∃Xβα)→Comm true where a good
valuation must verify that if t is assigned to Xαβ then the term resulting from
t by interchanging 1 with 2-level indices must be assigned to Xβα [BKR00].

A redex r is a triple consisting of a term M , a valuation, and a position3 p in
M such that M at position p is an instance of the LHS of a rewrite rule via the
valuation; the induced rewrite step is written M →r N . Letters r, s, t, . . . stand
for redexes. We use →R for the rewrite step relation induced by an ERSdb R
and �R for its reflexive-transitive closure. A derivation is a sequence of rewrite
steps; we use |φ | for the length (number of rewrite steps) of a derivation φ;
letters φ, ϕ, . . . stand for derivations. If r1, . . . , rn are composable rewrite steps
then r1; . . . ; rn is the derivation resulting from composing them. Derivations that
start (resp. end) at the same term are called coinitial (resp. cofinal).

ES-based implementations of HORS. Any ERSdb may be implemented
as a first-order rewrite system with the use of ES [BKR01, Bon01]. The im-
plementation process (cf. Rem. 1) goes about dropping labels in metavariables
and replacing metasubstitution operators •[[•]] in rewrite rules with explicit sub-
stitutions •[• · id ]. Also, new rules - the substitution calculus - are added in
order to define the behavior of the new explicit substitutions; roughly, this cal-
culus is in charge of propagating substitutions until they reach indices and then
discarding the substitutions or replacing the indices. In this paper we use the
σ-calculus [ACCL91] as substitution calculus4, its rules have been presented
in Fig. 1 (disregarding Beta); it is confluent [ACCL91] and strongly normalis-
ing [CHR92]. If R is an ERSdb then we write RES

σ for its ES-based implementa-
tion and refer to it as an implementation (of R).

Example 2.
(βdb)

ES
σ =λσ

mapES
σ = map.1 ES ∪map.2 ES ∪ σ where:

map(ξX,nil) →ES(map.1) nil
map(ξX, cons(Y, Z)) →ES(map.2) cons(X[Y · id ], map(ξX, Z))

Two basic properties of ES-based implementations of HORS are Simulation
(if M →R N then for some M ′, M →RES M ′ �σ σ(N), where σ(N) denotes the
σ-normal form of N) and Projection (M →RES

σ
N then σ(M) �R σ(N)). For eg.

map(ξ(cons(1,nil)), cons(2,nil)) →map.2 cons(cons(2,nil),map(ξ(cons(1,nil)),nil))
may be simulated in its ES-based implementation as:

3 As usual, positions are paths in (terms represented as) trees [DJ90, BN98].
4 The rules App and Lam in Fig. 1 are present because λσ implements βdb ; in the

general case we would have f(X1, . . . , Xn)[s] →Funcf f(X1[s], . . . , Xn[s]) for each
function symbol f and ξ(X1, . . . , Xn)[s] →Bindξ

ξ(X1[1 · (s ◦ ↑)], . . . , Xn[1 · (s ◦ ↑)])
for each binder symbol ξ.
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map(ξ(cons(1,nil)), cons(2, nil))
→ES(map.2) cons(cons(1, nil)[2 · id ], map(ξ(cons(1, nil)),nil))
→Funccons cons(cons(1[2 · id ], nil [2 · id ]), map(ξ(cons(1, nil)),nil))
→VarCons cons(cons(2, nil [2 · id ]), map(ξ(cons(1, nil)),nil))
→Funcnil cons(cons(2, nil),map(ξ(cons(1, nil)),nil))

Remark 1. We restrict attention to a subset of ERSdb , namely the class of Pat-
tern ERSdb(PERSdb). This corresponds to the usual requirement that LHS
of rules be higher-order patterns in other rewrite formalisms [Mil91, Nip91,
KOvR93]. R is defined to be a pattern ERSdb if its ES-based implementation
does not contain explicit substitutions on the LHS . For example, ηdb is trans-
lated to λ(app(X [↑], 1)) →ES(ηdb) X . And Comm to imply(∃∀X, ∀∃X [2 · 1 · (↑
◦ ↑)]) → true [BKR01]. Thus ηdb and Comm are not pattern ERSdb ; those of
Ex. 1 are. The former exhibit the fact that when translating to an ES-based set-
ting, higher-order matching may not always be coded as syntactic matching. The
“occurs check” imposed by ηdb or the “commutation of indices check” imposed
by Comm are complex features of higher-order matching that require further
machinery (matching modulo the calculus of ES) in order to be mimicked in a
first-order setting. This is why we consider pattern ERSdb .

