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ABSTRACT

The goal of discovering association rules is to discover ail
possible associations that accomplish certain restrictions
(minimum support and confidence and  inferesting}.
However, it is possible to find interesting associations with
a high confidence level but with littie support. This
problem is caused by the way support is calculated, as the
denominator represents the total number of rransactions in a
time period when the involved items may have not existed.
If, on the other hand, we limit the total transactions t© the
ones belonging to the items’ lifetime. those associations
would be now discovered, as they would count on enough
suppori. Another dif(iculty is the large number of rules that
could be generated., for which many solutions have been
proposed. Using age as an obsolescence factor for rules
helps reduce the number of rules 0 be preseated to the
user. In this paper we expand the notion of association rules
incorporating uime (0 the frequent itemsets discovered. The
concepl of temporal support is introduced and, as an
example. the known algorithm A priori is modified 1w
incorporate the temporal notions.

1. INTRODUCTION

The problem of the discovery of associalion rules comes
from the need to discover patterns in transaction data in a
supermarkel. Bul irapsaction data are lemporal.  For
example. when gathering data about products purchased in
a supermarket, the time of the purchase is registered in the
transaction. This is called rransaction time, in temporal
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databases jargon , which matches the valid time,
corresponding to the time of the business (ransaction
confirmation at the register. In [12], the author expresses:
“The nme dimension is the one dimension virtually
guaranteed to be present in every data warehouse, because
virtuglly every data warehouse is a time series”.

In large data volomes, as used for data mining purposes,
we may find information related to products that did not
necessarily exist throughout the data gathering period. So
we can find some products that, at the moment of
performing that mining, have already been discontinued.
There may be also new products that were introduced
afier the beginning of the gathering. Some of these new
products should participate int the associations, bul may
not be included in any rule because of supporl restrictions.
For example, if the total number of ftransactions is
30,000,000 and we fix as minimum support 0.5 %, then a
particular product must appear in. at least, 150,000
transaciions to be considered frequent. Moreover, suppose
that these transactions were recorded during the last 30
months. at 1,000,000 per month. Now, take a product that
has been sold during the 30 momnths and has just the
minimum  Support: it appears on awrage in 5,000
transactions per month. Consider now another product that
was incorporated in the last 6 months and that appears in
20.000 transactions per month. The total number of
transactions in which it occurs is 120.000: for that reason, it
is 1ot trequent, even though u s four times as popular as
the first. However. if we consider just the transactions
generaled since the product appearcd in the markel, its
support might be above the stipulated minimum. In our
cxample. the support for the new product would be 2%,
relative to its lifetime. since in & months the total of
transactions would be about 6.000.000 and this product
appears in 120,000 of them. Therefore, these new products
would appear in inwresting and powntially uwseful
association rules.

One way to solve this problem is by incorporating time
in the mode? of discovery of association rules. We will call
these rules Temporal Associarion Rules.

One subproduct of this idea is the possibility of
eliminating ouldaled rules, according to the uvser criteria.
Moreover, it is possible to delete obsolete itemsets as a
function of their lifetime, reducing the amount of work 1o
be done in the determination of the frequent itemsets and,
fience, in the determination of the rules.



The temporal association rules introduced in this paper
are an extension of the nontemporal model. The basic idea
is to limit the search for frequent sets of items or itemsets 1o
the lifetime of the itemset’s members. For that reason, the
concept of temporal suppott is introduced. Thus, each rule
has an associated time frame, corresponding to the lifetime
of the items participating in the rule . If the extent of a
tule’s lifetime exceeds a minimum stipulated by the user,
we analyze if the rule is frequent in that period. This
concept allows vs to find rules that, with the traditional
frequency viewpeint. it would not be possible o discover.