2.2 Standardisation and Neededness

The notion of standard derivations in rewriting5 may be formalised using the
redex-permutation approach [Klo80, Mel96]. We revisit this approach very briefly.

Given two non-overlapping redexes r, s in some term M we define the notion
of a redex residual of r after contracting s (written r/s) with an example. In
M = (λλ(2 2)) ((λ1) 2) 3 →βdb

(λ((λ1) 3) ((λ1) 3)) 3 = N , the residuals of r =
((λ1) 2) in M after contracting the underlined redex s are the two copies of
(λ1) 3 in N . Note that s has no residuals in N (i.e. for any s, s/s = ∅), and
also that r/s is a finite set of redexes. The outermost redex in N is said to
be created since it is not the residual of any redex in M . If UM is a finite set
of non-overlapping redexes (r, s ∈ UM implies r does not overlap s) in M and
s is a redex in M , then UM/s = {v|∃u ∈ UM , v ∈ u/s}. The residuals of r
after a derivation r1; . . . ; rn coinitial with it is defined as ((r/r1)/r2) . . . /rn. A
development of UM is a derivation φ = r1; . . . ; rn s.t. ri ∈ UM/(r1; . . . ; ri−1) for
i ∈ 1..n and UM/φ = ∅ (if this last condition is not satisfied we say φ is a partial
development of UM ). A well-known result called Finite Developments states that
all partial developments are finite [Bar84, Oos94]. This allows one to prove the
following:

Proposition 1 (Parallel Moves or Basic Tile Lemma [Bar84, HL91]).
Given two non-overlapping redexes r, s in some term M , the divergence result-
ing from contracting r and s may be settled by developing their corresponding
residuals (Fig. 2(a)). Moreover, for any u in M , u/(r; s/r)=u/(s; r/s).
5 In the sequel we restrict attention to left-linear rewrite systems: variables occur at

most once in LHSs.
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N1 s/r

�� ��������

M

r ��������

s �������� O

N2
r/s

�� ��������

K 1 a
r1 �� (λ2)a

r2 �� 1

K 1 (Ia)

s1

��

r3
�� (λ2) (Ia)

s2

��

r4
�� 1

(a) (b)

N1 s/r

��������

M

r ��������

s �������� O

N2
r/s

����������

�� N1 s/r

��������

��
M

r ��������

s �������� O

N2
r/s

�� ��������

(c: disjoint case) (d: nested case - s nests r)

Fig. 2. Tiles

Fig. 2(b) shows two basic tiles in the λ-calculus, whereK = λλ2. As depicted,
these basic tiles may be “glued” in order to construct tilings between some
coinitial and cofinal derivations φ and ϕ, in which case we write φ ≡ ϕ and
say that φ and ϕ are Lévy-Permutation Equivalent [Lév78, Klo80, Mel96]. For
example, s1; r1; r2 ≡ r3; s2; r2, however I(I 1)→βdb

I 1 �≡ I(I 1)→βdb
I 1, where

I = λ1. Moreover, by comparing the relative positions of r and s ((1) disjoint,
left tile in Fig. 2(b) and (2) nested - a redex s nests r when the position of s is
a prefix of the position of r - right tile in Fig. 2(b)) we can orient these tiles as
indicated in Fig. 2(c,d) and define standard derivations.

Definition 1 (Standard derivation).

1. Let r, s be cointial redexes. If they are disjoint, then r; s/r�s; r/s models
a reversible tile; if s nests r, then r; s/r � s; r/s models an irreversible
one. A reversible step ( r⇒) is defined as φ1; r; s/r;φ2

r⇒ φ1; s; r/s;φ2 where
r; s/r�s; r/s; an irreversible one ( i⇒) as φ1; r; s/r;φ2

i⇒ φ1; s; r/s;φ2 where
r; s/r�s; r/s. ⇒ denotes the least reflexive-transitive closure of r⇒ ∪ i⇒ and
� is the least equivalence relation containing r⇒.

2. Two coinitial and cofinal derivations φ, ϕ are Lévy-permutation equivalent,
if φ ≡ ϕ where ≡ is the least equivalence relation containing ⇒.

3. A derivation φ is standard if it is minimal in the following sense: there is
no sequence of the form φ = φ0

r⇒ . . .
r⇒ φk−1

i⇒ φk, where k ≥ 1.

For example r3; r4 is standard, but r3; s2; r2 is not. The standardisation the-
orem states that every derivation may be standardised into a unique standard
derivation by oriented tiling:

Theorem 1 (Standardisation [Lév78, Bar84, HL91, Mel96]).

1. (Existence) For any φ there exists a standard derivation ϕ s.t. φ⇒ ϕ.
2. (Unicity) If ϕ1 ≡ φ and ϕ2 ≡ φ and ϕ1,2 are standard, then ϕ1 � ϕ2.
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Let std(φ) stand for the (unique modulo �) standard derivation in the ≡-
equivalence class of φ. For example, std(s1; r1; r2) = std(r3; s2; r2) = r3; r4 in
Fig. 2(b).

Standard derivations are used to show that needed strategies are normalising
in orthogonal systems. A rewrite system is orthogonal if any pair of coinitial
redexes r, s do not overlap. Define r in M to be a needed redex if it has at
least one residual in any coinitial derivation φ, unless φ contracts a residual of
r [Mar92]. For example, for the rewriting system {f(Xε, b) → c, a → b} the
right occurrence of a in f(a, a) is needed but not the left one. A needed rewrite
strategy is one that only selects needed redexes. By defining a measure |M | as
“the length of the unique standard derivation (modulo �) to M ’s normal form”
it may be shown [HL91, Mel96] that if M →r N for some needed redex r, then
|M|>|N|; hence needed strategies normalise in orthogonal rewrite systems. This
measure is well-defined since in orthogonal systems any two coinitial derivations
to (the unique) normal form may be tiled [HL91, Mel96].

In the case of non-orthogonal systems the notion of needed redex requires
revision. Indeed, in R = {a →r a, a →s b} the derivation to normal form
φ : a →s b leaves no residual of r. However one cannot conclude that r is not
needed since although r is not reduced in φ a redex which overlaps with r has.
Thus the notion of needed redex is extended to needed derivations as follows:

Definition 2 (Needed derivations in non-orthogonal systems [Mel00]).
φ : M � N is needed in a non-orthogonal rewrite system if |std(φ;ψ)|>|std(ψ)|
for any term P and any derivation ψ : N � P .

Note that now a →r a is needed in the aforementioned example. The con-
cept of needed redexes is extended to that of derivations since, in contrast to
orthogonal systems, terms in non-orthogonal ones may not have needed redexes.
For example, in {xor(true, Xε) →L true, xor(Xε, true) →R true, Ω →Ω true}
the term xor(Ω,Ω) has no needed redexes [Klo92].

Needed derivations get us “closer” to a normal form, however the afore-
mentioned measure for orthogonal systems is no longer well-defined: there may
be two or more ≡-distinct normalising derivations. Eg. φ1 : a →r a →s b,
φ2 : a →r a →r a →s b, φ3 : a →r a →r a →r a →s b, . . ., etc. are ≡-distinct
normalising derivations since each r-step creates a new copy of a. In [Mel00] such
badly-behaved systems are discarded by requiring the following property to be
fulfilled: A normalisation cone6 for a term M is a family {ψi : M � N | i ∈ IM}
of normalising derivations such that every normalising derivation φ : M � N is
Lévy-permutation equivalent to a unique derivation ψi (i.e. ∃!i ∈ IM s.t. φ ≡ ψi).
A rewrite system enjoys finite normalisation cones (FNC ) when there exists a
finite normalisation cone for any term M .

Redefining the measure of a term |M| to be “the length of the longest standard
derivation in M ’s cone to M ’s normal form” allows one to show [Mel00] that

6 This definition differs slightly from [Mel00, Def.4.8] since we make use of the fact
that ES-based implementations of orthogonal HORS are confluent [BKR01].
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if φ : M � N is a needed derivation, then |M |>|N |; hence needed strategies
normalise in non-orthogonal rewrite systems satisfying FNC.