The remainder of this paper is organized as follows.
Related work on discovery of associaiion rules, temporal
data mining in general, and discovery of temporal rules in
temporal databases, in particular is given in Section 2. The
temporal model is introduced in Section 3. In Section 4 we
discuss the discovery of temporal rules, adapting the A
priori method as an example. Also in section 4 we analyze
changes to an existing algorithm for the rules’ generation.
Finally, in section 5 we conclude and briefly discuss future
work.

2. RELATED WORK

The problem of discovering associations from data was
introduced by Agrawal et al. in [1]. Tt was followed by
successive refinements, generalizations and improvements
(I5], 13), [99. [15), [17], [1%8]). Among these we can find
improved algorithms for the discovery of frequent itemsets,
generalized and quantitative association rules, and new
measures for other types of data, different from the market
basket.

Previous work about data mining that includes temporal
aspects is usually  related to the sequence of events’
analysis (}2]. [7). {8l. {13]). The usual objective is to
discover regularities in the occurrence of certain evenis and
lemporal relationships between the different evems. In
particular. in {13]. the problem of recognizing (requent
episodes in an event sequence is discussed: an episode is
defined there as a collection of events that occur during
time intervals of a specific size. Meanwhile [6] reviews the
problem of discovering scquential patlerns in transactional
data bases. The solution consists in creating a sequence for
every client and to look for frequent patterns into each
sequence.

In [7} and {8] more complex patierns than in the cases
mentioned above are considered. In these cases lemporal
distances with multiple granularitics are treated.

Now we will analyze how the present work is related o
others. specifically in mining temporal association rulcs.
All of them have the same goals as ours: the discovery of
association rules and their periods or interval time of
validity.  Qur proposal was formulated independently of
the others but shares with them some similarities. In [14]
they study the problem of association rules that exist in
certain time intervals and thus display regular cyclic
variations over time. They present algorithms for efficiently
discover what they called "cyclic association rules”. 1t is
assumed that time intervais are specified for the user.

In {16] the authors study how the association rules vary
over time, generalizing the work in {14]. They introduce
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the naotion of calendar algebra to describe temporal
phenomena of interest to the users and present algorithms
for discovering “caleadric association rules”, that is.
association rules that follow the temporal patlerns set forth
in the user supplied calendar expressions.

The third study{[11]) also svggests calendar time
expressions to represent temporal rules. They present onty
the basic ideas of the algorithms for discovering the
temporal rules.

Our approach is based on taking into account the items’
period of life or lifespan, this being the period between the
first and the last time the item appears in transactions in the
database. We compute the support of an itemset in the
interval defined by its lifespan and define temporal support
as the minimum interval width. Qur approach differs from
the others in that it is not necessary to define iaterval or
calendars since the lifespan is intrinsic to the data. In
addition, we describe in detail the temporal extension to the
Apriori algoritha.

3. THE TEMPORAL MODEL

Let T={ ... t & G ...} be asetof times, countably
infinite, over which a linear order <p is defined, where
<Y means ¢ ocours before or is earslier than 1([211). We
will assume that T is isomorphic to N ( natural numbers)
and restrict our attention to closed intervals [, ).

Definition 1: Eet R = { Ay, .. ., Ay} where the Af's are
called irems, & is a collection of subsets of R cailed the
ransaction darabase. Bach iransaction s in @ is a set of
items such that s - R. The definition of R includes cvery
item of 4a. independently of the moment in which it
appears. Associaled to s we have a timestamp t; which
represents the valid time of transaction s.

Every item has a period of life or flifespan in the
database. which explicitly represents the terporal duration
of the item information. ie. the time in which the item is
relevant to the user. The Litespan of an item A, is given by
aninterval v, ). with ), < 1,

Definition 2: Le( A; an item ol R, With each item A, and
database d, we associate a flifespan defined by a time
interval [ALG Auty] or simply [L. (] if A, is understood. |
A, = 2T is a tunction assigning a lifespan 1o cach item A, in
R. We will refer (o this lifespan as (aj Then, we define ly,

the litespan of d. aslg =t 1aj. Vi

Definition 3: Let X < R a set of iiems. s contains X, or X
is verified in s, if X £ §. The set of wansactions in d that
contain X is indicated by VIX. d) = {sise d » Xgs}. If
the cardinality of X is k, X is called a k-itemset.