3 FNC for ES-based Implementations of HORS

It is therefore of interest to identify conditions guaranteeing that ES-based im-
plementations of HORS enjoy finite normalisation cones. In [Mel00] the FNC
property is shown for λσ; this result relies on two conditions: (1) if φ is a stan-
dard derivation in λσ ending in a σ-normal form (cf. Sect. 4), then σ(φ) is
standard in the λ-calculus, and (2) needed strategies are normalising for the
λ-calculus; σ(φ) is obtained by mapping each λσ-rewrite step in φ to its “corre-
sponding” or “projected”, if any, rewrite step in λ (see Stage 2, Sect. 4). Eg. if
φ : (1 1)[(λ1) 2 · id ]→Beta (1 1)[1[2 · id ] · id ] then σ(φ) takes the form:

((λ1) 2) ((λ1) 2) →βdb
2 ((λ1) 2) →βdb

2 2

In this paper we show that the FNC property holds for the ES-based imple-
mentation of arbitrary orthogonal PERSdb . This generalizes [Mel00, Thm.7.1],
proved for the λ-calculus. The proof follows the same lines as in [Mel00]; it relies
on our meeting requirement (1), namely

Proposition 2 (Std-Projection Proposition). LetR be a left-linear PERSdb.
Every standard derivation φ : M � N in RES

σ with N in σ-normal form is pro-
jected onto a standard derivation σ(φ) : σ(M) � N in R.

Here is how FNC follows from the Std-Projection Proposition:

Proposition 3. The ES-based implementation of any orthogonal PERSdb R
verifying the Std-Projection Proposition enjoys FNC: every closed RES

σ -term has
FNC.

Proof. Suppose, on the contrary, that there exists a closed RES
σ -term with an in-

finite number of normalising RES
σ -derivations, modulo Lévy-permutation equiva-

lence. We may construct an infinite tree whose nodes are the standard derivations
M � N which may be extended to normalising derivations M � N � P where
nodes are ordered by the prefix ordering, and by König’s Lemma (since every
RES

σ term contains finite redexes) deduce the existence of an infinite derivation
φ∞. Moreover, since σ is strongly normalising we know that φ∞ has an infinite
number of RES-steps.

Let φ∞ be of the form M → M1 → M2 → . . .. Every finite prefix φi : M �
Mi of φ∞ may be extended to a standard normalising path χi : M � Mi � N
(see below, left). And, by Prop. 2, each σ(χi) : σ(M) � σ(Mi) � σ(N) = N is
a standard and normalising R derivation.

SinceR is orthogonal all the normalising derivations σ(χi) : σ(M) � σ(N) =
N must be Lévy-permutation equivalent. Thus we have: σ(χ1) ≡ σ(χ2) ≡
σ(χ3) ≡ σ(χ4) ≡ . . .. And from Thm. 1(2) and the fact that φ � ϕ implies
|φ|=|ϕ| we deduce that: |σ(χ1)|=|σ(χ2)|=|σ(χ3)|=|σ(χ4)|= . . .
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We reach a contradiction from the fact that there are an infinite number of
RES redexes in φ∞ and that Prop. 2 projects RES redexes to unique R-redexes
(see Stage 2, Sect. 4): For every i > 0 there is a j > i such that |σ(χj)|>|σ(χi)|.
See below, right, where the squiggly arrow σ(ri) is the identity if ri is a σ redex
and is an R redex if ri is an RES redex.

M
r1 ��

RES
σ �� ���

��
��

��
� M1

r2 ��
RES

σ

����

M2

r3 ��

RES
σ				��

��
��

��
. . .

...

N

σ(M)
σ(r1) ����������

R 

 

����������
σ(M1)

σ(r2) ����������

R ����

≡≡

σ(M2)
σ(r3) ��������

R��������������
. . .

...

σ(N) = N

4 The Std-Projection Proposition

We now concentrate on the proof of the Std-Projection Proposition which pro-
ceeds by contradiction and is developed in three stages. Before continuing how-
ever, we remark that it is non-trivial. In fact, in the general case in which N is
not required to be a σ-normal form it fails:

χ : ((λ(11))1)[(λ1)c · id ] →Beta ((λ(11))1)[1[c · id ] · id ] →Beta (11)[1 · id ][1[c · id ] · id ]

χ is a standard λσ-derivation, however σ(χ) : (λ(11))((λ1)c)→β (λ(11))c→β cc
is not standard in the λ-calculus.