The lifespan of a k-itemset X, with k > 1, is [t, t'] where
t = max{tl [t,, 1] is the lifespan of an item A, in X} and ¢’=
min{ t,d [t,, t,] is the Tifespan of an item A;in X }.

As set operations are valid over lifespans, then the
lifespan kg of the k-itemset X, where X is the union of the
{k-1)-itemsets V' and W with lifespans |y and lw.
respectively, is given by k=ly A lwe



Definition 4: Let X < R be a set of items and 1y uts
lifespan. If d is the set of ransactions of the database, then
dy is the subset of rransactions of d whose timestamps ; €

Ix. By Id.xl we indicate the number of transactions of d -

In the nontemporal association rules model the following
definition of support holds.

Definition 5: The supporr of X in d. denoted by s(X, d). is
the fraction of the transactions in d that contains X: {V(X,
d)i / 14l The frequency of a set X is its support. Given a
support threshold o e [0, 1], X is frequent il s(X, d} 2 . In
this case, it is said that X has minimum support.

In this paper we waat to broaden the detinition of
support in order o include cases such as the proposed in
the initial example. In other words, the incorporation of
time would let us determine if an itemset is frequent by
computing the ratic between (he number of fransactions
that contain the itemset and the number of transactions in
the database such that their valid tme is included in the
itemset’s lifespan.

Evidently, we need to filter items, and then the itemsets,
with very short life as, for example. an item that has been
sold just once would then have a support of 100%. For this
reason we define temporal support as the amplitude of the
lifespan of an itemset. We also define a threshold for the
temporal support: if Iy is the lifespan of the database and
gl is its duration, then the threshold of the temporal
support T is a fraction of 4. Thus, for example. if the
transactions correspond to a period of m months, €, a
fraction of n months, represents a lower bound for the
temporal support of an itemseL.

If the quantiey of transactions of the database is Id), then
fdl . %/ 4l would give us an aproximation to the minimum
quantity of transactions 10 be considered as sample size.
Then idl .t/ N4l should be a statistically significant value, at
the user’s criteria.

On the other hand. the user could Specity a time instant
t,, such that any Hem whose lifespan is [, L] and t, < t,is
considered obsolete.

The new definition for support in the temporal model
would now be:

Defimition 6: The suppair of X in d over ils lifespan Ik,
denoted s(X.lx, d). is the fraction of transactions in d that
contains X during the interval of time corresponding 10 Ix:
IV(X, d)l / Id,xl. The frequency of a set X is its support.

Given a threshold ot support 6 & [0. 1] and a threshold of
temporal support T, X is frequenr in its Tifespan ly if s(X, lx,
d) 2 oand Iyl = T. In this case, it is said that X has
minimum support in Iy,

The suppoct threshold or frequency @ is a parameier
given by the user and is dependent on the application.
Likewise, the temporal suppori theeshold € is given by the
user and also depends on the applications.
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Following we will introduce an exampls to clarify the
definitions given up to now.

Example 1: et R=({A, B C D E F, G H, I}andd
composad by the following six transactions:
;={A, C, FH I}, u1

s;={4, B C G}, 2
s3=(BCDGILtE3
s;={A, C. 1}, 4
ss={C,D,E HI} ©5
s={ADFG), L&

If we establish as minimum support & = 0.45 and
minimum temporal support T = 3. we could now find the
frequent X, resulting in

X;={A}. ]"1 =[1,6], since we find A
between s, and s, which have stamped times 1 and 6,
respectively. The support of {A} is computed as s({A}, 1,
d) =V([A}, d)}/ idg o = 4/ 6 = 0.67: the remporal support
of Ais Il = 6. Then X;= {A) is frequent because s({A).
liap @) =0.67>0and Ll =6> <.