Let χ be any standard RES
σ derivation. The idea of the proof, inspired from

[Mel00], is to show that every reversible (resp. irreversible) step in the projection
σ(χ) of χmay be mimicked by 1 or more reversible (resp. reversible steps followed
by 1 or more irreversible) steps in χ, the ES-based derivation. Hence we may
conclude by reasoning by contradiction. Stage 1 of the proof shows why the
projection of an RES step results in a unique R step if χ ends in a σ-normal
form, Stage 2 uses this fact to prove that reversible steps may be mimicked as
explained above and Stage 3 considers irreversible steps.

Stage 1 (Substitution Zones)

First of all, note that χ consists of two kinds of rewrite steps: RES steps and
σ steps. We argue that it is not possible for a RES step to take place inside a
substitution if χ ends in a σ-normal form. The reason is that in that case the
RES-redex would occur inside some term P in P · s and hence under the “·”
symbol. Since χ is standard, redexes reduced below a “·” symbol cannot create
redexes above it, and since N is a pure term we arrive at a contradiction. We
formalise this argument below (Lemma 2).

Definition 3. Given an implementation RES
σ with Γ the set of function and

binder symbols, we define g ∈ Γ of arity n as uncontributable in RES
σ if

1. either, g does not occur on the LHS of any rule in RES
σ ,

2. or, g occurs on the LHS of a rule in RES
σ only under the form g(X1, .., Xn)

(i.e. it occurs applied to metavariables).

A symbol in Γ which is not uncontributable is called contributable.
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Example 3. The λ-symbol is an example of an uncontributable symbol in the
λσ-calculus, i.e. in (βdb)

ES
σ . Whereas, the application symbol is contributable

in λσ due to the Beta-rule. Also, for any PERSdb R the cons-symbol “·” is
uncontributable in RES

σ since it is only the rules of σ that govern the behaviour
of “·”.

The notion of uncontributable symbol attempts to capture those symbols
from which reduction below it cannot create/erase redexes above it. Note that,
although similar, this concept does not coincide with that of constructor symbol
in a constructor TRS [Klo92]: given a constructor TRS there may be constructor
symbols which are contributable (e.g. “s” in f(s(s(x)))→ x) and likewise there
may be uncontributable symbols that are not constructor symbols (e.g. “f” in
f(x)→ a).

We say that a derivation r1; . . . ; rn preserves a position p when none of the
redexes ri is above p.

Lemma 1. Let RES
σ implement R. Suppose that a position p is strictly above a

redex P →r Q. Every standard derivation φ = r;ψ preserves p when:

1. either, p is a g-node for g an uncontributable symbol in RES
σ ,

2. or, p is a g-node for g a function or binder symbol in RES
σ and ψ is a σ-

derivation.

Proof. Given the standard derivation φ = r;ψ and the position p strictly above
r two cases may arise: either φ preserves p (in which case we are done) or
otherwise φ may be reorganized modulo � into a derivation φ1;u; v;φ2 such
that φ1 preserves the position p, the position p is strictly above a redex u, and
a redex v is above p. We shall see that the latter case results in a contradiction.
Note that the derivation u; v cannot be standard, unless u creates v. Now, in at
least the following two cases creation is not possible:

1. When p is the position of an uncontributable symbol in RES
σ . This follows

from the fact that contraction of a redex below an uncontributable symbol
may not create a redex above it.

2. When the position p is a function or binder symbol node and u is a σ-redex
then an RES-redex must have been created, in other words, the only possible
pattern of creation is when u is a Funcf -redex for some function symbol f or
a Bind ξ-redex for some binder symbol ξ and v is an RES-redex. For example,
the pairM = g(h(c)[id ])→Funch

g(h(c[id ]))→ c whereR = {g(h(X))→ c},
p = ε in M , the position at which v occurs in N is ε and the position at which
u occurs in M is 1. Note that it is not possible for u to be an RES

σ -redex
and v a σ-redex since σ-redexes above function or binder symbols cannot be
created from below them.