In the same way the following frequent itemsets are
obtained: we indicate just their lifespan:

X: = (C), k,=[1.5];
X, = (D). Iy, = [3. 6];
Xo= (G}, k=A2.6);

Xs = (1} Ix {1 5]

Xe= {4, C) I =[L 5k
X, = (CD}. 1, = (3. 51;
Xs={C I} lxs-- L. 5].

The empty set @ is trivially frequeat, so it is not
considered since il 15 not interesting.

A temporal association rule expresses (hat a set of items
tends o appear along with another set of iters in the same
transactions, in a specific time frame.

Definition 7: A Temporal Association Rule for d is an
expression of the form X =V (i, (;]. where XgR, ¥ g
R\ X, and (,.1,] is a time frame corresponding to the
lifespan of X «w ¥ expressed in a granularity determined by
the user.

A temporal association rule has three factors associated
with it: supperr, remporal sipport, buth alicady defined,
and confidence, that will be defined next.

Definition 8: The confidence of a rule X= Y 1), ],
denoted by confiX=3Y. (4,1, d) is the conditional
probability thal a transaclion of d, randomly selected in the
time frameft,, t,]. that contains X also contains ¥:
confiX=2Y [t ], d) =
SXOY. Ikoy, @)/ 5(X. Ixoy, 4).
where oy = (L. L))



Definition 9: The temporal association rule X=>Y
[t,, t2] holds in d with supporr s, temporal support gyl
and confidence ¢ if s% of the transactions of d contain X
VY and ¢c% of the transactions of d that contain X also
contain Y, in the time frame [t,, t;].

Given a set of transactions d, and minimum levels of
suppori, temporal support. and confidence. the problem of
temporal association rule discovery is to generate all the
association rules that have at least the given support,
temporal support and confidence.

Example 2: following with the previous example, suppose
that we establish the level of minimum confidence @ as
being 0.7. From the frequent set {A, C} we can consider
two possible rules: A = C[15] and C=A[1.5]. The
first has confidence conffA = C,[1.5], d} = (3/5) / (3/5) =
1.0 which is saperior to the minimum 8 = 0.7. The second
has confidence confflC = A.[1.5]. d) = (3/5) / (5/5) = 0.6,
50 it 1§ discarded.

4. TEMPORAL RULES DISCOVERY

The discovery of all the association rules in a transaction
set d can be made in two phases [AIS93):

Phase 1. Find every set of items(itemsets) X < R that is
frequent, ie. their frequency exceeds the established
minimum support ¢ .

Phase 2. Use the frequent itemsets X to find the rules: test
for every ¥ < X, with

Y= O if the rule X \ ¥ = Y satisfies with enough
confidence. fre. it exceeds the established minimum
confidence 6.

In the following paragraph. we introduce suitable
modifications o support temporal association rules
discovery;

Phase IT. Find every itemset X < R such that X is frequenr
in its lifespan ly. i.e. s{(X by, d} > G and llyiz 1.

Phase 2T. Use the frequent itemsets X to find the rules:
verify forevery Y c X. with Y=, ifthe rule X\ Y = Y
[ty. t5} is satistied with enough confidence. in other words,
exceeds the minimum confidence 8 cstablished in the
interval [, t,].

4.1 Generating Frequent Itemsets

Any of the proposed algorithms in the literature ((5], [9].
[15]) for association rule discovery may be conveniently
madificd for its application for temporal association rules.
Let’s see, for example. the Apriori algorithm of [5] into
which we will introduce some slight changes o generale
association ruies taking time into consideration. As in the
original notation. L, represents the set of frequent k-
itemsets. Each member of this set will have the following
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fields: i) itremset, ii) lower and vpper limits of the life time
of the item: t, and tp, iii)connt of support {Fr) of the
itemset in [t;, 1,] and iv) total number of transactions (FTr}
found in the interval [, ;). Gy is the set of candidate
k-itemsets; in other words, potentially frequent ilemsets
that have associated the same intormation as the members
ofL,.

L. L, ={ I-frequent itemsets }; /*for each itemset of size
Iwe register the time of its first appearance in 1y and
the time of its last appearance in t;.in FTr we count
the amount of transaclions registered in the interval [t
1,] and delete the itemset if it is obsolete®/

2. for (k =2; Ly, = & k ++) do begin

i Cy = apriori-gen( Ly, }; f*new candidates
with their associated lifespan */
4. foreach transaction s € d do begin

Cs =subset ( Cy , s ); /*candidates ¢ in s and such
thal timestamp t of s is in the interval [ty, t;] of

C ¥
6. foreach candidate ¢ € C; do
1. c.Fr++;
8. foreach candidate ¢ ¢ C, do /* such
that timestamg t of 8 is in the
interval [t,. t;] de ¢ */
9. update ¢.FTr;
10. end

i, y={ce G lcFr20FTn A{ch~ct; =T}
12. end
13, Answer =wy Ly s

L, is obtained in the first pass, in which the iiems’
accurrences are counted to determine the 1-
frequent itemsets. For each itemset we store its lifespan {t,.
;). Besides counting the absolule frequency for each
itemsel. Fr, we coonl the tolal number of (ransactions
between {; and . FTr. Then it Fr /7 FTr = minimum
support @ and if t; — t; > minimum temporal
support €, we will say that the itemset X has minimum
support in {t,. 1,].

Some items could be deleted from L because they were
obsolete, i.e.. they have interval litespans {t,. t;] and t; <
1, After deleting the obsolete tems. the following lemma
assures us that it is not necessary to check for obsolete k-
itemsets, with k > |, anymore,

Lemma: An k- itemser, with k > 1, ix obsolete if and only if
contains an obsolere irem.

Proof: based on the definition of k-itemset lifespan, with k
> 1

Every following pass k congisls of two phases: in the first
are obtained the candidate ilemsets C, of size k. based on
the frequent itemsets Ly of size k-1 obtained in the k-1
pass. by means of the [unction apriori-gen. The lifespan of
a k-itemset with k > 1 is obtaitied in the following way: if
the k-itemset u is obtained putting together k-1-itemsets v
and w, then the hfespan of uw is fuw.ty.w. t;]. with w.t, = max
{vi, wy] and wi; = min {v.1; w.5]. Inthe second phase
we read the transactions” database to compute the support



of the candidate itemsets of C,, for which the function
subset is used; it determines if each ¢ member of C; is
contained in the transaction s. The timestamp t of s must
satisfy  t e L. The algorithm does as many passes over
the database as the maximal cardinality of a candidate
itemset.

Generating a priori candidates

The candidates’ generation is made by means of the
function apriori-gen. This function takes as argument Ly,
the set of all frequent (k-1)-ilemsets, and retuns a superset
of the frequent k-itemsets, each one with their associated
lifespan represenied generically by the interval [t,. t;]. This
function has been organized into a Join Step anda Pruning
Step.

L. Join Step;
In SQL
insert into Cy
select p.item,, p.item,, ..., p.ilemy,,, g.itemy_;
/¥ each resulting itemset will have an
associated interval [t,, ;] such that
I;= max { t, of the (k-1)-itemsets joined }
1 = min { t; of the (k-1)-ilemsets joined} */
from Ly p. Ly Q
where p.item, = g.item, and ... and
p.itemy; = q.itemy. , and
p.item,; < g.itemy_;;

In the next step (pruning) all the candidate itemsets c € C,
such that any subsct of ¢ with k-1 items i$ not in L are
deleted. In the same way the itemsets ¢ such that Il < T are
deleted too.