The following key lemma states that the left argument of a “·” symbol de-
termines an “enclave” in a standard RES

σ -derivation to σ-normal form.
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Lemma 2. Let RES
σ implement R and let φ : M � N be a standard RES

σ -
derivation with N in σ-normal form. Then no RES

σ -redex ever appears in the left
argument of a substitution P · s.
Proof. By contradiction. Suppose there exists an ri contracted in φ = r1; . . . ; rn
inside the left argument P of a substitution P · s. Since the “·” symbol is uncon-
tributable, then by Lemma 1(1) the derivation ri; . . . ; rn preserves p. Since N is
a pure term (i.e. has no explicit substitutions) we arrive at a contradiction.

Stage 2 (Reversible Steps)

So now we know that every RES redex contracted in χ does not occur inside
a substitution and hence that it has a unique correspondent R-redex in σ(χ).
This means that if σ(χ) = R1; . . . ;Ro, then there is a function ρ : {1, . . . , o} →
{1, . . . , n} which associates to any R-redex Rk in σ(χ) the unique RES-redex
rρ(k) in χ = r1; . . . ; rn to which it corresponds.

It should be mentioned that there are a number of subtle issues regarding the
notion of “correspondence” that must be considered. Due to lack of space these
issues have been relegated to the manuscript [Bon03], however we comment on
them briefly.

– First of all, observe that it does not coincide with that of the residual
relation since RES-redexes may be lost when traversed by substitutions:
For example, the Beta-redex in M is lost in the following σ-derivation:
M = ((λP )Q)[id ]→App (λP )[id ]Q[id ]→Lam (λ(P [1 · id ◦ ↑]))Q[id ]. There-
fore, an appropriate notion of correspondent for tracingRES redexes through
σ derivations must be defined.

– Secondly, since σ rewriting may duplicate terms it must be proved that
the correspondents of redexes not occurring inside substitutions are indeed
unique.

– Finally, the following parametricity property for σ showing the absence of
“syntactical coincidences” [HL91] must be verified: if rρ(i) is a redex in Mi

whose correspondent is Ri in σ(Mi) then the definition of correspondent
should not depend on any particular σ-derivation taking Mi to σ(Mi).

Let Rk and Rk+1 be two consecutive R-redexes in σ(χ). Note that the RES
σ -

derivation ri; . . . ; rj = rρ(k)+1; . . . ; rρ(k+1)−1 between rρ(k) and rρ(k+1) contracts
only σ-redexes, as depicted below:

Mi−1 rρ(k)
��

σ
����

Mi
σ

ri;...;rj

�� ��

σ
����

Mj rρ(k+1)
��

σ
����

Mj+1

σ
����

σ(Mi−1)
Rk

�� σ(Mi) σ(Mj)
Rk+1

�� σ(Mj+1)

We now show that every reversible standardisation step σ(χ) r⇒ ω in R may be
mirrored as a non-empty series of reversible standardisation steps χ r⇒ . . .

r⇒ φ
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in RES
σ , where σ(φ) = ω. It suffices to show that if Rk and Rk+1 can be per-

muted using a reversible tile (Rk;Rk+1�R
′
k;R′

k+1), then a number of reversible
steps may be applied to rρ(k); ri; . . . ; rj ; rρ(k+1) yielding φ s.t σ(φ) = R′

k;R′
k+1.

However, first we need the notion of descendent of a position.
In the same way as the notion of residuals allow us to keep track of redexes

along derivations, the notion of descendent allows us to keep track of positions
(hence symbols) along derivations. Here is an example: if R = {f(Xε, b) → c}
and consider the rewrite step M = f(f(a, b), c) → f(c, c) = N . The “f” at the
root in M descends to the “f” at the root in N and the inner “f” in M (and
the “b”) descends to the “c” in N . The “a” in M , however, has no descendents
in N . The inverse of the descendent relation is called the ancestor relation.

Remark 2 (Origins of positions outside substitutions). Let r be an RES-redex
in M occurring at a position p not inside a substitution. As already noted,
it has a unique corresponding R-redex R in σ(M) occurring at some position
p′. Moreover, the following property on the ancestors of positions not inside
substitutions holds: for every position q′ in σ(M) with q′ < p′ (where < is the
prefix order), we have q < p where q is a position in M of the same symbol and is
the (unique) ancestor of q′ as illustrated below. The fact that q′ is unique follows
from the observation that σ may not create new function or binder symbols.

Let us now turn to the proof of this stage. Suppose two R-redexes Rk and
Rk+1 can be permuted using a reversible tile, that is, Rk;Rk+1�R

′
k;R′

k+1. We
construct an RES

σ -derivation φ s.t. χ � φ and σ(φ) = R1; . . . ;R′
k;R′

k+1; . . . ;Rp.
By Lemma 1(2), the derivation ri; . . . ; rj preserves the position of any function
or binder symbol strictly above rρ(k). And, in particular, the lowest function
or binder symbol g appearing above Rk : σ(P ) → σ(Q) and Rk+1 in the term
σ(P ) which, by Remark 2, is strictly above rρ(k) in P . Then the derivation
ψ = rρ(k); ri; . . . ; rj ; rρ(k+1) may be reorganized modulo � into a derivation ψ′

such that σ(ψ′) = R′
k;R′

k+1 as follows: let p be the position of this occurrence
of g in P and assume P |p= g(N1, . . . , Nm) and suppose rρ(k) occurs in Nl1 and
the head symbol of rρ(k+1) occurs in Nl2 for l1, l2 ∈ 1..m and l1 �= l2:

1. First contract all the redexes in ri; . . . ; rj prefixed by p.l2
2. Second contract rρ(k+1),
3. Third contract the (unique) residual of rρ(k),
4. Finally contract the remaining redexes of ri; . . . ; rj , i.e. those prefixed by
p.1, . . . , p.l2 − 1, p.l2 + 1, . . . , p.m.
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Stage 3 (Irreversible Steps)

Finally, we show that also irreversible standardisation steps in R may be mim-
icked in the implementation: every irreversible standardisation step σ(χ) i⇒ ω

in R may be mirrored as a non-empty series of standardisation steps χ r⇒ . . .
r⇒

φ′ i⇒ . . .
i⇒ φ with at least one irreversible step in RES

σ , where σ(φ) = ω.
Hence the proof of Prop. 2 concludes by reasoning by contradiction since

every standardisation step acting on the projected HO rewrite derivation may
be mimicked by projection-related standardisation steps of the same nature (re-
versible/irreversible) over derivations in the implementation.

Suppose two R-redexes Rk : σ(P )→ σ(Q) and Rk+1 can be permuted using
an irreversible tile Rk;Rk+1 �R′

k;ψ. Observe the following:

Observation: Let r be a redex in M at some position p, instance of a
rule L → R. The pattern of r is the subterm of M at position p where the
arguments of r (i.e. the terms substituted for the variables of L) are replaced by
holes. Similarly to Rem. 2, all the symbols in the pattern of (the σ-ancestor of)
Rk+1 strictly above Rk in σ(P ) are present in P above the occurrence of rρ(k).
Moreover, none of these symbols occurs embraced by a substitution operator.

This follows from two facts:

1. first, by Lemma 1, the derivation ri; . . . ; rj preserves all these symbols (in
particular the lowest one), and

2. second, rρ(k+1) is an RES-redex for R a PERSdb (cf. Rem. 1) hence its LHS
contains no occurrences of the substitution operator •[•].
We consider two cases for Stage 2, reasoning by contradiction in each one:

(A) The redex rρ(k) in P occurs under an uncontributable symbol g belonging to
the pattern of Rk+1, (B) All symbols above rρ(k) in P belonging to the pattern of
Rk+1 are contributable. Note that the second case is not possible in the lambda
calculus since the β-redex pattern always has the uncontributable symbol λ.

A. By Lemma 1(1) the derivation ri; . . . ; rn preserves every uncontributable
symbol strictly above rρ(k). Among these symbols is the symbol g involved
in the pattern of Rk+1. The redex rρ(k+1) is above the position of this symbol.
We reach a contradiction.

B. Suppose that the two R-redexes Rk and Rk+1 can be permuted using an
irreversible tile Rk;Rk+1 �R′

k;ψ; we shall arrive at a contradiction. Let p be
the occurrence of the unique σ-ancestor of the head symbol g of Rk+1 in P ,
and P|p= g(M1, ..,Mm). By Lemma 1(2) the derivation ri; ...; rj preserves p.
Let l ∈ 1..m such that rρ(k) occurs in Ml. We may then reorganize modulo
� the derivation ψ = rρ(k); ri; . . . ; rj ; rρ(k+1) obtaining ψ′, as follows:
(a) First rewrite all redexes in ri; . . . ; rj prefixed by p.1,p.2,...,p.l − 1,p.l +

1,..,p.m in turn (i.e. first all those prefixed by p.1, then those by p.2, and
so on) and those disjoint to p.