2. Pruning Step:

foreach itemset ¢ € C, deo
if I11 < T then
delete ¢ from C,
else
foreach (k-1} subscts s in ¢ do
if (s« L.,) then
delete ¢ from Cy;

Example 3: Given R= {A, B,C.D.E.F, G, H. I} and a
transactions database d. use the temporal version of Apriori
to determine all the frequent sets of ilems of R in d.
Assume that the minimum support is fixed at ¢ = 0.4 and
minimum temporal support is T = 3. In the first pass L, is
obtained: each original ilem has a defined lifespan,
observed in the reading of the database. From now on, the
itemsets’ lifespan will he calculated as a function of the
items” lifespan or component itemsets in the Apriori-gen
function (join step).
Figure 1 shows the example in detail.

4.2 Generating Rules -

To generate the rules, it is necessary to find ail the subsets
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for every frequent itemset. Then, given a frequent tlemset Z
we must find, for each proper subset X of Z, the rules X
= (Z-X) [1;,1;} such that s(Z.L, d)/ s(X.I.d) = O.
One of the problems we find in computing confidence, in
accordance with the definition 8,

confiX=>Y.[t,, ,]. d} =

(X OV Iy d)/s(X, Iy d),

where Loy = [[L. z]}, is the determination of s(X. Ly v,
d). Evidently. s(X. lyuy. d) may not be equal to s(X. Iy, d).
since lyoy < lx. But in PhaselT we have calculated  s(X,
ke, d). and not s(X. lg,y. d). Since. if XY is a frequent
itamset of size k we will have 2* possible subsets, we
should recalculate the frequency for 257 itemsets in Ly v,
and repeat thal in each k-th pass, with k > 1. A way to
avoid this. is 10 wse an estimation in is place. In the
simplest case, if we consider that all itemsets X have a
vaiform temporal distribution, then the chance of
appearance in any subset of kx, in particular in ly_y, will be
the same. Then we will be able o estimate s(X. Iy y. d) as
s(X, Ix, d). Then, modifying an algorithm as [ASr94a] to
obtain all possible rules. given a frequent ilemset Z, is
immediate.

5. CONCLUSIONS
WORK

In this paper we have introduced time in the problem of
association rules discovery, given place to what we call
Temporal Association Rules. Each item, itemset and rule
has now an associated lifespan, which comes from the
explicitly defined time in database transactions. We have
also introduced the concept of temporal support. This gives
way to the discovery of new rules that. due to the lack of
necessary support. were nol discovered with the traditional
vigwpoint. Now. with the concept of time. we consider the
rules that have cnough support in their lifespan, as long as
they also have temporal support.

Onc of the problems related to the discovery of
association rules that is otten mentioned. is the great
number of rules that can be generated. A solution is that the
user may say which dates are old encugh, so the rules with
lilespan previous o those dates would be comsidered
obsolete and not presented 0 the user. Furthermore, if the
algorithm used to generate the frequent itemsets finds old
items or itemsels. it may eliminate them directly, which it
would be an additional pruning.

To show the incidence of Gime in the amount and quality
of the obtained sules we exiend. as an example. the A priori
algorithm that generates the frequent itemsets.

We are currently implementing our algorithm for
lemporal association rule discovery. Besides.  we will
analyze the problem of the maintenance of temporal
association In addition to what was considered in [10], we
will investigate the concept of remporal border, the
temporal border includes itemsets that do not have enough
temporal support, but such that the wpper limit of their
lifespan corgesponds, at less than a At, with the temporal
limit of the originai database.

AND FUTURE



Database d
T _Tid ltems

1 100 ACFHI
2 200 ABCG

3 300 BCDGI scan d

4 400 AC I IR
5 500 C DEHI

6 600 ADFG

£
Eremset

[A.C)

{A.D}

{AG}

{AH}

{Al}

{C.D}

{C.G) scan
{CH} D
{C,1}

{D, G}

{D.H}

iD. B}

{G, H}

(G.I}

{81}

Itemset

{ACGY

{AC.L}

[B.C.G} scan d
[C.DG) >
{C.B.I}

ICHI)

C4

Iiemset

]
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