(b) Second, rewrite all redexes prefixed by p.l but disjoint to the (unique)
residual of rρ(k). At this moment the redex rρ(k+1) must have emerged
since
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– by the Observation there are no substitution symbols in Ml between
p and the position of rρ(k), and

– rj+1 = rρ(k+1), it is an RES-redex and hence its LHS contains no
occurrences of the substitution operator •[•].

(c) Thirdly, rewrite the (unique) residual of rρ(k), say r′ρ(k), followed by the
redexes in ri; . . . ; rj prefixed by the occurrence of rρ(k), i.e. those not
rewritten in Step 1 or Step 2.

(d) Finally, rewrite rρ(k+1).
Note that ψ′ = ψ′

1;ψ
′
2 where ψ′

1 consists solely of σ-rewrite steps (see Step
1 and 2, above) and ψ′

2 = r′ρ(k); rk1 ; . . . ; rkm ; rρ(k+1) for some m ≤ j − i.
Applying m+ 1 irreversible standardisation steps starting from ψ′

2 we may
obtain ψ′

3 = r′ρ(k+1);ψrρ(k) ;ψrk1
; . . . ;ψrkm

. Finally, setting ψ = ψ′
1;ψ′

3 we
may conclude.

This concludes the proof of Prop. 2. As a consequence we have:

Theorem 2. Let R be any orthogonal pattern ERSdb. All needed derivations
normalise in the ES-based implementation RES

σ of R.

Remark 3. Although our interest is in normalisation we would like to point out
that Prop. 2 may be seen as reducing standardisation for HORS to that of first-
order systems. Given a derivation χ : M � N in an orthogonal pattern ERSdb

R, we recast χ in the ES-based implementation of R, then we standardise the
resulting derivation in the first-order setting [Bou85] and finally we project back
to the HO-setting. The resulting R derivation φ shall not be just any standard
derivation from M to N , but also Lévy-permutation equivalent to χ, in other
words, φ ≡ χ. This may be verified by proving that ϕ⇒ φ implies σ(ϕ) ≡ σ(φ).

5 Conclusions

We have addressed normalisation by needed reduction in the ES-based approach
to the implementation of HORS. Melliès [Mel95] observed that the implementa-
tion of a higher-order rewrite system by means of calculi of explicit substitution
may change its normalisation properties fundamentally; indeed a term possessing
no infinite derivations in the λ-calculus may lose this property when shifting to
the λσ-calculus. Based on an extension of the theory of needed redexes to over-
lapping systems [Mel00] we have shown that all needed derivations normalise
in the ES-based implementation of any orthogonal pattern HORS; the latter
result has been established in the setting of the ERSdb formalism for higher-
order rewriting. The key property that has been addressed in order to apply
the aforementioned theory is to show that standard derivations in the ES-based
implementation of a HORS project to standard derivations in the higher-order
setting (Std-Projection Proposition). The fact that this key property is all that
is required owes to a simplified proof of [Mel00, Thm.7.1] (Prop. 3).
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In [BKR01] the ES-based implementation of HORS does not fix a particular
calculus of explicit substitutions. Instead a macro-based presentation encom-
passing a wide class of calculi of ES is used. The study of the abstract properties
that make the proof of the Std-Projection Proposition go through would allow
the results presented here to be made independent of σ, the calculus of ES which
we have dealt with in this paper.

Further in this line, it would be interesting to insert the work presented here
into the axiomatic setting of Axiomatic Rewrite Systems as developed in [Mel96,
Mel00]. This would require a formulation of calculi of ES based on abstract
axiomatic properties, work which we are currently undertaking.
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Journal of Functional Programming, 4(1):375–416, 1991.

[Bar84] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. Stud-
ies in Logic and the Foundations of Mathematics 103. North-Holland,
Amsterdam, revised edition, 1984.

[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus
of explicit substitutions which preserves strong normalisation. Journal of
Functional Programming, 6(5):699–722, 1996.

[BKR00] E. Bonelli, D. Kesner, and A. Ŕıos. A de Bruijn notation for Higher-
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